
IDENTIFICATION OF
COVARIANCE STRUCTURES

RIIICCCCCCAAARRRDDDOOO LUUUCCCCCCHHHEEETTTTTTIII
Università Politecnica delle Marche

The issue of identification of covariance structures, which arises in a number of
different contexts, has been so far linked to conditions on the true parameters to
be estimated+ In this paper, this limitation is removed+

As done by Johansen ~1995, Journal of Econometrics 69, 112–132! in the con-
text of linear models, the present paper provides necessary and sufficient condi-
tions for the identification of a covariance structure that depends only on the
constraints and can therefore be checked independently of estimated parameters+

A structure condition is developed, which only depends on the structure of the
constraints+ It is shown that this condition, if coupled with the familiar order con-
dition, provides a sufficient condition for identification+ In practice, because the
structure condition holds if and only if a certain matrix, constructed from the
constraint matrices, is invertible, automatic software checking for identification
is feasible even for large-scale systems+

Most of the paper focuses on structural vector autoregressions, but extensions
to other statistical models are also briefly discussed+

1. INTRODUCTION

The aim of this paper is to shed some light on a problem that arises in models
that impose some sort of structure on covariance matrices+ This is the case with
several popular models commonly employed in econometrics and multivariate
statistics: the most prominent in econometrics is probably the structural vector
autoregression ~VAR! model, and much of the present paper will focus on it+
Possible extensions of the results presented here to other contexts will be briefly
discussed in the final section+

The methodology of structural VARs ~SVARs! was pioneered by Sims ~1980!
and then made popular by countless applications, some of which were highly
influential ~Blanchard and Quah, 1989, comes to mind!+ The issues involved in
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the identification and estimation of such models were thoroughly investigated
in Giannini ~1992! and Amisano and Giannini ~1997!, and the present paper
builds heavily on that work+

In these models, it is assumed that a valid representation for a vector of n
observable variables yt is a finite-order VAR1

P~L!yt � m t � «t , (1)

where P~L! is a matrix polynomial in the lag operator, «t is a vector white
noise sequence with covariance matrix S«, and the function m t may depend on
deterministic terms and a given set of exogenous variables+ In SVARs, «t can
be thought of as some function of a vector of n unobservable variables ut ~called
the structural shocks!, which can be assumed independent, or at least uncorre-
lated, and to have unit variance+ The researcher’s interest is normally centered
on recovering the effect of the ut ’s on the yt ’s+

In most models of this kind the link between the structural shocks and the
system innovations can be written as

A~u!«t � B~u!ut , (2)

where A and B are square nonsingular matrices of order n, which are a function
of the parameters to be estimated, u+ In some other cases, the relevant covari-
ance matrix is the so-called long-run covariance matrix of yt , which satisfies
SLR � C~1!S«C~1!' , with C~L!� P~L!�1 + In the rest of the paper, we will use
the generic notation S for the covariance matrix of interest+

We may define a covariance structure as a parametric model featuring two
matrices A and B such that

A~u!SA~u!' � B~u!B~u!'+ (3)

To avoid cumbersome notation, the reference to u henceforth will be dropped,
and A and B will be implicitly assumed to be functions of u+

In this paper, we will consider cases when estimation of the parameters u is
carried out by optimizing some objective function:

f ~s, v~u!!, (4)

where s � vech~S! and v~u! is the vector function

v~u! � vech@A�1BB '~A' !�1 # +

Estimation of these models amounts to finding the vector u such that
A�1BB '~A'!�1 is “closest” ~in a sense to be specified! to S+

The identification question arises because there is no guarantee that Zu is
unique, because the objective function is defined in terms of v~u! and there
may be some Du � Zu ~and a corresponding, different pair of matrices A~ Du! and
B~ Du!! that give rise to the same value of v~ Du!+
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If the objective function f ~s, v~u!! possesses derivatives up to the second
order, identification can be investigated through definiteness of the Hessian
matrix at the optimum+ As a rule, however, the Hessian matrix is itself a func-
tion of the parameters to be estimated, so it cannot be computed before estima-
tion is carried out, which renders this type of check nonoperational+2 As done
by Johansen ~1995! in the context of linear models, the present paper provides
necessary and sufficient conditions for identification that depend only on the
constraints and can therefore be checked independently of estimated param-
eters: this checking procedure can be made automatic, so that it can be applied
to systems of any dimension+ Moreover, as a side benefit, the analytical frame-
work put forward here makes it possible to give the researcher an intuitive insight
as to why a particular model fails to meet the requirements for identification;
an example will be given in Section 5+3+

The plan of the paper is as follows+ Section 2 provides a brief reminder of
some mathematical concepts that will be used in the rest of the paper+ Section 3
explores a special case in which the A matrix is fully restricted to establish
some concepts and exemplify them more clearly, whereas Section 4 deals with
the general case; some examples are given in Section 5+ Finally, Section 6 sum-
marizes the results and briefly discusses applications other than those pre-
sented here+

2. DEFINITIONS AND NOTATION

In this section, we define some concepts and terms that will be used in the rest
of the paper+

2.1. Identification—Generalities

We assume that estimation of the parameters u is carried out by optimizing an
objective function f ~s, v~u!! over a parameter space Q+

It will be assumed that the objective function has derivatives up to the sec-
ond order and has at least one optimum Zu in the interior of Q+ At Zu, we obtain
an estimate of S that obeys

