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Strongly nonlinear three-dimensional interactions between a roll–streak structure and
a Tollmien–Schlichting wave in plane Poiseuille flow are considered in this study.
Equations governing the interaction at high Reynolds number originally derived by
Bennett et al. (J. Fluid Mech., vol. 223, 1991, pp. 475–495) are solved numerically.
Travelling wave states bifurcating from the lower branch linear neutral point are
tracked to finite amplitudes, where they are observed to localize in the spanwise
direction. The nature of the localization is analysed in detail near the relevant
spanwise locations, revealing the presence of a singularity which slowly develops in
the governing interaction equations as the amplitude of the motion is increased.
Comparisons with the full Navier–Stokes equations demonstrate that the finite
Reynolds number solutions gradually approach the numerical asymptotic solutions
with increasing Reynolds number.
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1. Introduction
In the breakdown of laminar flow to turbulence, the importance of localization

mechanisms has been evident ever since a number of pioneering experiments
were undertaken. For example Emmons (1951) introduced the idea that islands of
turbulence known as spots form in a transitional flow by some hitherto unknown
mechanism. Subsequently, Klebanoff, Tidstrom & Sargent (1962) were able to
associate the spot formation with the experimental breakdown of a three-dimensional
Tollmien–Schlichting (TS) wave. In this study we will focus upon plane Poiseuille
flow as a canonical example of a flow which exhibits a TS wave instability. This type
of instability is particularly important at low background turbulence levels (Nishioka,
Iida & Ichikawa 1975), while the simple nature of the basic profile and geometry
facilitates the comparison of high-Reynolds-number asymptotic theory with finite
Reynolds number computations. As is the case with many other shear flows such as
boundary layer flows, the transition process for plane Poiseuille flow is often observed
to involve the formation of turbulent spots which grow as they propagate downstream
and eventually extend across the channel. Experimental studies (e.g. Alavyoon,
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Henningson & Alfredsson 1986) have identified TS waves at the leading and trailing
edges of the spots and these are thought to play an important role in their spanwise
spreading. Spots of this type have also been generated numerically: for example in
Henningson, Spalart & Kim (1987), where initiation occurs via the use of a localized
disturbance. This emphasizes the important role played by localized solutions of the
Navier–Stokes equations in the formation and spreading of turbulent spots.

In recent times a dynamical systems picture of transition has emerged in which
equilibrium solutions play a key role in transition and turbulent dynamics: see Nagata
(1990), Clever & Busse (1992), Kawahara & Kida (2001), Waleffe (2001), Gibson,
Halcrow & Cvitanovic (2008) and the recent review of Kawahara, Uhlmann &
van Veen (2012), for example. These equilibrium solutions consist of three crucial
components: a roll flow in the cross-stream plane, a streamwise streak and a
three-dimensional wave. These three components interact in a mutually sustaining
manner in which the roll flow drives a spanwise-modulated streak which is itself
unstable to the wave. The wave then self-interacts nonlinearly to reinforce and
re-energize the roll flow. The precise details behind the interaction were first set
out independently by Waleffe (1997) for plane Couette flow at finite Reynolds
number and by Hall & Smith (1988) for curved channel flows at asymptotically
large Reynolds number with both approaches being inspired by the work of Benney
(1984). The theory was subsequently extended by these researchers and co-workers
to a wealth of other flows including those in pipes and boundary layers. In the
high-Reynolds-number approach, known as vortex–wave interaction (VWI), the wave
can either be governed predominantly by inviscid Rayleigh instability of the streak
profile away from the wall or viscous TS wave instability of the near-wall form of the
streak. For the former Rayleigh-type interaction, Hall & Sherwin (2010) have verified
that the numerical solutions of the governing interaction equations for plane Couette
flow predict excellently the asymptotic behaviour of full Navier–Stokes equilibrium
solutions, generated using a Newton–Raphson approach by Wang, Gibson & Waleffe
(2007). Subsequently Deguchi, Hall & Walton (2013) considered the long-wavelength
development of vortex/Rayleigh-wave interaction states in plane Couette flow and
uncovered a family of localized solutions. In phase space the plane Couette flow
equilibrium solutions studied by Nagata (1990) and Wang et al. (2007) have been
found to be associated directly with the stable structure on the hyper-surface that
separates the regions of laminar and turbulent attraction: a number of plane Poiseuille
flow solutions, for example those seen in Itano & Toh (2001), are likely to be of a
similar type.

In contrast, the numerical study of the interaction involving viscous TS waves has
received far less attention. Although there have been some numerical investigations
for boundary layers (Hall & Smith 1991; Walton & Patel 1999) and channel flows
(Bennett, Hall & Smith 1991), the computations were hindered by a lack of spatial
resolution owing to the limited computing power available at the time and the use
of simple, but ultimately unreliable, iteration techniques. As a result no quantitative
comparison with any Navier–Stokes result has been reported thus far. In this paper,
with much more extensive computing resources at our disposal, we are able to
solve the interaction equations for plane Poiseuille flow by a multi-dimensional
Newton method and therefore continue our solutions much further into the nonlinear
regime than was hitherto possible. As a result we will clearly be able to witness the
localization phenomenon seen in the solutions. We shall also reveal that the nature
of the localization in the vortex/TS wave interaction state is quite different from that
seen in Deguchi et al. (2013).
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Vortex/TS wave interaction states in plane Poiseuille flow 99

It is well known that the linear neutral curve for plane Poiseuille flow has upper
and lower branch asymptotic limits along which the streamwise wavenumber of the
instability tends to zero as the Reynolds number tends to infinity. The present study
aims to obtain nonlinear numerical solutions via a bifurcation from the lower branch
asymptote found by Lin (1945). The solution concerned corresponds to that directly
bifurcating from a superposition of a pair of neutral oblique TS waves, with one being
the mirror image of the other. The interaction of such waves has long been regarded
as one of the fundamental sources of the roll–streak structure seen in shear flows,
and is of relevance to so-called oblique transition: see Schmid & Henningson (1992)
for example. In plane Poiseuille flow the relevant equilibrium solutions of the Navier–
Stokes equations have already been computed by Ehrenstein & Koch (1991). Here
we shall extend their results to large Reynolds number in order to compare with the
vortex/TS wave interaction states obtained in this study.

Although the relevant governing equations for vortex/TS wave interaction were first
derived in a more general form by Bennett et al. (1991) for flow in curved channels,
we present, for clarity, a brief derivation of these equations in § 2 for the specific
case of plane Poiseuille flow. Using the linear instability of this flow as a starting
point, in § 3 some semi-analytical progress is possible in the form of the weakly
nonlinear response. The results obtained here serve as a useful numerical check on
the full nonlinear computations in which the basic flow is altered by a finite amount
from the familiar unperturbed parabolic profile. The computations are carried out using
the numerical method described in § 4 with results and discussion following in § 5,
including detailed comparisons with Navier–Stokes solutions. In § 6 we shall reveal
that the origin of the localization seen in the computation is due to the development
of a singularity in the interaction equations. Finally, in § 7, we draw some conclusions.

