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SUMMARY

This paper presents a new adaptive controller as a
solution to the problem of stabilizing nonholonomic
mechanical systems in the presence of incomplete
information concerning the system dynamic model. The
proposed control system consists of two subsystems: a
slightly modified version of the kinematic stabilization
strategy of M’Closkey and Murray' which generates a
desired velocity trajectory for the nonholonomic system,
and an adaptive control scheme which ensures that this
velocity trajectory is accurately tracked. This approach is
shown to provide arbitrarily accurate stabilization to any
desired configuration and can be implemented with no
knowledge of the system dynamic model. The efficacy of
the proposed stabilization strategy is illustrated through
extensive computer simulations with nonholonomic
mechanical systems arising from explicit constraints on
the system kinematics and from symmetries of the system
dynamics.

KEYWORDS: Nonholonomic systems; Adaptive
Dynamic model; Robot control; Lyapunov methods.
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1. INTRODUCTION

There is great theoretical and practical interest in
controlling mechanical systems in the presence of
incomplete information concerning the system dynamic
model. This challenging problem becomes even more
difficult in the important case in which the system is
subject to holonomic or nonholonomic (nonintegrable)
constraints on its kinematics. Nonholonomically con-
strained mechanical systems, in particular, have attracted
significant attention recently. Much of this interest is a
consequence of the importance of such systems in
applications. For example, nonholonomic constraints
arise in systems with rolling contact, such as wheeled
(and other) mobile robots and multifingered robotic
hands, and in systems for which the dynamics admits a
symmetry, such as space robots with angular momentum
conservation. Observe that a wide variety of systems of
practical importance are constrained in this way. Interest
in studying nonholonomic systems is also motivated by
their role as a class of “‘strongly”” nonlinear systems for
which traditional control methods are insufficient and
new approaches must be developed. For instance, the
investigation of these systems has led to recent progress
in geometric control theory and geometric mechanics.
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Most of the work reported to date on controlling
nonholonomic mechanical systems has focused on the
kinematic control problem, in which it is assumed that
the system velocities are the control inputs and that the
system dynamics can be represented using the system
kinematic model. However, there are important reasons
for formulating the nonholonomic system control
problem at the dynamic control level, where the control
inputs are those produced by the system actuators and
the system model contains the mechanical system
dynamics. For example, since this is the level at which
control actually takes place in practice, designing
controllers at this level can lead to significant
improvements in performance and implementability and
can help in the early identification and resolution of
difficulties. It is interesting to consider the problem of
controlling holonomically constrained robotic manipu-
lators in this regard: the kinematic control problem in
this case is trivial, but the dynamic control problem is
nevertheless quite challenging. Another motivation for
considering the dynamic control problem is that certain
classes of nonholonomic systems are most naturally
studied at this level, so that such an approach broadens
the scope of potential applications. Recognizing the
importance of addressing the nonholonomic system
control problem at the dynamic control level, several
researchers have considered this problem in recent
years.'™ Significant progress has been made in
understanding the fundamental characteristics of these
systems, and several useful dynamic controllers have
been presented. However, virtually all of the dynamic
control strategies proposed to date have been developed
under the assumption that there is little or no uncertainty
associated with the system dynamic model.

This paper considers the dynamic control problem for
uncertain nonholonomic mechanical systems, and prop-
oses that a simple and effective approach to stabilizing
these systems can be obtained by combining the
kinematic stabilization strategy of M’Closkey and
Murray' with the performance-based adaptive control
methodology recently developed by the authors.”' More
specifically, a slightly modified version of the kinematic
stabilizer given in reference 1 is used to generate a
desired velocity trajectory for the system, and this
velocity trajectory is tracked utilizing a performance-
based adaptive controller. The resulting scheme is
computationally efficient and easy to implement, and is
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shown to provide arbitrarily accurate stabilization of the
complete system without knowledge of the system
dynamic model. The efficacy of the proposed approach is
illustrated through extensive computer simulations with
two classes of nonholonomic mechanical systems: those
with explicit constraints on the system kinematics, such
as occur in systems with rolling contact, and those with
constraints that result from a symmetry of the system
dynamics, such as are present in systems for which
angular momentum is conserved.

2. PRELIMINARIES
The focus of this paper is the stabilization problem for
uncertain nonholonomic mechanical systems. More
specifically, we wish to develop a strategy for specifying
the system control input, using only measurements of the
system state and with no knowledge of the system
dynamic model, so that the system evolves from its initial
state to the desired final state. We are interested in
nonholonomic systems arising from explicit kinematic
constraints and from symmetries of the system dynamics.
In this section we develop models for these two classes of
systems and identify some of the useful structural
features of these models.

