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We consider the mass-critical non-linear Schrödinger equation on non-compact
metric graphs. A quite complete description of the structure of the ground states,
which correspond to global minimizers of the energy functional under a mass
constraint, is provided by Adami, Serra and Tilli in [R. Adami, E. Serra and P. Tilli.
Negative energy ground states for the L2-critical NLSE on metric graphs. Comm.
Math. Phys. 352 (2017), 387–406.] , where it is proved that existence and properties
of ground states depend in a crucial way on both the value of the mass, and the
topological properties of the underlying graph. In this paper, we address cases when
ground states do not exist and show that, under suitable assumptions, constrained
local minimizers of the energy do exist. This result paves the way to the existence of
stable solutions in the time-dependent equation in cases where the ground state
energy level is not achieved.
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1. Introduction

Throughout this paper, we deal with non-compact connected metric graphs G, hav-
ing a finite number of vertices and edges, where any edge e is identified either
with a closed bounded interval [0, |e|], or with (a copy of) the closed half-line
R

+ = [0,+∞). On such a G, we consider the non-linear Schrödinger (NLS) energy
functional

E(u,G) =
1
2

∫
G
|u′|2 − 1

6

∫
G
|u|6, (1.1)

under the mass constraint

u ∈ H1
μ(G) :=

{
u ∈ H1(G),

∫
G
|u|2 = μ

}
, (1.2)
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the Sobolev space H1(G) consisting of all the continuous functions u on G, such
that u|e ∈ H1(e) for every edge e. As explained in [3], see also [1,2,13], the above
energy is critical because, under mass-invariant dilations, the two terms in E scale
in the same way.

Critical points of E(·,G) constrained to H1
μ(G) satisfy the NLS equation

u′ + |u|4u = λu (1.3)

on every edge, for a Lagrange multiplier λ (which is the same on every edges, but
may be different for different solutions); moreover, at each vertex the Kirchhoff
condition is satisfied, which requires the sum of all the ingoing derivatives to vanish
(see [1, Prop. 3.3]). Through the usual ansatz Φ(x, t) = eiλtu(x), such critical points
correspond to solitary wave solutions to the Schrödinger equation

i∂tΦ(x, t) + ∂xxΦ(x, t) + |Φ(x, t)|4Φ(x, t) = 0, x ∈ G, t > 0,

which appears in the Gross–Pitaevskii theory for Bose–Einstein condensation on
graph-like structures (for more details on the physical interpretation, see [3] and
references therein).

The study of Schrödinger equations on metric graphs has attracted considerable
attention in the last decades. Linear problems have been extensively studied, see
[11] and references therein. More recently, non-linear problems have been addressed
as well. We do not attempt to provide a complete overview of the many available
results in the literature, for which we refer the interested reader to [4,18] and the
references therein. We limit to mention that results related to ours, concerning
critical problems, have been obtained in [3], whose main results will be discussed
in details in what follows; in [14,15], devoted to problems on periodic graphs and
with localized non-linearities, respectively; and, very recently, in [19], regarding
existence of standing waves (not necessarily ground states) of the NLS equation on
the so-called tadpole graph.

From the dynamical point of view, the more interesting critical points are the
local minimizers, since they are natural candidates to correspond to orbitally stable
solitary waves [16].

The search of global minimizers, i.e. the ground state minimization problem

EG(μ) := inf
u∈H1

μ(G)
E(u,G), (1.4)

has been extensively investigated by Adami, Serra and Tilli in [3]. As they describe,
the range of masses μ for which (1.4) is achieved strongly depends on the topological
properties of G. In case G = R, seen as a pair of half-lines glued together at the
origin, ER(μ) is achieved if and only if μ is equal to the critical mass μR = π

√
3/2;

actually, this is very well known, and similar results hold true also in R
N , N � 2

(see for instance [12]). Analogously, in case G = R
+, ER+(μ) is achieved if and only

if μ = μR+ = μR/2. For general G, several different situations may happen. On a
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Figure 1. Graph with a tip and two half-lines.

general ground, every G admits a critical mass μG , where

μR+ � μG � μR

(see [3, Prop. 2.3]), and a necessary condition for EG(μ) to be achieved is that

μG � μ � μR

(see [3, Coro. 2.5]). Such condition is far from being sufficient, and [3] provides a
classification of different kinds of graph, for which the set of masses μ allowing for
a ground state can be either an interval, reduce to a point, or even be empty. We
postpone a more detailed discussion of the results in [3] below.

The main aim of this paper is to show that, under fairly general assumptions,
there may exist local minimizers of E in H1

μ(G), for values of μ strictly smaller than
μG , i.e. in cases when a global minimizer can not exist. To state our main result,
we assume w.l.o.g. that any vertex of G has degree different from 2 (this is possible
whenever G is not isometric to R, which can be decomposed in two half-lines only
allowing a vertex of degree 2). With some abuse of notation, we call a ‘open half-line
� ⊂ G’ any unbounded edge of the underlying combinatorial graph, and we denote
with G \ � the graph obtained from G by removing the edge � and the corresponding
vertex at infinity.

Our main result is the following.

Theorem 1.1. Let G be a non-compact connected metric graph, having a finite
number of vertices and edges. Let us assume that

1. G has at least two half-lines and at least one bounded edge;

2. for every open half-line � ⊂ G, μG\� = μG.

Then there exists μ̄ ∈ (0, μG) such that for every μ ∈ (μ̄, μG) the functional E(·,G)
has a critical point on H1

μ(G), which is a local minimizer.

Exploiting the results in [3], we can provide an explicit characterization of different
classes of graphs fulfiling our assumptions, see below. As an example, theorem 1.1
applies to any G having at least two half-lines and one terminal point (a tip), the
simplest prototype being the one illustrated in figure 1. Notably, this kind of graphs
admits no global minimizers, regardless of the choice of μ.

We remark that normalized local minimizers of NLS-type energies, on standard
domains, have been recently found in different contexts: we refer to [20–23] for
NLS equations and systems on bounded domains of R

N , to [6,8] for problems on
R

N with potentials, to [7] for a semi-relativistic case, and to [25,26] for equations
with combined non-linearities.
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Figure 2. The graph on the left fulfils the assumptions of theorem 1.1, while that on the
right does not.

To better illustrate our result, let us provide more details about the results con-
tained in [3], about the global minimization problem (1.4). The authors there detect
four mutually exclusive cases [3, theorems 3.1–3.4].

1. G has at least a terminal point. A terminal point (a tip) is a vertex, not at
infinity, of degree 1. In this case μG = μR+ , and (1.4) is never achieved unless
G = R

+ and μ = μR+ ;

2. G admits a cycle covering. Here ‘cycle’ means either a bounded loop, or an
unbounded path joining two distinct points at infinity. Equivalently, G has
at least two half-lines and no terminal point, and whenever G \ e has two
connected components, both are unbounded (here e denotes any bounded
edge). Then μG = μR, and (1.4) is never achieved unless G = R or G is a
‘bubble tower’ (see [3]), and μ = μR;

3. G has exactly one half-line and no terminal point. Then μG = μR+ and (1.4)
is achieved if and only if μ ∈ (μR+ , μR];

4. G does not belong to any of the previous three cases, i.e. it has no tips, no
cycle-covering and at least 2 half-lines. Then, in case μG < μR we have that
(1.4) is achieved if and only if μ ∈ [μG , μR]; if μG = μR, then nothing is known.

Using such classification, we easily see that the following types of graph G fulfil the
assumptions of theorem 1.1.

• G has at least a terminal point and at least two half-lines (figure 1). Indeed,
both G and G \ �, for any open half-line � ⊂ G, fall into case 1 above, and
μG\� = μG = μR+ .

• G has at least a bounded edge and both G and any G \ � admit a cycle covering
(figure 2, left).

