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Linear and nonlinear mechanisms of sound generation in subsonic jets are investigated
by numerical simulations of the compressible Navier–Stokes equations. The main
goal is to demonstrate that low-frequency waves resulting from nonlinear interaction
between primary, highly amplified, instability waves can be efficient sound radiators
in subsonic jets. The current approach allows linear, weakly nonlinear and highly
nonlinear mechanisms to be distinguished. It is demonstrated that low-frequency
waves resulting from nonlinear interaction are more efficient in radiating sound when
compared to linear instability waves radiating directly at the same frequencies. The
results show that low-frequency sound radiated predominantly in the downstream
direction and characterized by a broadband spectral peak near St =0.2 can be
observed in the simulations and described in terms of the nonlinear interaction
model. It is also shown that coherent low-frequency sound radiated at higher angles
to the jet axis (θ = 60◦–70◦) is likely to come from the interaction between two
helical modes with azimuthal wavenumbers n= ±1. High-frequency noise in both
downstream and side-line directions seems to originate from the breakdown of the jet
into smaller structures.
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1. Introduction
It is generally recognized that large-scale organized structures (sometimes modelled

as linear instability waves) play an important role in the generation of noise from
jets. In supersonic jets a mechanism is readily identified since the most unstable
waves in the jet column have a nominally supersonic phase velocity and are able to
radiate sound efficiently (see e.g. Tam & Burton 1984; Wu 2005). In subsonic jets
the situation is less clear and, although experimental studies support the idea that
radiated sound is connected to hydrodynamic wavepackets within the jet, the detailed
mechanisms that generate suitable wavepackets are not well understood. There can
be a linear connection between the dominant instability modes in the initial region
and the far-field sound, as in supersonic jets; but as we shall see later, this does not
explain the presence in subsonic jets of a broadband spectral peak near St = 0.2 at
angles of around 30◦ to the jet axis (e.g. Stromberg, McLaughlin & Troutt 1980;
Viswanathan 2004, 2008). There can also be a nonlinear process, as was clearly
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demonstrated in the little-known experimental study of Ronneberger & Ackermann
(1979), in which a fully turbulent subsonic jet was perturbed with plane acoustic
waves transmitted through the nozzle from upstream. Simultaneous forcing at two
frequencies (e.g. St1 = 0.5 and St2 = 0.3 in one experiment and St1 = 0.7 and St2 = 0.5
in another) produced a measurable pressure signal in the acoustic far field at the
difference frequency St1 − St2 = 0.2, amplified by as much as 30 dB relative to the
same acoustic forcing with zero flow. The authors interpreted their results in terms
of a nonlinear interaction between waves at the two forcing frequencies, driving a
spatially modulated wavepacket with associated sound radiation. A simple physical
argument for the latter process is that although the wavepacket has a local phase
speed that is subsonic, a Fourier transform of a suitable variable in the streamwise
direction will lead to a broadband wavenumber spectrum, a portion of which will
be supersonic relative to the ambient and hence able to radiate as Mach waves (e.g.
Tam & Morris 1980; Tam 2009).

This study is aimed at providing further physical insight into the role of instability
waves in the sound radiation from subsonic jets. A method based on numerical
simulations will be presented that can distinguish between the linear and nonlinear
(wave interaction) mechanisms on the basis of their dependence on forcing amplitude.
In particular, it will be shown that some important features of subsonic jet noise that
are observed in experimental measurements, particularly near the spectral peak in the
dominant radiation direction, can be replicated by forcing a prescribed steady base
flow with a flat spectrum of instability waves, of sufficient amplitude for nonlinear
interactions to occur.

1.1. Previous experimental investigations

Several investigators besides Ronneberger & Ackermann (1979) carried out
experiments on subsonic jets (both forced and unforced) relevant to the issue outlined
above. Moore (1977) studied sound radiation from natural and forced air jets at model
scale (nozzle diameter D = 39 mm), covering the Mach number range M = 0.1–0.9
based on jet centreline velocity Uj and ambient sound speed. In order to establish
whether instability waves cause a turbulent jet to act as an amplifier of single-frequency
acoustic disturbances that are transmitted through the nozzle, Moore (1977) placed an
acoustic source in the upstream plenum of his jet rig. Under single-frequency forcing
at f0, the measured near-field response of the jet was found to be consistent with
linear instability mode predictions based on the local mean velocity profile. However,
comparisons of the net acoustic power travelling down the jet pipe with the power
radiated at f0 into the far field showed no significant amplification, over the range
of the experiments (M < 0.9, St0 > 0.18 with St0 = f0D/Uj ). These results led Moore
to conclude that instability waves in natural turbulent jets do not contribute directly
to far-field radiation, in contrast to the supersonic case described by Tam & Burton
(1984). Considered from the perspective of the Ronneberger & Ackermann (1979)
study, this is perhaps not surprising, since Moore’s single-frequency study omitted
wave interactions. The simulations presented in § 3 will address this issue directly.

Moore’s conclusion was also challenged by Laufer & Yen (1983), based on
measurements of natural and forced instability waves in the first diameter of a low-
subsonic jet (M = 0.05–0.2). Laufer & Yen (1983) were able to achieve an exceptionally
low turbulence intensity at the exit of their nozzle (less than 0.1 %), together with a
laminar initial shear layer; these features combined with the relatively low Reynolds
number (Re = (0.6–2.3) × 105) to produce a rather well-ordered initial region in which
the most unstable frequency of the exit shear layer, f0, appeared prominently in the
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near-field pressure spectrum along with its first and second subharmonics (f1, f2).
When the jet was forced acoustically via an annular slot surrounding the nozzle lip,
the spectral peaks increased in amplitude and became sharper. It should be noted
that the corresponding fundamental Strouhal number St0 was 4.3–8.5; thus, there
is no overlap in the Strouhal number with the experiments of Moore (1977). It is
also worth mentioning that the acoustic forcing was intended to be axisymmetric.
However, this would have been difficult to ensure in practice, because the acoustic
wavelength at f0 was less than the nozzle circumference at all Mach numbers except
the lowest.

Notable features of the Laufer & Yen (1983) results are: (i) the axial locations
of the r.m.s pressure maxima at fn (n= 1, 2), measured along a 10◦ line from the
nozzle lip, correspond to the source locations for 30◦ far-field radiation at each
frequency; (ii) the near-field pressure and velocity maxima at fn vary almost linearly
with forcing amplitude (n= 0, 1, 2), as does the fundamental far-field pressure; but
(iii) the subharmonic far-field pressures at 30◦ to the axis (n= 1, 2) vary quadratically
with the corresponding velocity maxima (see figure 39) and hence approximately as
the square of the forcing amplitude, indicating a quadratic nonlinear mechanism.

Experimental results of Stromberg et al. (1980) for a subsonic low-Reynolds-
number jet (Re =3600, M = 0.9) also indicate that a nonlinear mechanism involving
the dominant St ≈ 0.44 instability waves is responsible for a significant portion of
the peak noise generated from this transitional jet (around St ≈ 0.22); however, the
authors speculated that vortex pairing is responsible. It is worth noting that direct
numerical simulation (DNS) of the subsonic jet for the same flow parameters as
in Stromberg et al. (1980) was carried out by Freund (2001) and the radiated sound
was calculated using Lighthill’s acoustic analogy. The results showed very good
agreement with the experimental data of Stromberg et al. (1980).

In a careful series of far-field noise measurements on fully turbulent
jets, Viswanathan (2004, 2008) observed the typical spectral shape associated with
large-scale turbulence (e.g. Tam & Golebiowski 1996) down to very low Mach numbers
(M = 0.26). At the lowest Mach numbers this spectrum shape was observed only at
angles close to the jet downstream axis, while with increasing Mach number it
extended to larger angles. To explain these results, Viswanathan (2008) suggested
that as a consequence of spatial modulation of the instability wave amplitude due to
the growth/decay cycle, low-wavenumber components with supersonic phase speeds
relative to the ambient speed of sound could be present. These would radiate into
the far field, but because of their low phase speed (only just supersonic) the radiation
would be confined to angles close to the jet axis. Tam et al. (2008) give a similar
explanation; their paper provides further experimental evidence of the connection
between large-scale turbulent structures and jet noise in the downstream sector.