Consider first the class of nonholonomic mechanical
systems arising from the presence of explicit constraints
on the system kinematics; these systems can be modeled

as’

MX)T = H*(x)% + VE(x,X)x + G¥x) + AT(x)A  (la)

A(X)x=0 (1b)
where xe H" is the vector of system generalized
coordinates, T e N” is the vector of actuator inputs,
M: " —= R is bounded and of full rank, H*: R —
R is the system inertia matrix, VE: R” X {"— R
quantifies Coriolis and centripetal acceleration effects,
G*: M" > N" arises from the system potential energy,
A: " — N is a bounded full rank matrix quantifying
the nonholonomic constraints, A € ™ is the vector of
constraint multipliers, and all functions are assumed to
be smooth. The mechanical system dynamics (1)
possesses considerable structure. For example, for any
set of generalized coordinates x, the matrix H* is
symmetric and positive definite, the matrix VX depends
linearly on x, and the matrices H* and V¥ are related
according to H*=VZX+ V%! Additionally, we will
assume in what follows that the inertia matrix H* and
potential energy gradient G* are bounded functions with
bounded first partial derivatives; these latter
properties hold for virtually all mechanical systems
of practical interest. In this case it is easy to
show that the Coriolis/centripetal acceleration term
can be written as VZX(x,x)x=D*(x)[xx], where
D*: RN is smooth and bounded and the
notation [Xx] = [£X,, ..., %X, ¥2X1, . .., %uk,]T € N s
introduced.

The rows of A, say a; e R for i=1,2,...,m, are
smooth covectors on the configuration space " which
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quantify explicit kinematic constraints imposed on the
system. These constraints could arise from rolling
contact, for example. We will assume that these
constraints cannot be integrated to yield constraints on
the configuration coordinates x; this assumption is made
more precise below. It is well-known that the presence of
these nonholonomic constraints complicates the control
problem considerably. For instance, in this case the basic
problem of stabilizing the system (1) to some goal
configuration x, cannot be solved using standard
techniques.'' This difficulty is only increased in the case
of control in the presence of model uncertainty. One
means of simplifying the problem of controlling these
systems is to employ a reduction procedure to decrease
the dimension of the dynamics (1). Observe that the
assumption that A is full rank implies that the
codistribution spanned by the rows a; has dimension .
The annihilator of this codistribution is then anr =n —m
dimensional smooth distribution A = span[r,(x), r,(x),
..., 1,(x)], where the r; are smooth vector fields on the
configuration space which satisfy Ar, =0 Vx. Defining
R=1{r,r,...,x,] e W permits this relationship to be
expressed more concisely as AR =0. As an example, let
the matrix A be partitioned as A =[A4, A,], with
A e W and A, e W™ and where A, is nonsingular
(this 1s always possible, possibly with a reordering of the
configuration coordinates). Then R can be constructed as

follows:
—A'A
r=| @

where [, is the r X r identity matrix. Consider now the
involutive closure of A, denoted A* and defined as the
smallest involutive distribution containing A. We will
assume in what follows that A* has constant rank n on
the configuration space. In this case, Frobenius’
theorem'? shows that the constraints are nonintegrable
and the system (1) is (completely) nonholonomic; thus
there is no explicit constraint on the configuration space.

Now define a partition of x corresponding to the
partition specified for A, so that x=|[x{ x3]" with
x; e W and x, € K" Observe that the definition (2) and
the constraint equation (1b) imply that the system
velocities are determined by X%, via x= R(x)%,. This
parameterization then permits (1) to be reformulated as

x = R(x)v (3a)
F=HXV+ V. .(x,v)v+ G(x) (3b)

where v=x,, F=R'MT, H=R"H*R, V..=R"(H*R +
VER), and G=R"G*. In what follows, it is assumed
that p =r and R"M is full rank, so that any desired F can
be realized through proper specification of T and the
system (3b) is fully actuated. Note that (3) consists of a
“reduced” dynamic model (3b) together with a purely
kinematic relationship (3a), and therefore provides a
simpler description of the nonholonomic mechanical
system than that given by (1). Moreover, as shown in the
next lemma, the dynamics (3b) retains the mechanical
system structure of the original system (1).
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Lemma 1: The dynamic model terms H, G are bounded
functions of x whose time derivatives H, G are also
bounded in x and depend linearly on v, the matrix H is
symmetric and positive definite, and the matrices H and
V.. are related according to H =V, + V!. Additionally,
Vv satisfies V..(x,v)v= D(x)[vv] with D a bounded
function with bounded first partial derivatives.