Then, both G and any G \ � fall into case 2 above, with μG\� = μG = μR.
Sufficient conditions for this to hold are that G admits a cycle covering, has
at least three half-lines and a bounded edge, and no cutting edge. Such con-
ditions are not necessary, as the figure shows. On the other hand, graphs with
a cycle covering and at least three half-lines may not satisfy the assumptions
of theorem 1.1: for instance, removing �∗ from the graph in figure 2, right, we
obtain the so-called ‘signpost’ graph, which falls into case 4 above and whose
critical mass is known to be strictly smaller than μR (see [3]). Similarly, our
result does not apply to star-graphs, which do not have bounded edges (see
remark 5.9 for a deeper discussion of this case).
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We observe also that theorem 1.1 does not apply to graphs satisfying 3 above, since
they have exactly one half-line (a prototypical example of this class of graphs is the
tadpole graph, studied in [19]). Finally, to clarify whether theorem 1.1 applies to
graphs of type 4, we provide the following result.

Proposition 1.2. Let G be a non-compact metric graph, not isometric to R
+,

having a finite number of vertices and edges. If EG(μG) is achieved then there exists
an open half-line � ⊂ G such that μG\� < μG.

Incidentally, the above proposition is of independent interest, as it helps in
supplementing [3, theorem 3.4].

Corollary 1. If G falls in case 4 above (i.e. it has no tips, no cycle-covering and
at least 2 half-lines) then μG > μR+ .

Based on proposition 1.2 we see that, in case G belongs to case 4 above and μG < μR,
then theorem 1.1 does not apply. On the contrary, it may apply to some G in case
4 not achieving μG = μR, even though we are not aware of any example of such a
graph.

To conclude this introduction, we want to describe the strategy we followed in
order to guess that a result like theorem 1.1 may hold. Indeed, this strategy is quite
elementary, and we think that it may be applied successfully also to other cases. It
is based on three steps.

Step 1: phase plane analysis of a model graph. Normalized solutions, i.e.
critical points of E(·,G) in H1

μ(G), with assigned μ, can not be found by elementary
methods, even when G is a fixed graph with simple structure. This is not the case
if, instead of assigning μ, we use as a parameter the Lagrange multiplier λ in (1.3).
For concreteness, we consider the prototype graph G made by two half-lines and
a segment, depicted as in figure 1. For any fixed λ we look for solutions of the
NLSE (1.3) on every edge of G, complemented with Kirchhoff conditions at the
vertex. This can be easily done via elementary phase plane analysis in different
ways, obtaining families of solutions

λ �→ uλ ∈ H1
μ(λ)(G), where μ(λ) :=

∫
G

u2
λ.

In this way uλ is a critical point of E(·,G) in H1
μ(λ)(G), and both uλ and μ(λ) are

either explicit or easy to be numerically estimated.
Step 2: detection of candidate local minimizers. Once an explicit fam-

ily λ �→ uλ is constructed as in step 1, we would like to detect if it consists
in local minimizers. A very powerful tool to this aim is the celebrated stability
theory developed by Grillakis, Shatah and Strauss [16,17]. Roughly, in our con-
text such theory implies that uλ, 0 < a < λ < b, is a local minimizer of E(·,G) in
H1

μ(λ)(G) if

• uλ, as a critical point of the action functional Aλ(u,G) = E(u,G) + λ
2

∫
G u2, is

non-degenerate, it has Morse index 1, and

• the map λ �→ μ(λ) is increasing.
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Step 3: identification of the variational structure and extension to more
general graphs. Contrarily to saddle points, local minimizers are structurally
stable. In the model case uλ is explicit. Once a neighbourhood of uλ is identified,
in which uλ is a global minimizer, we can try to spot similar neighbourhoods on
more general graphs. Of course, this is the more delicate part of the strategy, and
will involve the minimization of the energy under a double constraint, which will
induce a convenient splitting of the mass on the compact and non-compact parts of
the graph. Different types of doubly constrained variational problems for the NLS
energy were considered also in [5,19].

The paper is structured as follows. In section 2 we prove proposition 1.2 and
corollary 1. In section 3 we develop the phase plane analysis of the model graph
illustrated in figure 1 (step 1 of the above strategy). Section 4 is devoted to a general
compactness argument for locally minimizing sequences, which is then applied in
section 5 to prove theorem 1.1. Finally, in appendix 5.2 we sketch the application
of the Grillakis–Shatah–Strauss theory to the explicit solutions on the model graph
(step 2 of the above strategy).

2. Proof of proposition 1.2

With the same notations as in [3], we recall that on a general non-compact metric
graph G the Gagliardo–Nirenberg inequality

‖u‖6
L6(G) � 3

μ2
G
‖u‖4

L2(G)‖u′‖2
L2(G) ∀u ∈ H1(G)

holds, where μG denotes the critical mass of G. It follows plainly that

E(u,G) � 1
2

(
1 −

(
μ

μG

)2
)
‖u′‖2

L2(G) ∀u ∈ H1
μ(G). (2.1)

In particular, for μ � μG the functional E(·,G) is non-negative. Moreover, from
[3, proposition 2.4] we know that

EG(μ) = 0if μ � μG ,

EG(μ) < 0 (possibly −∞) if μ > μG .
(2.2)

Proof of proposition 1.2. Since G is not isometric to R
+, and EG(μG) is achieved,

we deduce by the classification provided in [3] that G has at least two half-lines,
say �1 and �2. Notice that, in case G is isometric to R, the proposition is trivial:
indeed, in such case G \ � ≡ R

+, and μR+ = μR/2 < μR. As a consequence, we are
left to treat the case in which G \ (�1 ∪ �2) has positive measure (possibly infinite,
in case G has at least three half-lines). Let ū ∈ H1

μG (G), strictly positive on G, be
such that E(ū,G) = EG(μG) = 0. We have∫

�1

ū2 +
∫

�2

ū2 <

∫
G

ū2 = μG � μR.
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We deduce that at least one half-line, say �1, satisfies

∫
�1

ū2 =: η <
μR

2
= μR+ ,

therefore, by (2.1),

E( ū|�1 , �1) > 0.

Then we obtain

EG\�1(μG − η) � E( ū|G\�1
,G \ �1) = E(ū,G) − E( ū|�1 , �1) < 0.

Recalling (2.2), this forces μG\�1 � μG − η, and the proposition follows. �

Proof of corollary 1. Assume by contradiction that G has no tips, no cycle-covering
and at least 2 half-lines, and μG = μR+ . Then, by [3, theorem 3.4], μG is achieved.
But then proposition 1.2 implies that, for some �, the non-compact graph G \ �
satisfies μG\� < μR+ , in contradiction with [3, proposition 2.3]. �

3. Direct analysis of the model case.

Let G be a metric graph consisting of a straight line, identified with R, with
one pendant attached at the origin (see figure 1). Without loss of generality, we
identify the pendant with the interval [0, 1]. As we mentioned, it was proved in
[3, theorem 3.1] that the ground-state energy level (1.4) is never attained. In this
section, we show that there exist positive constrained critical levels of E(u,G) for
suitable intervals of μ, some of which correspond to candidate local minimizers.

We recall that u ∈ H1
μ(G) is a constrained critical point of E if and only if it

solves, on every edge of G, the stationary NLS equation

u′′ + |u|4u =
Λ2

3
u, (3.1)

for some value of Λ not depending on the edge, and the Kirchhoff condition holds
at any vertex of G (see [1, proposition 3.3]). For every Λ > 0, the equation (3.1) is
solved on R by the family of solitons

φΛ(x) =
√

Λ φ(Λx), φ(x) = cosh−1/2(2x/
√

3), (3.2)

all of mass μR. We will define a solution of (3.1) made of two symmetric pieces of
translated solitons in R and of a suitable solution defined in [0, 1]. As a matter of
fact, we mimic an analogous construction performed in [1, section 6] to provide a
ground state in the subcritical case.
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Figure 3. Phase plane analysis for the model graph: the thick part on the homoclinic
trajectory corresponds to the solution on each half-line R±; the thick part on the trajectory
with H > 0 corresponds to the solution on the pendant [0, 1].