2. Derivation of the governing equations
2.1. The vortex/TS wave interaction equations

Our starting point is the incompressible Navier–Stokes equations

∇ · u= 0, (2.1a)
ut + (u · ∇)u=−∇p+ Re−1∇2u, (2.1b)

non-dimensionalized on the channel half-width and centreline velocity of the
unperturbed state, where (x, y, z, t) are the streamwise, normal, spanwise and temporal
coordinates. In plane Poiseuille flow an imposed constant pressure gradient creates a
parabolic basic flow u= (1− y2, 0, 0). Here we consider the large-Reynolds-number
framework where a three-dimensional TS wave of the lower branch type nonlinearly
interacts with a roll/streak flow. The interaction is initially generated by a pair of
neutral oblique TS waves which produces the symmetries

[u, v,w, p](x, y, z)= [u, v,−w, p](x, y,−z), (2.2a)
[u, v,w, p](x, y, z)= [u,−v,w, p](x+ Lx/2,−y, z), (2.2b)
[u, v,w, p](x, y, z)= [u, v,w, p](x+ Lx/2, y, z+ Lz/2), (2.2c)

where Lx and Lz are the streamwise and spanwise wavelengths of the wave,
respectively. When calculating numerical solutions to both the VWI and Navier–Stokes
solutions we will assume these symmetries, although the majority of the formulation
of the VWI equations which follows is independent of this assumption. At high
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Reynolds number the TS wave disturbance of lower branch type is characterized by
streamwise and spanwise wavenumbers of O(Re−1/7) with an associated wavespeed
of O(Re−2/7): see Lin (1945). We therefore suppose that, for example, the normal
component of the wave perturbation has the form

δ v̂(y, Z)E+ c.c.; E≡ exp [iα (X − c T)], (2.3)

where c.c. denotes complex conjugate, δ is a small parameter to be determined in
terms of the Reynolds number, and (X, Z)= Re−1/7(x, z), T = Re−3/7t are the spatial
and temporal scales of the wave. We will concentrate on nonlinear travelling wave
disturbances for which the scaled streamwise wavenumber α and phasespeed c are
real O(1) amplitude-dependent quantities to be determined as part of the solution. We
restrict our attention to solutions which have period 2π/β in Z, with scaled spanwise
wavenumber β to be specified. Bennett et al. (1991) derived sets of interaction
equations for both O(1) and O(Re1/7) spanwise length scales. The analysis in this
section concerns the latter case and thus the spanwise wavenumber has the same
scaling as the streamwise wavenumber.

We will now identify the critical size of δ in terms of Re such that the nonlinear
self-interaction of the wave induces an O(1) correction to the streamwise component
of velocity. In VWI parlance the components independent of x constitute the vortex
part of the flow, while in self-sustaining process terminology the cross-stream
contribution is referred to as the roll, while the streamwise component represents
a streak. Here we consider the wave and roll–streak interacting in the core, which
forms the bulk of the fluid motion away from the channel walls, and where the
normal variable y is of O(1). We shall separately consider the wall layer where the
wave is generated later. First we note that, in view of the largeness of the Reynolds
number, it is possible for a tiny roll field to act as a convective mechanism for
both the roll itself and an O(1) streak, while still ensuring that viscous effects are
present at leading order. Thus, from an inertial–viscous balance of terms in the
x-averaged streamwise momentum equation, it follows that the y component of the
roll velocity ∼Re−1 in the core. Next, the continuity balance implies a z component
of the roll velocity ∼Re−6/7, in view of the spanwise scaling assumed above. A
pressure gradient–viscous balance in the x-averaged spanwise momentum equation
then yields a core pressure scaling ∼Re−12/7. We now suppose that this roll–streak
flow is forced by the nonlinear self-interaction of the wave. Consideration of the
x-averaged y-momentum equation leads to the core pressure ∼ δ2, in view of (2.3).
Comparing this with the earlier estimate for the core pressure results in

δ = Re−6/7 (2.4)

as the critical size of the wave for this strongly nonlinear interaction.
The full core flow expansion can now be expressed as

u=U(y, Z)+ ε5[û(y, Z)E+ c.c.] + · · · , (2.5a)
v = ε6[v̂(y, Z)E+ c.c.] + ε7V(y, Z)+ · · · , (2.5b)
w= ε6W(y, Z)+ ε7[ŵ(y, Z)E+ c.c.] + · · · , (2.5c)

p=−ε72x+ ε7[p̂(y, Z)E+ c.c.] + ε12P(y, Z)+ · · · , (2.5d)

where we have defined ε = Re−1/7. Here U, (V, W) and û are the streak, roll
and wave components, respectively. These expansions are then substituted into the
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Vortex/TS wave interaction states in plane Poiseuille flow 101

Navier–Stokes equations (2.1). In expansions (2.5) the precise scaling of the wave
component is chosen so that it is driven by the streak and satisfies the linear inviscid
balances

iαû+ v̂y = 0, iαUû+ v̂Uy = 0, iαUv̂ =−p̂y, iαUŵ=−p̂Z. (2.6a−d)

We note here how, under our scaling, the smaller spanwise wave component uncouples
from the (û, v̂) flow. This is an expected result because, as we shall see shortly,
the size of ŵ increases upon approach to the wall in order to satisfy the full three-
dimensional continuity equation in the near wall sublayer. Solving (2.6a−d) up to an
amplitude function A(Z) we obtain

û=−AUy, v̂ = iαAU, ŵ=−(iαU)−1p̂Z, p̂y = α2AU2. (2.6e−h)

This leads to a pressure-amplitude (displacement) relation

p̂(1, Z)− p̂(−1, Z)= α2A
∫ 1

−1
[U(s, Z)]2 ds. (2.7)

Next we turn to the equations governing (U, V, W). Owing to the scale difference
between the wall normal and spanwise directions, viscous effects are negligible in the
y-momentum equation which, as a consequence, reduces to a simple balance between
the normal pressure gradient and the nonlinear wave forcing. This can be used to
eliminate the roll pressure gradient in the spanwise momentum equation and we are
left with the balances

Vy +WZ = 0, (2.8a)
VUy +WUZ = 2+Uyy, (2.8b)

VWyy +WWyZ = 2α2(|A|2)ZUUy +Wyyy, (2.8c)

where (2.8c) is arrived at by using (2.6e−h) and differentiating with respect to y
to eliminate an unknown function of Z. This roll/streak combination is to be solved
subject to

U = V =W = 0 on y=±1. (2.8d)

To close the system (2.8) we need to determine the amplitude function A(Z). This
is found by considering the behaviour of the wave in the viscous wall layers. From
the symmetry (2.2b), it suffices for our purposes to consider only the lower wall
layer at y = −1. First, it is important to note from (2.8) that, when y + 1 ∼ h� 1,
the core roll–streak components have magnitudes U ∼ O(h), V ∼ O(h2), W ∼ O(h),
P∼O(1). Thus, the behaviour of the streak and (2.6e−h) imply the core wave sizes
û∼O(1), v̂ ∼O(h), ŵ∼O(h−1), p̂∼O(1) in this limit. In the wall layer the viscous
wave is convected by a streak of O(h). The thickness of this layer in terms of the
Reynolds number can then be established to be h ∼ O(ε2), by balancing the inertial
operator u∂/∂x∼O(εh) against the viscous contribution Re−1∂2/∂y2 ∼O(ε7h−2). This
motivates the introduction of the lower wall layer variable, Y , defined to be