Proof: All of the properties can be established through
direct calculation using the definitions of H, V., D and
G and the properties of H*, V¥, D*, and G*."” |

We now turn our attention to those nonholonomic
mechanical systems which arise from the presence of a
symmetry in the system dynamics. More specifically,
consider the class of mechanical systems for which the
system Lagrangian is G-invariant for some Lie group G
(see, for example, reference 14 for a discussion of
G-invariant Lagrangian systems), and suppose for
concreteness that G = SO(2) or multiple copies of SO(2)
(more general situations can be treated using techniques
similar to those developed here, although there may be
technical complications). By decomposing the configura-
tion space into irreducible representations of SO(2), it is
always possible to choose (local) configuration coordin-
ates x so that cach component transforms as x; — x; + n;«
for some integer n; and a e [0, 27). The coordinates for
which »n;=0 (i.e., the invariant coordinates) are then
local coordinates for N"/G. We collect these together
and write x = [x! x3]’, where x, e W are the invariants
and x; e N” transform nontrivially. Choosing coordinates
in this way permits the G-invariant system Lagrangian to
be written in the form L(x, x) = x" H*(x,)x/2 — U(x,) for
some potential U and inertia matrix

Ji(x2) Q(Xz)]
) T(Xz) ALS))

with submatrices J;, J,, @ which are independent of x,.

Let us restrict our attention to those systems for which
the control input T € H” does not break the symmetry of
the dynamics; no generality is lost with this assumption
because, if this is not the case, then the x, variables can
be controlled directly and the (controlled) system is not
nonholonomic. The fact that L is independent of x
means that the Euler-Lagrange equations corresponding
to the x, coordinates have the character of a velocity
constraint:

e

L )i+ Ok =1 )
1€

RV
1

where 1 e X" is constant. If the system starts from rest
then 1= 0 and (4) can be used to parameterize the system
velocities via x = R(x,)x,, with R defined as

R= [_JI'rIQ] (5)

We again assume that the smallest involutive distribution
containing the span of the columns of R has constant
rank #, in which case Frobenius’® theorem'? shows that
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the constraints (4) are nonintegrable and the system is
nonholonomic.

Now an analysis which exactly parallels the one given
above for kinematic nonholonomic systems can be
applied to reduce the original 2n-dimensional symmetric
mechanical system to a 2r-dimensional mechanical
system together with »# kinematic equations:

X = R(x,)v (6a)
F = H(X)V + V,.(x5, V)V + G(x;) (6b)

where F= B(x,)T for some matrix B e " which
depends only on x, (because the inputs do not break the
system symmetry). It is assumed that p =r and B is full
rank, so that any desired F can be realized through
proper specification of T and the system (6b) is fully
actuated. Note that (6b) is a 2r order differential
equation which defines the evolution of the 2r states
(x2,v), and that the behavior of the remaining
configuration coordinates x, is completely determined by
the kinematic relationship (6a). Moreover, an analysis
similar to the one summarized in Lemma 1 can be used
to show that the reduced system (6b) retains the
mechanical system structure of the original system.

3. ADAPTIVE STABILIZATION SCHEME

We now consider the problem of stabilizing the uncertain
nonholonomic mechanical systems discussed above. That
is, we seek a strategy for specifying the control input F,
using no knowledge of the system dynamic model, which
will cause the nonholonomic system (3) or (6) to
converge to an arbitrarily small neighbourhood of the
goal configuration x,. In what follows it will be assumed
(without loss of generality) that x,=0. We begin by
briefly reviewing a strategy for stabilizing the kinematic
system (3a) or (6a) which has recently been proposed by
M’Closkey and Murray,' and then introduce an adaptive
velocity tracking controller for mechanical systems of the
form (3b) or (6b). We then show how these schemes can
be combined to yield a stabilizer for the complete
nonholonomic system.

3.1 Stabilization of kinematic system
Consider the problem of stabilizing the kinematic system

x=R(x)v 7)

to the origin x = 0 using the velocities v as control inputs.
It is well known that such stabilization cannot be
achieved through the use of continuous static feedback."!
Moreover, while it is possible to stabilize (7) using
smooth time-varying feedback, such controllers will
necessarily exhibit slower than exponential rates of
convergence;' this, in turn, has limited the applicability
of these strategies. Recognizing these difficulties,
M’Closkey and Murray have recently proposed a class of
nonsmooth feedback controllers which are smooth
everywhere except at the origin and which achieve (a
form of) exponential convergence. In this section we
briefly review this approach to stabilizing kinematic
systems.
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The kinematic controllers proposed in reference 1 are
developed using tools from homogeneous systems
theory; thus we give a few definitions from this field
before stating the main result we require from reference
1. A dilation on N” is defined by assigning »n positive
rationals r(=1)=<r,=---=r,, a positive scalar A, and a
map A,: N — M” as follows:

Ax=[A"xy, ..., A"x,]"

A function f:9"— N is homogeneous of degree [=0
with respect to A, if f(A,x) = A'f(x). A vector field X on
" is homogeneous of degree m = r, with respect to A, if
X(f) is homogeneous of degree [ —m whenever f is
homogeneous of degree . A map p: N"— N is called a
homogeneous norm with respect to the dilation A, if it is
positive definite and homogeneous of degree one.
Finally, consider a nonautonomous differential equation
with an isolated equilibrium at the origin, and let
x(t, X,, ty) denote the solution of the equation passing
through x, at time ¢, The origin is locally p-
exponentially stable if there exists a homogeneous norm
p and two positive constants &, and k, such that locally

p(x(t) X0, t())) = klp(x())€7k2(t"‘tli)

It is in this sense that the kinematic controllers proposed
in reference 1 are exponentially stable.

