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While hydrodynamic interactions for aggregates of swimmers have received significant
attention in the low Reynolds number realm (Re � 1), there has been far less
work at higher Reynolds numbers, in which fluid and body inertia are involved.
Here we study the collective behaviour of multiple self-propelled plates in tandem
configurations, which are driven by harmonic flapping motions of identical frequency
and amplitude. Both fast modes with compact configurations and slow modes
with sparse configurations were observed. The Lighthill conjecture that orderly
configurations may emerge passively from hydrodynamic interactions was verified on
a larger scale with up to eight plates. The whole group may consist of subgroups and
individuals with regular separations. Hydrodynamic forces experienced by the plates
near their multiple equilibrium locations are all springlike restoring forces, which
stabilize the orderly formation and maintain group cohesion. For the cruising speed
of the whole group, the leading subgroup or individual plays the role of ‘leading
goose’.

Key words: biological fluid dynamics, propulsion, swimming/flying

1. Introduction
Collective behaviours are ubiquitous in biological and natural systems with large

numbers of individuals acting with or being influenced by other individuals (Vicsek
& Zafeiris 2012). Of particular interest are collections of actively moving bodies
in a fluid where the flow-mediated interaction plays a crucial role. Biological
examples include active collective locomotion with low Reynolds number (Re� 1),
e.g. swimming micro-organisms (Saintillan & Shelley 2008; Lauga & Powers 2009;
Zhang et al. 2010) and animal collectives with Re ∼ 102–106, such as insect swarms
(Kelley & Ouellette 2013), fish schools (Weihs 1973) and bird flocks (Portugal
et al. 2014), in which the long-lasting inertial effects lead to more complex flows
(Ramananarivo et al. 2016).

For the animal collectives, considerable attention has been paid to the social traits
of collective behaviours, such as foraging, reproduction, and defence from predators
(Parrish & Edelstein-Keshet 1999; Couzin et al. 2005). However, several issues
about the role of hydrodynamics in collective locomotion are still open questions.
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One important and intriguing issue is the role of flows on the emergence of the
collective pattern. The fluid dynamicist Lighthill (1975) once conjectured that the
orderly patterns could arise spontaneously as a consequence of passive flow-mediated
interactions, without the need for ‘elaborate control mechanisms’. This hypothesis,
which is referred to as the ‘Lighthill conjecture’, has never been tested for groups
on a larger scale (Zhu, He & Zhang 2014; Ramananarivo et al. 2016). The other
issue concerns the hydrodynamic advantage. It is plausible that the individuals
in collective locomotion are energy efficient due to favourable flow interactions that
occur in specific formations (Weihs 1973; Portugal et al. 2014). However, quantitative
information is limited because it is difficult to measure in experiments.

Because the two-body system is the simplest individual-level model, two passively
flapping bodies (Ristroph & Zhang 2008; Alben 2009) and actively flapping flags
or hydrofoils (Boschitsch, Dewey & Smits 2014; Uddin, Huang & Sung 2015)
were studied to investigate their collective behaviour. However, in these studies the
individuals were held fixed in the flow. A more realistic self-propelled model for
an actively moving body was developed for further study (Alben & Shelley 2005;
Hua, Zhu & Lu 2013). Recently the hydrodynamic behaviour of two self-propelled
flapping filaments was studied numerically (Zhu et al. 2014). The results show that
multiple stable tandem configurations can be formed passively from vortex-body
interactions (Zhu et al. 2014). The ‘vortex locking’ mechanism was proposed, i.e.,
stable configurations can be spontaneously formed by locking the trajectories onto
the vortex centres (Zhu et al. 2014).