ZA ZS ZA' � ZB ZB '+ (5)

Obvious examples for f ~s, v~u!! include

• concentrated Gaussian likelihood: f ~s,v~u!!� const � 1
2
_ ln6 ZS6� 1

2
_ tr~ ZS�1S!;

• minimum distance estimation ~or generalized method of moments @GMM# !:
f ~s, v~u!! � d 'Ld where d � v~u! � vech S and L is some positive defi-
nite matrix+

As stated in the introduction, ZA and ZB satisfying equation ~5! are not neces-
sarily unique: in fact, ~5! is satisfied by any pair of matrices A1 and B1 such
that
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A1 � Q ZA,

B1 � Q ZBH,

where Q is invertible and H is orthogonal; it is clear that the matrices A1 and
B1 can be considered an equivalent reparametrization of the original model+
The simplest case that can be taken as an example is when H is a permutation
matrix+ In this case, B1 is simply ZB with its columns reordered, that is to say,
the ordering of the structural shocks ut in ~2! is changed+ The case when H or
Q is arbitrary is nevertheless uninteresting, because the practically relevant issues
arise when considering whether such matrices Q and H can exist in a neighbor-
hood of the optimum+ In the terminology of Rothenberg ~1971!, therefore, we
are dealing with local, rather than global identification+3

To achieve identification, some constraints on A and B must be imposed+ In
this paper, we will follow a long-standing tradition of imposing a system of
ra � rb � r linear constraints:4

Ra vec A � Ra a � da , (6)

Rb vec B � Rb b � db (7)

~lowercase symbols will be used throughout to indicate vectorizations of matri-
ces, i+e+, a [ vec A!+ Alternatively, the constraints can be written in explicit
form as follows:

a � Sau� sa , (8)

b � Sbu� sb , (9)

where u are the unconstrained parameters+ The number of elements in u is p �
pa � pb, where pa � n2 � ra and pb � n2 � rb+ The p columns of the matrix Sa

and Sb form bases for the null space of the rows of Ra and Rb, respectively, so
that RaSa � RbSb � 0 and the matrices @Sa 6Ra

' # and @Sb 6Rb
' # have column rank

n2 ~the symbol 6 will be used throughout the paper to indicate horizontal stack-
ing of matrices!+

If a pair of matrices A and B satisfies the system of constraints ~6!–~7!, we
call them admissible+ The aim of this paper is to establish conditions under
which an optimum of the objective function ~4! corresponds to the only admis-
sible pair within a neighborhood+

The standard way of analyzing the constrained optimization problem would
be to start from the first-order conditions for an optimum in terms of Lagrange
multipliers, as in

]f

]v~u!
� l'

]G

]v~u!
� 0,
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where G~v~u!! is the system of constraints induced on v~u! by the restrictions
~6! and ~7!+ For our purposes, however, it is best to consider an equivalent way
of expressing these conditions, involving differentials:

df �
]f

]v~u!'
]v~u!

]u '
du� Jv

f Ju
vdu� 0;

if the Jacobian matrix Jv
f Ju
v has full column rank, then we have identification at

the optimum+ This, in turn, requires that the column rank of Ju
v is full, too+

Then, the system is identified if, inside an arbitrarily small neighborhood of Zu,
no other vector u1 ~and thus, no corresponding pair of admissible matrices A1

and B1! exists such that

A1 ZSA1
' � B1 B1

' +

Obviously, identification imposes an order condition: because the number of
elements in s is n~n � 1!02, the column rank of the Jacobian matrix Ju

v cannot
be full if u has more than n~n � 1!02 elements+ As is well known, however,
this is only a necessary condition+5 In the next section, another necessary con-
dition, called the structure condition, will be developed; it covers some cases
of interest where the order condition holds yet the model is underidentified+ It
will be argued that a sufficient condition for identification can be obtained by
requiring that both order and structure conditions hold+

2.2. Decomposition of Square Matrices

As is well known ~see, e+g+, Lütkepohl, 1996!, any n � n matrix X can be writ-
ten as

X � X� � X� ,

where X� is symmetric and X� is hemisymmetric6 and they are defined as

X� �
1

2
~X � X ' !,

X� �
1

2
~X � X ' !+

Let us now consider the space V � R
n2

: any element of this space can be
considered the vectorization of an ~n � n! matrix+ In a parallel fashion, the
space V can be subdivided into two orthogonal subspaces V� and V�: any
vector x � V can be written as x � x� � x�, where x� � vec~X�! � V� and
x� � vec~X�! � V�+ It can be shown that V� has dimension n~n � 1!02 and
V� has dimension n~n � 1!02+ We call EDn a ~n2 � n~n � 1!02! matrix whose
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columns form a basis for V�, so that any hemisymmetric matrix H has a vec-
torized form that satisfies h � EDnw for some vector w+

One useful operator7 in this context is the n2 � n2 matrix Knn, which is
defined by the property Knn vec~A!� vec~A'!+ It can be shown ~see, e+g+, Mag-
nus and Neudecker, 1988, p+ 46! that Knn is symmetric and orthogonal, i+e+,

