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Abstract: The analysis of sulphur isotopic compositions in three sets of surface sulphate samples from the
soil zone in the Haughton impact structure shows that they are distinct. They include surface gypsum crusts
remobilized from the pre-impact gypsum bedrock (mean &**S +31%y), efflorescent copiapite and fibroferrite
associated with hydrothermal marcasite (mean 8**S —37%o), and gypsum-iron oxide crusts representing
weathering of pyritic crater-fill sediments (mean 8°*S +7%). Their different compositions reflect different
histories of sulphur cycling. Two of the three sulphates have isotopically light (low 5**S) compositions
compared with the gypsum bedrock (mean 8**S +31%o), reflecting derivation by weathering of sulphides
(three sets of pyrite/marcasite samples with mean 8**S of —41, —20 and —8%o), which had in turn been
precipitated by microbial sulphate reduction. Thus, even in the absence of the parent sulphides due to surface
oxidation, evidence of life would be preserved. This indicates that on Mars, where surface oxidation may rule
out sampling of sulphides during robotic exploration, but where sulphates are widespread, sulphur isotope
analysis is a valuable tool that could be sensitive to any near-surface microbial activity. Other causes of
sulphur isotopic fractionation on the surface of Mars are feasible, but any anomalous fractionation would

indicate the desirability of further analysis.
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Introduction

The search for evidence of life is a major goal of the exploration
of Mars. Diverse types of evidence may be sought, but the
most likely to be obtained will be some type of chemical
signature. Data from terrestrial systems suggest that isotopic
fractionation can provide rigorous evidence for biological
activity. Consequently, isotopic analysis has been proposed
as an important tool in the search for life (Space Studies
Board 2007; van Zuilen 2008). One of the isotopic systems that
could be interrogated during a remote mission is sulphur.
On Earth, numerous studies have identified biological activity
on the basis of strong fractionation between sulphate and
sulphide (either directly measured or inferred from anom-
alously light compositions of sulphide), especially where
seawater sulphate is transformed by microbial sulphate re-
duction into sulphide minerals with substantial accompanying
isotopic fractionation (Machel 2001; Brunner & Bernasconi
2005; Johnston et al. 2008). However, making such measure-
ments depends upon sampling both parent sulphate and
product sulphide, which may be unrealistic during Martian
sampling campaigns in the foreseeable future. Sulphides on
Mars, which are predicted to be widespread (Burns & Fisher
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1990, 1993), and are evident in Martian meteorites (Lorand
et al. 2005), are very probably oxidized within accessible
range of the surface (Chevrier et al. 2004; Lefticariu et al
2006). Realistically, sampling is therefore limited to the
sulphates.

Sulphates are widespread on the Martian surface, evident
from both landers and remote sensing (Gendrin et al. 2005;
Yen et al. 2008). Recent robotic missions on the surface have
detected sulphates at Meridiani Planum (McLennan et al.
2005), Gusev Crater (Lane et al. 2008) and the Phoenix Lander
site (Kounaves et al. 2010). It is likely that this ultimately
reflects degassing, vapour—atmosphere interactions and chemi-
cal weathering of sulphur species from magmas that are much
richer in sulphur than the terrestrial equivalents (Johnson et al.
2008; Gaillard & Scaillet 2009; Righter et al. 2009). The
sulphur has subsequently been processed in a wide variety of
ways, including precipitation from hot springs, circulation
in impact-driven hydrothermal systems, evaporative precipi-
tation from groundwaters and sedimentary transport (King
et al. 2004; King & McLennan 2010). Hence, a range of
sulphur-bearing mineral phases occurs in the Martian crust,
and their diverse histories could have resulted in varying
isotopic fractionation.
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Sulphates on Earth consistently record biosignatures of life
in the ambient environment, hence the occurrences on Mars
have led to repeated suggestions to analyse Martian sulphates
in the search for evidence of life (Rothschild 1990; Cid &
Casanova 2001; Parnell ez al. 2004; Aubrey et al. 2006). Most
of this thinking has been focused on seeking molecular bio-
signatures (i.e. organic compounds). However, there is also
potential to seek isotopic signatures in sulphate minerals, and
instrumentation is being developed accordingly (Christensen
et al. 2007; Franz et al. 2007, 2011). Biologically induced
isotopic fractionation has been inferred in some studies of
terrestrial sulphates (Toran & Harris 1989; Glynn ez al. 2006).
In this study, we demonstrate that a similar approach is feasible
during a robotic mission in a Mars analogue site.