We now present the main result we wish to use from
reference 1. Suppose that a smooth time-periodic
feedback vi(t, x) is known which stabilizes the kinematic
system (7). We note that several such controllers have
been proposed by various authors (see, for instance,
reference 1 for a review of some of this work), so that
this assumption is not restrictive. Additionally, suppose
that the vector fields r;(x) which define the kinematic
system (7) are homogeneous degree one with respect to
some dilation A,. Again we note that this assumption is
not restrictive, because if the system (7) is not of this
type it can be approximated by such a system, and it is
shown in reference 1 that the terms neglected in this
approximation do not cause any difficulties, at least
locally. In this case, we have the following result.

Lemma 2 (M Closkey/Murray): Under the mild techni-
cal conditions described in reference 1 there exists a
homogeneous degree one function p*(t,x) and a map
v: M"— N” such that the modified feedback vj*(z, x) =
p*(t, x)vi(t, y(x)) p-exponentially stabilizes the kine-
matic system (7) and is smooth everywhere except at the
origin. Moreover, in this case there exists a Lyapunov
function V(¢ x) for the system which satisfies the bounds

c1p(x) = Vi =p°(x)
Vi=—csp’(x)

for homogeneous norm p and positive constants ¢;,
where V, denotes the derivative of V| along the
closed-loop system x = R(x)v;*.

Proof: The proof is given in reference 1. |

In order to illustrate some of the ideas summarized
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above, we consider the problem of stabilizing the
following simple kinematic system:

X =
X, =1, (8)
X3 = X0

This is an example of a so-called “chained form™ system,
and although it is quite simple it is worth mentioning that
all two-input nonholonomic systems with three states are
locally feedback equivalent to this form. It is shown in
reference 15 that the smooth time-varying controller

vi = —x; +x3C08¢

*
1

9
vi=—x,+x3sint ®
asymptotically stabilizes the system (8). This controller
can be modified to yicld a p-exponentially stabilizing

controller as follows:

x
v = —x, +—=cost
p(x)
(10)
X3
wok _ 3w
Vs "t = =Xyt st
p’(x)

where the homogeneous norm is defined as p(x) =
(xt+x3+x3)" Tt is easily verified that both the
control law (10) and the system vector fields in (8) are
homogeneous degree one with respect to the dilation
Ayx =[Axy, Axz, A%x;]”. Later in the paper we illustrate
the performance obtainable when using the kinematic
stabilizer (10) as part of a complete control system.

3.2 Adaptive velocity tracking
Observe that the complete nonholonomic mechanical
system model (3) (or (6)) consists of two cascaded
dynamical systems. As a consequence, the system
velocity v cannot be commanded directly, as is assumed
in the design of controllers at the kinematic control level,
and instead must be realized as the output of the
mechanical system dynamics (3b) (or (6b)) through
proper specification of the control input F. Additionally,
recall that it is desirable to obtain accurate control of
mechanical systems despite incomplete information
regarding the system dynamic model. Thus, in order for
the kinematic stabilization scheme summarized in the
previous section to be practically useful, we require a
strategy for causing the system (3b) (or (6b)) to track a
desired trajectory for the system velocity v in the
presence of model uncertainty.

Toward this end, let us rewrite the “reduced system”
portion of the mechanical system model (3) (or (6)) using
the relation V. .v = D[vv]:

F = HX)¥V + D(x)[v] + G(x) (11)

We now present a velocity tracking controller for this
system which is implementable without information
regarding the system dynamic model. Let v,(f) denote
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the desired trajectory for the system velocity v, and
consider the following adaptive control scheme:

F=A®)v,+ B()[vv,] + () + ke
f=—of+ Be

A= —0A+ Bev,

B=—0B + Be[w,]"

(12)

where e=v,—v is the tracking error, f(t)e N,
A(r) e R, B(r) e W™ are adaptive elements, k is a
positive constant, and ¢, B are adaptation gains.

The stability properties of the proposed adaptive
velocity tracking controller (12) are summarized in the
following lemma.

Lemma 3: The adaptive controller (12) ensures that e, f,
A, and B are globally uniformly bounded and that the
velocity tracking error e converges exponentially to a
compact set which can be made arbitrarily small.

Proof: Applying the control law (12) to the mechanical
system dynamics (11) yields the closed-loop system

Hé + ‘/'(,(,e + ke + d -+ (,I)A‘.’([ + (l)I;[VVdJ =0 (13)

where ®=f-G, d,=A-H, and ®&;=B-D.
Consider the Lyapunov function candidate

V,=te'He + % (@D + tr[D D) + D, DL (14)

and note that V, is a positive definite and proper function
of e, ®, d,, and &, Computing the derivative of (14)
along (13) and simplifying using an analysis similar to the
one utilized in reference 9 (Theorem 1) yields the
following upper bound for V;:

- _k

. g n
V= 5 lle]l> — 28 (D)2 + [P+ 1 Dyl13) +—  (15)

B
where m, is a positive scalar constant which does not
incrcase as 3 is increased.