Knn � Knn
' Knn Knn � I+

2.3. The Infinitesimal Rotation Operator

A matrix operator that will be useful in the rest of the paper is the so-called
infinitesimal rotation operator+8 Consider a vector x0: we are interested in an
infinitesimal displacement of x0 that preserves its norm, i+e+, a vector x1 � x0 �
dx such that d7x7 � 0+ Then it is possible to define a matrix H as the matrix
such that x1 � ~I � H !x0+ Two properties of H will be of interest+

~1! ~I � H ! must be orthogonal because x1
' x1 � x0

' ~I � H !'~I � H !x0 �
x0
' x0 must hold for any x0, and therefore ~I � H !'~I � H ! � I;

~2! H is hemisymmetric because d~x 'x!� x0
'dx � ~dx '!x0 � 0 and therefore

H � �H ' +

In this case, we say that the transformation is an infinitesimal rotation and H is
the corresponding infinitesimal rotation operator+

Note that conditions 1 and 2 imply H 'H � 0; this result is a consequence of
H being infinitesimal+ An example can be easily given when x0 � R

2 : in this
case, we have

x1 � � cos d sin d

�sin d cos d
�x0 ;

so

Dx � x1 � x0 � �cos d� 1 sin d

�sin d cos d� 1
�x0 ;

from a Taylor expansion we get

Dx � �� 0 d

�d 0
�� R~d!�x0 ;

as d r 0, Dx becomes dx and the remainder term R~d! disappears; therefore,
when d is infinitesimal, dx � Hx, where H is infinitesimal and hemisymmetric+
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3. IDENTIFICATION IN THE C -MODEL

We begin by examining the special case in which A � I+ In the terminology intro-
duced in Giannini ~1992!, which will be adopted from here on, this corresponds
to the so-called C-model+ In this section, therefore, we analyze the special case
where all the elements of A are constrained with Ra � I and da � vec I; because
Ra is full rank, Sa does not exist and sa � da+ In practice, we will only be con-
cerned with constraints on the B matrix: therefore, to avoid clutter, in this sec-
tion the constraint matrices Rb and Sb will be referred to simply as R and S+

The structure of interest here is ZS � B0 B0
' + Suppose that another admissible

matrix B1 � B0 � dB exists, where dB is infinitesimal+ The model is underiden-
tified if B1 is observationally equivalent to B0, i+e+, if

B1 B1
' � ZS� B0 B0

' + (10)

If ~10! holds, it is possible to define an infinitesimal rotation matrix H as the
matrix such that B1 � B0~I � H !+ From its definition, the matrix B1 can be
written in vectorized form as follows:

B1 � B0~I � H !n b1 � b0 � ~H ' � I !b0 + (11)

If B1 is to be admissible, then we must have Rb1 � d; however, this implies
Rb0 � R~H ' � I !b0 � d, and therefore,9 using ~9!,

R~H ' � I !b0 � R~H ' � I !~Su� s!� 0+ (12)

Consider now the ith row of R~H ' � I !+ If we call ei the ith column of the
identity matrix, we have

ei
'R~H ' � I ! � h '~I � Ri

'!,

where h � vec H and Ri is an n � n matrix whose vectorization is the ith row
of R+ To be an infinitesimal rotation matrix, H must be hemisymmetric+ There-
fore, it is possible to write h as EDnw and equation ~12! as

w ' EDn
' ~I � Ri

'!~Su� s! � 0 for i � 1 + + +p, (13)

where EDn is any basis for V� ~see Section 2+2!+ In short, if a nonnull w exists
that satisfies equation ~13! for each i , the model is underidentified at u+

Giannini ~1992!, in his analysis of the C-model, indicates ~p+ 28! that iden-
tification holds if and only if the matrix

R~I � B! EDn (14)

has full column rank+10 This condition was obtained by considering maximum
likelihood estimation, because it ensures that the information matrix is positive
definite+ It is easy to see that this condition is exactly equivalent to requiring
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that equation ~13! has no nontrivial solutions: if the matrix in ~14! has full rank,
then

R~I � B! EDnw � R~I � B!h � �R~H � I !b � 0

for any nonnull w+
Condition ~13! can be rephrased as

w 'Ti u� w 'ti � 0 for i � 1 + + +p, (15)

where

Ti [ EDn
' ~I � Ri

'!S,

ti [ EDn
' ~I � Ri

'!s,

and p is the number of constraints ~the number of rows in R!+ In other words,
the system is unidentified at u if some w� 0 exists that satisfies the preceding
equations for every i + It is important to note that, for a given u, the existence of
nonzero solutions to the system ~15! ~and therefore underidentification! depends
only on the matrices Ti and the vectors ti , which are functions of the con-
straints alone+ In general, it could be thought that the existence of a solution to
the system ~15! for some w� 0 may depend on u+ However, it will be shown in
Section 3+2 that the choice of u is practically immaterial+

For any given u, the system ~15! can be written as

w 'T~u! � @0# , (16)

where

T~u! � @T1u� t1 6 T2u� t2 6 {{{ 6 Tpu� tp # +

The matrix T~u! has n~n � 1!02 rows and p columns, so its rank must be less
than or equal to min~ p, n~n � 1!02!+ Solutions to ~16! do not exist ~and hence
the model is identified! if and only if the rank of T~u! equals n~n � 1!02+