Moreover, the collective locomotion dynamics of two flapping wings swimming in a
tandem array was also studied experimentally (Becker et al. 2015; Ramananarivo et al.
2016). Becker et al. (2015) have shown that arrays of flapping and self-propelled
wings select slow or fast modes due to constructive or destructive wing–wake
interactions, respectively. In the study, they chose a periodic boundary condition
horizontally, which implicitly means that there exist infinite plate interactions. In
this way, each wing swims within the wakes of others. However, the horizontal
spacing between the two plates was fixed so the configuration was imposed in
the study of Becker et al. (2015). Hence, the set-up and physical mechanism are
significantly different from that in Zhu et al. (2014). Ramananarivo et al. (2016)
have shown that for two flapping plates, collective locomotion at enhanced speed and
in orderly formations can emerge from flow interactions alone. Direct measurements
of hydrodynamic forces acting on the follower reveal springlike restoring forces that
maintain group cohesion (Ramananarivo et al. 2016). The idea of a hydrodynamic
potential is also introduced in the study of Ramananarivo et al. (2016). It is a
useful tool which we adopted here to analyse schooling stability. They noted a speed
increase for pairs relative to a single body, indicating an influence on the leader by
the follower. When the gap spacing is large, lack of flow feedback to the leading
wing from the follower makes it effectively an isolated swimmer (Ramananarivo
et al. 2016). To some extent, these studies support the perspective of the Lighthill
conjecture for the two-body system. However, it is still unknown whether and to
what extent the Lighthill conjecture is valid for a larger group.

To further verify the Lighthill conjecture, here we numerically investigate the
hydrodynamic schooling of multi-body self-propelled systems consisting of flexible
flapping plates. Self-propulsion is induced by the prescribed heave motion at the
leading edge of each plate but whose longitudinal swimming is free. Two orderly
schooling states are identified. The hydrodynamic interaction is analysed to reveal the
mechanism. In addition, the schooling performances of the two states, including the
cruising speed and swimming efficiency, are also discussed.
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The remainder of this paper is organized as follows. The physical problem and
mathematical formulation are presented in § 2. The numerical method and validation
are described in § 3. Detailed results are discussed in § 4 and concluding remarks are
addressed in § 5.

2. Physical problem and mathematical formulation
Here a self-propelled system consisting of N flapping flexible plates in a tandem

configuration (see figure 1a) is investigated. Plates with identical length L are
immersed in an initially stationary viscous incompressible fluid. The leading edges of
the plates are forced to heave sinusoidally and in phase with identical amplitude A and
frequency f in the lateral direction. The forced vertical motions of the leading edges
are prescribed by y(t)= A cos(2πft) with zero active pitching angle. The longitudinal
distance between the leading edges of plates i and j is denoted by Di,j. Gi,i+1 denotes
the longitudinal distance between the trailing edge of the plate and the leading edge
of its following plate, i.e., Gi,i+1 = Di,i+1 − 1. In all simulations, if not specified,
initially the plates are equally spaced with Gi,i+1 =G0, where i= 1, 2, . . .N − 1.

In this system, the fluid flow is governed by the incompressible Navier–Stokes
equations

∂v

∂t
+ v · ∇v =−

1
ρ
∇p+

µ

ρ
∇

2v + f b, (2.1)

∇ · v = 0, (2.2)

where v is the velocity, p the pressure, ρ the density of the fluid, µ the dynamic
viscosity, and f b the body force term. The deformation and motion of plates are
described by the structural equation (Hua et al. 2013),

ρl
∂2X
∂t2
− Eh

∂

∂s

[(
1−

∣∣∣∣∂X
∂s

∣∣∣∣−1
)
∂X
∂s

]
+ EI

∂4X
∂4s
=Fs, (2.3)

where s is the Lagrangian coordinate along the plates, X(s, t) = (X(s, t), Y(s, t)) is
the position vector of the plates, Fs is the Lagrangian force exerted on the plates by
the surrounding fluid and ρl is the structural linear mass density. Eh and EI are the
structural stretching and bending rigidity, respectively.