Y = ε−2(y+ 1). (2.9)
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Then, as suggested by (2.5) and the near-wall core flow behaviour mentioned above,
it is found that the flow variables in the lower wall layer expand as

u= ε2λ(Z)Y − ε4Y2 + ε5[ū(Y, Z)E+ c.c.] + · · · , (2.10a)
v = ε8[v̄(Y, Z)E+ c.c.] + ε11V̄(Y, Z)+ · · · , (2.10b)
w= ε5[w̄(Y, Z)E+ c.c.] + ε8W̄(Y, Z)+ · · · , (2.10c)

p=−ε72x+ ε7[p̄(Z)E+ c.c.] + ε12P̄(Z)+ · · · , (2.10d)

where λ(Z) is the streak shear stress on the lower wall, defined by

λ(Z)= ∂U/∂y on y=−1, (2.11)

and the second term in (2.10a) balances the constant pressure gradient. The wave
components satisfy the following linearized unsteady boundary-layer-type equations:

iαū+ v̄Y + w̄Z = 0, (2.12a)
iα(λY − c)ū+ λv̄ + λZYw̄=−iαp̄+ ūYY, (2.12b)

iα(λY − c)w̄=−p̄Z + w̄YY, (2.12c)

where p̄ = p̄(Z) = p̂(−1, Z); we note that the wave in the wall layer satisfies the
full continuity equation in contrast to the core equations (2.6a−d). Note also that the
Re−1/7 wavenumber scaling of the lower branch ensures the balancing of the pressure
gradient term in the streamwise equation (2.12b). The solution of equations (2.12a–c)
must satisfy the no slip boundary conditions

ū= v̄ = w̄= 0 on Y = 0, (2.12d)

and match to the core flow solution (2.6e−h) via the outer conditions

ū→−λA, w̄∼− p̄Z

iαλY
as Y→∞. (2.12e,f )

Here we can see that the quantity A(Z) represents an effective wall displacement
for the streamwise wave component due to the presence of the viscous layers. The
corresponding upper wall layer solutions can be found by using symmetries (2.2b)
and in particular we find p̂(1, Z) = −p̂(−1, Z). Equations (2.7) and (2.12) can be
manipulated into one equation for A(Z) (see Smith 1979), namely

(JA)′′ − (λ′/λ)F (ξ)(JA)′ − α2(JA)= 2(αλ)5/3G (ξ)A/α2, (2.13)

where in the above we have defined

ξ(Z)=− (iαλ)
1/3

λ
c, F (ξ)= 3

2
+ ξ(ξκ(ξ)+Ai′(ξ))

2Ai(ξ)
, G (ξ)= i5/3 Ai′(ξ)

κ(ξ)
,

κ(ξ)=
∫ ∞
ξ

Ai(s) ds, J(Z)=
∫ 1

−1
[U(y, Z)]2 dy,


(2.14)
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with λ(Z) given in (2.11) and Ai representing the usual Airy function. Equation (2.13)
is a complex nonlinear eigenvalue problem that determines the wavenumber and
phasespeed of the nonlinear wave part of the flow-field. A full derivation of (2.13),
(2.14) from (2.7), (2.12) is given in the appendix A.

The interaction problem has now been reduced to solving the roll–streak equations
(2.8), coupled with the wave equation (2.13), with the two systems of equations
being linked by the amplitude function A(Z) and the streak shear λ(Z). This coupling
allows us to describe the self-sustaining mechanism behind the VWI states. First, the
streak U drives the viscous wall wave displacement A in equation (2.13) through the
wall shear stress λ(Z). Second, the displacement creates an inviscid core wave of
amplitude A which drives the roll (V,W) in (2.8a) and (2.8c) through the nonlinear
self-interaction of the wave. Finally, closing the loop, the roll drives the streak through
the advection terms in (2.8b). This provides a framework in which equilibrium states
can be described.

We must also prescribe the amplitude A of the wave, which we define as

A 2 =
∫ 2π/β

0
|A(Z)|2 dZ. (2.15)

The behaviour of the solution for small A is investigated in the next section. It should
be noted that an alternative approach would be to prescribe the axial wavenumber α
and determine the corresponding amplitude: the choice made here is more convenient
with regard to the computation of our asymptotic problem. To give a physical sense
to the size of the states we also introduce the average flux deficit of the perturbation:

Q=− β

4π

∫ 2π/β

0

∫ 1

−1
Ũ(y, Z) dy dZ, (2.16)

where Ũ is the perturbation to the basic state streak, and is defined by

Ũ(y, Z)=U(y, Z)− (1− y2). (2.17)

2.2. The near-wall roll–streak equations
The previous subsection fully describes the interaction to leading order, determining
the wavenumber and phasespeed for given A , and the flow in the core. However,
since the thickness of the wall layer is predicted to be of size O(ε2) = O(Re−2/7),
this remains a significant part of the flow-field, even at quite large Reynolds numbers.
As we will see in states computed from the full Navier–Stokes equations, the largest
wall layer structures are found in the roll components. From substitution of (2.10) into
the Navier–Stokes equations (2.1), this part of the flow is governed by the equations

V̄Y + W̄Z = 0, (2.18a)
[iαū∗w̄+ v̄w̄∗Y + w̄w̄∗Z + c.c.] = W̄YY, (2.18b)

where ∗ represents complex conjugate. These equations are to be solved subject to no
slip on the wall and far field matching conditions. A consideration of the roll part of
the flow in the core of the channel reveals that the appropriate matching condition is

W̄ ∼Wy(−1, Z)Y as Y→∞. (2.18c)
The near-wall roll flow can therefore be computed once the core flow is found from
the interaction equations (2.8) and (2.13). We will return to these equations in § 5.2,
when we compare VWI states with Navier–Stokes computations across the entire
channel width.
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3. Linear and weakly nonlinear analysis
In general the nonlinear nature of the interaction equations makes any analytical

progress impossible. However, when the amplitude of the wave is small, the
interaction is in a weakly nonlinear state, and we can take advantage of this
to construct solutions where the perturbation to the basic flow is small, and the
streamwise wavenumber and phasespeed are close to the linear neutral values for the
undisturbed flow. This allows us to find analytic expressions which describe how the
solutions bifurcate from the linear neutral point into finite amplitude states and also
provides a means of validating numerical results as we will see in § 4.

We consider small-amplitude solutions, |A | ∼ ∆ � 1, where α, c are close to
their linear neutral values. The forcing in the core is of O(∆2) from (2.8c), and
so it follows that the perturbations away from the basic flow are also of this order.
Therefore, we expand

A(Z)=∆ cos βZ +∆3(A(1)3 cos βZ + A(3)3 cos 3βZ)+ · · · , (3.1)

and, upon substitution into (2.8), we find the resulting perturbed roll–streak flow. For
example the streak expands in the form

U(y, Z)= 1− y2 +∆2U2(y) cos 2βZ + · · · , (3.2)

where U2 is a polynomial in y that can be determined analytically. We find similarly
that α, c expand as

α = α0 +∆2α2 + · · · , c= c0 +∆2c2 + · · · , (3.3a,b)

where (α0, c0) corresponds to the linear neutral point, which satisfies the equation

15(2α0)
5/3G (ξ0)+ 8α2

0(α
2
0 + β2)= 0, (3.4)

from substitution of (3.1), (3.2) into (2.13), with the function G given in (2.14). Here
the quantity ξ0=−(2iα0)

1/3c0/2 is the leading order value of the quantity ξ defined in
(2.14). Taking the imaginary part of (3.4), we find that the imaginary part of G (ξ0) is
zero and thus ξ0 and G (ξ0) are determined independently of the spanwise wavenumber.
Letting ξ0 =−i1/3s0, i.e. s0 = (2α0)