1.2. Theoretical and computational models

Recently, there have been a number of studies proposing simplified models of the
sound radiation from subsonic jets. Models based on weakly nonlinear instability
mode interactions have been proposed by Sandham, Morfey & Hu (2006a). A plane
parallel jet flow was subjected to a spatially localized initial disturbance and DNS
showed sound radiation starting from an early stage of nonlinear development. In an
attempt to reproduce the sound radiation pattern obtained by DNS, two simplified
models were proposed. The first model consists of a pair of linearized Euler equations,
where the second depends on the output of the first and nonlinearities are explicitly
included as forcing terms in the second linear system. Linearized Euler equations are
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first solved for the strictly linear response to the same initial conditions as in the
DNS calculations. Forcing terms fi = −∂(uiuj )/∂xj (taken according to the Lilley–
Goldstein acoustic analogy, e.g. Goldstein 2001) are then calculated from the solution
obtained. An inhomogeneous linear problem is then solved to find the response to
the nonlinear forcing. In the second model, the linear response and forcing terms
are constructed using eigenvalues and eigenfunctions from temporal linear stability
theory. The results obtained with such models showed encouraging agreement with
those obtained from DNS. A detailed examination of the source terms suggested that
the ‘difference-wavenumber mode’, arising from the nonlinear interaction between
instability waves, dominates far-field sound radiation from a subsonic jet.

In subsequent studies Sandham & Salgado (2008) extended the method of Sandham
et al. (2006a) to spatially developing waves and round jets. In this study the
parabolized stability equations (PSE) were used to calculate wavenumbers and
mode shapes of the specified spatially developing base flow. The sound radiation
from the various mode interactions was then found by solving a Lilley–Goldstein
wave equation. The method was applied to a round single-stream jet for which
experimental and DNS results are available (Stromberg et al. 1980; Freund 2001).
The results obtained with regard to the most amplified frequency in the near field
and the dominant frequency of the sound radiation in the far field were in close
correspondence with the experimental and DNS data, further suggesting that the
simplified model is able to capture some of the important mechanisms of the subsonic
jet noise.

In a recent theoretical study Wu & Huerre (2009) focused on the sound generated
by a pair of helical instability waves with nearly the same frequency and opposite
azimuthal wavenumbers, using a matched-asymptotic-expansion approach. According
to their model, a ‘streaming’ effect of the wave interaction generates a strong slowly
breathing, azimuthally dependent ‘mean flow distortion’ that acts as an emitter of
low-frequency sound. The sound field predicted by the above model is characterized
by a single-lobed directivity pattern beamed at an angle about 45◦–60◦ from the
jet downstream axis, and a broadband spectrum centred at a Strouhal number
St ≈ 0.07–0.2.

1.3. Present contribution

In this study we use numerical simulations of the compressible Navier–Stokes
equations to study how the nonlinear interaction between two instability modes
leads to the generation of a ‘difference-frequency’ response that is likely to radiate
into the far field and dominate the far-field radiation. Different kinds of nonlinear
interactions are considered and an attempt is made to summarize likely contributions
of particular interactions to the overall sound. The base flow is prescribed using the
experimental data of Stromberg et al. (1980) and maintained during the calculations
(see § 2 for details). This approach allows us to distinguish between linear and
nonlinear mechanisms of sound radiation by instability waves, and to isolate this
sound from that originating from smaller scale turbulence. This study aims to find
answers to the following questions: (i) what part of the overall sound from subsonic
jets comes from instability waves (large-scale structures) and (ii) how well do the
simplified models proposed and studied by Sandham et al. (2006a) and Sandham &
Salgado (2008) predict this part of the noise? The rest of this paper is organized
as follows. The numerical approach and problem statement are given in § 2. The
results of exciting the jet by two primary instability waves are presented in § 3, which
is subdivided into § § 3.1–3.3, each describing a specific nonlinear interaction. The
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results of exciting the jet by a wide range of modes are given in § 4. Results are
summarized in § 5.

2. Numerical approach
The compressible Navier–Stokes equations for the conservative variables are solved

using a finite-difference DNS code. The convection and diffusive terms are evaluated
by a fourth-order-accurate central scheme using a five-point stencil, while time
marching is achieved by a third-order explicit Runge–Kutta scheme. No artificial
viscosity or filtering is used, and the stability of the code is enhanced by entropy
splitting of the inviscid flux terms together with a Laplacian formulation of the
viscous terms (Sandham, Li & Yee 2002). The code has previously been used in a
number of published studies (e.g. Sandham et al. 2002; Sandberg, Sandham & Joseph
2007; Jones, Sandberg & Sandham 2008) and has been validated extensively.

Simulations of a subsonic round jet were performed on a Cartesian grid. The
dimensions of the computational box in the streamwise (z) and normal (x, y) directions
were varied depending on the wavelength of the radiated sound (this will be discussed
in the results section); however, the grid resolution (�x, �y and �z) was kept the
same for all simulations. This size of the computational domain is enough to include
some portion of the sound field. A uniform grid was used in the streamwise direction
z with �z = 0.04545D, where D is the jet diameter. In the directions normal to the
flow (x and y) the grid spacing was �x = �y =0.02635D in the region close to
the jet centreline. The resolution away from the jet core was gradually reduced to
�x = �y = 0.2108D, which was found to be sufficient to resolve the acoustic waves.
Numerical resolution has been examined by doubling the number of grid points
in the transverse directions x and y (grid spacing of �x =�y = 0.013175D near
the jet centreline and �x = �y =0.1054D in the acoustic field). The results showed
that increasing the resolution had no effect on the investigated physical phenomena,
although some differences were observed in the radial profiles of the disturbances near
the lip line r/D = 0.5 in the vicinity of the nozzle exit (z � 2D). In the acoustic field,
the only effect of the resolution is a small change in the amplitude of the spectral
peaks (changes of less than 10 %). Since the noise is mainly generated some distance
downstream of the nozzle, the differences observed in the close vicinity of the nozzle
exit have only a small effect on the radiated noise.

To check the effect of the domain size on the pressure sound field (in particular for
the very low frequency waves), the computational domain was extended to 47D in
the transverse direction (y) and to 50D in the streamwise direction (z). The observed
differences in the pressure in the acoustic field were smaller than 1 %.

An integral boundary condition (Sandhu & Sandham 1994) was applied at the
inflow boundary. This boundary condition allows a slight adjustment of the prescribed
inflow profile in order to let small-amplitude acoustic disturbances pass through the
boundary and leave the computational domain. Characteristic boundary conditions
(Thompson 1987) were used at the outer boundaries in directions normal to the flow.
A zonal characteristic boundary condition (Sandberg & Sandham 2006) was applied
at the outflow boundary to reduce reflections occurring because of vortical structures
passing through the boundary.

As mentioned earlier, a base flow field is prescribed by imposing time-independent
forcing terms. In the absence of disturbances the base flow is maintained during the
simulations. With such a formulation we follow the spatial evolution of disturbances
(taken as a sum of instability waves) on the base flow. When the inflow disturbance is
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of sufficiently small amplitude, the current formulation converges to that of a linear
stability analysis, as the influence of nonlinear terms is negligible. Therefore, the
results obtained can be directly compared with those obtained from linear stability
theory (LST) for parallel base flows or PSE (to include non-parallel effects). On
the other hand, when the amplitude of the inflow disturbance becomes significant, the
nonlinear interactions between instability waves can be examined along with the
resulting sound. In this case, the effect of mean flow distortion is included in
the simulations.

The application of stability analysis to several kinds of free shear flows including
turbulent mixing layers is known to have a high degree of success (Crighton & Gaster
1976; Gaster, Kit & Wygnanski 1985). In such flows the instability mechanism is
mainly controlled by the mean–velocity profiles. The fine-scale turbulence behaves
approximately as an added ‘eddy’ viscosity on the averaged and large-scale motions;
for details see Gaster et al. (1985). Therefore, relying on the assumption that the
influence of small-scale turbulence on large-scale structures is small, this kind of
analysis is expected to be suitable for fully turbulent jets also. Experimental evidence
of the existence of instability waves in a subsonic turbulent round jet can be found
in a recent work by Suzuki & Colonius (2006).

In our simulations the base flow has been chosen to match the experimental data
of Stromberg et al. (1980), obtained for a single-stream transitional subsonic jet with
Mach number 0.9 and Reynolds number of 3600. The same base flow was used in
previous studies by Sandham & Salgado (2008) and Sandham, Salgado & Agarwal
(2008). It is worth noting that the results obtained with the current approach are
sensitive to the base flow. The basic mechanisms, however, are expected to remain
unchanged.