3.1. The Structure Condition

The existence of solutions to ~16!, and therefore underidentification, occurs nec-
essarily whenever the order condition fails, because in this case p � n~n � 1!02
and the rank of T~u! is, at most, p+ However, there might be cases when ~13!
holds for any value of u � Q even though the order condition might be met+
We will call such a model structurally underidentified: in these cases, there is
at least one H that satisfies equation ~13! whatever the choice of u+ Therefore,
it must also be true that

R '~H ' � I !@S 6s# � 0 (17)

for some infinitesimal rotation H+

242 RICCARDO LUCCHETTI

https://doi.org/10.1017/S0266466606060105 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060105


By employing the properties of the Kronecker product and of the vectoriza-
tion operator in a manner similar to the one used in the derivation of equation
~15!, it is possible to write the ith column of ~H ' � I !S as ~H ' � I !Sei �
~I � Si !h, where Si is an n � n matrix whose vectorization is the ith column of
S+ Similarly, we can transform ~H ' � I !s into ~H ' � I !s � ~I � NS!h+

The problem can now be stated as follows: given the matrix

T � �
R '~I � S1!

R '~I � S2 !

I

R '~I � Sp !

R '~I � NS!

� , (18)

if there is an infinitesimal rotation H such that Th � 0, then the system is struc-
turally unidentified;11 in turn, this implies the existence of a nonnull vector w
such that T EDnw � 0+ As a consequence, a C-model is structurally identified if
and only if the matrix T EDn has full column rank n~n � 1!02+ This condition
will be henceforth called the structure condition+

The structure condition can be more easily checked via the matrix

M � EDn
' T 'T EDn

� (
i�1

n2�p

@ EDn
' ~I � Si

'!RR '~I � Si ! EDn #� EDn
' ~I � NS ' !RR '~I � NS! EDn +

The system is structurally identified if and only if M is invertible+ If not, the
matrix H has a vectorization that lies in the right null space of T EDn+ Note that
this condition is wholly independent of u, so structural identification is a prop-
erty of the model as such+ Therefore, this condition can be checked prior to
estimation, like the order condition+

3.2. Sufficiency

Both the order and structure conditions are, by themselves, necessary but not
sufficient+ However, the order and the structure condition form a quasi-sufficient
condition taken together: if equation (16) is satisfied for some w � 0 beyond
the trivial case of p � n~n � 1!02, then the values of u that satisfy (16) define a
set of measure 0, and therefore the model is identified almost everywhere in Q.

This assertion can be proven by a line of reasoning similar to that in Johansen
~1995, p+ 130!: consider the matrix T~u! in ~16! as a function of u+ For ~16! to
have nonzero solutions, this matrix must have rank less than n~n � 1!02, and
therefore the determinant of the following square matrix:
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D~u! � T~u!T~u!' �(
j�1

p

~Tj u� tj !~Tj u� tj !
'

must be 0+ Because the function 6D~u!6 is a polynomial in u, it is either iden-
tically 0 or has a set of solutions that forms a closed set in Q with zero Le-
besgue measure+

Because D has n~n � 1!02 rows, its determinant is clearly zero identically if
the number of its columns is less than n~n � 1!02: this takes us back to the
order condition+ Nevertheless, 6D 6 � 0 may also happen if the order condition
is satisfied yet the rank of D is less than n~n � 1!02; but in this case, equation
~16! is satisfied for any u, and therefore the model fails to meet the structure
condition+ As a consequence, when both conditions hold, ~16! has no solutions
in Q but for a set of measure 0+ Moreover, this set is closed, and the set of
points in Q where the two conditions together are sufficient to ensure identifi-
cation is open and dense in Q+

3.3. An Example

Let us analyze a C-model where n � 2 and B is lower triangular+ As is well
known, this case is identified, as B is simply the Cholesky decomposition of S,
which we assume positive definite+ In this case, the number of free parameters
is 3 and the parameter space Q is the subset of R

3 such that B is invertible,
namely, Q � $u � R

3 : u1u3 � 0% + The matrix B has the form

B � �u1 0

u2 u3
� ,

so that the constraint matrices can be written as

R � @0 0 1 0# ,

d � 0,

and the corresponding S matrix is

S � �
1 0 0

0 1 0

0 0 0

0 0 1
�

~the vector s equals 0!; as for EDn, the only possible choice ~up to a scalar! when
n � 2 is the vector

EDn � @0 1 �1 0# '+
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The order condition is evidently satisfied, as the number of free parameters
equals n~n � 1!02 � 3+ The structure condition can be checked via

M � EDn
'�(

i�1

3

~I � Si !R
'R~I � Si

'!� EDn � 1,

and therefore the model is identified almost everywhere in R
3 +

In this case, the dimension of the matrices is small enough to make it feasi-
ble to check identification by developing the argument analytically, which is
rather instructive+ Because B must be lower triangular to be admissible, the
identification problem boils down to establishing whether postmultiplying B
by an arbitrary infinitesimal rotation may result in another lower triangular
matrix+ In formulas:

�u1 0

u2 u3
��1 �w

w 1
� � � u1 �u1w

u2 � u3w u3 � u2w
� +

The resulting matrix is clearly not admissible ~i+e+, lower triangular! unless
u1w � 0+ If w � 0, then u1 must be 0+ This implies that the only region in R

3

where the model is underidentified is the plane u1 � 0, which has zero Leb-
esgue measure and is outside Q by hypothesis anyway+

The same result can be obtained by considering condition ~15! directly;
because we have only one constraint, then we have only one Ti matrix and one
ti vector, and these equal

