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Abstract

We consider a supercritical branching Lévy process on the real line. Under mild moment
assumptions on the number of offspring and their displacements, we prove a second-
order limit theorem on the empirical mean position.
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1. Introduction

A branching Lévy process describes a population of particles undergoing spatial movement,
death, and reproduction. It can be defined informally as follows (for a formal definition, see
Section 2). Initially there is one particle located at the origin of the real line. The particle lives
for an exponentially distributed time. During this time it moves according to a Lévy process.
At the time of death, the particle is replaced by a random number of new particles, displaced
from the parent particle’s death position according to a point process. All particles move, die,
and reproduce in a statistically identical manner, independently of every other particle. We
are only concerned with the supercritical case. That is, each particle gives birth to more than
one particle on average, and thus the total number of particles grows to infinity with positive
probability.

The particle positions’ empirical distribution has received much attention, especially for
branching random walks and branching Brownian motion, which are special cases of the
model. There are many results on the empirical distribution’s maximum [4, 5, 10], as well
as on large deviations [12] and on the almost-sure weak convergence to a Gaussian distribution
[3, 11].

The empirical mean position, which is simple and important for applications, has received
relatively little attention. For specific branching random walks, [13] shows that the empirical
mean position almost surely grows asymptotically linearly with time, while [7] shows that the
empirical mean position’s variance converges. These results combined raise the question of
characterising a second-order limit term.

For branching Lévy processes, under some mild moment assumptions on the number of
offspring and their displacements, we prove a second-order limit theorem for the empirical
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mean position. Namely, we show that the difference between the empirical mean position at
time t and rt, for some constant r, converges almost surely to a random variable.

Before proceeding with the remainder of the paper, we discuss some special cases of the
model and applications.

First, consider that particles do not move during their lifetime and that each particle is
displaced by +1 from its parent. A particle’s position is its generation. Our result describes
the average generation, complementing results of [13] and [6]. Second, consider instead that
displacement sizes are Poisson-distributed. This is a popular model for cancer evolution [8].
Here particles are cells, and a cell’s position is its number of mutations. Our result gives the
average number of mutations per cell. Third, consider that particles are not displaced from their
parent but move as a random walk during their lifetime. This model is seen in phylogenetics.
The branching process represents speciation [1], while the positions are lengths of a particular
DNA segment [9].

The remainder of the paper is organised as follows. We introduce the model in Section 2,
formulate our main result in Section 3, and prove it in Section 4.

2. Model

Initially there is a single particle named ∅ which moves according to a Lévy process
(Z∅,s)s≥0, with Z∅,0 = 0 and E[Z2

∅,1] < ∞. After an exponentially distributed waiting time A∅,
the particle dies and is replaced by a random number N∅ of new particles with E[N∅] > 1
and E[N2

∅] < ∞. The new particles are born at positions (Z∅,A∅ + Di)
N∅
i=1. The Di are R-valued

random variables with

E

[( N∅∑
i=1

Di

)2]
< ∞ and E

[ N∅∑
i=1

D2
i

]
< ∞.

Independence is assumed between (Z∅,s)s≥0 and A∅ and (Di)
N∅
i=1 (but the Di need not be

independent of each other or of N∅). All particles independently follow the initial particle’s
behaviour.

To denote particles we follow standard notation. Let

T =
⋃

n∈N∪{0}
N

n.

Here N
0 = {∅} contains the initial particle. For v = (v1, . . . , vn) ∈ T and i ∈N, write vi =

(v1, . . . , vn, i), where v is the parent of vi. To describe genealogical relationships, the set T
is endowed with a partial ordering ≺, defined by

(ui)
m
i=1 ≺ (vi)

n
i=1 ⇐⇒ m < n and (ui)

m
i=1 = (vi)

m
i=1.

Write � for ≺ or =.
Now let [

(Zv,s)s≥0, Av, (Dvi)
Nv
i=1

]
for v ∈ T be independent and identically distributed copies of

[
(Z∅,s)s≥0, A∅, (Di)

N∅
i=1

]
.
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The set of all particles that ever exist is

T ∗ = {(vi)
n
i=1 ∈ T : vm+1 ≤ N(vi)m

i=1
, for m = 0, 1, . . . , n − 1}.

The particles alive at time t ≥ 0 are

Tt =
{

v ∈ T ∗ :
∑
u≺v

Au ≤ t <
∑
u�v

Au

}
.

Particle v at time t, if it is alive, has position

Xv,t =
∑

∅≺u�v

Du +
∑

∅�u≺v

Zu,Au + Zv,t−∑
∅�u≺v Au .

