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Abstract. Recently, the stretched exponential decay of multiple correlations in a periodic
Lorentz gas has been used to show the convergence of a series of correlations which
has a physical interpretation as the fourth-order Burnett coefficient, a generalization of
the diffusion coefficient. Here the result is extended to include all higher-order Burnett
coefficients and a plausible argument is given that the expansion constructed from the
Burnett coefficients has a finite radius of convergence.

1. Introduction
The Lorentz gas is a model used in statistical mechanics and consists of a point particle
moving at constant velocity except for specular collisions with smooth (specifically C3)
convex fixed scatterers in d ≥ 2 dimensions. The original model [8] has randomly placed
scatterers in infinite space and is thought to have power-law-decay correlations, so that the
Burnett coefficients (defined here as sums of such correlations) are not generally expected
to exist [6, 11]. Here we consider a periodic arrangement of scatterers which is equivalent
to a dispersing billiard on a torus, for which it is known that two time correlations of the
discrete (collision) dynamics decay exponentially [4, 12]. This, together with the finite
horizon condition, i.e. that the time between collisions is bounded, implies the existence of
the diffusion coefficient (D(2) here).

A recent paper gives the stretched exponential decay of multiple correlations [5] and
uses this to show (again with a finite horizon) that the fourth-order Burnett coefficient
(D(4) here) exists. Here we extend this result to all the Burnett coefficients. A common
example for d = 2 with a finite horizon is given by circular scatterers on a triangular
lattice; for d > 2 the finite horizon condition requires either non-spherical scatterers or
more than one scatterer per unit cell. The Lorentz gas and a number of extensions are
discussed in [10].

The Burnett coefficients D(m) discussed in this paper are defined using series of
correlation functions. Section 2 defines these series and gives three basic results
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about them. Section 3 gives the main result of this paper, the proof of convergence of
these series. The series arise in a physical description of diffusion; however, the derivation
involves hydrodynamic approximations and the interchange of limits which have not been
justified rigorously for the Lorentz gas. The physical motivation together with a non-
rigorous derivation of the series given here from previously stated formulas is given in the
final section, together with a conjecture about the Burnett expansion.

2. Definitions
In the following, φ(x) is the billiard map defined on the collision space M , consisting
of points x = (r, v) ∈ M for which the position r ∈ R

d is on the boundary of one
of the scatterers and the velocity following a collision v ∈ R

d is of unit magnitude in
an outward direction from the scatterer. Greek indices α, β, . . . = 1, . . . , d denote the
components of vectors and tensors in R

d , and a dot a · b denotes the usual inner product∑
α aαbα corresponding to the Euclidean metric. We have two functions, T : M → R

and a : M → R
d , which describe the embedding of the collision dynamics into physical

space and time, as follows. T (x) is the time (and also the distance since the speed of the
particle is one) between the collision at x and the next; it is a piecewise Hölder continuous
function [1, 3]. a(x) is the lattice translation vector associated with this free flight when the
configuration variable r is unfolded onto a periodic tiling of R

d ; it is a linear combination of
the lattice basis vectors e(α) with integer coefficients and is a piecewise constant function.
The finite horizon condition ensures that both T and a are bounded. The average 〈·〉 denotes
integration over M with respect to the invariant equilibrium measure. In terms of this
average we define�T : M → R by �T (x) = T (x)− 〈T 〉 so that 〈�T 〉 = 0.

The billiard dynamics is time-reversal invariant, i.e. there exists an involution
T : M → M (given simply by the specular reflection law) with the property

φ ◦ T ◦ φ = T . (1)

In addition, T preserves the equilibrium measure, i.e.