For the structural equation, the boundary condition at the leading edges of the plates
is −Eh(1 − |∂X/∂s|−1)∂X/∂s + EI∂3X/∂3s = 0, Y(t) = y(t), ∂X/∂s = (1, 0), and the
boundary condition at the free ends of the plates is −Eh(1 − |∂X/∂s|−1)∂X/∂s +
EI∂3X/∂3s= 0, ∂2X/∂s2

= 0.
Following the scheme in Zou & He (1997), a constant pressure with v = 0 is

imposed at all boundaries except for the outlet. ∂v/∂x= 0 with the constant pressure
imposed at the outlet (Zou & He 1997). At the initial time, the fluid velocity field is
zero in the entire computational domain.

The characteristic quantities ρ, L and Uref are chosen to normalize the above
equations. Here, Uref is the maximum flapping velocity of the plunging motion,
i.e. Uref = 2πALf . The dimensionless governing parameters are described as follows:
the Reynolds number Re = ρUref L/µ, the stretching stiffness S = Eh/ρU2

ref L, the
bending stiffness K=EI/ρU2

ref L
3, the mass ratio of the plates and the fluid M=ρl/ρL,

the heaving amplitude A, the number of group member N, and the initial gap
spacing G0.
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FIGURE 1. (Colour online) (a) Schematic diagram for the multi-body self-propelled
system consisting of N flapping flexible plates in a tandem configuration. The longitudinal
distance D, gap distance G and flapping amplitude A have been normalized by the
dimensional length of the plate L. Snapshots of the orderly configurations for (b) the fast
mode and (c) the slow mode. The notations ‘C’ and ‘S’ represent compact and sparse
configurations, respectively. The number just following the notation denotes the number
of plates in the subgroup (if any) or the group. For example, ‘C3+C2+1’ represents 3,
2 and 1 plates in the first, second and third subgroups in the compact configuration,
respectively.

3. Numerical method and validation

The Navier–Stokes equations are solved numerically by the lattice Boltzmann
method (LBM) (Chen & Doolen 1998). The deformation and motion of each plate
are described by a structural equation, i.e., equation (2.3). Each structural equation is
solved by a finite element method in the Lagrange coordinate independently (Doyle
2001). For each plate, boundary conditions for the leading and trailing ends are
imposed. The movement of each plate (Lagrange points) is coupled with the LBM
solver through immersed boundary methods (Peskin 2002; Mittal & Iaccarino 2005).
The body force term f b in (2.1) represents an interaction force between the fluid and
the immersed boundary to enforce the no-slip velocity boundary condition. A detailed
description of the numerical method can be found elsewhere (Hua et al. 2013; Hua,
Zhu & Lu 2014).

Based on our convergence studies with different computational domains, the
computational domain for fluid flow is chosen as (D1N + 50)L × 40L in the x
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FIGURE 2. (Colour online) (a) Numerical validation. Lines and symbols represent the
present results and those in Zhu et al. (2014), respectively. (b) Grid-independence study.
A case of two self-propelled plates in a tandem configuration is simulated. In the case,
the key parameters, Re = 200, A = 0.5, M = 0.2, K = 0.8, S = 1000 and G0 = 8.0, are
identical to those in Zhu et al. (2014). Uc is the cruising speed.

and y directions. The domain is large enough so that the blocking effects of the
boundaries are not significant.

In the x and y directions, the mesh is uniform with spacing 1x=1y= 0.01L. The
time step is 1t = T/10 000 for the simulations of fluid flow and plate deformation,
with T = 1/f being the flapping period. Moreover, a finite moving computational
domain (Hua et al. 2013) is used in the x direction to allow the plates to move for a
sufficiently long time. As the plate travels one lattice spacing in the x direction, the
computational domain is shifted, i.e. one layer being added at the inlet and another
layer being removed at the outlet (Hua et al. 2013).

To validate the present numerical method, the coupling locomotion of two
self-propelled plates in a tandem configuration is simulated. Figure 2(a) shows
the cruising speeds of the leading and following plates as a function of time. It is
seen that the present results agree well with those of Zhu et al. (2014). Moreover,
the cruising speeds of the leading plate obtained from different grid resolutions are
shown in figure 2(b). It is seen that 1x/L = 0.01 is sufficient to achieve accurate
results. In addition, the numerical strategy used in this study has been validated and
successfully applied to a wide range of flows, such as the dynamics of fluid flow over
a circular flexible plate (Hua et al. 2014) and the locomotion of a flapping flexible
plate (Hua et al. 2013).

