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1. Introduction

Let p be a prime number, let F' be a finite extension of Q, or F,((T)), and let G be the
group of rational points of a connected reductive F-group.

1.1.

The smooth representations of G over an algebraically closed field C of characteristic p
have been the subject of many investigations in recent years, in the modulo p Langlands
program. The pro-p-Iwahori invariant functor V + V(D relates the representations of
G to the modules of the pro-p-Iwahori Hecke C-algebra H = Hc (G, I(1)) studied in
[13-15]. The I(1)-invariant functor and the theory of H-modules play an increasingly
important role in the representation theory of G modulo p. They are the key to
the proof of the change of weight in the recent classification of irreducible smooth
C-representations of G in terms of supersingular ones (a forthcoming work by Abe
et al. [1]). The supersingular smooth irreducible C-representations 7 of G and their
I (1)-invariant remain mysterious, but the supersingular simple H-modules are classified
in this paper, and the supersingularity of 7/ and of 7 are related. A variant
of the modulo p Langlands program seems to exist for H-modules. Grosse-Kloenne
[5] constructed a functor from finite-dimensional Hc(GL(n, Q)), I(1))-modules to
finite-dimensional smooth C-representations of Galg,, inducing a bijection between the
simple supersingular Hc(GL(n, F), I(1))-modules of dimension n and the irreducible
smooth C-representations of Galr (the absolute Galois group of F) of dimension n as in
[9, 14].

In this paper, we prove that the I(1)-invariant functor behaves well when restricted
to compactly induced representations C—Indg 0, where p is an irreducible smooth
C-representation of a special parahoric subgroup K of G. The vector space p!() has
dimension 1, and the pro-p-Iwahori Hecke C-algebra h = Hc (K, I(1)) of K acts on
o'W by a character 5. The H-module (c-Indg 0)! M is isomorphic to n®pH, and the
spherical algebra End¢cg (c-Indg p) is isomorphic to the algebra Endy (n ®y H). This paper
is devoted to the study of the modules n®y H and of the spherical Hecke algebras
Endy(n ®y H). In the last section, we transfer our results from H to the group G using
the I (1)-invariant functor.

Let p be an irreducible smooth C-representation of K, and let n, n; be two arbitrary
characters of ). We obtain the following:

(i) Isomorphisms
(c-Ind§ p)'V =~ p' D@y H,  Endcg(e-Ind§ p) ~ Endy (o' " @4 H).
(ii) A Satake-type isomorphism for the spherical Hecke algebra H(h, n) = Endy (n Qy
H).
(ili) A basis of the space of intertwiners Homy (1 ®p H, n ®p H).

(iv) An almost-isomorphism from the center of H to the center of H(h,n) (an
isomorphism between finite index affine subalgebras).

(v) The classification of the supersingular simple H-modules.
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When G is split and K hyperspecial, Ollivier proved (i), (ii), (iv) and (v). We follow
her method. The alcove walk bases of H and the product formula [12, 15] allow us to
simplify her method and to extend it to G general and K special. Analogs of 2, 3 were
proved for G in [6, 7] and 5 for G remains a wide-open question.

In the rest of this introduction, we consider the content of 2, 3, 4, 5.

After [13, 14], a generalization of H¢ (G, I(1)) was introduced in [12] when G is split,
and in [15] for G general, in order to study it. This is an algebra Hg (g, c;) over a
commutative ring R with two sets of parameters (gs), (c;). The properties of this algebra
are often proved by reduction to (gs) = (1) (this changes the parameters (cz)), and
transferred to Hg(0, c;) by specialization to (gy) = (0). The algebra Hg(qgs, c;) contains
a natural finite-dimensional subalgebra hr(gs, ¢3)-

In 1.2 and 1.3, we recall the basic properties of Hg(gs,c;) used in this work and
the dictionary between Hr(gs, c5), Hr(gs,c;) and Hg(K, I(1)), Hr(G, I(1)) [15, 16].
Theorems 1.2, 1.3, 1.4, and 1.5 are proved for hg(0, c5), Hg(0, ¢5), and are given in 1.4.
They apply to the algebras Hr(K, I1(1)), Hr(G, I(1)) when R has characteristic p.