〈g ◦ T 〉 = 〈g〉 (2)

for an arbitrary measurable function g : M → R. The map T also satisfies

T ◦ T ◦ φ = T (3)

a ◦ T ◦ φ = −a. (4)

Thus 〈a〉 = 0.
The wavevector k is to be understood as a formal real expansion parameter with d

components (although physically we would like to interpret it as a vector with a value
in R

d ). The dispersion relation s[k] is to be understood as a formal power series,

s[k] =
∞∑
m=2

im
∑
α1···αm

D(m)α1···αmkα1 · · · kαm, (5)

in terms of the Burnett coefficients D(m) which are assumed to be real, totally symmetric
tensors of rank m. That is, an equation (specifically equation (15)) involving s[k] is to
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be interpreted as a sequence of equations (specifically equation (16)) obtained by equating
coefficients of powers of k. The symbol i denotes

√−1.
The existence of Burnett coefficients satisfying equation (16) is not assumed a priori;

we show in Lemma 1 that equation (16) expresses the d(d+1)/2 independent components
ofD(2) as a series not containing any of theD(m), then the d(d + 1)(d+ 2)/6 independent
components of D(3) as a series containing only the D(2) and so on. Lemma 2 shows that
they are indeed real and Theorem 4 shows that the limit exists.

We define formal power series f and F by

f [k] ≡ s[k]�T + ik · a (6)

F [k] ≡
n−1∑
i=−n

f [k] ◦ φi (7)

where the dependence on x and on the positive integer n is suppressed in the notation; the
limit n → ∞ will be taken later. We have 〈f 〉 = 0 and 〈F 〉 = 0 at each order in k and for
each n as a consequence of 〈�T 〉 = 0 and 〈a〉 = 0.

We define cumulantsQN [k] (also formal power series) for integers N ≥ 2 as

QN [k] =
∑

{νj }:∑j jνj=N
(−1)ν−1

(ν − 1)! ∏j 〈F [k]j 〉νj∏
j (νj !j !νj )

(8)

with j and νj integers satisfying j ≥ 2 and νj ≥ 0, and ν = ∑
j νj the total number of

correlations in the product. For example,

Q2 = 〈F 2〉/2 (9)

Q3 = 〈F 3〉/6 (10)

Q4 = (〈F 4〉 − 3〈F 2〉2)/24 (11)

Q5 = (〈F 5〉 − 10〈F 3〉〈F 2〉)/120 (12)

Q6 = (〈F 6〉 − 15〈F 4〉〈F 2〉 − 10〈F 3〉2 + 30〈F 2〉3)/720. (13)

Now QN contains exactly N powers of F and so it contains terms km only for m ≥ N ,
and we can write it as

QN [k] =
∞∑
m=N

∑
α1···αm

qN,m;α1···αmkα1 · · · kαm (14)

thus defining totally symmetric tensors qN,m for m ≥ N .
The Burnett coefficients are found by equating the formal power series on both sides of

s[k] = lim
n→∞

1

2n〈T 〉
∞∑
N=2

QN [k], (15)

i.e.

imD(m)α1···αm = lim
n→∞

1

2n〈T 〉
m∑
N=2

qN,m;α1···αm. (16)

These equations determine the D(m) explicitly as real tensors, subject to convergence of
the limit, as shown by the following two lemmas.
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LEMMA 1. The right-hand side of equation (16) does not containD(m
′) such thatm′ ≥ m.

Proof. We have N ≥ 2 and each QN contains N powers of F , thus each term has at least
two powers of F . Each F has at least one power of k, and there arem powers of k in total,
so each F has, at most, m − 1 powers of k. The D(m

′) appear in F associated with m′
powers of k, so m′ ≤ m− 1 for any D(m

′) appearing. ✷

Remark. It is possible that there are no factors of D(m
′) on the right-hand side; in fact the

lemma shows that this is true for m = 2. The case m = 2 can easily be written explicitly;
equation (16) then becomes

D
(2)
αβ = lim

n→∞
1

4n〈T 〉
n−1∑
i=−n

n−1∑
j=−n

〈aiαajβ〉. (17)

This is a discrete time version of the well-known Green–Kubo formula for the diffusion
tensor (which reduces to a single diffusion coefficient in the isotropic case D(2)αβ = Dδαβ ).
An equivalent discrete time equation appears in [7], also for m = 4.

LEMMA 2. Despite the appearance of the imaginary number i in the previous definitions,
the Burnett coefficients are real if they exist.