Analogue case study in Haughton impact structure

We show here that a programme of sampling sulphates at
the surface can yield isotope evidence of biological activity.
We demonstrate this using samples from a transect through
an impact crater, the Haughton impact structure on Devon
Island, Canadian High Arctic. The Haughton impact structure
was formed by a 39 Ma (Cenozoic) impact (Sherlock et al
2005), producing a 23 km diameter crater in bedrock that
included 470 Ma (Ordovician) beds of the sulphate mineral
anhydrite (Osinski et al. 2005b). The Haughton impact caused
extensive processing of sulphate-bearing and limestone bed-
rock. Impact breccias infilling the crater contains finely com-
minuted anhydrite and gypsum, composing up to 9% of the
breccias, which are otherwise carbonate-rich (Osinski et al.
2005b). The sulphates are shocked to varying degrees, and have
partially melted to form a groundmass to the breccias (Osinski
et al. 2005b). The impact breccias cover an area of ~ 54 km?,
originally >200 m thick (Osinski ez al. 2005b). The crater was
later (Eocene—Miocene) filled with fluvial-lacustrine sediment
(Hickey et al. 1988; Osinski & Lee 2005). The groundwaters
in the impact structure are sulphate-rich (Lim & Douglas
2003), reflecting interaction with the anhydrite beds in the
Ordovician bedrock, and detritus derived from the bedrock.

The impact breccias are pervasively mineralized by pyrite,
and locally by marcasite and selenite (gypsum). These sulphur-
bearing phases are all interpreted as products of hydrothermal
activity induced by the residual heat of the impact event
(Osinski et al. 2001, 2005a, b). Furthermore, we have shown in
an earlier paper that the sulphides (pyrite and marcasite) have
sulphur isotope compositions that indicate an origin through
microbial sulphate reduction, which occurred as the impact
structure cooled down (Parnell et al. 2010). The sulphide-
bearing deposits have experienced some oxidative weathering
back to sulphates, including jarosite (Parnell et al. 2010). We
show here that evidence of life can be sought in the sulphur
isotopic composition of sulphates, as opposed to the sulphides
reported previously, and thus makes the use of sulphur isotopic
analysis on Mars a more realistic proposition.

The Haughton structure is appropriate as a test site for
sulphur isotope investigations on Mars. In addition to the
occurrence of surface sulphate deposits, the scale of the impact
structure is comparable with many craters on Mars (Barlow
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1990). An interpretation of sulphur isotope data from the
Martian meteorite ALH84001 suggests cycling of sulphur
through an impact-driven hydrothermal system (Greenwood
et al. 2000a) such as is known to have occurred in the
Haughton impact structure. The structure provides data for
simulated rover field testing (Newsom et al. 2009): The sulphur
isotope data reported here are interpreted as if they were
recorded during a rover traverse of the crater. The Haughton
impact structure is also used for testing of diverse other aspects
of Martian and lunar exploration (e.g. Crucian et al. 2007;
Furgale et al. 2010).

Materials and methods

Sampling in Haughton impact structure

In order to simulate robotic sampling, a series of sulphate and

sulphide samples were collected on a single traverse through

the Haughton Crater, at accessible points located along natural
thoroughfares (Fig. 1). The traverse was made by joining two
routes regularly used by all terrain vehicles from the Haughton

Mars Project base camp (Fig. 1). At each location, the sampled

phases are visible at a distance of at least 1 m, and could

therefore be readily sampled and visible to a robotic vehicle. In
most cases, they are evidently a chemical precipitate (con-
spicuously crystalline and/or with a white/colourless hue). The
dataset of 62 analyses includes 14 measurements reported by

Parnell et al. (2010).

A total of ten sampling stations were selected. Progressing
westwards through the crater, they are distinguished as follows:
A. Surface crust of gypsum, which has clearly crystallized at

the surface. Occurs above bedded gypsum as in D.