1.2.
Let W= (Z,A,Q,A,v, W, Z;, W(1)) be data consisting of the following;:

(i) a reduced root system X of basis A associated with the finite Weyl Coxeter system
(Wo, S) of an affine Weyl Coxeter system (WA, §2T) acting on a real vector space
V of dual of basis A, with a Wy-invariant scalar product;

(ii) three commutative groups, 2 and A finitely generated, and Zj finite;

(iii) a group W = W 5 Q = A x W which is a semi-direct product of subgroups in two
different ways, Q acting on (WA, §2T) and Wy on A. The length ¢ and the Bruhat
order < of (W, 2y extend trivially to W = W x Q;

(iv) a Wop-equivariant homomorphism v : A — V such that the action of W on v
and the action of A on V by translation v — v+v(X) for A € A, v € V, extend to
an action of W by affine automorphisms permuting the set of affine hyperplanes
9 = {Ker(@+n),|a+ne 2 =% 4+ 7}

(v) a system of the representatives of Wy in A:
At i={peAlvwed),

where D = {x e V|0<alx), o € A} is the dominant closed Weyl chamber;

(vi) an extension 1 — Zy — W(l) —> W — 1.

Notation. The inverse image in W (1) of a subset X of W is denoted by X (1), and
denotes an element of W(1) of image w € W. For ¢ € R[Z;], the conjugate of ¢ by
depends only on w, and is denoted w e ¢ := wew™!. The dominant Weyl chamber ®1 =
{x e V|0 <ax),a e A}is open. The dominant alcove €T is the connected component
DTNV —Upes H) of vertex 0 € V. The set ¥+ of positive affine roots is the set of
y € 4 positive on €*. The action of W on V defines by functoriality an action of W
on xf,

S &
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We will often suppose that A contains a subgroup Ar satisfying the following.

(T1) A =[lyey Ary for a finite set Y.

(T2) Ar is Wy-stable.

(T3) There exists a central subgroup A7 of A(1) normalized by Wp(1) such that the
quotient map A(1) — A induces a group isomorphism A7 = A7 sending wiaw !
to wpuw L if W e Wo(1) lifts w € Wy and i € A7 lifts u € Ar.

Let (g5, c5)sesar(1y) be a set of elements in R x R[Z;] satisfying g5 = g5, cy = wecs if
§ =wsw~! e $4M(1), W e W(1), and ¢;5 = g5, c15 = tc; if t € Zy. As g5 depends only on
the image s € ST of §, we denote also g5 = .

There is a unique R-algebra H = Hr(W, gy, c5), free of basis (Tg)gew (1), with product
satisfying

(i) the braid relations:
TIZ)Ti)’ = Tﬁ)l’b/, if IZ), IZJ/ (S] W(l), Z(w) +E(w’) = E(ww’), (1)

allowing one to identify R[€2(1)] to a subalgebra of H;

(ii) the quadratic relations:
TiT = q,82, it § e $U(), TF = Tx —cs. (2)

This is called the Iwahori-Matsumoto presentation of Hg(W, g5, ¢35)-

The R-submodule of basis (T3)gew, ) is a finite subalgebra h = hr(W, g5, c5).