Examination of (14) and (15) reveals that there exist
positive scalar constants A;, independent of 8, such that
V, and V, can be bounded as

A A
Avlle] +_B% IW>=Vo=As el +§4 [ 4l

V= = Asllel =2 jwie+ 2
B B
where W= [|®|| [|®4]l, [Py ,]". The ultimate bound-
edness result presented in reference 9 (Lemma 2) now
applies and permits the conclusion that all signals are
uniformly bounded and that e, ¥ converge exponentially
to the closed balls B,, B,, respectively, where
ri=&n,/\B and 13 =8n,/A, with 6=
max (As/As, A4/ Ag). Observe that the radius of the ball to
which e is guaranteed to converge can be decreased as
desired simply by increasing . ]

A few observations can be made concerning the
adaptive control strategy (12). First note that the control
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law is simple and requires no information concernfng the
mechanical system dynamics. Thus the proposed scheme
provides a computationally efficient, modular, and
readily implementable approach to velocity tracking for
mechanical systems. Note also that the controller ensures
global exponential convergence of the tracking error to
an arbitrarily small neighborhood of zero; thus both the
transient and steady-state performance of the strategy
will be good. Finally, observe that increasing the
adaptation gain B does not ordinarily lead to large
control action. To see this, observe from the ultimate
bound on W that increasing 8 does not increase the size
of the discrepancy between adaptive terms and model
terms, and therefore does not cause unwarranted growth
in the control law terms.

3.3 Stabilization of complete system

In this section we show that the kinematic stabilization
strategy summarized in Lemma 2 and the velocity
tracking controller proposed in (12) can be combined, in
slightly modified form, to yield a scheme for providing
arbitrarily accurate stabilization of the complete
nonholonomic mechanical system (3) or (6). Our basic
approach is as follows: we first “‘smooth” the input v}*
defined in Lemma 2 in such a way that this stabilizing
input can be naturally combined with the velocity
tracking controller (12), and we then show that the
resulting control law possesses the desired stability and
convergence properties using a Lyapunov stability result
for stability with respect to sets.'® This process is made
more precise in the following theorem:

Theorem 1: Suppose that a kinematic control input v, is
constructed in such a way that it is differentiable and
satisfies the following two conditions:

a. The input v, is such that v,=v};* whenever x is
outside the set B,={x|p(x)=<¢}, where p is the
homogenecous norm associated with the stabilizing
feedback vi* and ¢ is a (small) user-specified constant.
b. The input v, guarantees that V, =0 whenever x € B,,
where V| is the Lyapunov function defined in Lemma 2.
Then, if k is chosen large enough, this definition for v,
can be used with the adaptive tracking controller (12) to
provide arbitrarily accurate stabilization of the complete
nonholonomic mechanical system (3) or (6).

Proof: Applying the proposed control law to the
nonholonomic mechanical system (3) or (6) yields the
closed-loop system
x=Rv,— Re
Hé+ V. e+ket+®+d,v,+dylvw,]=0

(16a)
(16b)
wherc all terms are defined as before. Consider the
Lyapunov function candidate V5=V, + V,. Note that V;
is a positive definite and proper function of x, e, ®, @,
and @; indeed, the following bounds on V; can easily be
derived:

A
ApA(x) + A el +§ e

Ag
= Vo= Ap’(x) + As [le]” + Ef 1w (17)
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where the A; are positive constants which are
independent of B and . Computing the derivative of V;
along (16) and simplifying using Lemmas 2 and 3 yields
the following upper bound for Vj:

A4

Vo=V, ——
? ! ox

Re—%je)?
Lk
2

a
=35 (1217 [0+ ||<I>,;n%)+% (18)

where V, = aV,/at + (3V,/9x)Rv, and all other terms are
defined as before.

It is shown in reference 1 that [|(9V,/dx)Re| <
c4p(x) |le]| with ¢4 a positive constant. If k is chosen large
enough then this bound together with some routine
manipulation permits the following bounds on V; to be
obtained:

A( {;‘2
s lelP - 2w+ Ly 22 yeB,
- B Bk
V= )
—A2p%(%) = Ay [l = E" W) + 1[’;' otherwise

(19)

where 7, and the A; are positive constants which are
independent of 8 and £ The bounds given in (17) and
(19) imply that, if &> is chosen to be inversely
proportional to B8, V; is uniformly ultimately bounded
with ultimate bound B given by B = 7,/B, where 7, is a
positive constant which does not increase as 8 increases.