The streamwise velocity of the base flow at any streamwise position z and radial
position r is given by

V z = 0.5

[
tanh

(
r + a

δ

)
− tanh

(r − a

δ

)]
, z > 0, (2.1)

with empirically determined parameters

a = 0.59 + 0.09 tanh(
√

z − 2.9), δ =
39 + 24z + 0.11z4

1000 + z3
. (2.2)

A weak co-flow is added to the streamwise velocity component to allow a proper
functioning of the characteristic boundary conditions. Therefore, in the simulations
the velocity profile given by (2.1) was adjusted to

V
sim

z = (V z + vcof low)/(V z(r = 0, z = 0) + vcof low). (2.3)

Typically, vcof low = 1 %. The base flow radial velocity component is set to zero in the
simulations, although it can be computed from the continuity equation. Preliminary
tests were conducted with the radial velocity component computed from the continuity
equation and showed little difference. No swirl is added to the jet; so the mean
azimuthal component Vθ is set to zero. The pressure of the base flow is assumed to
be uniform. The temperature of the jet at z =0 is assumed to be the same as the
surrounding temperature, and the profile further downstream is approximated using
a Crocco–Busemann relation

T = 1 +
γ − 1

2
M2V

sim

z

(
1 − V

sim

z

)
. (2.4)
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Figure 1. (a) Inflow velocity profile given by (2.3) for z = 0 and vcof low = 0.01; (b) growth
rates −αi for the first few azimuthal modes calculated from the linear stability theory.

In order to maintain the above base flow, corresponding source terms were added to
the right-hand side of the Navier–Stokes equations.

Disturbances are taken in the form of normal modes at the inflow boundary

ũ = Re{Aû(r)exp(i(nΘ − ωt + φ))}, (2.5)

where Re defines the real part, A is the amplitude of the mode, û(r) is an eigenfunction
(shape of the mode), n is the azimuthal mode number, ω is a real angular frequency
and φ is the phase. Eigenfunctions and wavenumbers are obtained from spatial
linear stability analysis (solution of the compressible Orr–Sommerfeld equation) for a
particular frequency and mode number. Disturbances are added to all flow variables
at the inflow boundary.

In the equations above (and also in the results in § 4), all variables are normalized
by the diameter of the jet and the jet centreline velocity at the nozzle exit. In (2.5) the
eigenfunctions û(r) are normalized such that the peak amplitude of the streamwise
velocity fluctuations is equal to 1.

3. Sound radiation from the jet excited by a combination of
two instability waves

We start with a detailed examination of the sound field generated by perturbing
the jet with a combination of two highly amplified instability waves of different
frequencies. Each of the following subsections is devoted to the results obtained for
the jet excited with different combinations of azimuthal mode numbers. The main
goal of the first part of the results is to investigate whether the difference frequency
arising from the nonlinear interaction between two waves is indeed active in the
acoustic field and dominates sound radiation from jets, as was suggested in previous
simplified studies (Sandham et al. 2006a; Sandham & Salgado 2008). Simulations
were performed for M = 0.9, Re = 3600 and vcof low = 0.01. The inflow velocity profile
given by (2.3) is shown in figure 1(a), and growth rates of the first few azimuthal
modes corresponding to this profile and calculated from LST are shown in figure 1(b).

3.1. Interaction between two axisymmetric modes (0/0 interaction)

In this section the sound field generated by a combination of two axisymmetric waves
of different frequencies is studied (n1 = n2 = 0). The length of the computational
domain in the streamwise direction z was 30D, followed by an outflow zone of 20D
length in which the grid was stretched by a factor of 2. The computational domain
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Case ω1 n1 ω2 n2 �ω �n A Mag. factor prms (z/D = 0, r/D = 0.5) (prms)max

A1 2.2 0 3.4 0 1.2 0 5 × 10−6 1 8.756 × 10−7 1.52 × 10−4

A2 2.2 0 3.4 0 1.2 0 1 × 10−5 2 1.751 × 10−6 3.04 × 10−4

A3 2.2 0 3.4 0 1.2 0 1 × 10−4 20 1.751 × 10−5 3.04 × 10−3

A4 2.2 0 3.4 0 1.2 0 5 × 10−4 100 8.756 × 10−5 1.42 × 10−2

A5 2.2 0 3.4 0 1.2 0 1 × 10−3 200 1.75 × 10−4 2.5 × 10−2

D1 2.2 0 2.8 0 0.6 0 5 × 10−4 – – –
D2 2.6 0 2.8 0 0.2 0 5 × 10−4 – – –
D3 2.6 0 2.8 0 0.2 0 1 × 10−4 – – –

P1a 2.2 0 3.3 0 1.1 0 1 × 10−4 – – –
P1b 2.2 0 3.3 0 1.1 0 5 × 10−4 – – –
P2a 1.4 0 2.8 0 1.4 0 1 × 10−4 – – –
P2b 1.4 0 2.8 0 1.4 0 5 × 10−4 – – –

S1 1.2 0 – – – – 1 × 10−3 – – –
S2 1.2 0 – – – – 1 × 10−4 – – –

Table 1. Inflow disturbance characteristics.

was extended from −15D to 15D in the transverse direction x and from −15D to 25D

in the transverse direction y. Simulations were carried out for different amplitudes
and frequencies of the inflow disturbances as listed in table 1.

3.1.1. Effect of the inflow disturbance amplitude

Here we examine the effect of the disturbance amplitude (which controls the ‘degree
of nonlinearity’ reached by the disturbances at the point of maximum amplification)
on the radiated sound. To achieve this, the flow is perturbed by two axisymmetric
waves with frequencies ω1 = 2.2 and ω2 = 3.4, for a range of initial amplitudes.
The frequencies ω1 and ω2 were chosen so that the difference frequency resulting
from nonlinear interaction between two waves would be maximally amplified. These
frequencies were chosen based on linear PSE; details can be found in Sandham &
Salgado (2008). Simulations for five different amplitudes of the inflow disturbance
were carried out (cases A1–A5 in table 1). The two primary waves have the same
amplitude A (2.5), given in the eighth column of table 1, and zero phase difference. The
last two columns of the table give the pressure r.m.s. value of the inflow disturbance in
the shear layer at r/D = 0.5, and the streamwise maximum value of the r.m.s. pressure
(located near the end of the potential core) obtained for the particular amplitude of
inflow disturbance. The maximum r.m.s. value serves as a measure of the nonlinearity
experienced by the disturbance when it reaches its maximum magnitude.

Figure 2 shows the instantaneous dilatation rate field obtained for different
amplitudes of the inflow disturbance (results for cases A1 and A2 are very similar;
so we show the results for only one of these cases). In the case of a very low
amplitude (figure 2a), the disturbance magnitude does not reach values sufficient to
cause observable nonlinear interactions before the disturbance starts to decay because
of the jet spreading. In this case, only the sound generated by the instability wave
itself (i.e. the direct linear mechanism of sound generation) can be observed. The
acoustic wavelength λ1 corresponds to the lower inflow forcing frequency ω1 = 2.2,
which undergoes stronger amplification during the disturbance evolution. We can also
see that the sound radiated by the linear mechanism (similar to that of Mach wave
radiation in highly supersonic jets) is highly directional and confined to small angles
from the jet downstream axis.
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Figure 2. Dilatation rate contours obtained by perturbing the jet with two axisymmetric
modes at frequencies ω1 = 2.2 and ω2 = 3.4. Results are shown for four different amplitudes
of the inflow disturbance given in table 1 (cases A2–A5). (a) A = 1 × 10−5 (contour
levels: −2 × 10−7 to 2 × 10−7); (b) A = 1 × 10−4 (−2 × 10−6 to 2 × 10−6); (c) A = 5 × 10−4

(−1 × 10−5 to 1 × 10−5); (d ) A = 1 × 10−3 (−2 × 10−5 to 2 × 10−5). λ1 and λdiff correspond to
the dominant acoustic wavelength for the linear and nonlinear mechanisms, respectively.

With increasing disturbance amplitude (figure 2b–d ), nonlinear interactions become
more and more significant. As a result, a change in the structure of the sound field
can be observed. In case A3 (figure 2b), the acoustic field still seems to be dominated
by linear sound, although the appearance of other frequencies can also be noticed.
For higher amplitudes (figure 2c,d ) an increase in the wavelength of the emitted
sound (λdiff ) is seen, and in these cases the dominant frequency corresponds to that
of the difference frequency mode �ω =1.2. It is also noticeable that the decay of the
disturbance amplitude further downstream is much slower when nonlinear interactions
are significant. This is probably because the lower frequencies resulting from these
interactions continue to be amplified further downstream. The sound generated by the
nonlinear mechanism extends over a broader range of angles from the jet downstream
axis in comparison to that radiated by the linear mechanism. Even then, the sound
is still highly directional and is confined mainly to angles less than 45o from the jet
downstream axis.
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Figure 3. Spectra of pressure fluctuations in the shear layer at r/D = 0.7 at different
streamwise locations: (a) z/D = 0; (b) z/D =2; (c) z/D = 5; (d ) z/D = 12. Line styles are
indicated in (a). Cases A1 and A3–A5.