T1 � EDn
' ~I � R1

' !S

� @0 1 �1 0#�
0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0
� �

1 0 0

0 1 0

0 0 0

0 0 1
�

� @1 0 0# ,

whereas t1 � 0+ The model is underidentified as long as

w ' EDn
' ~I � Ri

'!~Su� s! � w@1 0 0# �
u1

u2

u3
� � w{u1 � 0

holds for some w � 0, but in this case, the only solution is u1 � 0+ Hence, the
model is identified almost everywhere in R

3 and everywhere in Q+
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4. IDENTIFICATION IN THE AB -MODEL

This case is the most general: contrary to the previous section, we analyze
the situation where neither A nor B is fully restricted, so the identification ques-
tion revolves around establishing the existence of two matrices ~A � dA! and
~B � dB! that are still admissible+

The constraints to be put on A � dA and B � dB to remain admissible can be
specified in a way akin to equation ~11! by writing

A � dA � ~I � Q!A,

B � dB � ~I � Q!B~I � H !,

where ~I � Q! is nonsingular and ~I � H ! is orthogonal, so that

da � ~I � Q!~Sau� sa !, (19)

db � @~I � Q!� ~H ' � I !# ~Sbu� sb ! (20)

~in equation ~20!, there would be a term ~H ' � Q!, which, however, disap-
pears because both matrices are infinitesimal!+

As in the previous section, H has to be an infinitesimal rotation for ~I � H !
to be orthogonal+ The only additional complication with respect to Section 3 is
that it is now necessary to take the matrix Q into consideration also+ Moreover,
Q is not necessarily an infinitesimal rotation operator, because I � Q need not
be orthogonal, although it is required that it is invertible+ However, if we only
consider what happens in a neighborhood of the optimum, it suffices to say
that 6I � Q 6 � 0 for any Q, as long as Q is infinitesimal, by the continuity of
the determinant function+ Therefore, if we define q � vec Q, it is sufficient to
consider the condition q � 0 without any further qualifications+

The equation parallel to ~12! is the following system:

Rada � Ra~I � Q!~Sau� sa !� 0, (21)

Rbdb � Rb @~I � Q!� ~H ' � I !# ~Sbu� sb !� 0; (22)

identification holds at u unless it is possible to find two infinitesimal nonzero
matrices Q and H ~with H � �H '! satisfying the preceding system+

With a little algebra, similar to that used in Section 3, we may reexpress
some of the matrix products as

ei
'Ra~I � Q! � q 'Knn~Ra, i � I !,

ei
'Rb~I � Q! � q 'Knn~Rb, i � I !,

ei
'R~H ' � I ! � w ' EDn~I � Ri

'!,
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because Knn q � vec~Q '! ~see Section 2+2! and h � EDnw+ The symbol Ra, i indi-
cates the ~n � n! matrix such that vec~Ra, i !

' is the i th row of Ra+ These
rearrangements lead us to examine the following system of equations:

q 'Ui
au� q 'ui

a � 0 for i � 1 + + + ra ,

q 'Uj
bu� w 'Tj

bu� q 'uj
b � w 'tj

b � 0 for j � 1 + + + rb ,

where

Ui
a [ Knn~Ra, i

' � I !Sa ui
a[ Knn~Ra, i

' � I !sa ,

Ui
b [ Knn~Rb, i

' � I !Sb ui
b[ Knn~Rb, i

' � I !sb ,

Ti
b [ EDn

' ~I � Rb, i
' !Sb ti

b[ EDn
' ~I � Rb, i

' !sb ,

which admits nonzero solutions if and only if the model is underidentified+

4.1. The Order and Structure Conditions

The order and structure conditions can be stated in a way very similar to Sec-
tion 3+ Again, the order condition requires that the number of free parameters
pa � pb does not exceed n~n � 1!02 or, equivalently, that the number of restric-
tions put on A and B is at least n2 � ~n~n � 1!02!+ If this requirement were not
met, then there would always be solutions for some nonzero q and0or w to the
equation

@q ' 6 w ' #T~u! � @0# , (23)

where

T~u! � �U1
au� u1

a {{{ Upa

a u� upa

a U1
bu� u1

b {{{ Upb

b u� upb

a

0 {{{ 0 T1
bu� t1

b {{{ Tpb

b u� tpb

a � +
The structure condition requires that there are no infinitesimal matrices Q

and H ~with H hemisymmetric! that satisfy

Ra~I � Q!@Sa 6sa # � 0, (24)

Rb @~I � Q!� ~H ' � I !# @Sb 6sb # � 0+ (25)

By considering the columns of Sa and Sb one at a time, we get

Ra~I � Q!@Sa 6sa #ei � Ra~Sa, i
' � I !q � 0 for i � 1 + + +p
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and

Rb @~I � Q!� ~H ' � I !# @Sb 6sb #ei � Rb~Sb, i
' � I !q � Rb~I � Sb, i ! EDnw� 0

for i � 1 + + +p,

so that lack of identification implies ~and is implied by! the existence of non-
trivial solutions to this system, which evidently parallels the problem of find-
ing solutions to equation ~17!+ One thing that must be noted for the index i is
that, in general, it runs from 1 to p, because the number of columns in Sa and
Sb is p; however, if the parameter vector u can be split into u � @ua