Define z=[x" e’ W']" and let |z|,, denote the
distance between z and a (nonempty) set & (see
reference 16 for a more careful definition of this notion
of distance to a set). Consider the set of = {x,e, W |V, =
115/B}, and observe from the above calculations that
x € B, implies x € /. In this case, the preceding analysis
shows that &f is compact, invariant, and such that

a(jzl) = Vi = Vi=ay(lzly)

Vi= —as(l2l.,)

for proper class ¥ functions «,, a, and class J function
a3, where V¥ =min (V, 1:/8). The Lyapunov stability
theorem for stability with respect to sets given by Lin
and Sontag in reference 16 can now be applied and
permits the conclusion that z converges to sf. This, in
turn, implies that the nonholonomic mechanical system
(3) or (6) can be stabilized to any desired degree of
accuracy. To see this, note from (17) and the definition
of the set o that the dimensions of & in the x and e
directions can be reduced as desired by increasing 8 (and
correspondingly decreasing ¢). |

Several observations can be made regarding the
adaptive stabilization strategy described in Theorem 1.
First note that the controller is simple and requires no
information concerning the mechanical system dynamics.
Thus the proposed scheme provides a computationally
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efficient, modular, and readily implementable approach
to stabilizing nonholonomic mechanical systems. Note
also that the controller ensures global convergence of the
system state to an arbitrarily small neighborhood of the
origin, and achieves this convergence with well-behaved
transient behavior. Finally, observe that, given the
kinematic stabilizer vi™* proposed in reference 1, the
smoothed input v, is not difficult to obtain. For example,
since the input vi}* is derived from a smooth stabilizing
input v (see Lemma 2), simply “blending” these two
inputs together often provides a suitable controller.
Additionally, we mention that in general the construction
of the smoothed input v, is simplified by the fact that this
input need only guarantee that V,=0 (rather than
V;<0) in the region where it is different from vi*.
Thus, for instance, in all of the simulations presented in
this paper v, is constructed by smoothly connecting v}*
(the input in the region outside B,) with the zero input
inside B,.

4. SIMULATION RESULTS

The effectiveness of the proposed approach for
stabilizing uncertain nonholonomic mechanical systems is
now examined through computer simulations with four
such systems: a two wheel mobile robot, a three wheel
mobile robot, a “hopping” robot, and a ‘“free-flying”
space robot. The mobile robots are representative of the
class of nonholonomic systems which result from explicit
constraints on the system kinematics, while the hopping
robot and free-flying space robot are examples of systems
with nonholonomic constraints arising from the presence
of symmetry in the system dynamics.

The first system considered in this simulation study is
the simple two wheel mobile robot (with front castor for
balance) shown in Figure 1 and described in reference 5.
The dynamic model (1) has the following form for this

Fig. 5. Illustration of hopping robot.
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system:
mx =Acos 0 —p (T, + T,)sin 6 +d,(t)
my = Asin 0 + p,(T; + T,) cos 8 + dy(¢)
J0=py(T, - To)
0=4xcos 6 +ysin b

(20)

where x, y, 8 are the position and orientation coordinates
of the (axle of the) mobile robot, m, J are the system
inertial parameters, p,, p, are kinematic parameters, A is
the constraint multiplier, and 7;, T, are the torques
provided at the wheels. The terms d;, d, are external
disturbances and are included to permit the robustness of
the proposed stabilization scheme to be examined.

We now apply the adaptive control strategy sum-
marized in Theorem 1 to the problem of stabilizing the
mobile robot to the goal x =y =0 =0. In implementing
the controller, we assume that no information is available
regarding the system dynamic model. Observe that the
kinematic model for this system is (locally) feedback
equivalent to the chained form (8). Thus the kinematic
stabilizer (10) can be used to generate the desired
velocity for the system (subject to smoothing around the
origin), and this velocity trajectory can be tracked with
the adaptive scheme (12). The controller is applied to the
mathematical model of the mobile robot through
computer simulation with a sampling period of two
milliseconds. All integrations required by the controller
are implemented using a simple trapezoidal integration
rule with a time-step of two milliseconds. Additional
details concerning the simulation strategy for this study
can be found in reference 17. The system model
parameters are defined as m=J=10 and p,=p,=1.
The external disturbances d, and d, are modeled as the
sum of a constant (bias) force with magnitude equal to
one half the maximum undisturbed control force and a
zero-mean Gaussian signal with standard deviation of
one tenth the maximum undisturbed control force. The
controller parameters k and & are set as k=10 and
£ =0.001, the adaptive gains f, A, and B are set to zero
initially, and the adaptation parameters are set as
follows: ¢ =0.1 and B =10. It is noted that no attempt

1.5 T T T T T T T T

-1.5 1 L 1 L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 2a. Response of (x,, x;) coordinates of two wheel mobile
robot for four sample initial conditions.
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Fig. 2b. Response of x, (solid), x, (dashed), and x; (dotted)
coordinates of two wheel mobile robot for one sample initial
condition.

was made to “tune” the gains to obtain the best possible
performance. The control strategy was tested using a
wide range of initial conditions; sample results are given
in Figures 2a and 2b, and indicate that accurate
stabilization of the system is achieved.