4. Results and discussion

In our simulations, the typical non-dimensional parameters are: Re= 200, A= 0.5,
M = 0.2, S= 1000 and K = 1. Here, the stretching stiffness of plate is chosen to be
large enough (S= 1000) so that the stretching deformation is negligible. Usually the
bending stiffness K of a fish is O(1); for example, the tail fin of a goldfish (Carassius
auratus) has a bending stiffness of 2.5 ∼ 23 (Hua et al. 2013). (It is noted that the
characteristic velocities are Uref = 2πALf and Uref = Lf in the present study and Hua
et al. (2013), respectively.) In our study K is fixed to be unity. At M=0.2, an isolated
plate with K = 1 achieves the maximum cruising speed. These parameters are also
consistent with those in Zhu et al. (2014). In our study, N ∈ [2, 8], G0 ∈ (0, 6]; they
are variable.
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4.1. Schooling states
The cruising speed of the ith plate is defined as the averaged forward speed at
the equilibrium state, i.e. Uc,i =

∫ T
0 ui(t) dt/T =

∫ T
0 |∂tXi(0, t)| dt/T , where ui(t) is the

instantaneous speed of the ith plate. At the equilibrium state, the cruising speed of
the whole group is Uc =Uc,i, i= 1, 2, . . .N.

Results of our simulations show that two distinct stable schooling states emerge
spontaneously. According to Uc, they are classified as the fast and slow modes.
Figures 1(b) and 1(c) show snapshots of the configurations for the two modes,
respectively. It is seen that the two modes can also be identified according to the
spatial configuration of the plates. The emergence of distinct orderly formations
depends on G0. In particular, the compact and sparse configurations appear when
G0 6 2.3 and 2.5 6 G0 6 6, respectively. For the effect of the initial gap spacing G0,
we can imagine that if G0 is large enough, the interactions between plates are
negligible and the plates flap and move independently. Hence we do not intend to
investigate cases with too large G0, and limit the present study to the range G0 6 6.

For the fast mode, as the group size increases, the group may spontaneously split
into several subgroups or individuals. Each subgroup in the compact mode consists of
up to three members (see figure 1b). For the slow mode with a sparse configuration,
when G0 > 5, at the equilibrium state the gap spacings between any two neighbouring
plates are identical and subgroups are not observed, as shown in figure 1(c). For
corresponding flow fields, please refer to the supplementary movies available at
https://doi.org/10.1017/jfm.2018.634. Typical cases of the fast mode ‘C3+1’ and
‘C3+C2+1’ are shown in Movies 1 and 2, respectively. Typical cases of the slow
mode ‘S4’, ‘S6’, ‘S6+S2’, and ‘S8’ are shown in Movies 3–6, respectively. The
notations ‘C’ and ‘S’ represent compact and sparse configurations, respectively. The
number just following the notation denotes the number of plates in the subgroup (if
any) or the group.

To quantitatively describe the evolution of the orderly formations, two typical cases
with N = 8, G0 = 1 and N = 8, G0 = 5 are taken as examples. The locations of the
following plates (i.e. i = 2, . . . , N) described by D1i as a function of time for the
two cases are shown in figures 3(a,b). It is seen that when t > 15T , all distances
D1i reach equilibrium states in both cases. The cases G0 = 1 and G0 = 5 evolve
to two distinct equilibrium states: the compact (‘C3+C3+1+1’) and sparse (‘S8’)
configurations, respectively.

The schooling number introduced by Becker et al. (2015) has been used to quantify
collective patterns of the two-wing system (Becker et al. 2015; Ramananarivo et al.
2016). Here it is defined as G̃i,i+1 = Gi,i+1/λ, where λ = Uc/f is the wavelength. In
the fast mode, the schooling numbers within the compact subgroups, such as G̃12 and
G̃23, approximately converge to zero, whereas the inter-subgroup schooling numbers,
such as G̃34 and G̃67, approximately approach unity (see figure 1b ‘C3+C3+1+1’). In
the slow mode illustrated in figure 1(c), the inter-individual schooling numbers are
also close to unity.