Proof. We note from the definitions that s[k], f [k] and F [k] have pure imaginary
coefficients for odd powers of k and real coefficients for even powers of k. This property
is preserved by addition and multiplication of power series, so it also holds for theQN [k].
This implies that the qN,m are imaginary for oddm and real for evenm. The result follows
from equation (16). ✷

Before proceeding with the more technical convergence proof, we note another
important result.

LEMMA 3. D(m) = 0 for m odd.

Proof. From the properties of the time-reversal operator T given here, 〈Fj 〉 has zero
contribution from any term with an odd number of a factors. The result follows by
induction on m: assume that D(m

′) = 0 for all odd m′ < m, then by Lemma 1 all terms
in s[k] contributing to D(m) have even powers of k, and from the oddness of a under time
reversal, so also do the ik · a terms. Thus D(m), which is constructed from terms with m
powers of k, must be zero form odd. ✷

3. Convergence of the series
The averages 〈Fj 〉 appearing in the cumulants contain summations over j variables with
the range −n to n−1 and could grow as fast asO(nj ) in general. Thus each term, which is
a product of such averages, could grow asO(nN) in general. For the limit in equation (16)
to exist, we require that the series grows only as O(n). Although the growth of each
product of correlations cannot be controlled this well, cancellations occur in constructing
the cumulants. This is expressed in the following theorem which, together with Lemmas 1
and 2, implies the existence of the Burnett coefficients.
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THEOREM 4. qN,m is defined in equations (7), (8) and (14) for integersN andm satisfying
2 ≤ N ≤ m. The limit

lim
n→∞

1

n
qN,m;α1···αm (18)

exists for all such N and m in the periodic Lorentz gas.

Proof of Theorem 4. The structure of the proof of Theorem 4 is as follows. We state the
theorem expressing stretched exponential decay of multiple correlation functions. Next,
the terms appearing in (16) are written as a time-ordered sum, so that this theorem can
be applied. Then we show that all the terms connected by the application of the theorem
have coefficients which sum to zero, so that only the stretched exponential corrections
remain. Finally, a bound of n multiplied by a polynomial is put on the number of terms
at each order of the stretched exponential, so that the series divided by n converges
absolutely.

Theorem 4 is based on the following result.

THEOREM 5. (Theorem 2 of [5]) Let i1 ≤ · · · ≤ ik and 1 ≤ t ≤ k − 1. Then

|〈f i11 · · ·f ikk 〉 − 〈f i11 · · · f itt 〉〈f it+1
t+1 · · · f ikk 〉| ≤ Ck · |ik − i1|2λ|it+1−it |1/2 (19)

where Ck > 0 depends on the functions f1, . . . , fk , and λ < 1 is independent of k and
f1, . . . , fk .

The theorem applies to piecewise Hölder continuous functions fj such that 〈fj 〉 = 0
for all j and uses the notation f ij ≡ fj ◦ φi . As noted in [5], we expect, from [4, 12], that

it should be possible to prove a stronger bound λ|it+1−it |, but the bound in (19) is sufficient
for our purposes here.

The qN,m, as defined in the previous section, are finite sums of terms of the form
(see equations (7), (8) and (14))

∑
{νj }:∑j jνj=N

(−1)ν−1 (ν − 1)!∏
j (νj !j !νj )

n−1∑
i1···iN=−n

〈f i11 · · ·f ijj 〉〈f ij+1
j+1 · · ·〉 · · · 〈· · · f iNN 〉 (20)

multiplied by constants such as the lower-order Burnett coefficients. The f here and for
the remainder of this section are T or a, both of which satisfy the conditions of Theorem 5.
The exact number of terms of this kind is not important; it depends on N and m but not n
and therefore does not affect the convergence of the limit n → ∞.

In order to use Theorem 5 we need to put the times ip in numerical order. The un-
restricted sum over all the ip is replaced by an ordered sum i1 ≤ i2 · · · iN over all N !/S[i]
permutations of the ip. S[i] is a symmetry factor to account for the fact that some of the ip
may be equal; the exact form is unimportant since it is a common prefactor, independent of
the νj . Not all N ! permutations of the correlations are distinct: it does not matter in which
order the fj are multiplied within a correlation or in which order the correlations of equal
numbers of fj are multiplied; thus both factorials in the denominator disappear, leading
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to
∑

{νj }:∑j jνj=N
(−1)ν−1(ν − 1)!