The R-submodule of basis (T) jcpair(p) is a subalgebra H. The R-algebra H* is an
algebra like H with Q trivial, and  is isomorphic to the twisted tensor product

x®y > xy: H @, RIQD] > H (3)

of its subalgebras R[2(1)] and H*T. The algebra # admits an involutive R-automorphism
t, equal to the identity on R[€2(1)] and such that [15, Proposition 4.23)

W(Ty) = —TF fors e S, (4)

All the orientations that we consider are spherical [15]. For the orientation o associated
to an (open) Weyl chamber ©,, the o-positive side of the affine hyperplane Ker(x + n) is
the set of x € V where a(x) +n > 0, if @ € X takes positive values on ®,. The dominant
orientation o, denoted by ot, is associated to the dominant Weyl chamber ®*, and the
anti-dominant orientation, denoted by o~ to the anti-dominant Weyl chamber —D+ =
®~. The orientation associated to the Weyl chamber wil(Dg), w € Wy, is denoted by
oew. For w € W of projection wg € Wy, the orientation o e wy is also denoted by o e w.
We have o e =0 for L € A. We set

Sf,‘ff = {s € % | €T is in the o-positive side of H,}, S, := SN Sﬁff, (5)

where H, is the affine hyperplane of V fixed by s and €% the dominant alcove
(Notation). There exists a unique set of bases (E,(W))gew) of H, parameterized by
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the orientations o, satisfying [15, §5.3]
E,(5) :=Tsif s € S — 530 E,(3) := 17 if s € 21, (6)
and the product formula, for w, W' € W(1),
Ey () Egen (') = E, (b)) i £(w) +£(w') = L(ww). (7)
In particular, for A, X’ € A(1),
E,(W)E (1) = E,(A%") if v(A), v(1') belong to a same closed Weyl chamber.  (8)

We have E,(A) = Ty when v()) € D,.

The basis (E,(w))gew(1) is called an alcove walk basis; the alcove walk bases generalize
the integral Bernstein bases defined in [11, 14].

The R-submodule of basis (E, (X))XGA(I) is a subalgebra A, of H containing the
subalgebra A} of basis (Eo():))ieAJr(l)7 isomorphic to R[AT(1)].

If gg = 0 for all s € S, then for w, @ € W(1) such that £(w) + £(w’) > £(ww’) we have
Eo(D)Epew (W) = 0; in particular, E,(A)E,(A)) = 0if A, ' € A(1), and v()0), v(1) do not
belong to the same closed Weyl chamber.

1.3.

Let F be a local field of finite residue field k with g elements and of characteristic p, and
pr a generator of the maximal ideal of the ring of integers Or of F. Let G, T, Z, and N be
respectively the F-rational points of a connected reductive F-group, a maximal F-split
subtorus, its centralizer, and its normalizer. Let €1 be an open alcove of the semi-simple
apartment of G defined by T, let xg be a special vertex of the closed alcove €+, and let
I, 1(1), K, be respectively the Iwahori subgroup of G fixing €7, its pro- p-Sylow subgroup,
and the parahoric subgroup of G fixing xq.
We associate to G, T, Z, N, I, I(1), K the data

(W = (Ea A5 Qa Aa v, W’ Zk7 W(l)); (qu CE))?

and a group A7, satisfying the properties given in § 1.2 with R = Z, as follows.

The apartment defined by T identifies with a Euclidean real vector space V. The set
St of orthogonal reflections with respect to the walls of €T generates an affine Coxeter
system (W3, 52y " given by a based reduced root system (, A). The action of N on the
apartment transfers to an action on V. The subgroup Z acts by translations (z, x) — x +
vz(2), (z,x) € Z x V, for an homomorphism vz : Z — V satisfying a ovz(t) = —a(t) for
t € T and « in the root system @ of T in G. There is a surjective map « > eqa : & — X,
where e, is a positive integer for all « € .

Let Tp := TN K (the maximal compact subgroup of T), Zy := K NZ (the parahoric
subgroup of Z), and let Zy(1) be the pro-p-Sylow subgroup of Zj. Then

Ar:=T/Ty, A:=2Z/Zy, AQ):=Z/Zo(l), Zi:= Zo/Zo(1),
Wo:=N/Z, W:=N/Zy, W():=N/Zy().