' 6ub' # ' , as is
usually the case, then the columns of Sa from the ~ pa � 1!th onward are all
zero and so can be omitted without affecting the existence of solutions to the
system ~24!–~25!; the same applies to the first pa columns of Sb+

The matrix T equivalent to the one in equation ~18! then becomes

T �









Ra~Sa,1
' � I ! 0

Ra~Sa,2
' � I ! 0

I I

Ra~Sa, pa

' � I ! 0

Ra~ NSa
' � I ! 0

Rb~Sb,1
' � I ! Rb~I � Sb,1! EDn

Rb~Sb,2
' � I ! Rb~I � Sb,2 ! EDn

I I

Rb~Sb, pb

' � I ! Rb~I � Sb, pb
! EDn

Ra~ NSb
' � I ! Rb~I � NSb ! EDn









��Ua 0

Ub Tb EDn
� , (26)

and the system is structurally identified provided there are no trivial solutions to

�Ua 0

Ub Tb EDn
��q

w
� � 0+ (27)

As a consequence, an operational procedure for checking the structure condi-
tion could simply amount to verifying whether the matrix

M � �Ua
' Ub

'

0 EDn
' Tb
'��Ua 0

Ub Tb EDn
���Ua

'Ua � Ub
'Ub Ub

'Tb EDn

EDn
' Tb
'Ub EDn

' Tb
'Tb EDn

� (28)

is singular+12
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The quasi-sufficiency property of the order and structure conditions com-
bined can be assessed by means of an argument similar to that developed in
Section 3+2 by noting that the rank of the matrix T~u! in equation ~23! is less
than n2 � ~n~n � 1!02! either identically or for a set of measure 0 in Q+

4.2. Special Cases

In certain cases, checking the structure condition involves simpler matrices;
the C-model, e+g+, clearly emerges as a special case: if we impose the constraint
A � I, then we have Ra � I and @Sa6sa#� vec I, so the matrix T reduces to

T � � I 0

Ub Tb EDn
� ,

which clearly has full column rank if and only if its southeast corner has+ This,
in turn, is precisely the matrix T in equation ~18!+

Another notable special case arises when it is assumed that ASA' � I+ This
case is referred to as the K-model in Giannini ~1992!, and, because ASA' � I
implies A'A � S�1 , it could be conjectured that the requisites for structural
identification ought to be similar to those in the C-model+ This is indeed the
case, as the restrictions put on B parallel those previously put on A, for we
have Rb � I and @Sb6sb# � vec I; as a consequence, equation ~27! simplifies to

�Ua 0

I EDn
��q

w
� � 0,

which implies q � � EDnw; therefore, if a nonzero solution exists, the equality

Ua EDnw � 0 (29)

must hold+ This happens only if the rank of Ua EDn is less than n~n � 1!02+

5. A FEW EXAMPLES

5.1. An Unidentified 2 × 2 Case

This is an example of a model reported in Giannini ~1992!, where it is shown
that the order condition is not sufficient, by itself, to ensure identification+ In
the context of the present paper, it provides a simple yet enlightening example
of failure of the structure condition+ We have n � 2, and A has the following
structure:
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A � � u1 u2

�u2 u1
�;

in other words, any ~2 � 2! admissible matrix has the same elements on the
diagonal, whereas the off-diagonal elements have the opposite sign+ In this case,
the requirement that A be invertible is accommodated by setting Q � R

2�$0% ,
as the only vector ~u1,u2! that makes A singular is the zero vector+

The fact that B � I by hypothesis allows us to classify this model as a K-model
and thus focus on ~29! for checking the structure condition, rather than on the
more complex equation ~28!+ The constraint matrices can be written as

Ra � �1 0 0 �1

0 1 1 0
� ,

Sa � �
1 0

0 �1

0 1

1 0
� ,

and both da and sa are suitably shaped zero vectors+
The order condition is obviously met, because the number of free parameters
~two! is smaller13 than n~n � 1!02 � 3+ As far as the structure condition goes,
we can use equation ~29!; using the same EDn as in Section 3+3, we have

M � EDn
'�(

i�1

2

~Si � I !R 'R~Si
' � I !� EDn � 0,

which has rank 0, and therefore the model is structurally unidentified+
In this case, the matrices are small enough to analyze in some detail the effect

of an infinitesimal rotation on the matrix A symbolically+ Because any hemi-
symmetric matrix of order 2 can be written as

H � � 0 l

�l 0
� ,

then the product A1 � A~I � H ! equals

A~I � H ! � � u1 u2

�u2 u1
�� 1 l

�l 1
��� u1 � lu2 u2 � lu1

�~u2 � lu1! u1 � lu2
� ,

which is clearly admissible+ Therefore, there is an infinity of admissible matri-
ces A1 that satisfy A1

' A1 � A'A � ZS�1 +
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5.2. The “Standard” AB Model

The model analyzed here corresponds to the most common setup in structural
VARs: the one where A is lower triangular with ones on the diagonal and B is
diagonal+

A � � 1 0

u1 1
� B ��u2 0

0 u3
� +

This example is admittedly rather contrived, as this model could be easily
reparametrized into a K-model, but here it just serves the purpose of providing
a simple example of constraints put on both A and B+ The constraint matrices
are