Consider next the more complicated three wheel
mobile robot shown in Figure 3 and described in
reference 17. For this system the dynamic model (1) has
the following form:

cos 6 0 m 0 0 0
sin O 0. |0 m 0 0
Isindcosd 0 |0 0 (+1) L[|
0 1 o0 &L I
—sin & —sin (0 + g[)) (21)
cosB cos(0+ )
0 {cos ¢
0 0
—sin @ cos 0 0 07.
[—sin(0+¢) cos (68 + ) [cosd O]X:O

Fig. 3. Ilustration of three wheel mobile robot.
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where (x, y) is the rear axle position, 6 and ¢ are the
body angle and steering angle, respectively, x=
[x v 6 ¢]" e N*is the system configuration vector, 1,, 1,
m are the system inertial parameters, / is the wheel base
length, T € M? is the control input, and A € HW? is the
vector of constraint multipliers.

We now apply the adaptive control strategy sum-
marized in Theorem 1 to the problem of stabilizing this
mobile robot to the goal x=y=0=¢=0; in im-
plementing the controller, we assume that no informa-
tion is available regarding the system dynamic model.
Observe that the kinematic model for this system is
(locally) feedback equivalent to the following chained
form:

.X.:] — V)
.X:zzvz
@)
X3 =X5v,
X4ZX3'U1

Thus a generalization of the kinematic stabilizer (10) can
be used to generate the desired velocity for the system
(subject to smoothing around the origin), and this
velocity trajectory can be tracked with the adaptive
scheme (12). The controller is applied to the
mathematical model of the mobile robot through
computer simulation with a sampling period of two
milliseconds. Additional details concerning the simula-
tion strategy for this study can be found in reference 17.
The system model parameters are defined as m =1, =
I,.=20 and [=0.5. The controller parameters and
adaptive terms in the control law are set to the values
used in the previous simulation, despite the fact that the
two mobile robots have quite different properties. This
choice for the controller terms is made to demonstrate
that these gains need not be ‘“tuned” for a particular
system to obtain good performance. The control strategy
was tested using a wide range of initial conditions;
sample results are given in Figure 4, and indicate that
accurate stabilization of the system is achieved.

1

0.8

0.6

04

02

4]

0.2

04

0.8 F

.08

-
A

Fig. 4. Response of (x,, x,) coordinates of three wheel mobile
robot for two sample initial conditions.
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As indicated above, the performance of the proposed
stabilization scheme was also examined through compu-
ter simulations with systems whose nonholonomic nature
is a consequence of a symmetry of the system dynamics.
Consider first a simple model of a “hopping robot”. In
this study, the system is modeled as a rigid robot “body”’
with inertia J pinned to the ground at its center of mass,
and a two degree-of-freedom robot “leg” composed of a
revolute joint and a prismatic joint connected in series
(see Figure 5). The leg has total mass m, assumed for
simplicity to be a point mass which slides along the leg
under the action of the prismatic joint (sec Figure 5).
The robot leg has two actuators, one at each joint, while
the joint which connects the robot body to the ground is
unactuated. Note that pinning the body of the robot in
this way permits the body to rotate freely but prevents
translation. Thus the nonholonomic constraint arising
from angular momentum conservation is retained, while
the holonomic translational constraints are replaced with
holonomic pinned constraints; observe that this simplifies
the subsequent analysis but removes none of the
essential structure of the model of a hopping robot in the
free flight stage of motion. Let 6, denote the angle of the
body and (6,, r) be polar coordinates for the mass of the
leg. It is casily verified that in this case the system model
is of the form (6), where the mechanical system dynamics
(6b) is standard and the kincmatic map (6a) can be
obtained from the nonholonomic constraint correspond-
ing to angular momentum conservation:

JO, +mr?6,=0

where it has been assumed that the system is initially at
rest.

We now apply the adaptive control strategy sum-
marized in Theorem 1 to the problem of stabilizing the
hopping robot to the goal 8, = 6,=0°, r=200cm in the
presence of dynamic model uncertainty (note that r =0 is
a singularity of the system, so wc have chosen a nonzero

Fig. 5. Tllustration of hopping robot.
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Fig. 6a. Response of 0, (solid), 8, (dashed), and r (dotted) coordinates of hopping robot for first initial condition.

goal for r). Observe that the kinematic model for this
system is (locally) feedback equivalent to the chained
form (8). Thus the kinematic stabilizer (10) can be used
to generate the desired velocity for the system (subject to
smoothing around the origin), and this velocity trajectory
can be tracked with the adaptive scheme (12). The
controller is applied to the mathematical model of the
hopping robot through computer simulation with a
sampling period of two milliseconds. Additional details
concerning the simulation strategy for this study can be
found in reference 17. The system model parameters are
chosen as J=10 and m =5. The adaptive tracking
scheme (12) is implemented exactly as described in the
preceding simulation; thus, obviously, no attempt was
made to “tune” the gains in this simulation. The control
strategy was tested using a wide range of initial
conditions; sample results are given in Figures 6a through
6¢ and indicate that accurate stabilization of the system is
achieved.