×
[ ∑
i1≤i2···iN

1

S[i] {〈f
i1
1 · · · f ijj 〉〈f ij+1

j+1 · · ·〉 · · · 〈· · · f iNN 〉 + permutations}
]
. (21)

The ‘permutations’ remaining in (21) consist of the remaining N !/( ∏
j νj !j !νj

) − 1
rearrangements of the ip that are not equivalent by reordering the product of correlations
or the product of f within a correlation.

As an example, we give the expression for N = 6:
∑

i1≤i2≤i3≤i4≤i5≤i6

1

S[i]
{
〈f i11 f

i2
2 f

i3
3 f

i4
4 f

i5
5 f

i6
6 〉

−
[
〈f i11 f

i2
2 〉〈f i33 f

i4
4 f

i5
5 f

i6
6 〉+〈f i11 f

i3
3 〉〈f i22 f

i4
4 f

i5
5 f

i6
6 〉+〈f i11 f

i4
4 〉〈f i22 f

i3
3 f

i5
5 f

i6
6 〉

+〈f i11 f
i5
5 〉〈f i22 f

i3
3 f

i4
4 f

i6
6 〉+〈f i11 f

i6
6 〉〈f i22 f

i3
3 f

i4
4 f

i5
5 〉+〈f i22 f

i3
3 〉〈f i11 f

i4
4 f

i5
5 f

i6
6 〉

+〈f i22 f
i4
4 〉〈f i11 f

i3
3 f

i5
5 f

i6
6 〉+〈f i22 f

i5
5 〉〈f i11 f

i3
3 f

i4
4 f

i6
6 〉+〈f i22 f

i6
6 〉〈f i11 f

i3
3 f

i4
4 f

i5
5 〉

+〈f i33 f
i4
4 〉〈f i11 f

i2
2 f

i5
5 f

i6
6 〉+〈f i33 f

i5
5 〉〈f i11 f

i2
2 f

i4
4 f

i6
6 〉+〈f i33 f

i6
6 〉〈f i11 f

i2
2 f

i4
4 f

i5
5 〉

+〈f i44 f
i5
5 〉〈f i11 f

i2
2 f

i3
3 f

i6
6 〉+〈f i44 f

i6
6 〉〈f i11 f

i2
2 f

i3
3 f

i5
5 〉+〈f i55 f

i6
6 〉〈f i11 f

i2
2 f

i3
3 f

i4
4 〉]

− [〈f i11 f
i2
2 f

i3
3 〉〈f i44 f

i5
5 f

i6
6 〉+〈f i11 f

i2
2 f

i4
4 〉〈f i33 f

i5
5 f

i6
6 〉+〈f i11 f

i2
2 f

i5
5 〉〈f i33 f

i4
4 f

i6
6 〉

+〈f i11 f
i2
2 f

i6
6 〉〈f i33 f

i4
4 f

i5
5 〉+〈f i11 f

i3
3 f

i4
4 〉〈f i22 f

i5
5 f

i6
6 〉+〈f i11 f

i3
3 f

i5
5 〉〈f i22 f

i4
4 f

i6
6 〉

+〈f i11 f
i3
3 f

i6
6 〉〈f i22 f

i4
4 f

i5
5 〉+〈f i11 f

i4
4 f

i5
5 〉〈f i22 f

i3
3 f

i6
6 〉+〈f i11 f

i4
4 f

i6
6 〉〈f i22 f

i3
3 f

i5
5 〉

+〈f i11 f
i5
5 f

i6
6 〉〈f i22 f

i3
3 f

i4
4 〉

]
(22)