The spectrum of pressure fluctuations (denoted by E) in the shear layer
(r/D = 0.7), at different streamwise locations and for different amplitudes of the
inflow disturbances, is shown in figure 3. The length of the time-history signal used
throughout the paper in spectra calculations is equal to one period of the lowest
resolved frequency ω = 0.2. At z/D = 0 (the nozzle exit), two spectral peaks of nearly
equal power corresponding to the inflow frequencies ω1 = 2.2 and ω2 = 3.4 are seen.
For larger amplitudes of the disturbance (the dash–dotted and dash–dot–dotted lines)
the difference frequency �ω = 1.2 can also be observed. At z/D =2, modes arising
from various interactions (difference frequency, sum frequency and harmonics of ω1

and ω2) begin to be observed for all amplitudes of the inflow disturbance except for
the smallest one (the solid line) for which the evolution process is still linear. Further
downstream at z/D =5 the power of the difference mode becomes comparable to
that of ω1 and ω2, and at z/D = 12 it becomes the dominant mode, as all other higher
frequency modes cease to be amplified at these streamwise locations.

Figure 4 shows the pressure fluctuations spectra on an arc of radius 25D centred
at z/D = 0 (the nozzle exit). The results are presented for four different amplitudes
of the inflow disturbance (figure 4a–d ) and for four different angles θ from the jet
downstream axis. The difference frequency is the strongest signal in the acoustic
field, when the amplitude of the inflow disturbance is sufficient to produce significant
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�ω = 1.2 ω1 = 2.2 ω2 = 3.4 Ratio of inflow amplitudes

19.09 3.47 4.77 5

Table 2. Comparison of mode pressure amplitudes at r = 25D and θ = 30◦: ratio between
cases A4 and A3.
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Figure 4. Pressure fluctuation spectra on an arc of radius equal to 25D centred at z/D = 0
(nozzle exit). (Here θ is the angle measured from the jet downstream axis.) Results are shown
for four different amplitudes of the inflow disturbance given in table 1 (cases A2–A5). (a) A =
1 × 10−5; (b) A = 1 × 10−4; (c) A = 5 × 10−4; (d ) A = 1 × 10−3. Line styles are indicated in (a).

nonlinear effects in the shear layer. The quadratic nonlinear nature of a spectral peak
at the difference-frequency mode becomes apparent if we examine the increase in
pressure amplitude of modes ω1, ω2 and �ω as the inflow disturbance amplitude is
increased. Results are shown in table 2 for comparison between cases A3 and A4. It
can be seen that, while in the acoustic field the amplitude of the inflow frequencies
varies approximately linearly with the disturbance amplitude, the amplitude of the
difference mode varies approximately quadratically. (Note that nonlinear interactions
also cause a slight change to the base flow as a result of Reynolds stresses; so
the ratios are not exactly as expected.) The following conclusions can be drawn
after examining the amplitude of the radiated sound at different angles from the jet
downstream axis (sound directivity): (i) When sound is generated by the instability
wave originally presented in the flow, i.e. by linear mechanism (e.g. at ω = 2.2)
there is a sharp cutoff of the sound at some angle θ . This can be seen clearly in
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Figure 5. Dilatation rate contours obtained as a result of perturbing the jet by two
axisymmetric modes with different �ω. Contour levels: −1 × 10−5 to 1 × 10−5. (a) ω1 = 2.2,
ω2 = 3.4, case A4; (b) ω1 = 2.2, ω2 = 2.8, case D1; (c) ω1 = 2.6, ω2 = 2.8, case D2.

figures 4(a) and 4(b). Weak radiation occurring at ω = 2.2 and θ = 50◦ for high
disturbance amplitudes (figure 4c, d ) is likely to originate from nonlinear interaction
rather than from a linear mechanism. (ii) There is a rapid decrease in the amplitude
of the radiated sound with increasing angle θ from the jet downstream axis for
both linear and nonlinear mechanisms, but this decrease is slower in the case of
the nonlinear mechanism. Therefore, the difference frequency is more prominent for
higher angles θ . (iii) For cases where nonlinear effects are significant (figure 4c, d ), an
additional spectral peak at ω =1 acquires a significant amplitude. This peak results
from the subsequent nonlinear interaction between the difference frequency mode
�ω = 1.2 and the inflow frequency ω1 = 2.2.

3.1.2. Behaviour as �ω → 0

In the previous section the frequencies of the primary waves were chosen to give
maximum amplification of the difference frequency. The results obtained were in
good qualitative agreement with experiments (Stromberg et al. 1980), but the choice
of frequencies requires further clarification. When the frequencies become close to
each other, the amplitude of the difference frequency near the end of the potential
core decreases, but the radiation efficiency increases because of the lower frequency of
the difference mode. Results obtained with an earlier simplified model (Sandham &
Salgado 2008) suggested that the latter effect is dominant and the difference-frequency
radiation gets stronger as the two frequencies approach each other. This result was
somewhat surprising and further clarification was sought in the present study. For
this purpose, two additional simulations were carried out with closely spaced primary
frequencies (cases D1 and D2 in table 1). These simulations were performed for the
same amplitudes of the inflow disturbance as in case A4, such that nonlinear effects
are expected to be significant.

Figure 5 shows instantaneous dilatation rate contours for the cases with different
�ω. It can be seen that when the difference between input frequencies is reduced
to �ω = 0.6, the structure of the sound field resembles that obtained with �ω = 1.2
(compare figures 5a and 5b). In both cases the dominant wavelength corresponds
to the difference frequency, although some higher frequencies are also noticeable at
angles close to the jet downstream axis for the case with �ω = 0.6. Further reducing
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Figure 6. Pressure fluctuation spectra on an arc of radius equal to 25D centred at z/D = 0
(nozzle exit). (Here θ is the angle measured from the jet downstream axis.) Results are shown
for cases D1, D2 and D3 in table 1. (a) ω1 = 2.2, ω2 = 2.8, case D1; (b) ω1 = 2.6, ω2 = 2.8, case
D2; (c) ω1 = 2.6, ω2 = 2.8, case D3. Line styles are indicated in (a).

the difference between frequencies to �ω = 0.2 (figure 5c) leads to a change in the
structure of the sound field. In this case, sound is mainly generated by the direct
(linear) mechanism, and sound waves at the forcing frequencies (which are very close
to each other) are observed.

Figure 6 shows the pressure fluctuations spectra on an arc of radius 25D at several
angles θ from the jet downstream axis. Results are shown for cases D1 (�ω = 0.6),
D2 (�ω = 0.2, A= 5 × 10−4) and D3 (�ω =0.2, A= 1 × 10−4) in figures 6(a), 6(b)
and 6(c), respectively. It can be seen that, in general, the results for acoustic pressure
obtained with �ω = 0.6 (figure 6a) are similar to those obtained with �ω = 1.2
(figure 3c). The difference frequency �ω =0.6 dominates the acoustic field at all
angles θ , but its amplitude is slightly smaller than that obtained with �ω = 1.2. When
the two inflow frequencies are very close to each other (figure 6b), the spectra start
to look different. In this case the very low frequency �ω = 0.2 produced by nonlinear
interaction between the two primary instability waves continues to interact with itself,
creating a cascade of harmonics. In addition, it also interacts with each of the inflow
frequencies generating additional modes in their vicinity. It seems that through these
nonlinear processes, energy at the difference frequency �ω = 0.2 is reduced. For the
sake of completeness, spectra obtained for �ω = 0.2 with very small inflow disturbance
amplitude are shown in figure 6(c). One can see that for very small amplitude inflow
disturbances, the linear mechanism is the dominant one and the sound field obtained
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Figure 7. Dilatation rate contours. A =1 × 10−3, contour levels −2 × 10−5 to 2 × 10−5. (a) Jet
perturbed by a single frequency ω = 1.2, case S1 in table 1; (b) jet perturbed by two frequencies
ω1 = 2.2 and ω2 = 3.4, case A5 in table 1.

is similar to the other cases with low amplitude inflow disturbance. To capture these
effects in simplified models seems to require, as a minimum, nonlinear PSE with a
large number of temporal modes.

3.1.3. Remark on linear versus nonlinear mechanism of sound radiation

In the previous sections we have demonstrated that for certain combinations
of forcing frequencies, the difference frequency mode resulting from nonlinear
hydrodynamic interactions can be an efficient direct sound radiator. This, in turn,
may explain why acoustic spectra of subsonic jets have a broadband maximum at
frequencies lower than those associated with the most unstable hydrodynamic modes
near the end of the potential core. A logical question is: what happens if we perturb the
jet by a single mode with a frequency equal to that of the difference frequency spectral
peak? To clarify this issue we carried out two additional simulations in which the jet
was perturbed by a single frequency ω = 1.2 with two different amplitudes A= 1 × 10−3

and A= 1 × 10−4 (cases S1 and S2 in table 1). Results for these two cases show that
the sound radiates at a single frequency ω = 1.2 and its amplitude scales linearly with
the amplitude of the inflow disturbance, indicating a linear radiation mechanism.
Dilatation rate contours for cases S1 and A5 are compared in figures 7(a) and 7(b),
respectively. The amplitudes of the forced modes are equal in both cases and the
contour levels are the same. One can see that the nonlinear mechanism (figure 7b) is
much more efficient in radiating sound in comparison to the direct (linear) mechanism
(figure 7a).