For further notation, the branching rate is

λ =E[A∅]−1,

the effective branching rate is
λ̂ = λE[N∅ − 1],

and the movement rate is

r =E[Z∅,1] + λE

[ N∅∑
i=1

Di

]
.

3. Main result

Theorem 3.1. Conditional on the event {limt→∞ |Tt| = ∞}, the limit

lim
t→∞

1

|Tt|
(∑

v∈Tt

Xv,t − rt

)

exists and is finite almost surely.

4. Proof of Theorem 3.1

Our proof will involve conditioning on whether branching occurs during the time interval
[0, h] for some small h > 0. Write

J0,h = {A∅ > h}
for the event that the first branching occurs after time h. Write

J1,h =
{

A∅ ≤ h < A∅ + min
i=1,...,N∅

Ai

}

for the event that the first branching occurs before time h and the second branching occurs after
time h. Write

J2,h =
{

A∅ + min
i=1,...,N∅

Ai ≤ h
}
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for the event that the second branching occurs before time h. Note the probabilities⎧⎪⎪⎨
⎪⎪⎩
P[J0,h] = 1 − hλ + o(h),

P[J1,h] = hλ + o(h),

P[J2,h] = o(h),

as h ↓ 0. Observe the conditional distribution( ∑
v∈Tt+h

(Xv,t+h − r(t + h)) | J0,h

)
d=

∑
v∈Tt

′
(Z∅,h + X′

v,t − r(t + h)), (4.1)

where (X′
v,t)v∈Tt

′ d= (Xv,t)v∈Tt , and (X′
v,t)v∈Tt

′ is independent of Z∅,h. Meanwhile

( ∑
v∈Tt+h

(Xv,t+h − r(t + h)) | J1,h

)
d=

N∅∑
i=1

∑
v∈T i

t

(Di + Xi
v,t − rt) + ηh, (4.2)

where (Xi
v,t)v∈T i

t

d= (Xv,t)v∈Tt for i = 1, . . . , N∅, the (Xi
v,t)v∈T i

t
are independent of each other

and of (Di)
N∅
i=1, and

ηh =
( N∅∑

i=1

|T i
t |(Z∅,A∅ + Zi,h−A∅ − rh) | J1,h

)
.

Straightforward calculations show that the first and second moments of ηh converge to 0 as
h ↓ 0.

Lemma 4.1. For t ≥ 0,

E

[∑
v∈Tt

(Xv,t − rt)

]
= 0.

Proof. From (4.1),

E

[ ∑
v∈Tt+h

(Xv,t+h − r(t + h)) | J0,h

]
=E

[∑
v∈Tt

(Xv,t − rt)

]
+ h(E[Z∅,1] − r)E|Tt|.

From (4.2),

E

[ ∑
v∈Tt+h

(Xv,t+h − r(t + h)) | J1,h

]

=E[N∅]E

[∑
v∈Tt

(Xv,t − rt)

]
+E

[ N∅∑
i=1

Di

]
E|Tt| + o(1).

Taking the unconditional expectation,

E

[ ∑
v∈Tt+h

(Xv,t+h − r(t + h))

]

= (1 − hλ)E

[ ∑
v∈Tt+h

(Xv,t+h − r(t + h))|J0,h

]
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+ hλE

[ ∑
v∈Tt+h

(Xv,t+h − r(t + h))|J1,h

]
+ o(h)

=E

[∑
v∈Tt

(Xv,t − rt)

]
(1 + hλ̂) + o(h).

Rearranging and taking h ↓ 0,

d

dt
E

[∑
v∈Tt

(Xv,t − rt)

]
= λ̂E

[∑
v∈Tt

(Xv,t − rt)

]
.

The statement of the lemma for any t now follows from the above and the fact that it clearly
holds for t = 0. �

Next we determine second moments.

Lemma 4.2. For t ≥ 0,

E

[(∑
v∈Tt

(Xv,t − rt)

)2]
= c1 e2λ̂t − c2teλ̂t − c1eλ̂t,

where

c1 = E[(N∅ − 1)2]

E[N∅ − 1]2
E

[ N∅∑
i=1

D2
i

]
+ 1

E[N∅ − 1]
E

[( N∅∑
i=1

Di

)2]

and

c2 = λ̂
E[(N∅ − 1)2]

E[N∅ − 1]2
E

[ N∅∑
i=1

D2
i

]
.

Proof. From (4.1),

E

[( ∑
v∈Tt+h

(Xv,t+h − r(t + h))

)2

| J0,h

]
=E

[(∑
v∈Tt

(Xv,t − rt)

)2]

+ 2h(E[Z∅,1] − r)E

[
|Tt|

∑
v∈Tt

(Xv,t − rt)

]

+ h(E[Z2
∅,1] −E[Z∅,1]2)E[|Tt|2]

+ o(h).