Let us define, for every y > 0 fixed,

uR(x) := u
∣∣
R
(x) =

{
φΛ(x + y), if x � 0;
φΛ(x − y), if x < 0. (3.3)

Note that uR is continuous on R since

φΛ(y) = φΛ(−y) =
√

Λ cosh−1/2(2Λy/
√

3). (3.4)

On the other hand, there is a jump of the derivatives at the origin as

φ′
Λ(±y) = ∓Λ3/2

√
3

sinh(2Λy/
√

3)

cosh3/2(2Λy/
√

3)
.

On the interval [0, 1] we define u[0,1] := u
∣∣
[0,1]

by solving (3.1) with overdetermined
data assigned by the continuity at x = 0 and Kirchhoff conditions:

u[0,1](0) = φΛ(y), u[0,1]
′(0) = 2|φ′

Λ(y)|, (3.5)

endashu[0,1]
′(1) = 0. (3.6)

Note that, by elementary calculations, one can write the above term in the form

2|φ′
Λ(y)| =

2√
3
φΛ(y)

(
Λ2 − φΛ(y)4

)1/2
. (3.7)

The solutions of equation (3.1) are conveniently represented by the orbits of the
associated Hamiltonian system in the (u, u′)-plane, see figure 3; in fact, any solution
u on a connected interval satisfies

1
2
|u′|2 +

1
6
|u|6 − Λ2

6
|u|2 = H, (3.8)

for some H � Hm = −Λ3/9
√

3 (the minimum of the potential energy). The sys-

tem has three equilibrium solutions u = 0 (with H = 0) and u = ±
√

Λ/
√

3 (with
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H = Hm < 0). Moreover, the level set H = 0 also contains the homoclinic orbit
corresponding to the soliton solution (3.2) and its translates; such orbit intersects
the u axis also at u =

√
Λ. By reflecting with respect to the u′ axis we have the

homoclinic associated to minus the soliton solution. Finally, any other level curve
with H = 0 (both positive and negative) is a closed orbit corresponding to periodic
solutions of the system; if H < 0, the orbit is internal to one homoclinic, while it
circles both the homoclinics for H > 0.

Now, to every point (φΛ(y), φ′
Λ(y)) on the (right) homoclinic we asso-

ciate the ‘initial point’ (φΛ(y), 2|φ′
Λ(y)|) on the level curve H = H(y), where,

by (3.7) and (3.8),

H(y) :=
2
3
φΛ(y)2

(
Λ2 − φΛ(y)4

)− Λ2

6
φΛ(y)2 +

1
6
φΛ(y)6

=
1
2
φΛ(y)2

(
Λ2 − φΛ(y)4

)
> 0. (3.9)

By looking at the orbit with H = H(y), one sees that it intersects the u axis at the
points ±uM , where

uM = uM (y) >
√

Λ

is the positive solution of

u6
M − Λ2u2

M = 6 H(y). (3.10)

We claim that, by suitably choosing Λ, we can provide a solution u of (3.8) on (0, 1)
(with H = H(y)), which satisfies (3.5) and such that u(1) = uM ; thus, at the end
of the pendant the solution u will satisfy (3.6) as well.

In order to prove the above claim, we first note that, by (3.4), (3.9), (3.10), the
quantities

φ∗ = φΛ(y)/
√

Λ, H∗ = H(y)/Λ3, u∗
M = uM/

√
Λ, (3.11)

only depend on the product z = Λy. Moreover, we have 0 < φ∗ < 1, u∗
M > 1, and

6H∗ = u∗
M

6 − u∗
M

2. (3.12)

Solving (3.8) with respect to u′ and choosing du/dx � 0, we have

x(uM ) =
√

3
∫ uM

φΛ

du√
6H(y) − u6 + Λ2u2

(3.13)

By the substitution v = u/
√

Λ we get

x(uM ) =
√

3
Λ

∫ u∗
M

φ∗

dv√
6H∗ − v6 + v2

. (3.14)

The integral above is a positive function of z; hence, for every fixed z > 0 we can
take

Λ = Λ(z) =
√

3
∫ u∗

M

φ∗

dv√
6H∗ − v6 + v2

. (3.15)

so that x(uM ) = 1.
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Remark 3.1. The above value of Λ is not the unique choice satisfying (3.6); for
example, we could ‘add a half rotation’ around the origin in the (u, u′)-plane,
requiring that u = −uM at x = 1. By defining

TΛ

2
=

√
3
∫ uM

−uM

du√
6H(y) − u6 + Λ2u2

=
T ∗

2Λ

we obtain the condition
√

3
Λ

∫ u∗
M

φ∗

dv√
6H∗ − v6 + v2

+
T ∗

2Λ
= 1.

More generally, we find (for every fixed z > 0) a sequence of admissible values

Λn =
√

3
∫ u∗

M

φ∗

dv√
6H∗ − v6 + v2

+ n
T ∗

2
, n = 0, 1, 2, . . . (3.16)

and a corresponding sequence of solutions un. Due to the further oscillations, it
is possible to prove that these solutions have higher Morse index. For this reason,
in the rest of the section we will focus on the case n = 0, i.e. on the choice of Λ
provided in (3.15).

Going back to the choice (3.15), we have that the total mass of the corresponding
solution u = uz only depends on z. Indeed, the mass on the pendant is given by∫ 1

0

u[0,1](x)2 dx =
√

3
∫ uM

φΛ

u2√
6H(y) − u6 + Λ2u2

du

=
√

3
∫ u∗

M

φ∗

v2

√
6H∗ − v6 + v2

dv, (3.17)

while the mass on R is simply∫
R

uR(x)2 dx =
∫
|x|>y

Λ
cosh(2Λx/

√
3)

dx =
∫
|x′|>z

1
cosh(2x′/

√
3)

dx′, (3.18)

and all the above integrals are (continuous) functions of z alone. Thus, as z spans
(0,+∞), we have an interval, or allowed band, for the values of the total mass

μ(z) :=
∫
|x|>z

1
cosh(2x/

√
3)

dx +
√

3
∫ u∗

M

φ∗

v2

√
6H∗ − v6 + v2

dv. (3.19)

A rigorous study of the map z �→ μ(z) is contained in appendix 5.2. Anyway, a
qualitative picture of its behaviour can be easily obtained by a numerical evaluation
of the second integral above (the first one is explicit), see figure 4. Roughly, we can
say that when z → 0+ we have φ∗ → 1− and still u∗

M → 1+, so that the total mass
converges to the soliton mass μR (on the real line). On the other hand, in the limit
z → +∞, an half-soliton tends to concentrate on the pendant (it can be shown
by (3.15), (3.19) that Λ(z) → +∞ and μ(z) → μR+ in this limit); furthermore, as
we show in appendix 5.2, the limit of μ(z) for z → +∞ is approached from below,
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Figure 4. Numerical behaviour of the map z �→ µ(z).

so that this function will have a minimum μm in (0,+∞) whose value must be
strictly lower than μR+ . This has two consequences: firstly, it follows that the band
of allowed masses for the critical points of (1.1) includes the interval [μm, μR):

μ(R+) = [μm, μR).

Secondly, by the theory of Grillakis–Shatah–Strauss, we can show that the cor-
responding solutions are orbitally stable for z large (in particular, for every μ ∈
(μm, μR+) there are at least two critical points of (1.1) in H1

μ, one local minimizer
and one of mountain pass type).

This suggests to look for local minimizers of the energy, for masses slightly smaller
than μR+ , also for more general graphs with a tip.

Remark 3.2. As we observed in remark 3.1, one can construct other solutions un,
n = 1, 2, . . ., by choosing the admissible values Λn, n � 1. The corresponding values
of the total mass are

μn(z) = μ(z) + n
√

3
∫ u∗

M

−u∗
M

v2 dv√
6H∗ − v6 + v2︸ ︷︷ ︸
M∗

,

where μ(z) is defined in (3.19). Then, as z spans (0,+∞), we get a sequence of
allowed bands for the total masses. Since u∗

M → 1 in both the limits z → 0 and
z → +∞, it is readily checked that M∗ → μR in those limits.