1/3c0/2, we find

s0 ' 2.297, and G (ξ0)'−1.001, (3.5a,b)

with each given to three decimal places, and we note that G (ξ0) is purely real as
required. The dispersion relation (3.4) defines the lower branch linear neutral point
derived (for the two-dimensional case) by Lin (1945) and given in his equation (13.2).
For example, when β = 1, we find

(α0, c0)' (1.9426, 2.9225). (3.6)

The linear stability problem at finite Reynolds numbers can be reduced to solving the
Orr–Sommerfeld equation, which was performed here using the Chebyshev collocation
method: see Orszag (1971). In figure 1, for a scaled spanwise wavenumber β = 1,
we compute the neutral value of the scaled streamwise wavenumber on the lower
branch of the linear neutral curve from the solution of the Orr–Sommerfeld equation.
The dotted curve shows the Orr–Sommerfeld quantity as a function of Reynolds
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FIGURE 1. (Colour online) The lower branch of the linear neutral curve for scaled
spanwise wavenumber β = 1. The solid line represents the asymptotic result (3.6), while
the dashed line shows the results of Orr–Sommerfeld computations.
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FIGURE 2. The perturbation to the scaled streamwise wavenumber as a function of
scaled spanwise wavenumber β from the numerical solution of the weakly nonlinear
equation (3.7).

number, while the solid horizontal line is the asymptotic value α = α0 established in
(3.6). Convergence to the large Reynolds number result is observed, although good
agreement is not obtained until Re & 107. This suggests that our nonlinear theory,
relying as it does on this asymptotic framework, will only begin to exhibit quantitative
agreement with Navier–Stokes solutions when Re becomes similarly large. We will
see in § 5.2 that this is indeed the case.

One of the most important consequences of this analysis is that it describes the
nature of the bifurcation from the linear neutral point. The leading order analysis at
O(∆) gives the dispersion relation (3.4), then at O(∆3) we find, by equating terms
proportional to cos βZ, the solvability condition which relates (α2, c2), namely

ν1α2 + ν2c2 = 1, (3.7)

where ν1 and ν2 are complex constants which depend on β. For example, by solving
(3.7) we find that for β = 1, the bifurcation for small amplitudes is described (to
O(∆2)) by

α ' 1.9426− 0.0090∆2, c' 2.9225+ 0.0057∆2. (3.8a,b)

Numerical computations of (3.7) (figure 2) indicate that in (3.3), α2 < 0 for all β, i.e.
the bifurcation appears to be subcritical for all spanwise wavenumbers.
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4. Numerical method for solving the VWI equations
The equations to be solved are (2.8), (2.13) subject to some prescribed wave

amplitude, (2.15). We will seek solutions which are periodic in Z with period 2π/β
where β is the spanwise wavenumber. The equations are coupled through the wall
shear stress λ(Z), defined in (2.11), and wave forcing terms. Equation (2.8a) motivates
the introduction of a stream function Ψ , where

(V,W)= (∂Z,−∂y)Ψ, (4.1)

and (2.8a)–(2.8c) now become

ΨZUy −ΨyUZ = 2+Uyy, (4.2a)
ΨyΨyyZ −ΨZΨyyy = FUUy −Ψyyyy, (4.2b)

with
F(Z)= 2α2

(|A|2)Z . (4.2c)

It is convenient to split the streak into the basic flow and a perturbation denoted by Ũ,
defined in (2.17). The boundary conditions for the perturbed variables are the no-slip
conditions

Ũ =Ψ =Ψy = 0 on y=±1, (4.3)

with the use of symmetry (2.2a) allowing us to impose that Ψ vanishes on both walls.
The most natural choice, given the flow geometry, is to use spectral methods.

We use a Chebyshev/Fourier basis in the wall normal/spanwise direction with Tn
representing the nth Chebyshev polynomial. The flow variables are thus represented
by the series

Ũ =
N∑

n=1

K∑
k=1

Ũn,kTn−1(y) cos[2(k− 1)βZ],

Ψ =
N∑

n=1

K∑
k=1

Ψn,kTn−1(y) sin[2kβZ], A=
K∑

k=1

Ak cos[(2k− 1)βZ],

 (4.4)

with the values of N and K determined by requiring sufficient decay in the spectral
coefficients. In order to discretize the system we apply the collocation method in the
wall-normal direction with collocation points at yj= cos[ jπ/N] for j= 0, . . . ,N, using
j= 1, . . . ,N− 1 for (4.2a), and j= 2, . . . ,N− 2 for (4.2b), with the remaining points
reserved for the application of the no slip boundary conditions (4.3). We apply the
Galerkin method in the spanwise direction. A pseudo-spectral approach is used to deal
with the nonlinear terms, and de-aliasing is performed by zero-padding.

In the current formulation, the equations are invariant under an arbitrary streamwise
phase shift. To account for this degree of freedom we set the imaginary part of A1 to
be zero. We now have NK unknowns for both Ũ and Ψ , 2K for the real and imaginary
parts of A, and 2 for α, c, resulting in a total of 2NK + 2K + 2 unknowns. Then for
the core equations (4.2) (including the boundary conditions) we have 2NK equations,
2K equations for (2.13), and 2 equations from (2.15) and the phase lock condition,
resulting in a total of 2NK + 2K + 2 nonlinear coupled equations. This system is
solved using a quasi-Newton method, where the Jacobian matrix required as part of
the scheme is approximated with finite differences. The Newton iteration is continued
until the L1-norm of the residual of the discretized equations becomes less than 10−8.
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FIGURE 3. The spanwise spectral convergence of the numerical solution for A 2= 20. The
curves with different line styles represent numerical solutions of the VWI equations with
different numbers of Fourier modes K, with the legend showing the value of K.

Resolution tests were performed in which the amplitude A was fixed and the
number of spectral modes used in the wall-normal and spanwise directions were
varied in order to verify that the numerical results were independent of the number
of modes used. An example of such a resolution test is described here. This was
performed at unit spanwise wavenumber and amplitude A 2= 20, which is sufficiently
large that the interactions are nonlinear. The streamwise wavenumber was chosen as
a representative quantity to monitor as the number of modes was varied. Changing
the number of Fourier modes, K, was observed to have the largest effect, but once
K exceeded 50 the change in α was in the 7th decimal place, and by the time K
exceeded 110 the change was in the 12th decimal place. The structure of the solution
in the wall-normal direction is moderate and a value of N in the range 20–25 was
found to be sufficient for all of the results in this work.

Although some key quantities such as α, c, A and Q converge excellently, it
was found that an unphysical oscillation contaminates the flow field because of
the development of a sharp structure in Z, as we shall see in the next section.
The behaviour of the Fourier coefficients shown in figure 3 for larger values of K
clearly shows that the slightly upward ‘tail’, where the coefficients near k=K assume
relatively large values, is responsible for the unphysical oscillation. We shall see in § 6
that the tail is caused by the loss of regularity in the VWI equations but that, provided
the wave amplitude is below a critical value, this irregularity does not prevent the
VWI equations from providing the correct leading-order behaviour. The analysis
presented will confirm that for the values of A under consideration, the apparently
converged Fourier coefficients ahead of the tail provide a good approximation to the
solution of the VWI equations, thereby justifying the neglect of those coefficients
associated with the tail.