The homomorphism vz and the action of N on V are trivial on Zy. They induce an
homomorphism v : A — V and an action of W on N. The monoid AT represents the
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orbits of Wy in A [7, 6.3] and the double cosets K\G/K. The groups W, W(1) represent
the double cosets I\G/I, I (1)\G/I(1). The group € is the W-stabilizer of the alcove €.
We denote by w an element of W(1) of image w in W, and we call w a lift of w.

For s € S let K, be the parahoric subgroup of G fixing the face of ¢+ fixed by s. The
quotient of K by its pro-p-radical is the group Gy of rational points of a k-reductive
connected group of rank 1. The image of 1 (1) in Gy x is the group Uy i of rational points of
the unipotent radical of a k-Borel subgroup Z; Uy x of opposite group Z; Uy k. It is known
that s admits a lift ny € NN K of image in G, belonging to the group (Us,k,ﬁs,k)
generated by Uy x UUS,k. The image of ng in W (1) is called an admissible lift of s. We set
Zis = Ze N {(Us ik, Us )

For s € $*f § an admissible lift of s, and ¢ € Z, let

qs = [nsl : Iis a power of g, ¢s = (g5 — D|ZisI™" ) 2z,

z2€Zk s

and ¢;3 = ZZGZ/(,S c;(2)tz, for positive integers c¢;(z) = c§(z_1) of sum ¢, — 1, constant on
each coset modulo {xs(x)™! | x € Z;}, and ¢; = ¢; mod p as in [15, Theorem 2.2].

The cocharacter group X.(T) of T is isomorphic to A7 and embeds in A(1) by the
map pu+— u(pr)~' 1 Xu(T) — Z followed by the quotient maps of Z onto A and A(1).
Remembering the sign — in the definition of v,

[TRS AJTr < a(u(pr)) € O forall a € A.

We identify u with its image in A7, and @i denotes its image in A(1).

For a commutative ring R, the pro-p-Iwahori Hecke R-algebra Hg(G, I(1)) is
isomorphic to the algebra Hg(gs, c;) associated to this data.

The pro-p-Iwahori Hecke R-algebra Hz(K, I(1)) of K is a subalgebra of Hz(G, I(1))
isomorphic to the finite subalgebra h(qgs, c;) of H.

The Iwahori Hecke R-algebra Hg(G, I) is an algebra H associated to the same data
except that Zy = {1}, W(l) = W, ¢; = g5 — 1.

The group G is split & T =Z = Ar = A. The group G is quasi-split < Z is the
F-points of an F-torus = A(1) is commutative. The group G is semi-simple < Kerv is
finite = Q is finite and v is injective on A7.

The quotient of K by its pro-p-radical K(1) is the group Gy of k-rational points of a
connected reductive k-group. The images in Gy of Ty, Zo, I, and I(1) are the groups
Tk, Z, B, and Ui of k-rational points of a maximal k-split torus, its centralizer (a
k-torus), a Borel k-subgroup containing the maximal k-split torus, and its unipotent
radical.

The finite Hecke algebras Hg(K, I(1)) and Hg(Gg, Uy) are isomorphic.

The condition g; = 0 for all s € S means that the characteristic of R is p. Then,

-1
s =—1ZisI7t Y 1z,
z€Zk s

and the irreducible smooth R-representations p of K are trivial on K(1); they identify
with the irreducible R-representations of Gyg, in bijection with the characters of
Hr(Gr, Uy) by the Ug-invariant functor p — pUY for R as in 1.4.
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1.4.

For the remainder of this article, unless otherwise specified, we are in the setting of § 1.2
with g; = 0 for all s € S™T and R is a field containing a root of unity of order the exponent
of Zy.