Finally, we mention that a second sequence of solutions can be found by gluing
(at the origin in R) the solitons in (3.2) translated in the opposite direction, that
is by defining

ũ
∣∣
R
(x) =

{
φΛ(x − y), if x � 0;
φΛ(x + y), if x < 0,

on R and ũ(0) = φΛ(y), ũ′(0) = −2|φ′
Λ(y)| on the pendant. This produces solutions

with higher masses.
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4. A compactness argument for locally minimizing sequences

In this section we develop a general compactness argument for suitable locally
minimizing sequences, which we shall directly apply in the proof of theorem 1.1.

Let G be a non-compact connected metric graph, with a non-empty compact
core K, and having a finite number of vertices, bounded edges and half-lines.
Throughout this section, we denote by {α1, α2, . . . , αq} the finite vertices of G,
by {e1, . . . , ep} its bounded edges and by {�1, . . . , �m} its half-lines. The vertices of
G are exactly {α1, . . . , αq} plus the vertices at infinity. We identify u ∈ H1(G) with
a vector (u1, . . . , um, v), where ui ∈ H1(�i) � H1(0,+∞) is the restriction of u on
the half-line �i, and v ∈ H1(K) is the restriction of u on the compact core K. In
turn, we denote by vi the restriction of v on the edge ei. If ei or �i is incident to
αj , we write ei � αj or �i � αj .

Let us consider 0 < η < μ < μG , δ > 0 such that

μ − η < μR+ , and (1 + δ)η < μ. (4.1)

Let us also define

A :=
{

u ∈ H1
μ(G) :

∫
K

u2 � η

}
,

B :=
{

u ∈ H1
μ(G) : η �

∫
K

u2 � (1 + δ)η
}

.

(4.2)

Notice that B represents a neighbourhood of ∂A in A, in the H1 topology. The
main result of this section is the following variational principle.

Proposition 4.1. Suppose that (4.1) holds, and let

−∞ < inf
u∈A

E(u,G) < inf
u∈B

E(u,G). (4.3)

Then E(·,G) constrained on H1
μ(G) has a critical point which is obtained as local

minimizer in the set A.

The proof is divided into several intermediate lemmas.

Lemma 4.2. Let {ūn} be a minimizing sequence for E(· ,G)|A. Then there exists
a (possibly different) minimizing sequence {un} satisfying the additional properties
that

‖dE(un,G)‖∗ → 0, and ‖un − ūn‖H1
μ(G) → 0

as n → ∞, where ‖ · ‖∗ denotes the norm in the dual to the tangent spaces
Tun

(H1
μ(G)).

We shall refer to {un} as to a minimizing Palais–Smale sequence for E(·,G)|A.

Proof. This is a direct consequence of Ekeland’s variational principle in the present
setting, where we use assumption (4.3) in order to ensure that minimizing sequences
in A do not approach the boundary ∂A. �
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Lemma 4.3. Let {ūn} be a minimizing sequence for E(·,G)|A, with ūn � 0 for every
n. Then there exists a minimizing Palais–Smale sequence {un}, a function u ∈
H1(G) and λ ∈ R such that, up to a subsequence, we have⎧⎪⎨

⎪⎩
‖un − ūn‖H1 → 0,

un, ūn ⇀ u weakly in H1(G),
un, ūn → u locally uniformly in G,

(4.4)

as n → ∞, and the limit u = (u1, . . . , um, v1, . . . , vp) satisfies⎧⎪⎨
⎪⎩
−u′

i = λui + u5
i , ui > 0 on �i, for every i

−v′
i = λvi + v5

i , vi > 0 on ei, for every i∑
ei�αj

v′
i(αj) +

∑
�i�αj

u′
i(αj) = 0 for every j = 1, . . . , q

(4.5)

and at each vertex αj we have that u(αj) > 0.

Since each edge is identified with an interval (0, di), v′
i(αj) is a shorthand notation

for v′
i(0

+) or −v′
i(d

−
i ), according to the fact that the coordinate is 0 or di at αj .

Similarly, writing that u(αj) > 0 we mean that:

if ei1 , . . . , eip
, �k1 , . . . , �kq

� αj , then

vi1(αj) = . . . = vip
(αj) = uk1(αj) = . . . = ukq

(αj) > 0.

Proof. By lemma 4.2, there exists a minimizing Palais–Smale sequence {un} such
that ‖un − ūn‖H1 → 0. By (2.1), since μ < μG we have that {un} is bounded, and
hence up to a subsequence we have

un ⇀ u weakly in H1(G),

un → u locally uniformly in G.

Let now ϕ ∈ H1
μ(G). Arguing as in [10, lemma 3] (see also [24]), the fact that {un}

is a bounded Palais–Smale sequence yields

dE(un)[ϕ] − λn

∫
G

unϕ = o(1)‖ϕ‖H1 (4.6)

as n → ∞, for some approximate Lagrange multiplier λn ∈ R, where λn is given by

λn =
1
μ

∫
G
|u′

n|2 − |un|6.

It follows that {λn} is bounded, and up to a further subsequence λn → λ ∈ R. Thus,
by weak convergence, (4.6) implies that (4.5) holds (see [1, proposition 3.3] for the
details). Notice that, since ‖un − ūn‖H1 → 0 and ūn � 0, we have u � 0 as well.
Now we show that u(αj) > 0 for every j. By contradiction, let u(αj) = 0 for some
j, say j = 1. Since by convergence u � 0, we have that

v′
i(α1), u′

k(α1) � 0 whenever ei, �k � α1.

Thus, the Kirchhoff condition implies that in fact these derivatives are all equal
to 0, and by uniqueness of the solutions for the Cauchy problems associated with
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the NLS on intervals, we deduce that vi ≡ 0 for ei � α1, and uk ≡ 0 for �k � α1.
This implies that u(αj) = 0 also for all the vertices directly connected to α1. Since
the graph is connected and has finitely many vertices, iterating this argument a
finite number of times, we infer that u ≡ 0 in G. However, this is not possible since
un → u uniformly on compact sets, and in particular∫

K

u2 = lim
n→∞

∫
K

u2
n � η > 0.

This contradiction shows that necessarily u(αj) > 0 for every j, and this, by the
strong maximum principle, finally gives the strict positivity of u. �

In the next lemma we select a particular minimizing sequence having some special
symmetry properties, which will be useful in the study of its convergence.

Lemma 4.4. There exists a minimizing sequence {ûn = (û1,n, . . . , ûm,n, v̂n)} for
E(·,G) on A, with ûn � 0, and with the property that ûi,n is monotone decreasing
on �i = (0,+∞), for every i = 1, . . . , m.

Proof. Let {ūn = (ū1,n, . . . , ūm,n, v̄n)} be a minimizing sequence. If necessary
replacing ūn with (|ū1,n|, . . . , |ūm,n|, |v̄n|), we can suppose that ūn � 0. By lemma
4.3, un → u locally uniformly on G, with u positive in all the (finitely many)
bounded vertices. Thus, for sufficiently large n, we have that un is positive in
all the vertices as well.

Let us consider u∗
n = (u∗

1,n, . . . , u∗
m,n, v̄n), where u∗

i,n ∈ H1(R+) is the decreasing
rearrangement of ūi,n. By well-known properties of rearrangements, we have that
u∗

n ∈ H1(R+, Rm) × H1(K), that |u∗
n|2L2(G) = μ and that E(u∗

n, R) � E(ūn, R), for
every n. However, in general u∗

n ∈ H1
μ(G), since when we rearrange we could loose

the continuity in the vertices. To overcome this problem, we observe that if αj is
the initial vertex of �i, then

u∗
i,n(0) = sup

R+
u∗

i,n = sup
R+

ūi,n � ūi,n(0) = ūn(αj) > 0.