5. Numerical results and comparison
5.1. Computational results for the strongly nonlinear vortex/TS wave interaction

First we will focus on a scaled spanwise wavenumber β = 1, although the behaviour
for other spanwise wavenumbers, which will be discussed shortly, is qualitatively
similar. For small amplitudes, solutions are found to have the structure predicted by
the weakly nonlinear analysis as shown in figure 4. Figure 5(a,b) shows the solution
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FIGURE 4. (Colour online) Amplitude A of the nonlinear state as a function of
streamwise wavenumber α. The solid curve represents the fully nonlinear numerical results
from the VWI equations for β = 1. The dashed curve is the corresponding weakly
nonlinear analysis, which is valid for small A .
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FIGURE 5. (Colour online) (a,c,e) Represent the core perturbation streak Ũ of the VWI
solutions and (b,d, f ) show the accompanying wall shear stress λ(Z) (solid curve) and
the wave displacement function |A|2 (dotted line): (a,b) A 2 = 1 (Q ≈ 5.7 × 10−6);
(c,d) A 2 = 20 (Q≈ 1.8× 10−3); (e, f ) A 2 = 30 (Q≈ 3.8× 10−3).

for a representative small amplitude A 2 = 1, where the interaction is still in the
weakly nonlinear regime with colour denoting the size of the perturbation to the
streak in the core. The structure is mild, with a small spanwise modulation in the
roll–streak giving rise to a fairly uniform vortex structure. Increasing the amplitude
further results in stronger wave forcing, inducing larger perturbations to the flow
and fully nonlinear interactions arise. The numerical scheme described in § 4 allows
us to continue the solution branch to much larger amplitudes compared with the
typical maximum amplitude A ≈ 1 that proved attainable when employing a classical
fixed-point iteration technique in an earlier version of our code. The solutions shown
in figure 5(c,d) for A 2 = 20 become localized in the spanwise direction, with the
wall shear stress developing steep gradients at particular spanwise locations. The
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FIGURE 6. (Colour online) The perturbation streak Ũ from the numerical solution of the
VWI equations for (a) β= 2, (b) β= 3, (c) β= 5 and (d) the large β limit (5.2). A scaled
amplitude Â ≡ β−5A = 0.1 is chosen for these plots.

flow undergoes further localization for A 2 = 30 as shown in figure 5(e, f ), and an
ever larger number of Fourier modes is required to achieve satisfactory resolution.
For larger amplitudes the resolution required for the spectral convergence becomes
beyond our computational resources. Here we remark that we encounter this difficulty
before the vortex structure has become fully isolated. In this sense our use of the
word ‘localization’ is different from that used in recent numerical investigations of
fully isolated vortex structures, e.g. Schneider, Gibson & Burke (2010), Deguchi et al.
(2013) and Gibson & Brand (2014).

Similar computations are now presented for larger values of β. The solutions at
all of these spanwise wavenumbers are found to be qualitatively similar to the β = 1
case, exhibiting localization in the spanwise coordinate as the amplitude is increased.
In figure 6(a–c) we show the perturbation to the streak in the core for β = 2, 3 and 5.
For these plots the amplitude is selected as A = 0.1β5. It can be seen that with this
choice of amplitude there is very little difference between the solutions for β = 3 and
β=5. Indeed beyond β=5 the solution becomes practically independent of the choice
of β in terms of this scaling. The reason for this behaviour at large β is that under
the rescaling

Ẑ = βZ, Ψ̂ = βΨ, α̂ = β6α, ĉ= β−2c, Â= β−5A, Â = β−5A , (5.1a−f )

the roll/streak equations (4.2) remain unchanged in terms of the newly scaled variables,
while in (2.13) the final term on the left-hand side becomes β−14α̂2JÂ. This rescaling
suggests that in the limit β →∞ the VWI remains governed essentially by (4.2),
(2.13) with β= 1 but with the final term on the left-hand side of (2.13) absent, i.e. we
have the modified system

Ψ̂ẐUy − Ψ̂yUẐ = 2+Uyy, (5.2a)

Ψ̂yΨ̂yyẐ − Ψ̂ẐΨ̂yyy = F̂UUy − Ψ̂yyyy, (5.2b)
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FIGURE 7. (Colour online) The scaled amplitude Â of the VWI solutions as a function
of the scaled wavenumber α̂ for various finite values of spanwise wavenumber β and the
large-β limit.

F̂(Ẑ)= 2α̂2|Â|2Ẑ, (5.2c)

(JÂ)ẐẐ − (λẐ/λ)F (ξ̂ )(JÂ)Ẑ = 2(α̂λ)5/3G (ξ̂ )Â/α̂2, (5.2d)

where we now seek solutions with period 2π in β̂. It is also worth remarking here
that in this large spanwise wavenumber limit, the quantity ξ̂ =−(iα̂λ)1/3ĉ/λ remains
O(1). Equations (5.2) were solved computationally, by the same numerical method
described in § 4, but now prescribing Â (defined in (5.1f )) and tracking the state
which bifurcates from the linear neutral point to finite values of Â . In figure 6(d)
we present the streak arising from the solution of (5.2) for Â = 0.1. The flow field
can be seen to be almost indistinguishable from the β = 5 case shown in figure 6(c).
In figure 7 we see a plot of Â as a function of α̂ for β = 2, 2.5, 3 and 5, along
with the corresponding result from the solution of (5.2). Convergence to this solution
with increasing β can clearly be seen in this figure, with comparisons for other flow
quantities exhibiting a similar convergence.

Equations (5.2) break down when a distinguished limit β = O(Re1/7) is reached,
which corresponds to O(1) spanwise variations in z. In this limit the large-β scaling
(5.1) implies that α → O(Re−1). Simultaneously, the streamwise wave component
grows to be as large as the streak, while in the spanwise and wall-normal directions,
both the wave and roll become O(Re−1) in size. The interaction is therefore governed
by the so-called boundary-region equations in which the roll, streak and wave now
evolve over a single O(Re) streamwise lengthscale. Such an asymptotic problem
was recently solved for plane Couette flow by Deguchi et al. (2013) where the
solution was found to strongly localize in the spanwise direction while also exhibiting
streamwise localization as the amplitude of the motion was increased. Although we
have not investigated the solution of the corresponding boundary-region problem for
plane Poiseuille flow, we would expect to observe similar localization for this flow
configuration.

5.2. Detailed visualization and comparison with Navier–Stokes computations
In this section we present detailed flow structures computed from the VWI equations
and compare the results with finite Reynolds number calculations of the Navier–Stokes
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FIGURE 8. (Colour online) Comparison of the solution branch for the VWI with finite
Reynolds numbers results from the full Navier–Stokes equations at β = 1: (a) phasespeed
c versus streamwise wavenumber α; (b) the average flux deficit Q versus α. The solid
circle in (a) is the linear critical point (3.6).

equations, restricting our attention to a spanwise wavenumber β = 1. The travelling
wave solutions of the full Navier–Stokes equations are directly solved by applying
Newton’s method to the discretized system. The discretization is performed using a
spectral method utilizing a Chebyshev expansion in the wall-normal direction and a
Fourier series representation in the streamwise and spanwise directions. More details
on the scheme can be found in Deguchi et al. (2013). The primal seed for the
Newton method is a pair of neutral oblique TS waves numerically obtained from the
linear stability analysis. A similar starting condition was used by Ehrenstein & Koch
(1991): however, in our case typically 300 Fourier modes are taken in the spanwise
direction, compared with the 2 used by the aforementioned authors. In addition, 60
Chebyshev modes are used in the normal direction to fully resolve the solutions. It is
widely regarded that the number of modes in Ehrenstein & Koch (1991) is insufficient
to obtain reliable solutions even at the moderate Reynolds numbers they considered.
Here our computations confirm that well-resolved solutions can be continued to high
Reynolds number and finite amplitude. By way of contrast, four or fewer streamwise
Fourier modes are typically sufficient to preserve the accuracy of the solutions,
consistent with the fact that in VWI only one streamwise Fourier mode is present
at leading order. All Navier–Stokes quantities are subjected to the VWI scalings in
order to compare with the results given in the last subsection.