Notation. We denote by Zi the group of R-characters of Zi. For a character x € 2k7 a
character 7 of b, and a character & of H*", we set

Sa = {s € S | x(c5) #0}, Sy = S¥N5, (9)

Sy i={s € S| n(Ty) #0}, SY:={s e 5| B(Ty) #0}. (10)

These sets are independent of the choice of the lift § of 5. For (w, x) € W(1) x Zr we

denote by x¥ € Zi the character x¥ (1) = x(wtw™") for t € Zx. The subgroup generated
by a subset X of a group is denoted by (X). For A € A we set

Ay i={a e Alaov(l) =0}, Sy :={sq]|ae A} (11)

We recall from §1.2 the R-algebra b associated to the finite Coxeter system (W, S)
and the extension 1 — Z; — Wy(1) — Wy — 1, of basis (T3)sew,) satisfying the braid
relations and the quadratic relations T;(T; —c;) = 0 for 5§ € S(1).

Theorem 1.1 (The characters of ). (a) The characters n of b are in bijection with the
pairs (x, J), where x € Zx and J C Sy, x =nlz,, and J = S,,.

or any n, there exists an orientation o suc at the equivalent properties S, =
b) F th 5T, entatt h that th walent ties Sy
Sy NSy & n(ENS)) =0, for all s € S, hold true. We set x, 1= 1.

(¢c) For two characters ni, n of b, there exists an orientation o such that ny = (x1)o, 1 =
Xo if and only if
Sy NSy, =8, NSy

For a reduced decomposition of w =5;...5. of W(l), the element cj =c5 ...c5
of R[Z;] does not depend on the choice of the reduced decomposition [15,
Propositions 4.13(ii) and 4.22].

Theorem 1.2 (A basis of the intertwiners). Let n1, n be two characters of b of restrictions
X1, x to Z.

(a) m1 is contained in n @y H (is a submodule) if and only if
= x", Sy NSy =8NSy, for some X e AT,

(b) For » € A" satisfying (a), there exists a non-zero H-intertwiner

Q11> 1Q& me®H—>n1®H, &= Z Xl(Ca)O)_1®T;@0,

wo€eYy

where Y5 = {wo € (Sy, —Sy,) | X}UO = x1, L(Awg) = £(A) — L(wo)}, and wy is a lift of
wo; note that )(1(clbo)’1 ® T4, does not depend on the choice of the lift.
(®3), for A € AT satisfying (a), is a basis of Homy (n1 @y H,n @y H).
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(c) If o satisfies (d) and ) € AT satisfies (a), there exists a mon-zero H-intertwiner
®,5:1@1 > 1®E,R) : (x1)o ® H — Xo @ H.
(®,5), for » € A™ satisfying (a), is a basis of Homp ((x1)o ®y H, Xo @p H).

We note that )(l(cﬁ,o)’1 ® Tmo € n®p H does not depend on the choice of the lift wg
of wg € Y. We set

Ay :={reA|x* =y}, resp. AT = ATNA,. (12)
The idempotent e, := [ Zi| ! Zzezk x ()"t of R[Z;] is central in R[A,(1)], and the
R-linear map
X Qrizi] RIA (D] = e, R[A, (1] 1®A > eXX (AeAy) (13)
is an isomomorphism. Any R-algebra A with a basis (a;\)xe[\;r satisfying
azaz, = x()az, for A, 1, 1" € A;,t € Zy, M =11, (14)
is canonically isomorphic to the algebra eXR[A;(r(l)] with its natural basis (exi)Ae A
For an orientation o, the R-submodule 'A(tx of basis (EU(X))XGA;(U is a subalgebra
of H. The algebra x ®g(z,] .AIX of basis (1 ®EU(A)))L€A¢ is an R-algebra with a basis
satisfying (14).
A spherical Hecke algebra is the algebra of H-intertwiners of a right H-module n ®y H
induced from a character n of h, by analogy with the reductive p-adic groups
H (b, n) := Endy (n @y H).

Theorem 1.2 with n; = n becomes the following.