B. Iron sulphide (marcasite) veins up to centimetres width,
particularly lining vuggy cavities in the impact breccias.

C. Surface efflorescent sulphate precipitates (predominantly
copiapite (Fe,Mg)Fe4(SO4)s(OH),020H,0 and fibroferrite
Fe(SO4)(OH)e5H,0) spatially associated with iron sul-
phides (B) and probably weathered from them.

D. Bedded gypsum rock below the impact breccias, evidently
part of the pre-impact succession.

E. Pyrite-rich impact breccia, evident by ferruginous (rusty)
weathering.

F. Selenite (gypsum) veins up to centimetres width, cutting
the impact breccias, coarsely crystalline and discordant.

G. Clasts of gypsum up to 5cm size in the impact breccias,
conspicuous because of white colour.

H. Gypsum veinrock, cutting bedded sediment below the
impact breccias. Part of the plumbing system below an
impact-related hydrothermal vent.

I. Black, platy masses and centimetre-scale of pyritic sand-
stone. Lag deposit eroded and concentrated from crater-fill
sediments.

J. Mixed gypsum-iron oxide crust above crater-fill sediments,
at least some of which probably represents weathering of
sulphide-bearing crater-fill sediments.

Sample types B, D and E were the subject of an earlier study

(Parnell et al. 2010). The other seven sample types are new to
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Fig. 1. Outline map of Haughton impact structure, showing distribution of impact breccias (after Osinski ez al. 2005b), and sampling traverse with
mean sulphur isotope compositions (5°*S%, CDT). Details of sampling stations are given in text.

this study. Images of several of the sampling stations are
shown in Fig. 2. Samples were collected in polythene bags, and
sub-sampled after laboratory determination of their miner-

alogy.

Isotopic analysis

Sulphate and sulphide samples were prepared for conventional
sulphur isotopic analysis by heavy liquid and hand picking
techniques. Heavy liquid separations were undertaken using
suspension in bromoform. Sulphide and sulphate separates
were then analysed by standard techniques (Robinson &
Kusakabe 1975; Coleman & Moore 1978). In both cases,
around 5-10mg was utilized for isotopic analysis. Minor
contamination by non-S-bearing phases was tolerated, and has
no effect on the final data. For sulphide analysis, SO, gas was
liberated by combusting the sulphides with excess Cu,O at
1075°C, in vacuo. Sulphate analyses were performed by the
technique of Coleman & Moore (1978), in which SO, gas
is liberated by combustion with excess Cu,O and silica, at
1125°C. Liberated gases were analysed on a VG Isotech SIRA
1T mass spectrometer, and standard corrections applied to raw
§°°S0, values to produce true §**S. In addition to the con-
ventional analysis, in situ laser combustion of sulphides was
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carried out on polished blocks for more detailed analyses,
following the technique outlined in Wagner et al. (2002).
Experimental work has shown that the laser combustion re-
sults in a small but significant fractionation of the 5>*S values
of the resulting SO, gas compared with the mineral 5**S (e.g.
Wagner et al. 2002). This fractionation has been applied to the
raw 5°*S data, and all tabulated data are thus corrected
(5**Spyrite = 57*Ss02 laser +0.8%o0; Wagner et al. 2002). All SO,
gases were analysed on a VG Isotech SIRA II mass spec-
trometer. Reproducibility for laser combustion is comparable
with conventional analyses, being around *0.3%. (Wagner
et al. 2002). The standards employed were the international
standard NBS-123 and TAEA-S-3, and SUERC standard
CP-1. These gave 84S values of +17.1, —31 and —4.6%o,
respectively, with 1o reproducibility better than £0.2%o0 around
the time of these analyses. Data are reported in 8**S notation as
per mil (%o) variations from the Vienna Canyon Diablo Troilite
(V-CDT) standard.