In an attempt to explain what makes the nonlinear mechanism more efficient, the
spatial envelope of the pressure at ω = 1.2 was examined. A fast Fourier transform
in time was performed for both simulations, and the pressure amplitude at ω = 1.2
was extracted as a function of z at r =0.5D (see figure 8). At this point, it is worth
recalling that the efficiency of sound radiation from subsonic modes is controlled by
the following parameters (Crighton & Huerre 1990; Sandham, Morfey & Hu 2006b):
(i) the frequency of the mode (radiation is more efficient for the lower frequencies), and
(ii) the shape of the wavepacket (radiation is more efficient for the modes attaining
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Figure 8. Axial variation of the mode amplitude corresponding to the frequency ω = 1.2
(calculated from the pressure fluctuations inside the shear layer r/D = 0.5). Dashed line:
two-frequency forcing (case A5; ω1 = 2.2; ω2 = 3.4); solid line: single-frequency forcing (case
S1, ω =1.2).
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Figure 9. Wavenumber spectral energy (calculated from the pressure fluctuations) plotted
against the phase Mach number Mph. Spectra are shown at r/D =1.5. Line codes for
two-frequency forcing (case A5; ω1 = 2.2; ω2 = 3.4); solid line, �ω = 1.2; dashed line, ω1 = 2.2;
dash-dotted line, ω2 = 3.4. Line code for single-frequency forcing (case S1): dash-dot-dotted
line, ω = 1.2.

rapid growth and saturation). By comparing the results in figure 8 one can see that
while the frequency is the same, the shape of the wavepacket is different.

Further insight may be gained by examination of the energy content of wavenumber
pressure spectra as only part of the spectra with supersonic phase velocities is
potentially able to radiate sound into a far field (e.g. Tam & Morris 1980; Tam 2009).
The wavenumber spectra are calculated by Fourier transform of pressure fluctuations
in time and in the streamwise direction at a particular radial location. Figure 9 shows
wavenumber spectra plotted against the phase Mach number Mph = Cph/a, where
Cph is a phase velocity and a is the ambient speed of sound. The phase velocity is
given by Cph = ω/k, where k is the axial wavenumber. The spectra are shown at the
radial distance r/D =1.5. One can see that the difference frequency �ω =1.2 (solid
line) contains significantly more energy in the supersonic tail compared to spectra at
the primary forcing frequencies ω1 (dashed line) and ω2 (dash-dotted line) and also
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compared with spectra with excitation of the jet by a single frequency (dash-dot-dotted
line). This illustrates why the difference frequency wave is more efficient in radiating
sound compared with waves at the inflow frequencies. This also clarifies why the wave
resulting from nonlinear interaction radiates sound more efficiently compared with
the wave at the same frequency that is initially present in the flow. Finally, it is worth
noting that the spectra shown in figure 9 depend on the distance from the jet centreline
at which they are calculated. For example inside the jet (r/D =0 or r/D =0.5), the
main peaks are higher at inflow frequencies compared with the difference frequency;
however, the supersonic tail is still the most energetic for the difference frequency.

3.2. Alternative wave interactions

Until now only interactions between axisymmetric (n= 0) modes have been
investigated. Bearing in mind that the growth rates of the axisymmetric (n= 0) and
first azimuthal (n= 1) modes are similar, the interaction between first two azimuthal
modes as well as that between the axisymmetric and first azimuthal modes is also
expected to be important with respect to sound generation. The interaction between
first two azimuthal modes generates an axisymmetric difference frequency spectral
peak, and the interaction between axisymmetric and first azimuthal modes leads to a
difference frequency with azimuthal wavenumber n= 1 (or n= −1). Both azimuthal
modes with n= 0 and n= 1 (n= −1) are known to be active in the acoustic far field.
Inflow frequencies were chosen again such that the difference frequency �ω would be
maximally amplified. The results obtained were very similar to those presented earlier
for the interaction between two axisymmetric waves: (i) the difference frequency
dominates in the acoustic far field, (ii) sound radiation is mainly confined to the small
angles from the jet downstream axis, and (iii) results are not very sensitive to the
specific choice of the inflow frequencies, provided that both primary waves are highly
amplified and the resulting difference frequency is somewhere within the range of the
broadband peak (around St ≈ 0.22). Therefore, we have chosen not to present the
results here; more details may be found in Suponitsky & Sandham (2009).

3.3. Interaction between two waves with azimuthal numbers
n= ±1 (−1/+1 interaction)

The interaction between two helical modes with the azimuthal numbers n1 = −1 and
n2 =+1 is also of great interest with respect to sound radiation, as it generates a
difference frequency spectral peak with azimuthal wavenumber n= +2 (or n= −2).
This azimuthal mode has been found to be active in the acoustic far field of subsonic
jets (e.g. Gamard, Jung & George 2004). Contributions to the sound from modes
with azimuthal wavenumbers n= ±2 may come from a linear mechanism (direct
radiation at low frequencies by instability waves with azimuthal wavenumbers n= ±2)
and/or from the weakly nonlinear mechanism (radiation resulting from the interaction
between two instability waves, e.g. two waves with azimuthal numbers n1 = 0 and
n2 = 2 or with n1 = −1 and n2 = +1). The linear mechanism is unlikely to make a
major contribution, as amplitudes and growth rates of the azimuthal modes n= ±2
near the nozzle exit are small for such low frequencies. The interaction between the
modes with azimuthal wavenumbers n= 0 and n= 2 is also unlikely to be very efficient
because of the large differences in the growth rates for these modes. Therefore, the
main contribution to the noise coming from the azimuthal mode with n=2 is most
likely to come from the interaction between the instability modes with azimuthal
wavenumbers n= ±1. The relevance of such an interaction to the sound generation
from the subsonic jet is also considered in the recent work of Wu & Huerre (2009).
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Case ω1 n1 ω2 n2 �ω �n Co-flow (%) Aij

C1 ± 1 2.4 −1 3.0 +1 0.6 2 10 5 × 10−4

C2 ± 1 2.4 −1 3.0 +1 0.6 2 10 1 × 10−4

C3 ± 1 1.8 −1 2.4 +1 0.6 2 10 5 × 10−4

C4 ± 1 2.2 −1 3.2 +1 1.0 2 10 5 × 10−4

C5 ± 1 2.4 −1 3.0 +1 0.6 2 1 1 × 10−4

Table 3. List of runs for the interaction with azimuthal numbers n= ±1.
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Figure 10. (a) Pressure fluctuations spectra calculated at r = 25D and θ = 60◦ for the
simulations with the different amounts of co-flow, cases C2 ± 1 and C5 ± 1 in table 3;
(b) growth rates −αi versus frequency calculated from LST for the velocity profiles at z/D = 0
with different amounts of co-flow.

The interaction between two helical modes with opposite azimuthal wavenumbers is
known to be very efficient in causing transition to turbulence. As a result, simulations
with an amplitude of the inflow disturbance large enough to cause significant nonlinear
effects also lead to breakdown of the jet column into smaller structures. When this
happens we cannot distinguish between the sound coming from instability waves
and that radiated during the process of breakdown of the jet column into smaller
structures. An additional undesirable side effect of the transition to turbulence is that
because the pressure fluctuations lose their periodic behaviour, much longer times are
required to accumulate converged statistics.

To overcome this problem, the co-flow was increased to 10 %. This reduces the
disturbance growth rates and allows us to carry out simulations with the desired
amplitudes of the inflow disturbances. The inflow frequencies were chosen close to
the most amplified hydrodynamic frequency. The list of runs carried out for this
kind of interaction is given in table 3. The effect of the co-flow on the amplitude of
radiated sound is studied by comparing the results obtained for cases with different
amounts of co-flow (vcof low = 1 % and vcof low = 10 %, cases C2 ± 1 and C5 ± 1 in
table 3). Pressure fluctuation spectra are shown in figure 10(a). It can be seen that the
increase of the co-flow from 1 % to 10 % has a significant effect (approximately half
an order of magnitude) on the amplitude of the difference frequency spectral peak at
�ω = 0.6. This can be explained by comparing growth rates calculated for the inflow
velocity profiles (z/D = 0) with different amounts of co-flow using LST (figure 10b).
This figure shows that the amount of co-flow has a noticeable effect on the growth
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Figure 11. (a) Dilatation rate contours, contour levels −1 × 10−6 to 1 × 10−6. (b) Pressure
fluctuation spectra at radial distance r = 25D and different angles θ from the jet downstream
axis. Case C1 ± 1 in table 3 (ω1 = 2.4, n1 = −1 and ω2 = 3.0, n2 =+1).

rates, and therefore on the amplitude which a particular mode reaches during its
downstream evolution. As such, with bigger co-flow, a higher amplitude of the inflow
disturbance is required for the breakdown into turbulence to occur.