Theorem 1.3 (A Satake-type isomorphism for the spherical algebra). (a) A basis of
the spherical Hecke algebra H(h, n) is (@i)keA;, where

Q;: 1011885 1@y H —>nQyH, & = Z X (i) ® Ty »
wo€eYs

Yy ={wo € (Sy = 8y) | X = x, € wo) = £(1) — £(wo)}.
(b) Let o be an orientation such that n = x,. For A € A;r, there exists an injective

h-intertwiner

®,;:1®@1 > 1®E,M) : n®yH — n®y H.
(QO,X)AEA}' is a basis of the spherical Hecke algebra H(h, n) satisfying (14), inducing
an isomorphism
H(b, n) =~ ex RIAT (D]

We suppose now that A7 exists. The center Z of H is the algebra AZV D of
W (1)-invariants of A,, and is a free R-module of basis

E(C)=)_E,() (15)

reC
(E (€) is indepe{ldent of the choice of o) for all finite conjugacy classes C of W(1).
We denote by C(u) the W(l)-conjugacy class of i for u € A}'. The R-subspace of
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basis (E(CN'(;L)))MeA; is a central subalgebra Z7 of H which has better properties
than Z.
A central element x € Z induces naturally a H-intertwiner of n ®y H:

D, :1Qh—> 1Qxh=1Qhx forheH. (16)

It is straightforward to check that ®, belongs to the center Z(n,bh) of H(n, h). The
R-subspace of basis ((DE(C(M.)))MGA;E is a central subalgebra Z(n, H)r of the spherical
algebra H(n, b).

Theorem 1.4 (Almost-isomorphism between the centers of H and H(n, )). We suppose
that At exists. Let n be a character of b.

(a) Zr is a finitely generated central R-subalgebra of H, and H is a finitely generated
Zr-module. This is also true for (Z(n, H)r, H(n, b)) instead of (Z7,H).

(b) Préq) = Poii foru e A"}' and any orientation o such that n = x,.
The linear map i1 +— cDE(é([L)) : R[A;] — Z(n, H)1 is an algebra isomorphism.
(¢c) The map x +— @y : Z — Z(n, H) restricts to an isomorphism Zr — Z(n, H)r.

We prove (a) over any commutative ring R.

We transfer these results to the group G. The spherical Hecke algebra Hz(G, K, p) =
Endgg c—Indg p of an irreducible smooth representation p of K with Hg(K, I(1)) acting
by 1 on p!M is isomorphic to H(n, h) by the pro-p-Iwahori invariant functor. We denote
by Zr(G, K, p)7 the algebra corresponding to Z(n, H)r. We denote by Hg(Z™", Zo, x)
the R-algebra of elements in the Hecke algebra Hg(Z™, Zo, x) with support contained in
the monoid ZT of z € Z with vz(z) dominant.

From Theorem 1.3 we obtain an algebra isomomorphism

S, i Hr(G, K, p) = Hr(ZT, Zo, x) (17)

for each orientation o such that n = x,. This isomorphism restricts to an isomorphism,
independent of the choice of o,

St : Zr(G, K, p)r — Hr(TT, Ty, x). (18)

Let m be a smooth R-representation of G such that Hompg(p,7w) contains a
Zr(G, K, p)r-eigenvector A of eigenvalue &, seen as an homomorphism A'}' — R
(Theorem 1.4). From Theorem 1.4, for v € '™ non-zero and u € A}',

E(A®) = AW Ey() = A@)E(C ().

Theorem 1.5 (Supersingularity in G and in H). The eigenvalue & of the
Zr(G, K, p)r-eigenvector A € Homg(p, ) is supersingular if and only if the submodule
AWYH of 7'M is supersingular.