Therefore, we can consider

ûi,n(x) :=
√

θu∗
i,n(θx),

where 0 < θ � 1 is chosen in such a way that ûi,n(0) = ūn(αj). Moreover,∫ ∞

0

(ûi,n)2 =
∫ ∞

0

(u∗
i,n)2 �

∫
G
(u∗

n)2 −
∫

K

(u∗
n)2 � μ − η < μR+ ,

for every i, due to (4.1). In particular, we have that ûn = (û1,n, . . . , ûm,n, v̄n) ∈
H1

μ(G), for every n; moreover, by (2.1) applied to each restriction u∗
i,n, we have

that E(u∗
i,n, R+) � 0 and, since θ � 1,

E(ûi,n, R+) = θ2E(u∗
i,n, R+) � E(u∗

i,n, R+).

This means that {ûn} ⊂ A is a minimizing sequence with the required properties.
�
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The advantage of working with {ûn} stays in the fact that its components ûi,n

are decreasing functions on �i � R
+, and the class H∗(R+) of decreasing functions

is compactly embedded in Lp(R+), for every 2 < p < +∞ (see the appendix in [9]).
This yields the following lemma, which completes the proof of proposition 4.1.

Lemma 4.5. Let {ûn} be the minimizing sequence given by lemma 4.4. Then, up to
a subsequence, ûn → u, and u is a critical point of E(·,G) on H1

μ(G) obtained as
local minimizer in A.

Proof. Let {ũn} be the minimizing Palais–Smale sequence associated with {ûn},
given by lemma 4.2. By lemma 4.3, we can suppose that the two sequences converge
to a limit u ∈ H1(G) (weakly in H1(G), and uniformly on compact sets of G), with
u satisfying (4.5) and u > 0 on G.

Step (1) Up to a subsequence, the limit is also strong in L6(G). Indeed, for each
i we recall that {ûi,n} is a bounded sequence in H∗(R+), and hence,
by compact embedding, ûi,n → ui strongly in L6(R+). Moreover, since
K is compact, we have also that v̂n → v strongly in L6(K), by local
uniform convergence.

Step (2) The Lagrange multiplier λ in (4.5) is negative. Indeed, if by contra-
diction λ � 0, then ui would be a C2 function on (0,+∞), concave,
strictly positive (by the maximum principle), tending to 0 as x → ∞,
which is not possible.

Step (3) ũn → u strongly in H1(G). Being ũn a bounded Palais–Smale sequence,
and recalling that λn → λ, for any ϕ ∈ H1(G) we have that

dE(ũn,G)[ϕ] − λ

∫
G

ũnϕ = o(1)‖ϕ‖H1

as n → ∞. Moreover

dE(u,G)[ϕ] − λ

∫
G

uϕ = 0.

Choosing ϕ = ũn − u and subtracting, we deduce that

(
dE(ũn,G) − dE(u,G)

)
[ũn − u] − λ

∫
G
|ũn − u|2 = o(1).

But, having proved that ũn → u strongly in L6(G), the above equality reads∫
G
|(ũn − u)′|2 − λ|ũn − u|2 = o(1),

and, since λ < 0, the left-hand side is the square of a norm, equivalent to the
standard one, in H1(G). Thus, we proved that ũn → u strongly in H1(G), and the
thesis follows. �
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5. Proof of theorem 1.1

Recalling the classification provided by [3] and proposition 1.2, we have that if
either G has exactly one half-line and no terminal point, or G has no tips, no cycle-
covering and at least 2 half-lines, and μG < μR, then G can not fulfil the assumptions
of theorem 1.1. On the contrary, if G is as in such theorem, only two possibilities
are available, namely:

• μG = μG \ � = μR+ , for every open half-line � ⊂ G. This is possible only if G has
at least two half-lines and a terminal point (and hence any G \ � has at least
a half-line and a terminal point, too). This case is treated in section5.1, see
proposition 5.1 ahead.

• μG = μG \ � = μR, for every open half-line � ⊂ G. This case is possible with
different combinations, as explained in the introduction. In any case, by assump-
tion, the compact core of G is not empty. This case is treated in section5.2, see
proposition 5.5 ahead.

5.1. Non-compact graphs with a terminal point

In this section we work under the following assumptions:

(g1) G has a terminal point.

(g2) The non-compact part of G consists in a finite number m � 2 of half-lines
�1, . . . , �m.

The prototype of this class of graphs is the graph with the pendant considered
in the previous sections. Notice that for any G satisfying (g1) and (g2) we have
μG = μR+ , and for the ground state energy level EG(μ) we have:

(i) If μ < μR+ , then EG(μ) = 0, and is not attained.

(ii) If μ > μR+ , then EG(μ) = −∞,

see [3, corollary 2.5].

Proposition 5.1. Let G be a non-compact metric graph satisfying (g1) and (g2).
Then there exists μ̄ ∈ (0, μR+) such that for every μ ∈ (μ̄, μR+) the functional E(·,G)
has a critical point on H1

μ(G), which is a local minimizer.

The proof of the proposition will take the rest of the section. In view of proposition
4.1, we shall conveniently introduce two sets A and B as in (4.2), and prove that
for such sets (4.3) holds. Precisely, for η, μ, δ > 0 such that

(1 + 2δ)η < μR+ , and μ ∈ [(1 + 2δ)η, μR+ ], (5.1)
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we introduce

Aμ
η :=

{
u ∈ H1

μ(G)
∣∣∣∣
∫

K

u2 � η

}

Bμ
η :=

{
u ∈ H1

μ(G)
∣∣∣∣ η �

∫
K

u2 � (1 + δ)η
}

.

From now on, we shall always suppose that (5.1) is in force, and observe that
assumption (4.1) in proposition 4.1 is trivially satisfied with this choice.

Lemma 5.2 (Equicoercivity in Bμ
η ). There exists C1 = C1(δ, η,m) > 0 (independent

of μ) such that

E(u,G) � C1‖u′‖2
L2(G)

for every u ∈ Bμ
η , for every μ ∈ [(1 + 2δ)η, μR+ ].

Proof. If u ∈ Bμ
η , then

m∑
i=1

∫
�i

u2 = μ −
∫

K

u2 ∈ [μ − (1 + δ)η, μ − η] .

Therefore, there exists an index ī ∈ {1, . . . , m}, say ī = m, such that∫
�m

u2 � 1
m

(μ − (1 + δ)η) � δη

m
. (5.2)

Let F be the metric graph obtained removing the half-line �m and the corresponding
vertex at infinity from G. By (g1) and (g2), this is a non-compact connected graph
with at least one half-line and a terminal point, and hence μF = μR+ , by [3, theorem
3.1]. In particular, (2.1) gives that

E(u,F) � 1
2

(
1 −

(∫
F u2

μR+

)2
)
‖u′‖2

L2(F).

Notice that, by (5.2),∫
F

u2 =
∫
G

u2 −
∫

�m

u2 � μ − δη

m
� μR+ − δη

m
,

which is strictly smaller than μR+ . Thus, it follows that for a constant C2

(δ, η,m) > 0

E(u,F) � C2(δ, η,m)‖u′‖2
L2(F). (5.3)

On the other hand, always by (2.1), on the half-line �m

E(u, �m) � 1
2

⎛
⎝1 −

(∫
�m

u2

μR+

)2
⎞
⎠ ‖u′‖2

L2(�m),
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and ∫
�m

u2 � μ −
∫

K

u2 � μ − η � μR+ − η,

so that

E(u, �m) � C3(η)‖u′‖2
L2(�m) (5.4)

for some C3(η) > 0. Comparing (5.3) and (5.4), we finally deduce that

E(u,G) = E(u,F) + E(u, �m) � min{C2(δ, η,m), C3(η)}‖u′‖2
L2(G),

which is the desired result with C1(δ, η,m) = min{C2(δ, η,m), C3(η)}. �

Using the equicoercivity with respect to μ, it is not difficult to obtain the following
uniform lower bounds.