Ra � �
1 0 0 0

0 0 1 0

0 0 0 1
� @Sa 6sa #� �

0 1

1 0

0 0

0 1
� ,

Rb � �0 1 0 0

0 0 1 0
� @Sb 6sb #� �

1 0 0

0 0 0

0 0 0

0 1 0
� +

The matrix M, computed via equation ~28!, equals

M � �
1 0 0 0 0

0 1 0 0 0

0 0 3 0 0

0 0 0 1 0

0 0 0 0 2

� +
Because M is invertible, the system is structurally identified+ Therefore, both
order and structure conditions hold, and identification is attained+

5.3. The Blanchard (1989) Model

The model put forward in Blanchard ~1989! is possibly one of the most influ-
ential applications of structural VARs in the applied macroeconomic literature+
Five variables are modeled jointly: gross national product ~GNP!, unemploy-
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ment, prices, wages, and money supply+ The model can be described as an AB
model with the following structure:

A � �
1 0 0 0 0

a21 1 0 0 0

a31 0 1 a34 0

0 a42 a43 1 0

a51 a52 a53 a54 1

� B � �
sd c 0 0 0

0 sQ 0 0 0

0 c32 sp 0 0

0 c42 0 sw 0

0 0 0 0 sm

� ,
where names for the individual parameters are chosen to be consistent with
Blanchard’s+ As can be easily seen, the model is underidentified because the
number of free parameters is 17 � n~n � 1!02 � 15 and therefore the order
condition is not satisfied+ In the original paper, identification is achieved by
setting the two parameters a34 and c to fixed values, thereby ensuring that the
order condition is met+ It can be shown, via the approach presented here, that
those restrictions are indeed sufficient for the structure condition to hold and,
as a consequence, for the model to be identified+

It may be argued, however, that identification is not necessarily guaranteed
by adding any pair of constraints, because the order condition would be met
but the structure condition might not be+ In fact, an alternative restriction strat-
egy shows such a case:14 keep a34 fixed ~as in the original paper! at a value
a34 � 0 but set the parameter c free and fix a21 instead to 1+

Because n � 5, the matrix M has 35 rows and columns and is too big to be
reproduced here+ However, it can be checked that it is nonsingular and thus
that the structure condition holds+ Moreover, the matrix M is block-diagonal
and its north-west 9 � 9 block equals









2 0 0 0 0 3 0 0 0

0 5 0 0 0 0 4 0 0

0 0 1 0 0 0 0 0 0

0 0 0 5 0 0 0 0 3

0 0 0 0 4 0 0 0 0

3 0 0 0 0 5 0 0 0

0 4 0 0 0 0 5 0 0

0 0 0 0 0 0 0 1 0

0 0 0 3 0 0 0 0 2









+

The matrix M is nonsingular, and the model is identified+ On the contrary,
it is interesting to consider what happens if, instead of setting a21 to a fixed
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nonzero value, we set it at 0: in this case, the relevant block of the matrix M
becomes









1 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0









+

As can be seen, the ninth column is a zero vector, so that M is singular and
the structure condition is not met; as a consequence, in this case the two restric-
tions a34 � a34 and a12 � 0 do not suffice to ensure identification+

Again, it is worthwhile analyzing the situation symbolically: because the ninth
column of M is zero, it follows that equation ~27! is satisfied by a 10-element
vector w� 0 and a 25-element vector q whose elements are all 0 except for the
ninth one+ Hence, the corresponding Q matrix has one nonnull element on the
fourth row, second column+ By considering the product

~I � Q!A � �
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 l 0 1 0

0 0 0 0 1

� �
1 0 0 0 0

a21 1 0 0 0

a31 0 1 a34 0

0 a42 a43 1 0

a51 a52 a53 a54 1

�
� �

1 0 0 0 0

a21 1 0 0 0

a31 0 1 a34 0

la21 l� a42 a43 1 0

a51 a52 a53 a54 1

� ,
it is easy to see that admissibility of the resulting matrix depends on the value
la21: for a21 � 0, the matrix is admissible for any l� 0+ The same goes for the
product ~I � Q!B:
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~I � Q!B � �
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 l 0 1 0

0 0 0 0 1

� �
sd c 0 0 0

0 sQ 0 0 0

0 c32 sp 0 0

0 c42 0 sw 0

0 0 0 0 sm

�
� �
sd c 0 0 0

0 sQ 0 0 0

0 c32 sp 0 0

0 c42 � lsQ 0 sw 0

0 0 0 0 sm

� ;
again, the matrix ~I � Q!B is admissible whatever the value of l+ This means
that, despite the fact that the number of free parameters equals n~n � 1!02 �
15, the model is underidentified, because there are infinite pairs of admissible
matrices A and B such that A�1B is invariant+

It is interesting to note that an economic interpretation can be given+ If the
level of economic activity does not have an instantaneous impact on unemploy-
ment ~a21 � 0!, then it becomes impossible to tell what the instantaneous impact
of unemployment on wages ~l � a42! is: this happens because the restriction
a41 � 0 ~output does not affect wages instantaneously! becomes uninformative+

6. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

The main object of this paper is to put forth a method for assessing identifica-
tion of a covariance structure+ The introduction of the structure condition makes
it possible to state a sufficient condition for identification solely in terms of the
set of constraints+