We recall that an homomorphism ]\}“ — R is called supersingular if it vanishes
on the non-invertible elements, and that a simple right H-module M is called
supersingular if M E(C) = 0 for all finite conjugacy classes C in W (1) with positive length
[13, Definition 1]. This is equivalent to M E(C(u)) = 0 for all non-invertible u € ]\}'
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In a forthcoming article, we will study the parabolic induction for H-modules; we hope
to prove that the isomorphism S, (17) is the Satake isomorphism of [7] for a good choice
of o such that n = x, (this was proved by Ollivier [10, Theorem 5.5]), when G is split with
a simply connected derived group, and K is hyperspecial; as Z =T, we have S, = Sr,
and that an irreducible smooth admissible representation 7 is supersingular if and only
if 7/ contains a supersingular module (this was proved by Ollivier for G = GL(n, F)
and PGL(n, F) [11, Theorem 5.26)).

Finally, we classify the supersingular simple finite-dimensional H-modules (proved by
Ollivier when G is split, and K is hyperspecial [11, Corollary 5.15]).

For a character E of M, the R-subalgebra Hg of H generated by H*" and the
Q(1)-fixator of &,

Qg :={ue Q)| Ewhu=") = E(h) for h € H,

is identified by (3) with the twisted tensor product ”H,aff®R[Zk] R[Q(1)g] — Hz. For a
simple finite-dimensional R-representation o of 2(1)g equal to E on Zg, let

M(E,0) =(E®0)Qu. H (19)

be the right H-module induced from the right Hg-module E ® 0. The induced module
M(E, o) is finite dimensional. Two pairs (Z1, 01), (E2, 02) are called conjugate by an
element u € Q(1) if

B (whu™") = Ba(h), oy(uvu™") = oo (v) for (h,v) € H x u™'Qg(Du.

The affine Coxeter system (Waff, Sy is the direct product of the irreducible affine Coxeter
systems (Wiaff, Sf‘ff)lg,-gr associated to the irreducible components (%;, A;)1<igr of the
based reduced root system (X, A). The R-submodule of basis (T;) B eWHT(1) is a subalgebra

H?ff of H™T. The algebras ’Hf‘ff are called the irreducible components of H2.

Theorem 1.6 (Supersingular simple modules). (a) The characters & of H™ are in
bijection with the pairs (x, J), where x € Zy and J C S;ff, X =Elz, and J = S%ff
(10). When ¥t = ST & is called a sign character, and the character Eot (4) is
called a trivial character.
(b) A character E of H™ is supersingular if and only if it is not a sign or trivial
character on each irreducible component of H.
(¢) A finite-dimensional right H-module is supersingular if and only if it is isomorphic
to M(E,0), where & is a supersingular character of H™ and o is a simple

—~

finite-dimensional R-representation o of Q(1)g equal to E on Zy.

(d) M(E1, 01) = M(E2, 02) if and only if (E1, 01), (B2, 02) are Q(1)-conjugate.

2. The characters of ) and Hf

Proposition 2.1. A simple h-module has dimension 1.
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Proof. The finite-dimensional R-algebra b is generated by Z; and T; for all s € S. By
the hypothesis on R (§1.4), a right simple h-module is finite dimensional and contains
an eigenvector v of Zg. Following the argument of [4, Theorem 6.10], we choose w in the
finite group Wy of maximal length such that vTy # 0, and we show that RvTy, is h-stable.
RvTy is stable by T;, because Ty Ty = (wet)Ty for t € Zy.
RvTy is stable by T;, because

—if £(ws) = €(w) + 1, vT3T; = vT,; and by the hypothesis on w, vT,5 = 0;

—if C(ws) =L(w) — 1, TyTs = Tys-1 T = Tyz-105T5 = Ty5-1 Tscs = (w o )Ty We used
that T; and ¢; commute. O

Proposition 2.2. The characters n of h are in bijection with the pairs (x, J), where x € Zi
and J C Sy (9), by the recipe

Nzy=x, Sp=1{seS|nT) #0}=J.

We have n(T;) = x(c;) if s € J.

The characters & of H™ are in bijection with the pairs (x,J), where x € 2k and
J C S;ff, by the recipe
Elze =x. S¥={(seSM | E(T)#0 =1
We have E(T;) = x(c3) if s € J.