An instantaneous sound field is presented in figure 11(a) for the C1 ± 1 case in
table 3. One can see that the sound field obtained from the jet perturbed by two modes
with azimuthal wavenumbers n1 = −1, n2 = +1 differs from that obtained when the
jet is perturbed by two axisymmetric modes (compare figure 11a with figure 2c).
The following differences can be observed between these results and those obtained
with n1 = n2 = 0: (i) perturbation of the jet by the pair of helical modes n= ±1 leads
to stronger side-line sound radiation; (ii) the peak sound radiation occurs at higher
angles θ from the jet downstream axis, consistent with Wu & Huerre (2009); and (iii)
the sound seems to originate closer to the inflow boundary (i.e. before the end of the
potential core).

The pressure spectra calculated on an arc of radius 25D are shown in figure 11(b).
As previously discussed, the difference frequency is dominant in the acoustic field,
provided the amplitude of the inflow disturbance is sufficient to cause significant
nonlinear effects. Following the variation of the amplitude with angle θ , we can
see that the local maximum occurs in the vicinity of θ ≈ 60◦, coinciding with the
visual angle of the peak radiation (figure 11a). The maximum amplitude of the
difference frequency occurs at θ = 30◦. However, it seems that at small angles there
is an influence of the hydrodynamic near field that is responsible for the increase
of the mode amplitude. The nonlinear nature of the difference frequency spectral
peak can be seen from figure 12(a), which shows pressure spectra calculated with
different amplitudes of the inflow disturbance (cases C1 ± 1 and C2 ± 1 in table 3).
One can see that while the amplitude of the inflow frequency ω1 = 2.4 varies linearly
with the amplitude of the inflow disturbance (approximately a factor of 5), the
amplitude of the difference frequency (�ω =0.6) varies as the square of the inflow
disturbance amplitude (approximately a factor of 25). Spectra corresponding to
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Figure 12. (a) Pressure fluctuation spectra calculated at r = 25D and θ =60◦ for two different
amplitudes of the inflow disturbance, cases C1 ± 1 and C2 ± 1 in table 3. (b) Pressure fluctuation
spectra calculated for several azimuthal modes at r = 5D and θ = 45◦, A = 5 × 10−4.
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Figure 13. (a) Pressure fluctuation spectra calculated at radial distance of r = 25D for the
cases C1 ± 1, C3 ± 1 and C4 ± 1 in table 3. (a) θ = 45◦; (b) θ = 60◦.

particular azimuthal modes are shown in figure 12(b) for the C1 ± 1 case. It can
be seen that the difference frequency �ω = 0.6 corresponds to the azimuthal mode
n= 2, as expected from the interaction between two waves with ω1 = 2.4, n1 = −1 and
ω2 = 3.0, n2 = +1.

It is also worth mentioning that the maximum sound radiation resulting from the
interaction between two helical modes with n= ±1 seems to occur at lower frequencies
of the difference mode in comparison with those obtained from the interaction between
two axisymmetric (n1 = n2 = 0) or azimuthal (n1 = n2 = +1) modes. To demonstrate
this, an additional simulation with �ω = 1.0 was carried out (case C4 ± 1). Frequencies
ω1 = 2.4 and ω2 = 3.0 as well as ω1 = 2.2 and ω2 = 3.2 were chosen to be centred around
the most amplified hydrodynamic mode (based on LST calculations). To examine the
effect of taking frequencies in a different range, an additional simulation with slightly
lower frequencies but with the same �ω was carried out (case C3 ± 1). The results
are presented in figure 13. In general, the amplitude of the difference mode is not
significantly influenced either by increasing the frequency of the difference mode from
�ω = 0.6 to �ω =1.0 or by choosing the frequencies in a slightly different range
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Case Modes A Frequency Efluc at r/D = 0.5

Cn = 0 n = 0 5 × 10−4 0.2–7.0 2.124 × 10−6

Cn = 1 n = +1 5 × 10−4 0.2–7.0 9.808 × 10−7

Cn = ±1 n = ±1 5 × 10−4 0.2–7.0 1.962 × 10−6

Cn = 0 ± 1 n = 0, ±1 5 × 10−4 0.2–7.0 4.086 × 10−6

Cn = 0 ± 1 ± 2 n = 0, ±1, ±2 5 × 10−4 0.2–7.0 6.385 × 10−6

Cn = 0 ± 1 ± 2a n = 0, ±1, ±2 1 × 10−4 0.2–7.0 2.554 × 10−7

Cn = 0 ± 1 ± 2b n = 0, ±1, ±2 2 × 10−3 0.2–7.0 1.022 × 10−4

Table 4. List of runs for the interaction with azimuthal numbers n= ±1.

(ω1 = 2.4, ω2 = 3.0 or ω1 = 1.8, ω2 = 2.4). This result further indicates the broadband
nature of low-frequency sound. It also shows that the results obtained are rather
insensitive to the initial values, provided that these frequencies are highly amplified.
A detailed examination of the results (figure 13) shows, however, some differences
between the results with respect to the directivity of the radiated sound. It can be
seen that in case C1 ± 1, the radiation is stronger at θ =60◦ in comparison to that at
θ = 45◦ at radial distance r = 25D. The situation is different for the C4±1 case, where
the amplitude of the difference frequency mode is similar for both angles. Therefore,
it seems that the amplitude of the radiated sound coming from the jet perturbed with
two helical modes n= ±1 remains nearly constant over the range of angles θ � 70◦.
It is worth recalling that this result differs from that obtained earlier (interactions
0/0, 1/1 and 0/1), in which the radiated sound was mostly confined to small angles
θ from the jet downstream axis.

Many additional interactions are possible. In Appendix A we consider a case in
which the frequencies are integer multiplier of the difference frequency, but find no
evidence for resonance. In Appendix B the difference in radiation patterns resulting
from different kinds of nonlinear interactions is demonstrated by exciting the jet with
three modes simultaneously.

4. Perturbation of the flow by a wide range of modes
In this section we present some results obtained from simulations in which the base

flow was perturbed over a broad range of frequencies and with a range of azimuthal
modes. The idea is to generalize the model of sound radiation based on the interaction
between two primary instability waves that was studied in the previous sections and
investigate how well the predictions of the sound field obtained by current approach
compare with results obtained from DNS or experiments. For these simulations the
initial disturbance is defined by ũ =

∑N

i=1

∑M

j=1 Re{Aij ûij (r)exp(i(njΘ − ωit + φij ))},
where Aij is the amplitude of a particular mode, ûij (r) is an eigenfunction, nj is the
azimuthal mode number, ωi is a real frequency and φij is a randomized phase. For
the simulations reported in this section a co-flow of 10 % was added to the jet. In
all simulations the flow is perturbed for frequencies of ωk =0.2k, k = 1, 35, and each
mode has the same amplitude Aij = A. A list of simulations is given in table 4.

The spectra of pressure fluctuations calculated at r = 30D and θ = 30◦ are shown in
figure 14(a) for the jet perturbed with different combinations of the azimuthal modes.
(The interval between two subsequent frequencies is �ω =0.2 (�St = 0.0318), i.e. all
points plotted correspond to excited frequencies.) One can see that for all cases the
acoustic spectra feature a broadband low-frequency peak in the vicinity of St ≈ 0.2, in
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Figure 14. Spectra of the pressure fluctuations calculated at r = 30D and θ = 30◦. (a) Effect of
perturbing the jet with different combinations of azimuthal modes (only excited frequencies are
shown), A = 5 × 10−4; (b) the spectra for cases n= 0 and n= 0, ±1, ±2 as in (a) but including
frequencies which were not initially excited.

agreement with experimental and DNS results. For the Cn = 0 case (excitation by only
axisymmetric modes) the peak is narrowest. This can be explained by the fact that only
axisymmeric modes can be generated as a result of interactions between axisymmetric
modes. This result also suggests that contributions from different interactions enter
at slightly different frequencies, altogether generating a broadband peak.

At higher frequencies more significant differences between cases can be observed.
When the jet is perturbed by only axisymmetric or first azimuthal modes, the high-
frequency part of the spectrum is characterized by very rapid decay, whereas for the
other cases (Cn = ±1, Cn =0 ± 1 and Cn = 0 ± 1 ± 2) the decay is much more gradual,
and the overall shape of the spectra resembles that obtained in experiments. In the
following we will show that this change in the behaviour of the high-frequency part
of the spectrum can be attributed to whether or not the excitation by a particular
combination of modes leads to a breakdown of the jet into smaller structure with
ultimate transition to turbulence. Figure 14(b) shows the same spectra for cases
Cn =0 and Cn = 0 ± 1 ± 2, but with an interval between two subsequent frequencies
�ω = 0.1 (�St = 0.0159), i.e. including frequencies that are not initially excited. One
can see that the spectrum for the Cn =0 case is formed from discrete forced frequencies,
whereas for the Cn = 0 ± 1 ± 2 case it is continuous. This indicates that there is a
change in the flow field structure between the two cases.