Lemma 5.3 (Uniform lower bound in Bμ
η ). There exists C4 = C4(δ, η,m) > 0 such

that

E(u,G) � C4

for every u ∈ Bμ
η , for every μ ∈ [(1 + 2δ)η, μR+ ].

Proof. Suppose by contradiction that there exist sequences {μn} ⊂ [(1 + 2δ)η, μR+ ]
and un ∈ Bμn

η such that E(un,G) → 0 as n → ∞. By lemma 5.2, we infer that
{un} is bounded in H1(G), and moreover ‖u′

n‖L2(G) → 0 as n → ∞; thus, up to a
subsequence, we have that un ⇀ u weakly in H1(G), and un → u locally uniformly
on G, and by weak lower semi-continuity

‖u′‖2
L2(G) � lim inf

n→∞ ‖u′
n‖2

L2(G) = 0; (5.5)

this implies that u is constant on G, and in fact, since u ∈ H1(G) and G is non-
compact, we have that necessarily u ≡ 0. However, by local uniform convergence∫

K

u2 = lim
n→∞

∫
K

u2
n � η > 0,

a contradiction. �

Lemma 5.4 (Infimum in Aμ
η ). There exists μ̄ ∈ ((1 + 2δ)η, μR+) such that

inf
u∈Aμ

η

E(u,G) < C4

for every μ ∈ (μ̄, μR+).

Proof. Let e be the edge of G containing the terminal point. We identify e with [0, d],
where the coordinate 0 is taken in the terminal point. Also, in order to simplify
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some expressions and without loss of generality, we suppose that d = 1. We show
that, for any ε > 0 there exists με ∈ ((1 + 2δ)η, μR+) such that

μ ∈ (με, μR+) =⇒ ∃wμ ∈ Aμ
η with E(wμ,G) < ε.

This in particular gives the thesis for ε = C4. For the exact choice of wμ, we consider
the half-soliton φ (with φ defined in (3.2)), its scaling φλ(x) :=

√
λφ(λx), with

λ > 0, and we let

wλ(x) := (φλ(x) − φλ(1))+.

It is clear that wλ ∈ H1(0, 1), with wλ > 0 on [0, 1), and wλ(1) = 0. By monotone
and dominated convergence, it is not difficult to check that the quantity

mλ :=
∫ 1

0

w2
λ =

∫ ∞

0

(φ(y) − φ(λ))2χ[0,λ](y) dy

is continuous and monotone (strictly) increasing with respect to λ, and has limits

lim
λ→0+

mλ = 0, and lim
λ→+∞

mλ =
∫ ∞

0

φ2 = μR+ .

Thus, for every μ ∈ (0, μR+) there exists a unique λ(μ) > 0 such that mλ(μ) = μ,
and we define a function wμ on the whole graph G by setting

wμ :=

{
0 on G \ e

wλ(μ) on e = [0, 1].

It remains to check that E(wμ,G) = E(wλ(μ), (0, 1)) can be made arbitrarily small
as μ → μR+ , that is, as λ → +∞. We have

E(wλ, (0, 1)) =
∫ 1

0

1
2
(w′

λ)2 − 1
6

∫ 1

0

w6
λ

= λ2

[∫ λ

0

1
2
(φ′(y))2 − 1

6
(φ(y) − φ(λ))6

]
dy

� λ2

[∫ λ

0

1
2
(φ′(y))2 − 1

6
φ6(y)

]
dy + λ2φ(λ)

∫ λ

0

φ5(y) dy,

where we used the fact that, for every y ∈ (0, λ), there exists τy ∈ (0, 1) such that

|(φ(y) − φ(λ))6 − φ(y)6| = 6|(φ(y) − τyφ(λ))5|φ(λ) � 6φ5(y)φ(λ).

Clearly
∫ λ

0
φ5 �

∫∞
0

φ5 < +∞, and moreover λ2φ(λ) → 0 as λ → ∞, by exponential
decay; hence, the above estimate reads

E(wλ, (0, 1)) = λ2E(φ, (0, λ)) + Co(1),
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as λ → +∞. But

E(φ, (0, λ)) + E(φ, (λ,+∞)) = E(φ, (0,+∞)) = 0

=⇒ E(φ, (0, λ)) = −E(φ, (λ,+∞)),

whence

E(wλ, (0, 1)) = −λ2E(φ, (λ,+∞)) + Co(1)

as λ → +∞. To proceed further, we observe that

E(φ, (λ,+∞)) = E(φ(· + λ), (0,+∞)) � 0,

since clearly φ(· + λ) ∈ H1(R+) with
∫∞
0

φ2(y + λ) dy ∈ (0, μR+) for every λ > 0.
Therefore

E(wλ, (0, 1)) � Co(1) < ε

for every λ > 0 sufficiently large. This completes the proof. �

We are finally ready for the:

Proof of proposition 5.1. Let μ̄ given by lemma 5.4. For μ ∈ (μ̄, μR+), we let A =
Aμ

η and B = Bμ
η . Lemmas 5.3 and 5.4 ensure that (4.3) holds, so that proposition

4.1 directly gives the thesis. �

5.2. Non-compact graphs without a terminal point

In this section we consider non-compact connected metric graphs G having a
finite number of vertices, bounded edges and half-lines �1, . . . , �m, and satisfying
the following structural assumptions:

(h1) μG = μR, and μG\�i
= μR for every i = 1, . . . , m.

(h2) The compact core K of G is not empty.

Assumption (h1) means that the critical mass of the graph obtained from G remov-
ing an arbitrary half-line (and the corresponding vertex at infinity) is μR. In view of
[3, teorems 3.1 and 3.3], this rules out the presence of terminal points, and implies
also that m � 3.

For any G satisfying (h1) and (h2), we have:

(i) If μ < μR, then EG(μ) = 0, and is not attained.

(ii) If μ > μR, then EG(μ) = −∞,

see [3, corollary 2.5]. Our main result for this class of graph is the following:

Proposition 5.5. Let G be a non-compact metric graph satisfying (h1) and (h2).
Then there exists μ̄ ∈ (0, μR) such that, for every μ ∈ (μ̄, μR), the functional E(·,G)
has a critical point on H1

μ(G), which is a local minimizer.
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The proof of the proposition follows closely the one of proposition 5.1. Precisely,
for δ, η, μ > 0 such that

η > μR+ , (1 + 2δ)η < μR, and μ ∈ [(1 + 2δ)η, μR], (5.6)

we introduce

Aμ
η :=

{
u ∈ H1

μ(G)
∣∣∣∣
∫

K

u2 � η

}

Bμ
η :=

{
u ∈ H1

μ(G)
∣∣∣∣ η �

∫
K

u2 � (1 + δ)η
}

.

Again, (4.1) is trivially satisfied by our choice in (5.6).

Lemma 5.6 (Equicoercivity in Bμ
η ). There exists C1 = C1(δ, η,m) > 0

(independent of μ) such that

E(u,G) � C1‖u′‖2
L2(G)

for every u ∈ Bμ
η , for every μ ∈ [(1 + 2δ)η, μR].

Proof. If u ∈ Bμ
η , then

m∑
i=1

∫
�i

u2 = μ −
∫

K

u2 ∈ [μ − (1 + δ)η, μ − η] .

Therefore, there exists an index ī ∈ {1, . . . , m}, say ī = m, such that∫
�m

u2 � 1
m

(μ − (1 + δ)η) � δη

m
. (5.7)

Let F be the metric graph obtained removing the half-line �m and the corresponding
vertex at infinity from G. By (h1), we know that μF = μR. In particular, (2.1) gives
that

E(u,F) � 1
2

(
1 −

(∫
F u2

μR

)2
)
‖u′‖2

L2(F).