Figures 3(c) and 3(d) show the schooling numbers of the fast and slow modes,
respectively. In the fast mode, the inter-individual spacings within the compact
subgroups, such as G̃12 and G̃23 in figure 3(a), approximately converge to zero,
whereas the inter-subgroup schooling numbers, such as G̃34 and G̃67, approximately
approach unity. In the slow mode, the inter-individual schooling numbers within the
group are identical, i.e. G̃i,i+1 = 1, i= 1, 2, . . . , 7.
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FIGURE 3. (Colour online) Dynamics of the orderly formations. (a,b) The distances
between the following plates and the leading plate, i.e., D1,i (i= 2, . . . ,N) and (c,d) the
schooling number as a function of time. (a,c) Case ‘C3+C3+1+1’. (b,d) Case ‘S8’. In both
cases N = 8.

Case Fast mode Slow mode Isolated plate

C2 C3 C4 C5

Uc 2.09 2.24 2.35 2.41 1.75 1.75

TABLE 1. The cruising speed Uc of groups with leading compact subgroups ‘Cn’, n= 2,
3, 4 and 5. The results of the slow mode and the isolated plate are also presented.

For the fast mode, the maximum number of members in the compact subgroup,
n, does not always have to be three. It depends on the initial gap spacing. For the
case N = 4 with uniform gap spacing G0 = 1, ‘C3+1’ would appear (see figure 4a).
When the initial gap spacing is non-uniform (see the caption of figure 4), the fast
mode with a leading subgroup consisting of four or five plates would also emerge.
In figure 4(b,c), the instantaneous vorticity structures at equilibrium states for cases
‘C4+1’ and ‘C5+1’ are shown. The schooling number G̃=G/λ is found to be unity for
all three cases in figure 4, where G is the gap distance between the additional plate ‘1’
and its front neighbour. It indicates that there is similar hydrodynamic mechanism in
the fast mode with compact configurations, which is not dependent on n. The cruising
speed of the leading compact subgroups is listed in table 1. It is seen that the larger
n is, the faster the whole group travels. A possible reason is that the compact plates
in a subgroup act as a longer plate, which has a larger Uc (Rosellini & Zhang 2007).
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FIGURE 4. (Colour online) Formation of ‘C4’ and ‘C5’ in the compact configurations.
Typical instantaneous vorticity structures of the compact configurations at t/T = 1/4:
(a) case ‘C3+1’ with the uniform initial separation G0= 1, (b) case ‘C4+1’ with Gi,i+1(t=
0) = 1 (i = 1, 2, 3) and G45(t = 0) = 0.5, and (c) case ‘C5+1’ with Gi,i+1(t = 0) = 1
(i= 1, 2, 3, 4) and G56(t= 0)= 0.5.

It is worth noting that for the slow mode, the group may also split, which depends
on the initial configuration. For example, when the initial gap distance G0 = 3, the
stable formation consisting of two subgroups is observed. It is referred to as ‘S6+S2’
(see Movie 5). The front and rear subgroups contain six and two plates, respectively.
The gap spacings within the subgroups are uniform, e.g. G̃i,i+1 = 1 (i = 1, 2, . . . , 5
and 7), and the inter-subgroup spacing is G̃67 = 2.