Figure 8(a) shows a comparison of the streamwise wavenumber–phasespeed
curves for the VWI (solid curve) and the full Navier–Stokes computations for
various Reynolds numbers (dashed curves). In the figure we can see the full
Navier–Stokes results eventually converge to the VWI results with increasing Reynolds
number, thereby confirming that vortex/TS wave interaction is indeed operational in
high-Reynolds-number shear flows. Figure 8(b) shows a similar comparison involving
the flux Q where the convergence to the VWI state can also be seen as the Reynolds
number increases.

In figure 9, at Q ≈ 3 × 10−4 (which corresponds to A 2 = 8), we compare the
roll–streak fields for Re= 108. In figure 9(a–c) we show the appropriate components
computed from the full Navier–Stokes equations. In the flow field we see near-wall
structures which are particularly large for the roll, and especially for the spanwise
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FIGURE 9. (Colour online) Comparison of a Navier–Stokes computation and the
corresponding VWI state for scaled spanwise wavenumber β = 1, showing U in (a,d), V
in (b,e), and W in (c, f ): (a–c) Navier–Stokes result at Re= 108; (d–f ) composite solution
for the VWI state at Re = 108. Both results were computed with Q ≈ 3 × 10−4, which
corresponds to A 2 = 8.
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FIGURE 10. (Colour online) The core and wall layer parts of the VWI solution for A 2=
8, β= 1: (a–d) the normal and spanwise components of the roll flow; (a,b) show the core
solutions V and W; (c,d) depict the wall layer solutions V̄ and W̄.

component W. In the VWI framework these structures are not captured in the core
flow to leading order, and in fact are confined to the wall layer as seen in figure 10,
where the VWI wall layer solution has been obtained from the numerical solution
of (2.18). In these figures we can see how the roll flow matches between the two
regions. Adding the core and rescaled wall layer solutions and then subtracting the
common part of them, we can construct a composite solution for a given value of Re.
Returning now to figure 9(d–f ), we show the VWI state throughout the whole channel,
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FIGURE 11. (Colour online) Isosurface of streamwise vorticity near the bottom wall for
Re= 108, β= 1 and Q≈ 3× 10−4. The red (light grey)/blue (dark grey) surface represents
40 % of the maximum/minimum value: (a) Navier–Stokes solution; (b) VWI solution.

created by the composite solution technique. Excellent agreement can be found by
comparing the composite solution with the corresponding Navier–Stokes result shown
in figure 9(a–c).

The wave part of the solution dominates the streamwise vorticity as we can see
from the asymptotic expansion (2.9) in the wall layers. In figure 11(a,b) we compare
the streamwise vorticity arising from the Navier–Stokes solution with that from the
VWI computation. Here we only show a small interval in y near the bottom wall since
the major vortex activity is concentrated in the near-wall regions. In the bottom VWI
plot we only use the leading order term proportional to w̄Y and its conjugate. The
figure displays an excellent agreement between the Navier–Stokes and the asymptotic
results, showing a pair of flat counter-rotating vortices emerging from the wall to
sustain the core structure.

With the comparison made here, we are satisfied that vortex/TS-wave interaction
is successfully describing the large Re asymptotic limit of nonlinear travelling wave
states bifurcating from the linear neutral curve in plane Poiseuille flow. For other
values of amplitude similar agreement can be observed. In particular, the spanwise
localization seen in the previous section is also operational in the full Navier–Stokes
computations: see figure 12 in which the Navier–Stokes streak field is shown at
Q ≈ 3.8 × 10−3. This figure should be compared with figure 5(e) where the
corresponding VWI solution is shown. In the next section we will uncover the
details of the localization process and discover that the VWI equations gradually
lose regularity at certain spanwise locations as the wave amplitude increases, with a
singularity developing at a critical value of A .
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FIGURE 12. (Colour online) The perturbed streak arising from the Navier–Stokes solution
for Re= 108 and β = 1. The value of flux is chosen as Q≈ 3.8× 10−3 to compare with
the VWI version in figure 5(e).

6. The details of the localization process

As we have seen in the previous section, the flow field begins to localize as the
wave amplitude increases, with steep gradients developing around particular spanwise
locations. This is evident, for example, in figure 5(b,d, f ) where there are two such
locations: Z = Z1 = π/2β and Z = Z2 = 3π/2β. At both of these points we have
A = 0. In this section we shall provide a comprehensive theoretical explanation for
the origin of the localization and demonstrate how the VWI solution gradually loses
regularity at these local points as the flow becomes increasingly nonlinear, eventually
producing a singularity at a critical value of A which we will determine. The key
to the development of the singularity is that, although the full VWI system is elliptic
in Z, once the wavenumber and phasespeed are determined from the wave equation
(2.13) subject to periodicity requirements, the calculation of the roll–streak field for
a given wave forcing arises from the solution of a system (4.2) which is only first
order in Z. It is therefore then sufficient to provide the conditions

U|Z=Z1 =U|Z=Z2, ΨZ|Z=Z1 =ΨZ|Z=Z2, A|Z=Z1 = A|Z=Z2 = 0, (6.1a−c)

in order to solve the interaction problem in Z ∈ [Z1, Z2]. As a consequence, continuity
of the higher-order derivatives is not guaranteed in general and, as we shall see,
the degree of regularity of the solution can indeed be predicted for a given wave
amplitude by analysing the behaviour near the local point in detail.

Without loss of generality we can set Z = 0 at the local point by applying an
appropriate spanwise shift. By the symmetries (2.2), if there is no singularity we must
have a regular expansion at Z = 0 of the form

U =U0(y)+U2(y)Z2 + · · · , Ψ = Z{Ψ0(y)+Ψ2(y)Z2 + · · ·}, (6.2a,b)

F= Z{F0 + F2Z2 + · · · }, A= Z{A0eiθ0 + A2eiθ2Z2 + · · ·}, (6.2c,d)

where Um(y) and Ψm(y) are even and odd functions, respectively.
Let us suppose now that only the first 2M spanwise derivatives of U are continuous

at Z = 0. We therefore pose the expansions

U =
M∑

m=0

U2mZ2m +Uσ |Z|σ + · · · , Ψ = Z

{
M∑

m=0

Ψ2mZ2m +Ψσ |Z|σ + · · ·
}
, (6.3a,b)
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F= Z

{
M∑

m=0

F2mZ2m + Fσ |Z|σ + · · ·
}
, A= Z

{
M∑

m=0

A2meiθ2mZ2m + Aσeiθσ |Z|σ + · · ·
}
,

(6.3c,d)
where we have explicitly assumed that the unknown positive index σ is non-integral,
with M being the largest integer that satisfies 2M < σ . Substituting the expansions
(6.3) into the roll–streak equations (4.2), we find the leading-order terms satisfy