The ideas were presented here in the context of structural VARs estimation
but may prove useful for other multivariate models+ A closely related class of
models is the structural vector correction models ~see, e+g+, King, Plosser, Stock,
and Watson, 1991!, where identification and estimation also take into account
the possibility of having to deal with a cointegrated system+ This makes it pos-
sible to identify a covariance structure by differentiating between permanent
and transitory innovations+

Another set of models that lend themselves quite naturally to be analyzed in
the present framework is that of LISREL ~linear structural relationships! mod-
els ~or structural equation models!+ These models are widely used in applied soci-
ology15 and can be briefly described as models where a vector of observable
variables yt is thought to depend on some exogenous variables xt through a known
number of latent variables lt + The assumed data generating process can be sum-
marized as
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yt � Lylt � ut ,

xt � Lx xt � vt ,

lt � Blt � Gxt � wt ,

or graphically:

Estimation of these models is carried out by expressing the covariance matrix
of ~ yt 6xt ! ~called the implied covariance matrix! in terms of the unknown param-
eters, so it seems plausible that the concepts in this paper should readily apply+

The identification issue in multivariate generalized autoregressive condi-
tional heteroskedasticity ~GARCH! models could also be analyzed along these
lines: factor GARCH models have been put forward rather often to overcome
problems arising from the massive number of parameters necessary for medium-
scale models, and they essentially reproduce equation ~2! with conditionally
heteroskedastic ut ’s; some of the latest examples in this vein are Vrontos, Del-
laportas, and Politis ~2003!, van der Weide ~2002!, and Lanne and Saikkonen
~2005!+ In these models, however, the very presence of heteroskedasticity makes
it impossible to use the same analytical framework presented here, because it is
not possible to write the objective function as in ~4!+ It can be said that, in
general, heteroskedasticity is actually helpful when it comes to identification:
the GO-GARCH ~generalized orthogonal GARCH! model in van der Weide
~2002!, for example, could be considered a C-model with unrestricted B+Another
interesting application of this idea was recently proposed by Rigobon ~2003!+
Research by the author is currently under way in this direction+

Some points may deserve further investigation+ First, it might be interesting
to extend the present approach to make it feasible not only to check whether
the model is identified or not but also to compute its overidentification rank+
Furthermore, a theoretical issue that may be possible to tackle within the present
framework could be to analyze the relationship between the set of points in the
parameter space that give rise to singular A and0or B matrices and the set where
identification fails, despite the fact that both the order and structure conditions
are satisfied+ We do know that both are sets with 0 Lebesgue measure; it is
natural to ask if anything more stringent can be said in general+ Finally, the
possibility of generalizing the present approach to nonlinear constraints should
be mentioned+ Because all the arguments presented applied to an arbitrarily small
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neighborhood of the parameter space, perhaps some kind of linearization of the
constraints might be attempted+

NOTES

1+ For a complete and detailed survey paper on VARs, see Canova ~1995!+
2+ A procedure is suggested in Giannini ~1992! where identification is checked by computing

the information matrix at a random point in the parameter space+ This procedure hinges on the
conjecture that in an identified model the probability of making an incorrect decision is 0+ This
insight is made more precise in Section 3+2, where it is shown that in such a case underidentifica-
tion occurs on an area with zero Lebesgue measure in the parameter space+

3+ In a globally identified model, the maximum of the objective function is unique+ Local
identification, on the contrary, stipulates that multiple maxima can exist, but each of these is an
isolated point ~see also Gourieroux and Monfort, 1995, pp+ 88–89!+ From a statistical viewpoint,
the most important requirement is local identification, because it makes it possible to resort to
standard proofs for asymptotic properties of extremum estimators+ On the other hand, local identi-
fication can often be made equivalent to global identification by suitably reshaping the parameter
space+

4+ Linear constraints are not only easier to manage but are also often the most interesting
because they lend themselves very naturally to the representation of some economic theory: a typ-
ical example is zero restrictions on some parameters+

5+ In fact, this point is sometimes overlooked in the applied literature: e+g+, the statement “In
the structural VAR approach, B can be any structure as long as it has sufficient restrictions” was
taken verbatim from a recent working paper+ This sentence seems to imply that the order condition
is considered sufficient, not just necessary+

6+ A square matrix X for which X � �X ' holds is called hemisymmetric, or sometimes
skew-symmetric+

7+ An alternate notation for Knn, which is sometimes used, e+g+, in Pollock ~1979!, is �T.
8+ For the properties of the infinitesimal rotation operator, see Weisstein ~2004!+
9+ This reasoning could have been equivalently, and certainly more compactly, put by requir-

ing that, for B0 � dB to be admissible, the condition Rdb � 0 has to be satisfied, where dB � BH
for some hemisymmetric H; in this case, however, brevity would have possibly come at the expense
of clarity+

10+ The original notation was slightly altered to match ours+
11+ Notice that each row of the matrix T can be written as vec~Si

'Rj !
' for all possible combi-

nations of the columns of R and @S 6s# + This may help computationally+ Another point that may
help in a practical software implementation is that, as a rule, a large number of rows in T are zero
and clearly can be left out without influencing the rank of T+

12+ An OX class for checking the structure condition is available at http:00www+econ+univpm+it0
lucchetti0SVARident+

13+ Or equivalently, the number of constraints ~two! is greater than n~n � 1!02 � 1+
14+ The economic rationale of the choice presented here is obviously irrelevant in the present

context+
15+ For a survey, see Mueller ~1996!+
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