Finally, we turn our attention to another symmetric
mechanical system: a simple model of a “free-flying”
space robot (see Figure 7). The system is modeled as a
rigid ““vehicle” with inertia J pinned to the ground at its
center of mass, and a two link planar manipulator with
link lengths [, =1[,=/ and link masses m,=m,=m,
assumed for simplicity to be concentrated at the distal
ends of the two links. The manipulator has two actuators,
one at each joint, while the vehicle’s pinned connection
to the ground is unactuated. Note that pinning the
vehicle in this way permits the body to rotate freely but
prevents translation. Thus, just as was the case with the
hopping robot above, the nonholonomic constraint
arising from angular momentum conservation is retained
and this simplification removes none of the essential
structure of the system. Let ¢ denote the angle of the
vehicle and (6, 8,) be coordinates for the manipulator.
It is easily verified that in this case the system model is of
the form (6), where the mechanical system dynamics (6b)

300 T T

250

200

150 |

100

configuration coordinates
— T

50 K
[ B )
| o
“~ YN
\
0 1 i S >
i / \/ A -
-50 F | /
\ /
\ /
\ /
-100 L 1
0 5 10

15 20 25

time (seconds)

Fig. 6b. Response of 6, (solid), 6, (dashed), and r (dotted) coordinates of hopping robot for second initial condition.
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Fig. 6¢c. Sample of configurations in hopping robot simulation.

is standard and the kinematic map (6a) can be obtained
from the nonholonomic constraint corresponding to
angular momentum conservation:

P1¢ + 20, +p360,+ picos 0,24 +26,+ 0,) =0
where the p, are system parameters obtained through
routine manipulation and it has been assumed that the
system is initially at rest.

We now apply the adaptive control strategy sum-
marized in Theorem 1 to the problem of stabilizing the
space robot to the goal ¢ =6,=0° 6,=75 in the
presence of dynamic model uncertainty (note that 8, =0
is a singularity of the system, so we have chosen a
nonzero goal for 6,). Observe that the kinematic model
for this system is (locally) feedback equivalent to the
chained form (8). Thus the kinematic stabilizer (10) can
be used to generate the desired velocity for the system
(subject to smoothing around the origin), and this
velocity trajectory can be tracked with the adaptive
scheme (12). The controller is applied to the
mathematical model of the space robot through
computer simulation with a sampling period of two
milliseconds. Additional details concerning the simulation
strategy for this study can be found in reference 17.

https://doi.org/10.1017/50263574798000514 Published online by Cambridge University Press

The system model parameters are chosen as follows:
J =20, m=5, and [ =1. The adaptive tracking scheme
(12) is implemented exactly as described in the preceding

Fig. 7. Illustration of free-flying space robot.
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Fig. 8a. Response of ¢ (solid), 8, (dashed), and 6, (dotted) coordinates of free-flying space robot for first initial condition.

simulation; thus, obviously, no attempt was made to
“tune” the gains for this simulation. The control strategy
was tested using a wide range of initial conditions;
sample results are given in Figures 8a and 8b and
indicate that accurate stabilization of the system is

achieved.

5. CONCLUSIONS

This paper considers the problem of stabilizing
nonholonomic mechanical systems in the presence of
incomplete information concerning the system dynamic
model. It is shown that a simple and effective solution to
this problem can be obtained by combining the kinematic
stabilization strategy of M’Closkey and Murray' with
adaptive control methods. The resulting control scheme
is computationally efficient and easy to implement, and

provides arbitrarily accurate stabilization without know-
ledge of the system dynamic model.

The performance of the proposed stabilization strategy
is illustrated through computer simulations with non-
holonomic systems arising from both explicit kinematic
constraints and symmetries of the system dynamics. This
simulation study indicates that the control scheme
possesses significant advantages compared with other
controllers for nonholonomic systems. For example, the
mode! independence of the strategy provides enhanced
simplicity, modularity, and robustness relative to other
schemes, and facilitates convenient implementation with
a wide range of nonholonomic systems. Additionally, the
performance of the proposed controller was found to be
superior to other stabilizers in terms of convergence rate
and overall transient behavior. These latter qualities are
to be expected in view of the structure of the control
system, which combines an exponentially convergent
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Fig. 8b. Response of ¢ (solid), 9, (dashed), and 8, (dotted) coordinates of free-flying space robot for second initial condition.
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kinematic stabilizer with a high performance adaptive
tracking strategy. It is believed that this combination of
implementability, robustness, and good transient perfor-
mance makes the controller well suited for many robotics
and automation applications.
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