To illustrate the change in the flow structure, figure 15 shows the sound and
corresponding hydrodynamic fields. The sound field is shown by contours of the
dilatation rate and the hydrodynamic field by contours of the vorticity magnitude.
Figure 15(a–d ) corresponds to the different cases in table 4: (a) Cn = 0, (b) Cn = +1,
(c) Cn =0 ± 1 and (d ) Cn =0 ± 1 ± 2. One can see that for the cases in which the
jet is excited by only axisymmetric or first helical modes (figure 15a, b), the sound
field is characterized by low-frequency waves radiating mainly in the downstream
direction. No side-line sound is observed in these cases. On the other hand, for the
cases in which the jet is excited by a combination of azimuthal modes, the sound
field is less organized and side-line radiation can be observed. Comparing vorticity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

23
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010002375


530 V. Suponitsky, N. D. Sandham and C. L. Morfey

20

(a)

r/D

r/D

z/D z/D

(b)

(c) (d)

10

0

0 10 20 30

10

5

0

0 10 20 30

5

Figure 15. Contours of the dilatation rate and enstrophy. (a) Cn = 0; (b) Cn = +1;
(c) Cn =0 ± 1; (d ) Cn =0 ± 1 ± 2 (see table 4). Contour levels are the same in all cases.

magnitude, the main difference between the results presented in figures 15(a) and
15(b) and those in figures 15(c) and 15(d ) is whether the jet breaks down into smaller
structures near the end of the potential core. These results clearly suggest that the
low-frequency waves radiating in the downstream directions originate from primary
instability waves (or more precisely interactions between them), whereas a significant
portion of high-frequency sound at all angles comes from the breakdown of the
large-scale structures near the end of the potential core.

Figure 16 shows the dilation rate obtained by excitation with the modes
n=0, ±1, ±2 and different amplitudes of the inflow disturbance: (a) A= 1 × 10−4

(case Cn = 0 ± 1 ± 2a) and (b) A= 5 × 10−4 (case Cn =0 ± 1 ± 2). Figure 16(c) shows
the dilatation rate obtained for the case in which the base flow is not maintained
during the simulation, i.e. forcing terms are switched off. This simulation can be viewed
as a DNS on a coarse grid with all other parameters the same as for figure 16(b). It
can be seen that for the small amplitude inflow disturbance (figure 16a) the sound
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Figure 16. Contours of the dilatation rate: (a) case Cn =0 ± 1 ± 2a (A =1 × 10−4); (b) case
Cn = 0 ± 1 ± 2 (A = 5 × 10−4); (c) DNS on a coarse grid (base flow forcing terms are switched
off), all other parameters are the same as in (b).

field consists of low-frequency waves radiated in the downstream direction and also
of other waves originating close to the nozzle exit and radiating at higher angles
from the jet centreline. Downstream sound comes mainly from interactions 0/0, 1/1
and 0/1 (or 1/0) considered in the previous sections, while the low-frequency sound
radiated at higher angles comes from the interaction −1/+1. It is worth mentioning
that no breakdown of the large structures is observed for the small amplitude of the
inflow disturbance in figure 16(a). Comparing results for the higher amplitude of the
inflow disturbance (figure 16b, c), we can see that the sound fields obtained with and
without maintaining the base flow do not look very different, suggesting that the
current approach captures important mechanisms of sound radiation from subsonic
jets. When the base flow is maintained (figure 16a, b), some coherent high-frequency
sound can be seen very close to the nozzle exit. This sound (which does not exist
when the base flow is not maintained) appears to arise from a linear mechanism at
the inflow boundary where LST modes, calculated using a parallel flow assumption,
adjust to the non-parallel base flow.

Finally, figure 17 shows spectra of pressure fluctuations calculated at r = 30D

and θ = 30◦ for different amplitudes of the inflow disturbance (figure 17a) and a
comparison between the results obtained with and without maintaining the base flow
during the simulation (figure 17b). Experimental data from Stromberg et al. (1980)
are also added in figure 17b. Results are shown for the jet perturbed with modes
n= 0, ±1, ±2, cases Cn =0 ± 1 ± 2, Cn =0 ± 1 ± 2a and Cn = 0 ± 1 ± 2b in table 4.
In figure 17(a) a solid light grey line corresponds to the case with A=1 × 10−4

multiplied by a factor of 25. One can see that, even with a small amplitude of the
inflow disturbance (a weakly nonlinear case), the low-frequency broadband peak in
the vicinity of St ≈ 0.2 is well captured. Moreover, the amplitude of the radiated
sound scales quadratically with the amplitude of the inflow disturbance (compare
the solid light grey and dashed lines in figure 17a). This result is very important, as
it clearly illustrates the nonlinear mechanism responsible for the sound radiation at
these frequencies. Not much difference is observed for the simulations with bigger
amplitudes of the inflow disturbances, as in these cases nonlinear effects are significant,
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Figure 17. Spectra of the pressure fluctuations calculated at r = 30D and θ = 30◦. (a) Effect
of the inflow disturbance amplitude on the jet perturbed by mode n= 0, ±1, ±2. The light grey
line corresponds to the case with A = 1 × 10−4 multiplied by a factor of 25; (b) comparison
between the spectra obtained with (dashed line) and without (dash-dotted line) maintaining
base flow during the simulation. Experimental data by Stromberg et al. (1980) are also shown
(solid line).

resulting in nonlinear saturation. From the results presented in figure 17(b) we can
see that the present approach provides a reasonable shape of the acoustic spectrum
(in particular at low angles from the jet downstream axis). The shape of the spectrum
is not very different for the simulations with and without maintaining the base flow.

5. Conclusions
Mechanisms of sound generation by instability waves have been investigated using

numerical simulations. An important feature of the current work is that a base
flow was prescribed using experimental data and maintained during the simulation.
This approach allowed us to distinguish between linear and nonlinear mechanisms of
sound radiation from instability waves. It also makes it possible to separate the sound
originating from instability waves from that generated by small-scale structures.

The results demonstrate that low-frequency waves resulting from interactions
between primary highly amplified instability waves can be efficient sound radiators in
subsonic jets, further confirming earlier findings by Sandham et al. (2006a , 2008). It
has also been shown that nonlinearly generated waves are more efficient in radiating
sound compared with the instability wave at the same frequency originally existing in
the flow. This was demonstrated by comparison of the energy content at supersonic
phase velocities for the different kind of waves. Therefore, the frequency content of
the near (hydrodynamic) field is not enough on its own to predict the radiated sound,
as the origin of the frequency (linear, nonlinear) is also important. These results are
in excellent agreement with the little-known experimental findings of Ronneberger &
Ackermann (1979), who also reported the dominance of the difference frequency
signal (resulting from the interaction between two primary axisymmetric waves) in
the acoustic field of the turbulent round jet at lower Mach numbers.

The results show that interactions between two axisymmetric modes (n1 = n2 = 0)
and between two helical modes n1 = n2 = 1 lead to highly directional sound fields
confined mainly to small angles from the jet downstream axis. The interaction of
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two helical modes (n1 = +1, n2 = −1) is also efficient with respect to the sound
radiation. However, the radiated sound is still weaker than that produced by the 0/0
or 1/1 interactions. It was also found that the −1/+1 interaction leads to the sound
radiation peaking at much higher angles from the jet downstream axis (θ ≈ 60◦) (in
agreement with Wu & Huerre 2009). Simulations with the jet perturbed by a broad
range of frequencies and combinations of azimuthal modes were also carried out.
It was shown that these simulations capture a broadband peak at St ≈ 0.2 at lower
angles from the jet axis, suggesting that this low-frequency noise can be computed
from the interaction model. The amplitude of the radiated sound was found to scale
approximately quadratically with the amplitude of the inflow disturbance. This further
confirms that the interaction between primary instability waves is the most relevant to
the sound generation. A high-frequency noise seems to originate from the breakdown
of the jet column into small-scale structures at the end of the potential core.

Appendix A. Additional calculations concerning potentially
resonant inflow frequencies

In this appendix we consider two cases in which the inflow frequencies satisfy
additional conditions that might lead to resonance effects. The first one is based on
the observations from earlier that the interaction between frequencies �ω and ω1

(the lower inflow frequency) may generate a frequency 2ω1 − ω2 that radiates sound
efficiently into the far field (see figure 3c, d for ω = 1.0) (cases P1a and P1b in table 1).
Of interest is the situation in which this subsequent interaction will generate a mode
at a frequency exactly equal to the difference frequency �ω. In the second case, we
choose the inflow frequencies to be the fundamental (ω1) and its first subharmonic
(ω1/2). In this case the difference frequency resulting from the interaction between
two waves will be exactly equal to the subharmonic (�ω = ω1/2 as in Laufer & Yen
1983) (cases P2a and P2b in table 1).