Results

The full dataset is given in Table 1 and Fig. 3, together
with mean values calculated for each group of similar

95


https://doi.org/10.1017/S1473550411000395

96

J. Parnell et al.

Fig. 2. Selected sampling stations along traverse through Haughton impact structure. (a) Station C, powdery sulphate on altered impact breccia,
close to marcasite vein mineralization. (b) Station B, marcasite mineralization on impact breccia. (c) Station K, fragments of gypsum-iron oxide
soil crust on soil surface. (d) Station A, crust of gypsum, formed on soil surface in region of gypsum bedrock. (e) Station H, hydrothermal vent site
with ferruginous weathering. (f) Station F, boulders of selenite marking intersection of selenite vein with land surface. Location for sampling

stations is shown in Fig. 1.

samples. Mean values are also given in Fig. 4, which
shows genetic relationships between groups. Some data
are included which clearly belong to a particular group,
but were collected from a locality different to those on
the sampling traverse. These data conform to that from the
other samples in their group and do not introduce any
anomalies.
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In summary, five of the seven sets of sulphate have
comparable compositions in the range of +29 to +37%o. The
three sets of sulphide and the remaining two sets of sulphates
have compositions which are isotopically lighter (lower 5°*S)
than the group of five sulphates, but show a wide range (Fig. 3).
One of the latter two sets of sulphates yielded a bimodal
dataset, the statistics for which are treated separately.
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Table 1. Sulphur isotope compositions (6°*S, %, CDT) of
samples, Haughton impact structure

Station Target Measurements Mean S.D.
A Sulphate crust +25.7, +29.0, +29.3, +31.2 5.6
on bedrock +31.2, +40.6
B Marcasite —36.9, —36.9, —38.7%, —409 2.5
veins —40.7, —41.4, —41.6,
—41.6, —41.8, —42.4,
—43.4, —44.7
C Sulphates on —35.2, —26.1, —36.8, —-37.1 14
marcasite —37.7, =37.9, —39.2
D Gypsum bedrock +29.1,+31.1, +31.6, +30.8 1.2
+31.6
E Pyrite-rich impact —152,-19.3, -20.5, —19.7 3.5
breccia —23.8
F Selenite veins +31.1, +32.0, +32.3, +32.7 1.1
+33.3, +33.5, +34.0
G Sulphate clasts in +21.7, +28.4, +29.6, +28.6 3.5
impact breccia +30.3, +30.5, +31.0
H Hydrothermal vent +31.8, +38.2, +39.4, +374 3.8
gypsum +40.3
J Pyritic lag deposit  —3.4, —4.8, —6.5, —6.9, —-83 3.5
-9.2, —11.7, —11.8,
—-12.5
K Gypsum soil crusts  +6.3, +6.9, +7.1, +7.8, +72 0.7
+8.0
+26.5, +30.8, +32.4 +29.9 3.1

#Ttalicized values reported in Parnell ez al. (2010).

Discussion

Interpretation

Data interpretation is based on comparison between the
means of the various groups of samples. Where one mean
value falls outside the standard deviations of another sample,
they are regarded as distinct, and evidence of isotopic
fractionation.

Comparison of the mean values highlights some remarkable
fractionation, particularly in the sulphides relative to most of
the sulphates. Some sulphates that we know to be weathering
products of sulphides also yield anomalous compositions.
This is expected, as the sulphide composition should be
inherited during weathering. With the benefit of an under-
standing of how the samples relate to each other, the isotope
data can be interpreted sensibly, and this strongly implicates
biological activity (Parnell e al. 2010). If we now try to make
the case study more relevant to Mars, we should omit the
three sets of sulphide data (B, E and J), on the assumption
that sulphides would not survive oxidation at the Martian
surface. Sulphates, however, are widespread on the Martian
surface, so interpretation of the Haughton sulphates is a
valuable test of how we could assess the sulphates on Mars.
Focusing solely on the seven sets of sulphate data in the
Haughton structure, it is apparent that five of the seven are
comparable with each other. The two sets that are different are
both surficial deposits, i.e. from the soil zone, and not primary
vein minerals. They represent two out of the three soil zone
precipitates, i.e. deposits formed in the top layer at the Earth’s
surface.
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Fig. 3. Sulphur isotope data for sampling stations through Haughton
impact structure (range of 8**S%o CDT values, mean). Location for
sampling stations is shown in Fig. 1.

If we were presented with the same set of contextual obser-
vations and isotopic data on Mars, how could we interpret it?
A logical interpretation could progress as follows:

(i) The data for the pre-impact bedded gypsum (D) represent
the ‘baseline’ composition, to which all other, younger,
compositions should be compared.