Ψ0U′0 = 2+U′′0 , (6.4a)
Ψ ′0Ψ

′′
0 −Ψ0Ψ

′′′
0 = F0U0U′0 −Ψ ′′′′0 , (6.4b)

subject to the no-slip boundary conditions

U0 =Ψ0 =Ψ ′0 = 0 on y=±1, (6.4c)

while the first irregular contributions satisfy the balances

U′′σ + σΨ ′0Uσ −Ψ0U′σ − (σ + 1)U′0Ψσ = 0, (6.5a)
Ψ ′′′′σ + {Ψ ′′0 Ψσ + (σ + 1)Ψ ′0Ψ

′′
σ } − {Ψ0Ψ

′′
σ + (σ + 1)Ψ ′′0 Ψσ }

= FσU0U′0 + F0(U′0Uσ +U0U′σ ), (6.5b)

with
Uσ =Ψσ =Ψ ′σ = 0 on y=±1. (6.5c)

Similarly, by substitution of (6.3) into the wave equation (2.13) we find

(σ + 1){JσA2
0 + J0AσA0eiθσ } − λσ

λ0
{F (r)

0 + iF (i)
0 }J0A2

0 = 0, (6.6)

where
λ0 =U′0|y=−1, λσ =U′σ |y=−1, F (r)

0 + iF (i)
0 =F |Z=0,

J0 =
∫ 1

−1
U2

0 dy, Jσ =
∫ 1

−1
2U0Uσ dy,

F0 = 4α2A2
0, Fσ = 4(σ + 2)α2A0Aσ cos(θσ − θ0).

 (6.7)

Using the expressions for F0 and Fσ given above, we can rewrite (6.6) as

Fσ = (σ + 2)
(σ + 1)

{
λσ

λ0
F (r)

0 − (σ + 1)
Jσ
J0

}
F0. (6.8)

Substituting this expression for Fσ into equations (6.5), we find that the equation
governing the irregular contribution can be represented in the form

L
[

Uσ

Ψσ

]
= 0, (6.9)

where L is a linear operator which depends on (σ ,F0, α, c). Thus, L must be singular
to have non-trivial Uσ , Φσ . Standard techniques from linear algebra can then be used
to find the smallest value of σ that produces a zero eigenvalue of L for a given
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FIGURE 13. (Colour online) The solid curve denotes the zeroth order local analysis
solution. The crosses are full VWI results for β = 1, with selected values of A 2 indicated
by the arrows.
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FIGURE 14. (Colour online) The value of σ associated with the singularity at the
local point.

(F0, α, c), and hence to determine the degree of regularity of the solution for a given
wave amplitude.

First, as shown in figure 13, we compare the leading order local solution (computed
from (6.4) for a given F0 using a Runge–Kutta/shooting approach) with the full VWI
results computed in the last section. In the full VWI computation FZ and λ evaluated
at the local point correspond to the quantities F0 and λ0, respectively. Excellent
agreement can be seen in the figure, thereby confirming the validity of both analyses.
Note that the parameter F0 is effectively a measure of the nonlinearity of the system.

Next we examine the regularity of the solution. In figure 14 we plot the smallest
value of σ which gives a zero eigenvalue of L for a given F0. The values of (α, c)
used in the calculation are extracted from the full VWI computation and are dependent
on the particular value of F0 under consideration. In this way, global effects enter into
our local analysis. For F0→ 0, i.e. the zero amplitude limit, the value of σ tends to
infinity and the solution is regular. As F0 is increased, the value of σ decreases and
as a consequence the VWI solution gradually loses regularity at Z = 0. For example,
provided F0 & 90 we have σ < 2 and λZZ becomes singular, while if F0 & 220 we
find that σ < 1 and now in addition λZ develops a singularity at Z = 0. Finally when
F0 = Fc with Fc in the range 750–800, the value of σ becomes zero and the size
of the irregular terms in the expansions (6.3) become comparable with the leading-
order terms. This value of Fc corresponds to a wave amplitude A 2 in the range 30–35
and is consistent with the fact that beyond this value of A 2 there is poor agreement
between the full VWI solution and the leading-order local analysis even when as many
as 2000 Fourier modes are used in the VWI computation.
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Provided we are in the regime where F0 < Fc, and therefore the solution is still
regular at leading order, it is possible to remove the singularity occurring in the
higher-order terms by inserting a thin layer around Z= 0 in which spanwise diffusion
of the roll flow is now as important as diffusion in the normal direction. The
balancing of these two effects in the Navier–Stokes equations requires ∂yy ∼ ε2∂ZZ
and hence implies Z ∼ O(ε) and therefore an O(1) spanwise thickness in terms of
z. A simple order of magnitude analysis reveals that the appropriate balances in the
spanwise diffusion layer are the O(1) spanwise wavelength equations given in Bennett
et al. (1991) and referred to as a ‘square vortex’ type interaction in the subsequent
literature. However here we should employ matching conditions to the outer flow in
the spanwise direction rather than the periodic conditions used in previous studies.
The appropriate expansions in the diffusion layer areU

Ψ
p̂y

=
 U0(y)

εzΨ0(y)
εα2U2

0zA0eiθ0

+ · · · +
 εσ ǔ(y, z)
εσ+1ψ̌(y, z)
εσ+1α2ǎ(y, z)

+ · · · , (6.10)

where the leading-order terms U0, Ψ0 can be determined from the local problem
(6.4), which remains valid in the spanwise diffusion layer. At O(εσ ) we find that the
components associated with the singular behaviour of the outer flow simply satisfy
the square vortex interaction equations linearized about the leading order terms in the
expansion (6.10). In principle we can solve such linear equations subject to the usual
no-slip conditions in y and the following matching conditions for large |z|:

ǔ∼ |z|σUσ , ψ̌ ∼ z|z|σΨσ , ǎ∼ z|z|σ (AσU2
0eiθσ + 2A0U0Uσeiθ0) as z→±∞,

(6.11a−c)
where Uσ (y), Ψσ (y), Aσ , θσ are fixed by the outer solution.

An important consequence of the spanwise diffusion layer analysis is that when
F0 < Fc, the solution (ǔ, ψ̌, ǎ) satisfies a linear problem and does not influence
the determination of the leading-order outer problem. The local structure is therefore
completely passive, in the sense that we can solve the outer solution independently as
we have done in the previous section. In the numerical computation of the full VWI
problem, a Fourier expansion is employed in Z, implicitly assuming the regularity of
the solution. Thus, in the computation the singularity is smoothed because a finite
number of bases are used and this is responsible for the creation of the ‘tail’ in the
Fourier spectrum due to Gibbs oscillations. Except for this unphysical oscillation,
our scheme accurately captures the solution of the outer problem outside of the
numerically thin layer whose thickness is comparable with the frequency of the finest
Fourier mode; see figure 3 for the convergence of the Fourier spectrum aside from
the unphysical ‘tail’.

When F0 reaches the critical value Fc (and σ approaches zero), the size of the
singular part of the local expansion (6.10) becomes comparable with that of the
leading-order term and thus the scenario elucidated here breaks down. In this limit
the spanwise diffusion layer equations will become nonlinear and may play an active
role in the entire interaction problem. At such large amplitudes the present VWI
formulation is no longer valid and a new interactive structure must come into play.