In the first case the jet was excited with ω1 = 2.2 and ω2 = 3.3 (cases P1a and
P1b in table 1). These inflow frequencies give a difference frequency of �21ω =1.1.
A subsequent interaction between this mode and the inflow frequency ω1 = 2.2 will
generate a frequency 2ω1 − ω2 = �21ω = 1.1. It is worth mentioning that the present
�21ω = 1.1 is very close to the one used in § 3.1.1 (�21ω = 1.2); therefore, in the
absence of additional effects, we do not expect significant differences in the results
as a consequence of a slight decrease in the value of �21ω. The sound field for case
P1b is presented in figure 18(a). It is very similar to that shown in figure 2(c), which
was obtained for a jet excited with ω1 = 2.2 and ω2 = 3.4 for the same amplitude
of the inflow disturbance. The spectra calculated at r =25D and θ = 30◦ are shown
in figure 18(b). It can be seen that (i) the amplitude of the difference frequency
spectral peak is almost the same for cases P1b and A4 (compare the solid line
at ω = 1.1 with the dashed line at ω = 1.2) and (ii) peaks at difference and inflow
frequencies are narrower in case P1b (in comparison to A4), as the current choice of
inflow frequencies limits the number of different frequencies which can be generated
by nonlinear interactions. To summarize, it seems that the amplitude of the sound
radiated at the difference frequency is not affected by this particular choice of inflow
frequencies.

In the second case the jet was excited with ω1 and ω2 = ω1/2 (cases P2a and P2b in
table 1). The frequencies are chosen to give �21 reasonably close to those considered
before, while the fundamental frequency ω1 is highly amplified within a few diameters
from the nozzle exit. These conditions are met by taking ω1 = 2.8 and ω2 = 1.4, which
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Figure 18. (a) Instantaneous dilatation rate contours for the case P 1b (ω1 = 2.2, ω2 = 3.3,
A =5 × 10−4). Contours are shown for the same levels as in figure 2(c). (b) Spectra
of pressure fluctuations calculated at r = 25D and θ = 30◦. Line styles: solid line,
ω1 = 2.2, ω2 = 3.3, A =5 × 10−4; dashed line, ω1 = 2.2, ω2 = 3.4, A = 5 × 10−4; dash-dotted
line, ω1 = 2.2, ω2 = 3.3, A = 1 × 10−4.
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Figure 19. Dilatation rate contours for the jet perturbed at inflow frequencies ω1 = 1.4
and ω2 = 2.8, cases P 2a and P 2b in table 1. (a) Case P2a (A = 1 × 10−4). (b) Case P 2b
(A =5 × 10−4). For (a) and (b) contour levels are the same as in figures 2(b) and 2(c),
respectively.

leads to a difference frequency �21ω =1.4. Figure 19 shows dilatation rate contours
obtained for two different amplitudes of the inflow disturbances. One can see that
the structure of the sound field remains almost the same for both amplitudes of the
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Figure 20. Spectra of pressure fluctuations calculated at (a) inside shear layer at r/D = 0.6
and z/D = 5; (b) at radial distance of r = 25D and θ =30◦. The solid lines correspond to
forcing at ω1 = 2.8 and ω2 = 1.4 and the dashed lines correspond to forcing at ω1 = 2.2 and
ω2 = 3.4; solid symbols are for A = 1 × 10−4 and hollow symbols are for A = 5 × 10−4.

inflow disturbance (compare figure 19a,b with figure 2b, c; in both figures contours
are presented for the same levels).

To understand what is happening in this case, spectra are compared with those
obtained with forcing at ω1 = 2.2 and ω2 = 3.4. Results are presented in figure 20(a)
for a point inside the shear layer at r/D = 0.6 and z/D = 5, and in figure 20(b) for
the sound field at a radial distance of r = 25D and θ = 30◦. The near-field pressure
spectra (figure 20a) suggest that this choice of inflow frequencies does not lead to
significant amplification at the subharmonic frequency, i.e. ‘subharmonic resonance’
(see e.g. Cohen & Wygnansky 1987) does not seem to occur in this case. This can
be seen by comparing amplitudes of the mode at ω = 1.4 for the two cases with
different amplitudes of the inflow disturbances (compare the solid lines with full and
hollow square symbols). One can see that an increase of 5 times in the amplitude
of the inflow disturbances leads to an increase of about 4.5 times in the amplitude
of the spectral peak at ω = 1.4; it appears that the subharmonic growth in this case
is mainly governed by a linear mechanism. On the other hand, a nonlinear growth
of the difference frequency spectral peak at �21 = 1.2 resulting from the interaction
between ω1 = 2.2 and ω2 = 3.4 is clearly seen, by comparing the two dashed lines with
full and open circle symbols. The subharmonic frequency (difference mode at ω = 1.4)
dominates the acoustic field (figure 20b); however, the sound at this frequency is
generated mainly by a linear mechanism (solid lines with full and hollow square
symbols). This can now explain the similar structure of the sound fields seen in
figures 19(a) and 19(b) – in both cases the sound is generated mainly by a linear
mechanism. The above results indicate that the excitation of the jet at fundamental
and subharmonic frequencies does not lead to enhanced sound radiation, in contrast
to the results obtained for the jet excited by two highly amplified instability waves
(frequencies of the difference mode in both cases are similar). However, it is worth
emphasizing that the instability waves at inflow frequencies ω1 = 2.8 and ω2 = 1.4 have
initially different phase velocities, and therefore the conditions for the subharmonic
resonance (Cohen & Wygnansky 1987) are not exactly satisfied in this case. Therefore,
the effect of a possible subharmonic resonance on the radiated noise remains to be
investigated.
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Figure 21. Instantaneous dilatation rate contours for the jet perturbed by the three
modes simultaneously: ω1 = 2.4, n1 = −1; ω2 = 3.0, n2 = +1; ω3 = 1.8, n= +1; A = 5 × 10−4;
co-flow= 10 %. (Contour levels are from −1 × 10−6 to 1 × 10−6.)
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Figure 22. Spectra of pressure fluctuations calculated at radial position r = 25D for
the jet perturbed by three modes simultaneously (ω1 = 2.4, n1 = −1; ω2 = 3.0, n2 = +1;
ω3 = 1.8, n= +1; A =5 × 10−4; co-flow= 10 %). (a) θ =30◦, (b) θ = 45◦ and (c) θ = 60◦.

Appendix B. Three-wave interactions
In this appendix we demonstrate how multiple wave interactions can be interpreted

in terms of the two-wave interactions given in § 3. The jet was perturbed
by the following combination of modes: ω1 = 2.4, n1 = −1; ω2 = 3.0, n2 = 1 and
ω3 = 1.8, n3 = 1, which leads to generation of two difference frequency spectral
peaks: (i) �1ω = 0.6, which results from the interaction between ω1 and ω2 or from
the interaction between ω1 and ω3, having an azimuthal wavenumber �1n= 2 or
�1n= −2, respectively; and (ii) �2ω = 1.2, which results from the interaction between
ω2 and ω3, with an azimuthal wavenumber �2ω = 0 (i.e. axisymmetric). The inflow
amplitude of each mode was taken as A= 5 × 10−4 and the amount of co-flow was
10 %. A snapshot of the dilatation rate field is shown in figure 21. One can distinguish
the existence of two modes in the acoustic field: one which radiates predominantly in
the downstream direction and is characterized by the shorter wavelength, and another
one which radiates more side-line sound and has a longer wavelength. Pressure spectra
calculated from these simulations at a radial distance r =25D and different angles θ

are shown in figure 22. It can be seen that in the downstream direction (θ =30◦,
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figure 22a) the dominant frequency is �2ω =1.2. At θ = 45◦ (figure 22b) both
difference frequency spectral peaks have nearly equal amplitude, whereas at higher
angles (θ = 60◦, figure 22c) the difference frequency �1ω =0.6 becomes dominant.
Spectra in the azimuthal direction (not shown) confirm that the frequencies �1ω = 0.6
and �2ω = 1.2 are associated with azimuthal wavenumbers n=2 (or n= −2) and
n= 0, respectively. The results demonstrate that the sound radiated by instability
waves is not always confined to small angles from the jet downstream axis as usually
assumed.

This work was funded by EPSRC grant EP/E032028/1. Computer time was
provided by EPSRC via the UK Turbulence Consortium (grant EP/D044073/1).
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