4.2. Schooling stability
These stable and orderly formations with spontaneously selected integer values of
schooling numbers are a result of long-range wake–plate interactions. The vorticity
contours at t/T = 1/4 for the cases ‘C3’ and ‘S6’ are shown in figures 5(a) and 5(b),
respectively. It is seen that the wakes of the ‘C3’ and ‘S6’ evolve from a chaotic
and perturbed state to an orderly vortex street along the distance downstream through
vorticity merging and dissipation. Suppose the case of ‘C3’ reaches a stable state as
shown in figure 5(a); if an additional plate is inserted into the wake of ‘C3’, it would
be ‘locked’ into several discrete equilibrium positions. Which equilibrium position it
adopts depends on the initial gap spacing G34. The circumstance of the case ‘S6’ is
similar. The locations labelled by the up arrows approximately have integer schooling
numbers, i.e. G̃≈ 1, 2, . . . , 6. This observation is consistent with that of the two-body
system (Zhu et al. 2014; Ramananarivo et al. 2016), indicating that the additional
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FIGURE 5. (Colour online) Instantaneous vorticity contours for the cases ‘C3’ (a) and ‘S6’
(b) at t/T=1/4. If an additional plate (represented by the bold dashed line) is inserted into
the wake, the six sequential equilibrium locations are marked with green up arrows near
the x-axis. G is the gap distance between the additional plate and its front neighbour. α, α′
are the orientation angles between the dipole-induced velocities VΓ , V ′Γ and the x-axis. d
and d′ are distances between two vortex centres.

plates are able to keep pace with oncoming wake of the leading subgroup even
though the flow perturbation increases compared to the two-body system.

To further explore the mechanism for the emergence of the equilibrium positions,
the hydrodynamic forces on the additional or the trailing plate in the cases of ‘C3’ and
‘S6’ (see figure 5) are calculated. For convenience, the simulations were performed in
an inertial coordinate system moving with velocity Uc in the negative x-direction. It
is noted that before the simulations, the equilibrium states for cases of ‘C3’ and ‘S6’
and their Uc have been figured out. In the inertial frame, the oncoming flow has a
uniform longitudinal velocity of Uc and the longitudinal locations of the plates are
fixed to be those at the equilibrium state. Figure 6(a) shows the net horizontal force
Fx acting on the trailing plate as a function of G̃ for the cases ‘C3+1’ and ‘S6+1’.
It is seen that for both the modes, there are several discrete points with Fx = 0, such
as G̃ ≈ 1, 1.4, 2, 2.5, 3, . . . . However, only the points with negative dFx/dG̃ are
stable, at which G̃≈ 1, 2, 3 . . . . The hydrodynamic force near the stable equilibrium
positions is a springlike restoring force with Fx ≈ −k(G̃ − G̃eq), where G̃eq is the
ith stable equilibrium location and k=−dFx/dG̃ is analogous to the spring constant.
In addition, the emergence of equilibrium positions may be illustrated in terms of
a hydrodynamic potential, which is defined as the integral of force with respect to
distance, i.e. Ψ (G̃) = −

∫
Fx dG̃. As shown in figure 6(b), there are stable wells in

the potential energy landscape. The well bottoms correspond to the stable equilibrium
states, at which G̃eq

≈ 1, 2, 3, 4. The peak points are unstable equilibrium states which
are not observed in the simulations.

To evaluate the tolerance for flow perturbation at the stable positions, the well
depths in the curve of Ψ (G̃), which are denoted by ξ p, are measured. Figure 6(c)
shows ξ p as a function of stable position G̃eq for the cases ‘C3+1’ and ‘S6+1’,
as well as the slow mode for the two-plate system (‘S2’). It is seen that for the
case ‘S2’, ξ p decreases with G̃eq, which is consistent with the experimental result in
the two-body system (Ramananarivo et al. 2016). In contrast, for the larger groups,
such as ‘C3+1’ and ‘S6+1’, ξ p increases and then decreases with increasing G̃eq.
In other words, for all equilibrium cases of ‘C3+1’, the case with the trailing plate
at G̃eq

= 4 is more stable than the cases of G̃eq
= 1, 2, 3 and G̃eq

= 5, 6. For the
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FIGURE 6. (Colour online) Hydrodynamic forces Fx (a) and potentials Ψ (G̃) =
−
∫

Fx dG̃ (b) as a function of G̃, G̃= G/λ. The valleys (well bottoms) and peaks of Ψ
are marked with arrows and circles, showing the stable (G̃eq) and unstable equilibrium
locations, respectively. Well depth ξ p at G̃eq