Notice that, by (5.7),∫
F

u2 =
∫
G

u2 −
∫

�m

u2 � μ − δη

m
� μR − δη

m
,

which is strictly smaller than μR. Thus, it follows that for a constant C2(δ, η,m) > 0

E(u,F) � C2(δ, η,m)‖u′‖2
L2(F). (5.8)

On the other hand, always by (2.1), on the half-line �m

E(u, �m) � 1
2

⎛
⎝1 −

(∫
�m

u2

μR+

)2
⎞
⎠ ‖u′‖2

L2(�m)
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and ∫
�m

u2 � μ −
∫

K

u2 � μ − η � μR − η < μR+ ,

since η > μR+ , so that

E(u, �m) � C3(η)‖u′‖2
L2(�m) (5.9)

for some C3(η) > 0. Comparing (5.8) and (5.9), we finally deduce that

E(u,G) = E(u,F) + E(u, �m) � min{C2(δ, η,m), C3(η)}‖u′‖2
L2(G),

which is the desired result. �

Lemma 5.7 (Uniform lower bound in Bμ
η ). There exists C4 = C4(δ, η,m) > 0 such

that

E(u,G) � C4

for every u ∈ Bμ
η , for every μ ∈ [(1 + 2δ)η, μR].

Proof. The proof is completely analogue to the one of lemma 5.3, and hence is
omitted. �

Lemma 5.8 (Infimum in Aμ
η ). There exists μ̄ ∈ ((1 + 2δ)η, μR) such that

inf
u∈Aμ

η

E(u,G) < C4

for every μ ∈ (μ̄, μR).

Proof. Since K = ∅ by assumption (h2), and G does not have terminal points, there
exists a bounded edge e, of length d > 0, such that both the vertices of e are not
terminal points. Without loss of generality, we suppose that d = 2, and we identify
e with the interval (−1, 1). As in lemma 5.4, we show that for any ε > 0 there exists
με ∈ ((1 + 2δ)η, μR) such that

μ ∈ (με, μR) =⇒ ∃wμ ∈ Aμ
η with E(wμ,G) < ε.

For the exact choice of wμ, we consider the soliton φ, its scaling φλ(x) :=
√

λφ(λx),
with λ > 0, and we let

wλ(x) := (φλ(x) − φλ(1))+.

It is clear that wλ ∈ H1
0 (−1, 1), with wλ > 0 on (−1, 1), and wλ is symmetric with

respect to 0 (the medium point of the edge e) for every λ > 0. Since

‖wλ‖2
Lp(−1,1) = 2‖wλ‖2

Lp(0,1), and ‖w′
λ‖2

L2(−1,1) = 2‖w′
λ‖2

L2(0,1),

the same computations of lemma 5.4 allow to show that for every λ ∈ (0, μR) there
exists a unique λ(μ) > 0 such that the function

wμ :=

{
wλ(μ) on e

0 in G \ e

stays in H1
μ(G), and moreover E(wμ,G) = E(wμ, (−1, 1)) → 0 as μ → (μR)−. �
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Proof of proposition 5.5. Let μ̄ given by lemma 5.8. For μ ∈ (μ̄, μR), we let A = Aμ
η

and B = Bμ
η . By lemmas 5.7 and 5.8, proposition 4.1 directly gives the thesis of the

proposition. �

Remark 5.9. As observed in the introduction, if G is a star-graph with at least 3
half-lines, then G has not a bounded edge, and hence theorem 1.1 does not apply.
It would be tempting in this case to fix an arbitrary compact set K ⊂ G made of
subintervals of each half-line, define Aμ

η and Bμ
η as above, and then mimic the proof

of proposition 5.5. Notice that the choice of K induces the introduction of new
fake vertices in the graph, with degree 2. This strategy however cannot work, and
in particular our equicoercivity lemma fails. Indeed, by centring and shrinking a
soliton near one of the fake vertices, it is not difficult to see that the infimum of
the energy on the corresponding set Bμ

η tends to 0, in sharp contrast with the case
when G has a true compact core. This new phenomenon is possible exactly since
the new vertices have degree 2.

Appendix A. Stability properties of the model solutions

In this appendix we sketch the proof that the solutions u = uz constructed in
section 3 for the model graph, having total mass μ = μ(z) as in (3.19), are (con-
ditionally) orbitally stable when the parameter z is large enough. As we already
mentioned, this follows by the abstract theory of Grillakis, Shatah and Strauss,
see [16, theorems 2–3]. Roughly, we will consider the general abstract structure,
focusing on the Morse index of the solutions, in 5.2, while in 5.2 we will deal with
the monotonicity properties of the map z �→ μ(z).

Appendix A.1. The abstract setting

For the sake of comparison with the notations used in [16], we denote by X = H1(G)
the space of the complex valued functions which are H1 on every edge of the graph
and continuous at every vertex, endowed with the usual (real) inner product (see
[16, section 6C]). Denoting the mass (charge) Q as

Q(u) = −1
2

∫
G
|u|2 (A.1)

we have that the bound state equation E′(φω) − ωQ′(φω) = 0 (with ω ∈ R, see
[16, assumption 2]) reads

− φ′′ − |φ|4φ + ωφ = 0, where φ = φω ∈ H1(G) (A.2)

is real and satisfies the Kirchhoff boundary conditions at every vertex. Restricting
to the family of solutions constructed in section 3, parametrized on z ∈ R

+, we have
that

ω =
Λ2(z)

3
, φω = uz.

At this point, assumptions 1 and 2 of the abstract theory of [16] hold true in a
standard way. Then, we can define the functional

d(ω) = E(φ) − ωQ(φ), (A.3)
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and the operator from X to X∗

Hω = E′′(φ) − ωQ′′(φ). (A.4)

We consider the (decoupled) eigenvalue equation Hωχ = νχ, χ = χ1 + iχ2, which
writes, on every edge of the graph,

− χ′′
1 − 5φ4χ1 +

Λ2

3
χ1 = νχ1, (A.5)

− χ′′
2 − φ4χ2 +

Λ2

3
χ2 = νχ2, (A.6)

where both χ1 and χ2 satisfy the usual continuity and Kirchhoff conditions at each
vertex. It is readily verified that, if φ = uz, then

ν = 0, χ = iφ

satisfy the above eigenvalue problem. Notice that, since φ > 0, there are no other
non-trivial solutions of (A.6) for ν � 0, but χ2 = φ. As a consequence, any other
eigenfunction with non-positive eigenvalue has to be real valued. On the other hand,
the negative part of the spectrum of Hω is not empty, since

〈Hωφ, φ〉 = −4
∫
G
|φ|6 < 0.

Therefore, in order to satisfy assumption 3 of [16], we need to show that the sub-
space of eigenfunctions of (A.5) with non-positive eigenvalues has dimension 1. On
the contrary, there exists a real valued χω satisfying

〈Hωφ, χω〉 = −4
∫
G

φ5χω = 0 (A.7)

and

〈Hωχω, χω〉 =
∫
G
|χ′

ω|2 − 5φ4|χω|2 +
Λ2

3
|χω|2 � 0. (A.8)

We may take χω of unit total mass. We will prove that the above conditions are
incompatible in the limit ω → ∞ (i.e. Λ → ∞). Recall now that on the positive
(negative) real line

φ(x) =
√

Λ φ1(Λx + z)
(√

Λ φ1(Λx − z)
)
,

where φ1(x) = cosh−1/2(2x/
√

3) and Λ = Λ(z) is given by (3.15). Since Λ(z) ≈ cz
at infinity, we have that φ

∣∣
R
→ 0 uniformly for z → +∞. It follows by (A.7) that

lim
z→+∞

∫ 1

0

φ5(x)χω(z)(x) dx = 0. (A.9)

To deduce information from this limit, we introduce the new variable ξ = φ/
√

Λ
which is related to x by

x(ξ) =
√

3
Λ

∫ ξ

φ∗

dv√
6E∗ − v6 + v2

, φ∗ � ξ � u∗
M , (A.10)

https://doi.org/10.1017/prm.2020.36 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.36