+2
[
〈f i11 f

i2
2 〉〈f i33 f

i4
4 〉〈f i55 f

i6
6 〉+〈f i11 f

i2
2 〉〈f i33 f

i5
5 〉〈f i44 f

i6
6 〉+〈f i11 f

i2
2 〉〈f i33 f

i6
6 〉〈f i44 f

i5
5 〉

+〈f i11 f
i3
3 〉〈f i22 f

i4
4 〉〈f i55 f

i6
6 〉+〈f i11 f

i3
3 〉〈f i22 f

i5
5 〉〈f i44 f

i6
6 〉+〈f i11 f

i3
3 〉〈f i22 f

i6
6 〉〈f i44 f

i5
5 〉

+〈f i11 f
i4
4 〉〈f i22 f

i3
3 〉〈f i55 f

i6
6 〉+〈f i11 f

i4
4 〉〈f i22 f

i5
5 〉〈f i33 f

i6
6 〉+〈f i11 f

i4
4 〉〈f i22 f

i6
6 〉〈f i33 f

i5
5 〉

+〈f i11 f
i5
5 〉〈f i22 f

i3
3 〉〈f i44 f

i6
6 〉+〈f i11 f

i5
5 〉〈f i22 f

i4
4 〉〈f i33 f

i6
6 〉+〈f i11 f

i5
5 〉〈f i22 f

i6
6 〉〈f i33 f

i4
4 〉

+〈f i11 f
i6
6 〉〈f i22 f

i3
3 〉〈f i44 f

i5
5 〉+〈f i11 f

i6
6 〉〈f i22 f

i4
4 〉〈f i33 f

i5
5 〉+〈f i11 f

i6
6 〉〈f i22 f

i5
5 〉〈f i33 f

i4
4 〉

]}
.

Here, the four terms correspond to the partitions of six which do not contain one; in the
previous notation the non-zero νj are {ν6 = 1} with 6!/6! = 1 term; {ν2 = 1, ν4 = 1} with
6!/2!4! = 15 terms; {ν3 = 2} with 6!/2!3!2 = 10 terms; and {ν2 = 3} with 6!/3!2!3 = 15
terms; compare with equation (13).

Now we apply Theorem 5 to the largest gap, it+1 − it . Any of the largest gaps will
suffice if more than one is largest. Before tackling the general case, we see how it works
in the N = 6 example. Note that, whatever the value of t , the theorem combines all
these correlations to leave terms (the number of which is a function of N) bounded by
λ|it+1−it |1/2 multiplied by powers of the time differences. Explicitly, for t = 1, all terms
cancel individually because 〈fj 〉 = 0. For t = 2 the 〈f 6〉 term cancels with one of the
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〈f 2〉〈f 4〉 terms, six other 〈f 2〉〈f 4〉 terms cancel with three of the 〈f 2〉3 terms and the
remaining terms all split leaving an 〈f 〉 term. For t = 3 the 〈f 6〉 term cancels with one of
the 〈f 3〉2 terms, and all of the others split leaving an 〈f 〉 term. t = 4 is analogous to t = 2
and t = 5 is analogous to t = 1.

In general we must show that the coefficient (−1)ν−1(ν−1)! in equation (21) combined
with the numbers of terms of various types leads to complete cancellation for all values
ofN . Consider a general term (ignoring the S[i] which is the same for each term) which is
unaffected by a split at time t . Each correlation contains times ip ≤ t or times ip > t but
not both. Thus it can be written schematically as

〈〉〈〉 · · · 〈〉 | 〈〉〈〉 · · · 〈〉 (23)

where all times ip to the left of the bar ‘ | ’ are less than or equal to t and all times to the
right of the bar are greater than t . Let there be A correlations to the left and B correlations
to the right, so A+ B = ν.

This term will cancel (up to stretched exponential corrections) with any term which is
split to the same form, if the sum of the coefficients (the (−1)ν−1(ν−1)!) is zero. The terms
that are split to a given form consist of correlations that are either the same as before or are
joined in a pairwise fashion with a correlation on the other side of the bar.