7. Conclusion
In this paper the strongly nonlinear vortex/TS wave interaction equations formulated

by Bennett et al. (1991) have been solved numerically for the specific case of plane
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Poiseuille flow. The VWI states were tracked from the lower branch linear neutral
point to finite amplitude states where the interaction is strongly nonlinear in the
sense that the flow is altered from the basic state at leading order. Initially, when
the wave amplitude is relatively small, there is a gentle modulation to the basic flow
in the spanwise direction as predicted by our weakly nonlinear analysis (§ 3). As
the amplitude of the wave increases and the interaction becomes highly nonlinear,
the modulation becomes much stronger. With the aid of a multi-dimensional Newton
method, our numerical scheme was able to probe much further into the nonlinear
regime than had hitherto proved possible using fixed-point iteration techniques.

As shown in § 5, at large amplitude the VWI states are found to develop strong
regions of localization in the spanwise direction. This behaviour was observed over
a wide range of values of scaled spanwise wavenumbers β up to a distinguished
limit β ∼O(Re1/7) at which the spanwise scale reduces to an O(1) size and therefore
becomes comparable with the channel width. In this limit the VWI formulation breaks
down and a new asymptotic structure, involving the boundary-region equations, comes
into play.

For β ∼ O(1) the corresponding three-dimensional travelling wave solutions of
the Navier–Stokes equations, bifurcating directly from the TS wave linear neutral
point, are computed to compare with the VWI results. Our finding, namely that
the Navier–Stokes results asymptote to the VWI results at large Reynolds number,
suggests that vortex/TS wave interaction may play a crucial role in Navier–Stokes
dynamics. At Re = 108 the flow field computed from the solution of the VWI
equations excellently predicts the behaviour of Navier–Stokes results quantitatively.
Thus, the VWI equations correctly capture the essential physics in these travelling
wave states. The fact that very good quantitative agreement is not established until the
Reynolds number is extremely large is perhaps not unexpected given that the validity
of the VWI expansions hinges on the requirement that ε = Re−1/7� 1. Although the
practical application of the asymptotic results is somewhat limited by this restriction,
it is clear that our semi-analytical theory enjoys a significant advantage over a
purely computational approach, namely that it provides an extremely useful tool for
interpreting the physical mechanisms underpinning coherent structures.

The nature of the spanwise-localized structure seen both in the VWI and
Navier–Stokes computations is analysed by considering a local spanwise expansion
of the VWI equations close to the points of apparent singularity. The analysis reveals
that as the wave amplitude increases the roll–streak solution gradually loses regularity
at these locations. In the Navier–Stokes computations a thin layer incorporating
spanwise diffusion surrounds the singular point and regularizes the solution, ensuring
the flow remains smooth. The thickness of this diffusion layer is O(1) in z, which
is much thinner than the roll width z ∼ O(Re1/7). On the other hand, in the VWI
computation spanwise diffusion is absent from the governing equations and instead
it is the computational use of a finite number of smooth basis functions which
smooths the solutions. Importantly, from the local analysis we find that the solution
in the diffusion layer is linear and passive, and thus we can solve the VWI problem
numerically without any reference to the diffusion layer provided the wave amplitude
is sufficiently small that the solution remains regular at leading order. We also note
that the mechanism of localization elucidated here is quite different from that found
in the boundary-region equations by Deguchi et al. (2013), where spanwise diffusion
is present at leading order throughout the flow field. In that paper, and Deguchi
& Hall (2014), it was argued that an interaction governed by the boundary-region
equations (or a mixed form also involving vortex/Rayleigh interaction states) may be
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responsible for the mechanism behind the fully isolated turbulent spots observed in
shear flow experiments. This is consistent with the fact that such spots can also be
found in linearly stable configurations such as plane Couette and pipe flow, because
the asymptotic structures in question are self-sustained without the need for linear
instability of the basic flow. On the other hand, the present work considers transition
via oblique TS waves as a potential driving mechanism for turbulence associated
with a viscous instability. It is widely recognized that TS waves developing at small
disturbance levels break down into localized patches, and our asymptotic solutions
may have some relevance to that process. Also the present work may be related
to spot formation in pipe or channel entrance problems, where the TS wave is the
dominant instability mechanism. Of course, the actual relevance of our asymptotic
solutions to Navier–Stokes dynamics should be addressed using direct numerical
simulations in the future.

In § 6, the local analysis predicts the critical parameter values where the size of
the singularity becomes large enough to render the leading-order VWI framework
invalid. One unresolved issue in this paper is the ultimate fate of the VWI states
as the amplitude is increased beyond this critical value. At the critical amplitude
the governing equations in the local diffusion layer become nonlinear and thus may
play an active role in determining the leading-order flow field, but we leave further
discussion of this point for future work. We also note that when the streak is altered
to an O(1) scale in z at leading order, inviscid instability could be generated in the
core to produce a vortex/Rayleigh wave self-sustaining interaction.

Finally, it is noteworthy to mention that our approach can be extended to
boundary-layer flows, where TS waves are commonly observed and the corresponding
vortex/TS wave interaction equations can also be formulated (Hall & Smith 1991).
Although the details of the wave forcing are somewhat different to the present
case, the essential mechanism of the interaction is the same as discussed here
and therefore the localization process elucidated in this paper may also serve as a
possible explanation for the spanwise focusing and breakdown of TS waves that is
often observed in boundary layers.
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Appendix A. The derivation of the TS wave eigenrelation

Here we briefly summarize the derivation of (2.13) originally given in Smith (1979).
First, introducing a new variable ζ = ξ + (iαλ)1/3Y , equation (2.12c) becomes

L w̄= q, (A 1)

where L = ∂2
ζ − ζ and q= (iαλ)−2/3p̄′. Since q(Z) is not a function of ζ , w̄(ζ , Z) can

be solved as

w̄= q(Z)S(ζ ), S(ζ )=−Ai(ζ )
∫ ζ

ξ

κ(τ)

Ai2(τ )
dτ , (A 2)
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where κ is defined in (2.14) and we have used the boundary condition on the wall at
Y = 0, i.e. ζ = ξ . Next, from (2.12a) and (2.12b) we can eliminate v̄ to yield

L ūζ = (iαλ)−1{(λ′q− λq′)S+ q(λ′YSY − λSZ)}. (A 3)

After some manipulation the right-hand side of (A 3) can be written in the form C1S+
C2ζS′ +C3Ai, where

C1(Z)=
−λp̄′′ + 5

3λ
′p̄′

(iαλ)5/3
, C2(Z)=

2
3λ
′p̄′

(iαλ)5/3
, C3(Z)=

− 2
3λ
′p̄′(ζS′/Ai)|ζ=ξ
(iαλ)5/3

. (A 4a−c)

Therefore, noting that L Ai′ =Ai, L S′ = S and L S′′′′ = 4(ζS′ + S), we can solve ūζ
as

ūζ = (C1 −C2)S′ + C2

4
S′′′′ +C3Ai′ +C4Ai, (A 5)

where

C4(Z)=− λA
κ|ζ=ξ −

λ′p̄′

2(iαλ)5/3
ζS′

κ

∣∣∣∣
ζ=ξ

(A 6)

follows from application of the boundary conditions (2.12d) and (2.12e). Finally,
differentiating (A 5) with respect to ζ and using the fact that

ūζ ζ |ζ=ξ = (iαp̄)(iαλ)−2/3 (A 7)

from (2.12b), we obtain the lower wall eigenrelation

p̄′′ − (λ′/λ)F (ξ)p̄′ − α2p̄=−(αλ)5/3G (ξ)A, (A 8)

with F , G given in (2.14). The same equation governs the behaviour in the upper
wall layer but with A replaced by −A. Combining the upper and lower eigenrelations
through (2.7), we arrive at (2.13).
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