= 3 for the case ‘C3+1’ is shown as an
example. (c) ξ p as a function of G̃eq.

trailing plate in the wake of the leading subgroup, the stability around its equilibrium
state is relevant to the vertical flow induced by the vortices. From figure 5(b), it
is seen that α′ is closer to 90◦ than α and d′ is smaller than d, where α and
α′ are the orientation angles between the dipole-induced velocities VΓ , V ′Γ and
the x-axis, and d and d′ are distances between two vortex centres. Although the
vortex circulation Γ ′ at G̃eq

≈ 4 is slightly smaller than Γ at G̃eq
≈ 2, the vertical

component of the dipole-induced velocity V ′Γ sin α′ at G̃eq
≈ 4 is larger according

to the vortex-dipole model V ′Γ sin α′ = (Γ ′/2πd′) sin α′ (Godoy-Diana et al. 2009).
It would result in an enhanced hydrodynamic restoring force at G̃eq

≈ 4 (Wu &
Chwang 1975; Ramananarivo et al. 2016) and therefore the value of ξ p at G̃eq

= 4 is
enhanced compared to that at G̃eq

= 2. On the other hand, when G̃eq becomes larger,
e.g. G̃eq > 7, ξ p would decrease because the wake–plate interaction is diminished for
the trailing plate due to vortex dissipation.

For the two-plate system, using the ‘vortex locking’ mechanism, Zhu et al. (2014)
explained the energy benefit of the rear plate. Meanwhile, they also mentioned that
if the rear plate slaloms between the vortex cores, it is not able to obtain the energy
benefit. However, the mechanism is not true for the multiple plate system. From
supplementary Movie 2, it is seen that in the ‘C3+C2+1’ configuration, the last plate
(i = 6) moves forward by slaloming between the vortex cores, instead of swimming
through the vortex cores. This slaloming behaviour is also beneficial to enhancing
propulsive performance because the last plate moves approximately 1.3 times faster
than an isolated plate. Moreover, because the wakes of a multi-body group may
become disorganized as the group grows, the ‘vortex locking’ mechanism is also
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FIGURE 7. (Colour online) Schooling performance of the groups. (a) The cruising speed
and (b) the swimming efficiency as a function of the group size N. Small snapshots of
the leading subgroup or individual are shown in red.

not valid. Supplementary Movies 5 and 6 show that even encountering a disordered
oncoming vortical structure, the last plate in case ‘S8’ is still able to hold its position
in the stable configuration.

For the multiple plate system, the mechanism of ‘hydrodynamic force generation
by effective flapping speed’ (Wu & Chwang 1975; Ramananarivo et al. 2016)
seems more general and appropriate than ‘vortex locking’. The mechanism states
‘hydrodynamic force on the follower is due to the vorticity induced by the leader’,
specifically the thrust is mainly induced by ‘effective wing flapping speed’ (i.e., the
relative vertical velocity of the wing and the fluid) (Ramananarivo et al. 2016). In
the above discussion the mechanism is adopted to explain why the hydrodynamic
restoring force at G̃eq

= 4 is enhanced.

4.3. Schooling performance
To quantify the schooling performance of each plate, the swimming efficiency ηi is
defined as the ratio of the kinetic energy of the ith plate and its input work, i.e. ηi=

(1/2)MU2
c,i/Wi, where the input work Wi is computed as a time integral of the input

power Pi required to produce the oscillation and the forward movement (Hua et al.
2013; Zhu et al. 2014), i.e. Wi =

∫ T
0 Pi(t) dt = −

∫ T
0

∫ 1
0 Fs,i(s, t) · ∂tXi(s, t) ds dt. The

swimming efficiency of the whole group is

η=
1
2

M
N∑

i=1

U2
c,i

/
N∑

i=1

Wi. (4.1)

Figure 7(a,b) show the cruising speed and the swimming efficiency of the group as
a function of N for the cases in figure 1(b,c). For the slow mode, the groups’ cruising
speeds and their efficiencies are almost identical to those of the isolated swimmer.
In contrast, for the fast mode, the groups have larger Uc with higher η compared
to the isolated case. For the groups with N > 3, Uc ≈ 2.24 and η ≈ 0.10, they are
approximately 1.3 times those of the isolated plate, as shown in figure 7.