From (4.2) and Lemma 4.1,

E

[( ∑
v∈Tt+h

(Xv,t+h − r(t + h))

)2

| J1,h

]
=E

[( N∅∑
i=1

∑
v∈T i

t

(Xv,t − rt)

)2]

+ 2E

[ N∅∑
i=1

Di|T i
t |

∑
v∈T i

t

(Xv,t − rt)

]
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+ 2E

[ N∅∑
i,j=1
i �=j

Di|T i
t |

∑
v∈T j

t

(Xv,t − rt)

]

+E

[( N∅∑
i=1

Di|T i
t |

)2]
+ o(1)

=E[N∅]E

[(∑
v∈Tt

(Xv,t − rt)

)2]

+ 2E

[ N∅∑
i=1

Di

]
E

[
|Tt|

∑
v∈Tt

(Xv,t − rt)

]

+E

[ N∅∑
i=1

D2
i

](
E

[
|Tt|2

]
−

(
E|Tt|

)2)

+E

[( N∅∑
i=1

Di

)2]
(E|Tt|)2 + o(1).

But E|Tt| and E[|Tt|2] are standard knowledge [2]:

E|Tt| = eλ̂t

and

E[|Tt|2] =
(

1 + E[(N∅ − 1)2]

E[N∅ − 1]

)
e2λ̂t − E[(N∅ − 1)2]

E[N∅ − 1]
eλ̂t.

Therefore

E

[( ∑
v∈Tt+h

(Xv,t+h − r(t + h))

)2]

= (1 − λh)E

[( ∑
v∈Tt+h

(Xv,t+h − r(t + h))

)2

| J0,h

]

+ hλE

[( ∑
v∈Tt+h

(Xv,t+h − r(t + h))

)2

| J1,h

]
+ o(h)

= 1 + hλ̂E

[(∑
v∈T i

t

(Xv,t − rt)

)2]

+ hae2λ̂t + hbeλ̂t + o(h),

where

a = λ

(
E[(N∅ − 1)2]

E[N∅ − 1]
E

[ N∅∑
i=1

D2
i

]
+E

[( N∅∑
i=1

Di

)2])

and

b = −λ
E[(N∅ − 1)2]

E[N∅ − 1]
E

[ N∅∑
i=1

D2
i

]
.

https://doi.org/10.1017/jpr.2020.60 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.60


1258 D. CHEEK AND S. SHNEER

Rearranging and taking h ↓ 0,

d

dt
E

[(∑
v∈T i

t

(Xv,t − rt)

)2]
= λ̂E

[(∑
v∈T i

t

(Xv,t − rt)

)2]
+ ae2λ̂t + beλ̂t.

The statement of Lemma 4.2 now follows directly from the differential equation above. �
Next we present a martingale result for which a filtration (Ft)t≥0 needs to be defined:

Ft = σ ((Xv,s)v∈Ts : 0 ≤ s ≤ t).

Lemma 4.3. (
e−λ̂t

∑
v∈Tt

(Xv,t − rt)

)
t≥0

is a martingale with respect to (Ft)t≥0.

Proof. Write
Tu,t = {v ∈ Tt : u � v}

for the particles alive at time t which are descendants of u ∈ T . Let 0 ≤ s ≤ t. Then

e−λ̂t
∑
v∈Tt

(Xv,t − rt) = e−λ̂t
∑
u∈Ts

∑
v∈Tu,t

(Xv,t − Xu,s − r(t − s)) + e−λ̂t
∑
u∈Ts

|Tu,t|(Xu,s − rs).

Taking conditional expectations,

E

[
e−λ̂t

∑
v∈Tt

(Xv,t − rt) |Fs

]

= e−λ̂t|Ts|E
[ ∑

v∈Tt−s

(Xv,t−s − r(t − s))

]
+ e−λ̂t

∑
u∈Ts

eλ̂(t−s)(Xu,s − rs)

= e−λ̂s
∑
u∈Ts

(Xu,s − rs),

where the last equality is due to Lemma 4.1. �
Proof of Theorem 3.1. By Lemmas 4.2 and 4.3 and the martingale convergence theorem,

there is a R-valued random variable V with

lim
t→∞ e−λ̂t

∑
v∈Tt

(Xv,t − rt) = V (4.3)

almost surely. But conditioned on the event {limt→∞ |Tt| = ∞}, there is a positive random
variable W with

lim
t→∞ e−λ̂t|Tt| = W (4.4)

almost surely [2]. Combine (4.3) and (4.4) to conclude the proof. �
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