Again, an example is helpful: when N = 8, a split at t = 4 combines the following
terms:

−6〈f i11 f
i2
2 〉〈f i33 f

i4
4 〉|〈f i55 f

i6
6 〉〈f i77 f

i8
8 〉

with

2〈f i11 f
i2
2 f

i5
5 f

i6
6 〉〈f i33 f

i4
4 〉〈f i77 f

i8
8 〉, 2〈f i11 f

i2
2 f

i7
7 f

i8
8 〉〈f i33 f

i4
4 〉〈f i55 f

i6
6 〉,

2〈f i11 f
i2
2 〉〈f i33 f

i4
4 f

i5
5 f

i6
6 〉〈f i77 f

i8
8 〉, 2〈f i11 f

i2
2 〉〈f i33 f

i4
4 f

i7
7 f

i8
8 〉〈f i55 f

i6
6 〉,

−〈f i11 f
i2
2 f

i5
5 f

i6
6 〉〈f i33 f

i4
4 f

i7
7 f

i8
8 〉

and

−〈f i11 f
i2
2 f

i7
7 f

i8
8 〉〈f i33 f

i4
4 f

i5
5 f

i6
6 〉.

These all cancel because −6 + 2 + 2 + 2 + 2 − 1 − 1 = 0.
The term given in equation (23) has coefficient (−1)ν−1(ν − 1)!. There are AB terms

with coefficient (−1)ν−2(ν−2)! obtained by combining a single correlation on the left and
the right. There areA(A−1)B(B−1)/2! terms with coefficient (−1)ν−3(ν−3)! obtained
by combining two correlations on the left and the right, and so on until all min(A,B)
correlations on the side with the fewest correlations have been combined. The total
coefficient is thus given by

H(A,B) ≡
min(A,B)∑
p=0

(−1)A+B−p−1(A+ B − p − 1)! A!B!
(A− p)!(B − p)!p! . (24)

To show that the coefficients cancel, we therefore need the following lemma.

LEMMA 6. H(A,B) = 0 for all positive integers A and B.
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Proof. The sum is symmetric in A and B so suppose thatA ≥ B without loss of generality.
Then the summand is the product of a constant (−1)A+B−1A!, an alternating binomial
of degree B, i.e. (−1)−pB!/((B − p)!p!) and a polynomial in p of degree B − 1,
i.e. (A + B − p − 1)!/(A − p)!. We will use summation by parts to lower the degree
of both until the result is zero.

We note the summation by parts formula

B∑
p=0

xpyp = y0

B∑
p=0

xp +
B∑
q=1

(yq − yq−1)

B∑
p=q

xp (25)

which can be demonstrated by collecting terms on the right-hand side. Now substituting
xp = (−1)−pB!/((B − p)!p!) and yp = (A + B − p − 1)!/(A − p)! we can show by
induction on q from B downwards that

B∑
p=q

xp =


(−1)−q (B − 1)!

(B − q)!(q − 1)! q > 0

0 q = 0
(26)

hence the first term on the right-hand side of equation (25) vanishes. We can also simplify

yq − yq−1 = (1 − B)(A+ B − q − 1)!
(A− q + 1)! (27)

so equation (24) now reads:

H(A,B) = (−1)A+B−1A!(1 − B)
B∑
q=1

(−1)−q(B − 1)!
(B − p)!(p + 1)!

(A+ B − q − 1)!
(A− q + 1)! . (28)

Shifting the summation index by one we find

H(A,B) = (1 − B)H(A,B − 1). (29)

The proof of Lemma 6 follows by noting that H(A, 1) = 0. ✷

We now conclude the proof of Theorem 4. Recall that the series (20) has been rewritten
in the form (21). Theorem 5 is applied to (one of) the largest gap(s) �imax ≡ it+1 − it ,
partitioning the terms into subsets which split into a particular form (23). Lemma 6 shows
that the coefficients of all terms in a subset conspire to cancel, so that each subset is
bounded by the error term in Theorem 5, i.e. λ|�imax|1/2 multiplied by a polynomial in
the time differences.

Finally we estimate the number of terms with each value of �imax. The first time i1
varies freely from −n to n − 1, having a total of 2n values. One of the time differences
is equal to �imax, and the other k − 2 time differences can range from 0 to �imax, so the
total number of terms with a given �imax is less than 2n(k − 1)�i(k−2)

max , in particular a
polynomial in�imax multiplied by n. Thus the series divided by n appearing in Theorem 4
is bounded by a product of polynomial factors and the decaying stretched exponential, and
hence converges absolutely. This concludes the proof of Theorem 4 and the proof of the
existence of Burnett coefficients. ✷
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4. Physical motivation and remarks
This section makes the connection between the Burnett coefficients defined in the
previous sections and equations found in the physics literature. The latter equations are
phenomenological and have not been shown rigorously in a limiting fashion from the
Lorentz gas and a few non-rigorous limit interchanges are made to connect them with
the expressions defined in the previous sections. First we consider the dispersion relation,
then the equation for the Burnett coefficients, and finally whether the dispersion relation
can be used to define an analytic function.