(ii) The clasts in the impact breccia (G) have a similar
composition, and can be inferred to be mechanically
displaced and redeposited fragments of the bedded
gypsum, excavated by the impact.

(iii) The vein selenite (F) and veinrock gypsum (H) also have
similar compositions, and represent precipitation from
groundwaters saturated with dissolved sulphate from the
bedrock.

(iv) The three soil zone precipitates have distinct compo-
sitions. One (A) is comparable with the baseline bedded
gypsum, and in fact occurs directly overlying it, so it
appears to be directly remobilized from it by dissolution
and reprecipitation.

(v) The two remaining soil zone precipitates are very different
from the baseline and from each other. One (C) exhibited
a mean composition of —41%o. The other (K) yielded a
bimodal dataset. One set has a composition comparable
with the bedrock (+30%o), which we assume represents
precipitation of sulphate from the regional groundwaters.
The second set has a mean composition of +7%o. The
compositions for these two sites cannot reflect simple
remobilisation, and indicate that some more complex
process is responsible and deserves investigation.

The actual values for these two soil zone precipitates are

isotopically light enough that on Earth they indicate biological

activity, as the maximum fractionation induced by non-
biological processes is about 20%0 (Machel 2001). Further-
more, the clear difference between the two indicates that,
although both indicate biological activity, there were different
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pathways to the final product. These two sulphates exhibiting
strong fractionation were derived by weathering of sulphides
precipitated by microbial sulphate reduction, in one case in a
marcasite-bearing hydrothermal system cutting the impact
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breccias (B), and the other in crater-fill sediments (J). The
sulphates weathered from marcasite shows a similar compo-
sition (—37%o) to the marcasite (—41%o), i.e. it has inherited
the isotopic composition. The sulphate (K) weathered from
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crater-fill sulphides is heavier (+7%o) than the crater-fill
sulphide data reported at station J here (— 8%o). This reflects
an additional component of weathering of a paragenetically
distinct, second crater-fill pyrite with very heavy composition
(mean +60%o), which was omitted from the transect described
above because it would not be visible to robotic sampling.
Weathering of a combination of the two crater-fill sulphides,
precipitated by groundwaters rich in sulphate from surface
weathering, can explain the composition of the resulting
sulphate, without the need for any additional fractionation. In
summary, the two soil zone sulphates carry a signature of
biological activity, inherited from the sulphides from which
they were weathered. In the case of the highest level of frac-
tionation (C), detection of this anomalous composition could
focus investigation, and lead to the discovery of the microbially
mediated sulphides (B). If we could not observe the parent
sulphides, we would still suspect biological activity, and
weathering of biologically mediated sulphides would be the
simplest way to explain the data. Thus, on Mars, a similar
pattern of data would be of great interest.

The gypsum from the hydrothermal vent system (H) has the
heaviest mean value for sulphur (+37%o), notably heavier than
the other bedrock-related datasets. A possible explanation for
this is that it is balanced by isotopically light sulphide elsewhere
in the hydrothermal system. A single pyrite sample from this
locality has a composition of —8.4%0 (Parnell et al. 2010),
which is consistent with isotopic fractionation between
sulphide and sulphate due to microbial sulphate reduction.

There is no doubt that the sulphur in the various sulphide
and sulphate samples can be traced ultimately back to the pre-
impact bedrock. It is possible that the impactor contained
sulphur, as many meteorites contain sulphides (Kaplan &
Hulston 1966), but the impactor was completely vaporized and
most of the resulting gases would have escaped the crater.
More pertinently, the hydrothermal sulphides occur in impact
breccias whose sulphur content is dominated by comminuted
bedrock gypsum, and sulphate melts derived from the gypsum
(Osinski & Spray 2003). That sulphur would exceed any traces
of meteoritic sulphur by several orders of magnitude. Further-
more, sulphide precipitation was a relatively low (<100 °C)
temperature event (Parnell et al. 2010), implying derivation
of the sulphur from the bedrock through the regional
groundwaters, which are sulphate-rich (Lim & Douglas
2003).