Moreover, it is interesting to see that the leading subgroup plays the role of ‘leading
goose’; namely, the following subgroups or individuals would keep pace with the
leading ones to achieve a uniform cruising speed, although they may have different
speeds in isolated swimming. Taking case ‘C3+C2+1’ (see figure 1) as an example, we
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can see that if the subgroups ‘C3’, ‘C2’, and the individual ‘1’ swim independently,
the cruising speeds are 2.24, 2.09 and 1.75 (see table 1), respectively. However, when
swimming together as a group, they achieve a uniform cruising speed Uc = 2.24, as
shown in figure 7(a). Meanwhile, the swimming efficiency of the group members ‘C2’
and ‘1’ is improved (see figure 7b). In the fast mode, following the leading packed
subgroup, the rear subgroups or individuals take advantage of the oncoming wake.
These conclusions indicate the hydrodynamic force not only acts as an restoring force
to maintain schooling cohesion but also provides a drafting force to rear subgroups so
as to improve their schooling performance.

5. Concluding remarks
In summary, the collective locomotion of multiple self-propelled plates in a tandem

configuration is investigated numerically. Two schooling states, i.e., the fast mode
with compact configuration and the slow mode with sparse configuration, emerge
spontaneously solely due to the flow-mediated interactions among the individuals.
The Lighthill conjecture (Lighthill 1975) was supported by the results of multiple
self-propelled plates, which is beyond the cases of the two-body system considered
elsewhere (Zhu et al. 2014; Ramananarivo et al. 2016).

Schooling stability analysis shows the mechanism for the emergence of the
equilibrium positions. It is found that the hydrodynamic force near the stable
equilibrium positions is a springlike restoring force. In addition, the emergence
of equilibrium positions can be illustrated in terms of a hydrodynamic potential; there
are stable wells in the potential energy landscape. The well bottoms correspond to
the stable equilibrium states.

The well depths ξ p in the curve of Ψ (G̃) are examined to quantify the tolerance
for flow perturbation at the stable positions. For the two-plate system, the well depth
ξ p decreases with increasing G̃eq, while for multiple plates, the well depth ξ p may
increase first and then decrease with G̃eq.

For the multiple plate system, the last plate may move forward by slaloming
between the vortex cores, instead of swimming through the vortex cores. The
‘vortex locking’ mechanism (Zhu et al. 2014) is no longer valid. The mechanism
of ‘hydrodynamic force generation by effective flapping speed’ (Wu & Chwang 1975;
Ramananarivo et al. 2016) seems more general and appropriate.

For the slow mode, the groups’ cruising speeds and their efficiencies are almost
identical to those of the isolated swimmer. In contrast, for the fast mode, the groups
have larger Uc with higher η compared to the isolated case. In terms of the cruising
speed and efficiency of the whole group, the leading subgroup or individual plays the
role of ‘leading goose’. It seems that the hydrodynamic force also provides a drafting
force to rear subgroups so as to improve their schooling performance.

The present study is a generalization of the two-plate system (Zhu et al. 2014) to
more wings/flappers (up to O(10)) and the Lighthill conjecture is further validated
on a larger scale. There are some limitations in our study. First, the present model is
only two-dimensional, but extending it to the three-dimensional case would be helpful
to examine the role of body shape. Second the actuation of the swimming is simple,
i.e., only the leading edge of the plate is forced to oscillate sinusoidally. To mimic the
actuation of a real fish, a better actuation model, e.g., the neuromechanical model for
a lamprey (Tytell et al. 2010), should be applied rather than the simplified oscillation
model here. If the three-dimensional body shape and a better actuation model are
considered, the fish schooling behaviour revealed may be more reasonable.
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