The dispersion relation (5) with k interpreted as a real vector represents the solution of a
generalized diffusion equation proposed by Burnett [2] containing higher derivative terms
that become important on small scales:

∂tρ =
∞∑
m=2

∑
α1···αm

D(m)α1···αm∂α1 · · · ∂αmρ (30)

assuming a solution of the form

ρ(r, t) ∼ exp(s(k)t + ik · r). (31)

Here, ∂α ≡ ∂/∂rα . Nonlinear terms such as powers of ∂αρ are excluded on physical
grounds since ρ is a projection onto real space (r ∈ R

d ) of a phase space density satisfying
a linear evolution equation. The phase space is a subset of R

2dM corresponding to the
possible positions and velocities of M � 1 particles. The dispersion relation is a more
robust formulation than the generalized diffusion equation (30) since the former may be
supplemented by non-analytic functions of k to account for situations (other than the
periodic Lorentz gas) in which some of the Burnett coefficients do not exist.

Chapter 7 of [7] obtains the dispersion relation from the microscopic dynamics using
the equation ((7.91) in that reference):

1 = lim
n→∞

〈 n−1∏
i=−n

exp
[−s(k)T (φix)− ik · a(φix)

]〉
. (32)

We write T = 〈T 〉 + �T as in previous sections, take out the constant factor of 〈T 〉 and
take the logarithm to find

s(k) = lim
n→∞

1

2n〈T 〉 ln〈exp[F(k)]〉 (33)

where F is defined (as a power series) in equation (7). Now the exponential and the
logarithm are expanded in power series and the resulting terms containing N powers of F
are collected to become the cumulantsQN defined in equation (8). The cumulant form of
the expansion is possibly more robust than the previous equations due to the cancellations
among the terms that combine to construct each cumulant.

Since it is desirable from a physical point of view to interpret k as a real variable, we
conjecture the following.

CONJECTURE 7. The series (5) converges when k ∈ D ⊂ R
d for some non-trivial

domain D, and so defines a function s(k) in this domain.
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Note that s(k) (if it exists) is a real function as a consequence of Lemma 3 and physically
is expected to be negative except at the origin (otherwise the density ρ would grow
exponentially with time); this puts further constraints on the Burnett coefficients.

Unfortunately the proof given in the previous section contains many undetermined
functions of k, and the Burnett coefficients are defined by a complicated recursive
relation (16), so a proof is unlikely using the techniques in this paper.

There are two results that make such a result plausible. The first is that in the
Boltzmann limit of a hard sphere gas, i.e. a gas with many moving particles at low density,
and with recollisions ignored, the expansion in k (in this context called the linearized
Chapman–Enskog expansion) converges [9]. Of course, the hard sphere collisions are
similar to those of the Lorentz gas but recollisions cannot be ignored in general.

The second result is exact but for a highly simplified (piecewise linear) system.
We consider the map φ : R → R given by

φ(x) = 3
2 − 2x + 3[x] (34)

where [x] is the greatest integer less than or equal to x. The dynamics defined by φ is
equivalent to a random walk where the particle moves with equal probability from one
interval In ≡ (n − 1/2, n + 1/2) to the left, In−1 or to the right, In+1. The dispersion
relation s(k) follows directly from the phenomenological solution (31),

ρ(n, t) = exp(st + ikn). (35)

After one iteration,

ρ(n, 1) = 1
2 [exp(ik(n− 1))+ exp(ik(n+ 1))] (36)

= cos k exp(ikn) (37)

leading to
s(k) = ln cos k (38)

which has a power series around k = 0 with a radius of convergence equal to π/2.
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