Potential application to Mars

The widespread occurrence of sulphate minerals on Mars (see
Introduction) shows that material is available for sampling for
sulphur isotope analysis, hence the development of appropriate
technology (Christensen et al. 2007; Franz et al. 2007). If there
is life on Mars today, the microbial sulphate reduction which is
the basis of the isotopic fractionation on Earth is conceivable.
Both redox reactions involving reduction and oxidation of
sulphur species are theoretically capable of providing the
energy to support a significant biomass on the current Martian
surface (Tierney & Jakosky 2008), and sulphate reducers can
tolerate the saline solutions that allow liquid to persist at low
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surface temperatures (Marnocha er al. 2010). Some of the
bedded sulphates on Mars date back to 3.5Ga when the
surface was warmer and wetter than now. At that time,
conditions were much more closely comparable with those on
Earth, where we assume that biogenic sulphate reduction was
possible (Canfield 2004). If life did evolve on Mars, this is
possibly the most likely period for it to arise, and evidence
could be stored in the bedded sulphates. However, it seems that
there has been repeated dissolution and reprecipitation of
sulphates through the geological history of Mars (King &
McLennan 2010), so there would have been opportunities
for involvement and entrapment of later-evolving microbial
communities.

The fractionation between sulphate and sulphide induced by
microbial activity in the Haughton impact structure is up to
70%o (Parnell et al. 2010). These high levels of fractionation
reflect the evolution of disproportionation, which involves a
combination of sulphate reduction and sulphide oxidation
(Johnston et al. 2007). Less evolved microbial activity in the
late Archean and early Proterozoic on Earth caused fraction-
ation by sulphate reduction alone, typically 20-25 per mil,
much less than today (Strauss 1997; Canfield 2004). Earlier in
the Archean, when sulphate levels in the ocean were very low
and less fractionation was possible due to low sulphate
availability, the fractionation may have been a few per mil.
On Mars, any microbial activity that had evolved to instigate
sulphate reduction is likely to have caused isotope fraction-
ation. The level of fractionation would reflect the concen-
tration of sulphate available (i.e. more fractionation is possible
with increased sulphate concentrations), which on Mars was
high, and the time available for evolution to occur, which was
probably much more limited than on Earth. On Earth, it also
reflects the nature of the substrate and degree of substrate
oxidation, and is variable between different microbes (Habicht
& Canfield 1997; Detmers et al. 2001). However, even greatly
reduced levels of isotope fractionation on Mars, for example of
the order of 5-10%o, would indicate processing of sulphur
species by some means that could include biological activity.
Any record of strongly positive, or strongly negative, sulphur
isotope compositions, which in terrestrial samples indicate
biological activity, would be of even greater interest.

The known Martian meteorites have yielded sulphur isotope
compositions with a range of 5>*S values from —6 to +8%.
(Shearer et al. 1996; Greenwood et al. 1997, 2000a, b;
Farquhar et al. 2000, 2007), although individual meteorites
exhibit ranges of just a few parts per mil. The additional
measurement of rare sulphur isotopes >*S and S has indicated
that photolysis in the atmosphere can cause sulphur isotopic
fractionation, resulting in some limited variation in 8°*S values
(Farquhar er al. 2000, 2007). If large variations in °*S were
measured on the Martian surface, it would be very helpful to
also measure **S in order to discriminate whether atmospheric
processes may have contributed to the fractionation, or alter-
natively did not and so strengthen the possibility of a biological
role (Farquhar et al. 2000). The instrumentation proposed by
Christensen et al. (2007) suggests that such measurement could
be feasible in due course.
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Conclusions

The analogue study of sulphur isotope composition of surface
sulphates in a Mars analogue site, the Haughton impact
structure, has demonstrated that this is a valuable and viable
approach to apply to the surface sulphates that we know occur
on Mars. Specifically:

(i) Different populations of sulphates, reflecting different
histories of sulphur cycling, could be distinguished.

(i1) Analysis of sulphates weathered from sulphides allows us
to infer compositions of the sulphides, even where the
sulphides cannot be directly sampled because of the depth
of chemical weathering.

(iii) Where the parent sulphide was precipitated by microbial
sulphate reduction, this evidence for life is preserved in the
composition of the sulphate.

(iv) Anomalous compositions could be identified during
robotic exploration, and, although no unique interpret-
ation of such anomalies is possible, they could contribute
to decisions about where to focus other types of analysis.
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