Local minimizers in absence of ground states for the critical NLS 729

where Λ = Λ(z) is given again by (3.15) and E∗, φ∗, u∗
M , are the functions of z

defined in (3.11) and satisfying E∗ → 0, φ∗ → 0, u∗
M → 1 for z → +∞. Then, for

every ξ ∈ (φ∗, u∗
M ],

x(ξ) = 1 −
√

3
Λ

∫ u∗
M

ξ

dv√
6E∗ − v6 + v2

−→ 1 (A.11)

for z → ∞. In the same limit, we have

∫ 1

0

φ5(x)χω(z)(x) dx =
√

3Λ3/2(z)
∫ u∗

M

φ∗

ξ5 χω(z)(x(ξ))√
6E∗ − ξ6 + ξ2

dξ (A.12)

=
√

3Λ3/2(z)
(
χω(z)(1)

∫ 1

0

ξ4√
1 − ξ4

dξ + o(1)
)
. (A.13)

By (A.9) we get

lim
z→+∞χω(z)(1) = 0 . (A.14)

By evaluating in the same way the integral in (A.8), we find

5
∫
G
|φ(x)|4 |χω(x)|2 = o(1) + 5

∫ 1

0

|φ(x)|4 |χω(x)|2

= Λ(z)
(
C χω(z)(1)2 + o(1)

)
� Λ(z) (A.15)

for z large enough. But the last term in (A.8) is equal to Λ2/3 (by the normalization
of χω) so that such condition can not hold for large z. By this contradiction, we
have that assumption 3 in [16] holds true.

Appendix A.2. Monotonicity properties of µ(z)

In order to apply [16, theorems 2–3], the last condition we need to check is that
the map ω �→ d(ω), as defined in (A.3), is convex for large ω. We recall that

d′(ω) = −Q(φω) =
1
2

∫
G
|φω|2 =

1
2

∫
G
|uz|2

(see [16, equation (2.20)]). On the other hand, ω = Λ2(z)/3, and it can be shown by
(3.15) that the map z �→ Λ(z) is increasing to +∞ as z → +∞. As a consequence,
we are left to show that the function

μ(z) :=
∫
|x|>z

1
cosh(2x/

√
3)

dx +
√

3
∫ u∗

M

φ∗

v2

√
6H∗ − v6 + v2

dv

defined in (3.19), is increasing for large values of z (as it was shown, numerically,
in figure 4).
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To this aim, we first recall the relations

φ∗(z) = cosh(2z/
√

3)−1/2,

H∗(z) =
1
2
φ∗(z)2

(
1 − φ∗(z)4

)
=

1
6
u∗

M (z)2
(
u∗

M (z)4 − 1
)
,

(A.16)

and

(φ∗)′(z) = − 1√
3
φ∗(z)

(
1 − φ∗(z)4

)1/2
,

(H∗)′(z) = − 1√
3
φ∗(z)2

(
1 − φ∗(z)4

)1/2(1 − 3φ∗(z)4
)
.

(A.17)

Moreover, from the last identity in (A.16) we deduce that

u∗
M (z)4 − 1 ≈ 3φ∗(z)2 (A.18)

as φ∗ → 0 (since u∗
M → 1+ necessarily). We want to estimate the derivative

μ′(z) := − 2
cosh(2z/

√
3)

+
√

3
d
dz

∫ u∗
M

φ∗

v2

√
6H∗ − v6 + v2

dv (A.19)

for z → +∞. To this aim, by recalling that both φ∗ → 0+ and H∗ → 0+ in this
limit, we fix two positive numbers v0, v1 such that

φ∗ < v0 < 3−1/4 < v1 < 1,

and split the integral at the right-hand side of (A.19) into three pieces∫ v0

φ∗

v2

√
6H∗ − v6 + v2

dv +
∫ v1

v0

v2

√
6H∗ − v6 + v2

dv +
∫ u∗

M

v1

v2

√
6H∗ − v6 + v2

dv.

The limit of the derivative of the second integral is readily evaluated:

d
dz

∫ v1

v0

v2

√
6H∗ − v6 + v2

dv = −3(H∗)′(z)
∫ v1

v0

v2

(6H∗ − v6 + v2)3/2
dv ≈

(by (A.17))

≈
√

3 φ∗(z)2
∫ v1

v0

v

(1 − v4)3/2
dv. (A.20)

Before taking the derivative of the remaining terms, we change the variable of
integration by setting

t = v6 − v2, dt = 2v(3v4 − 1) dv.

Then, the first integral will have the limits t(φ∗) = −2H∗ and t(v0) := −t0
(< −2H∗) :∫ v0

φ∗

v2

√
6H∗ − v6 + v2

dv =
∫ −2H∗

−t0

1
2
√

6H∗ − t

v(t)
1 − 3v(t)4

dt =
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(integrating by parts)

=
[
−√

6H∗ − t
v(t)

1 − 3v(t)4
]−2H∗

−t0
+
∫ −2H∗

−t0

√
6H∗ − t

9v(t)4 + 1
(1 − 3v(t)4)2

v′(t) dt

= −
√

8H∗ φ∗

1 − 3(φ∗)4
+
√

6H∗ + t0
v0

1 − 3v4
0

−
∫ v0

φ∗

√
6H∗ − v6 + v2

9v4 + 1
(1 − 3v4)2

dv.

Now, by elementary calculations one checks that in the limit z → +∞ the
derivatives of the above terms are O((φ∗)2) (or even o((φ∗)2)) except for

− 3(H∗)′(z)
∫ v0

φ∗

1√
6H∗ − v6 + v2

9v4 + 1
(1 − 3v4)2

dv

≈
√

3φ∗(z)2
∫ v0

φ∗

1√
6H∗ − v6 + v2

9v4 + 1
(1 − 3v4)2

dv.

In order to estimate the last integral we write as before

6H∗ − v6 + v2 =
[
(u∗

M )2 − v2
] [

(u∗
M )4 − 1 + (u∗

M )2v2 + v4
] ≈

(by (A.18))

≈ [
(u∗

M )2 − v2
] [

3(φ∗)2 + (u∗
M )2v2 + v4

]
�
[
(u∗

M )2 − v2
] [

3v2 + (u∗
M )2v2 + v4

]
� Cv2

for every v ∈ [φ∗, v0], with C > 0. Hence, we get∫ v0

φ∗

1√
6H∗ − v6 + v2

9v4 + 1
(1 − 3v4)2

dv � 1√
C

∫ v0

φ∗

dv

v
=

1√
C

ln
( v0

φ∗
)
. (A.21)

We conclude that, for z → +∞,

d
dz

∫ v0

φ∗

v2

√
6H∗ − v6 + v2

dv �
√

3
C

φ∗(z)2 ln
(

1
φ∗(z)

)
+ O(φ∗(z)2

)
. (A.22)

Finally, by the same change of variable in the third integral, we get t(v1) := −t1,
t(u∗

M ) = 6H∗ and∫ u∗
M

v1

v2

√
6H∗ − v6 + v2

dv

=
∫ 6H∗

−t1

1
2
√

6H∗ − t

v(t)
3v(t)4 − 1

dt

=
[
−√

6H∗ − t
v(t)

3v(t)4 − 1

]6H∗

−t1
−
∫ 6H∗

−t1

√
6H∗ − t

9v(t)4 + 1
(3v(t)4 − 1)2

v′(t) dt

=
√

6H∗ + t1
v1

3v4
1 − 1

−
∫ u∗

M

v1

√
6H∗ − v6 + v2

9v4 + 1
(3v4 − 1)2

dv.
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Hence,

d
dz

∫ u∗
M

v1

v2

√
6H∗ − v6 + v2

dv

=
3(H∗)′(z)√
6H∗ + t1

v1

3v4
1 − 1

− 3(H∗)′(z)
∫ u∗

M

v1

1√
6H∗ − v6 + v2

9v4 + 1
(3v4 − 1)2

dv

Since both the coefficients multiplying the term (H∗)′(z) are finite for φ∗(z) → 0
(H∗ → 0) the above derivative is O(φ∗(z)2) for z → +∞. By recalling the definition
(A.19), we conclude that

lim
z→+∞μ′(z) = 0+.
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