The set J is independent of the choice of the lift § of s. We call (x, J) the parameters
of the character. The restriction to h of the character E of H* with parameters (yx, SaEff)
is the character of parameters (y, S%ﬁﬂ S).

Proof. The proposition follows from the Iwahori-Matsumoto presentation in both cases.
If nlz, = x, we have

n(T3)(n(T3) — x(c5)) =0
for s € S. We can replace 7, S by 2, $2, O

The involutive automorphism ¢ of H (4) has the property for s € S that
n(T5) = 0 < nou(Tz) = nlcs).

The same holds for (2, $4) instead of (1, S).

Lemma 2.3. Let n be a character with parameters (x, S;) of b. Then not is a character
of b with parameters (x, Sy —Sy,). We can replace n, S, b by B, St gyaff

Let o be an orientation. We recall the notation (5), (6), (9), (10).
Lemma 2.4. Let n be a character of b with parameters (x, Sy). Then S, =5, NS, &

N(Ey(5)) =0 for alls € S. When this holds true, we denote n = x,.
We can replace (.1, S, xo) by (8, HM, gaff, ngf).
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Proof. We compare the values of E,(5) and n(T;) for s € S:

E,$)=T; & se€S—S,,
=T;—c;&s€eS,,

nT;) =0&seS—S8,,
=x(c;) #0if s € §).

We see that
if s € §—8,, then n(E,($)) = n(T5) = x(c5) = 0;
ifs eS8, —3S,, then n(E,(5)) =n(T;) =06 s & (S — ;) NSy;
if s € Sy, then n(E,(5)) =0& s € 5,NS,.

Hence we obtain the lemma for 1. The proof is the same for E. O

Example 2.5. For the dominant orientation o™, S{‘:ﬁf = §, and the parameters of x,+ and

of X;"ff are (x, Sy).

For the anti-dominant orientation o7, S?ff = 5% _ S and the parameters of x,- are
(x,9), while those of X;‘ff are (x, Sj‘(ff— S).

Lemma 2.6. (i) Any subset of S is equal to S, for some orientation o.
A character n of b of restriction x to Zy is equal to x, for some orientation o, and

n=Jxo & SoNSy =85,

(ii) Two R-characters ni, n of b of parameters (xi, Su)s (X, Sp) are equal to (X1)o, Xo
for some orientation o if and only if

Sy NSy =Sy NSy,

In this case, n1 = (X1)o and n = Yo € SeN(Sy, USy) = Sy, US,.

Proof. (i) Let w, € Wy. For « € A, the root in {o, —a} positive on wg_l(33+) is equal to
o, = o if wy(a) > 0 and o, = —« if w,(a) < 0; hence

Sa € So & wy(a) > 0.

For a subset X of S, we have X = S, for the orientation 0 = o™ e w, of Weyl chamber

D, = w;] (D7), where w, is the longest element of the group (S — X) (w =1 if § = X).

(i) SoNSy, =Sy, and S,NS, =S, imply that S,NS,, NS, =S, NS, =8,NS,,. If
Sp NSy =8,NS,,, then S, N(Sy, USy) =S, US, implies that S,NS,, =S, and S, N
Sy =Sy O

Definition 2.7. A character of h not vanishing on T; for all s € S is called a twisted sign

character, and its image by the involution ¢ is called a twisted trivial character.
We make the same definition for #T, §2 replacing b, S.
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The twisted sign characters n are never 0 on Ty for w € Wy. The algebra h admits
no twisted sign or trivial characters when ¢; = 0 for some s € S. They are equal to x,+,
where x € Z; satisfies S, = S.

The twisted trivial characters n vanish on Ty for all w € Wy. They are equal to x,-,
where x € Zx satisfies Sy =S8.

The same remarks can be made for H?f, (Waff, Saff) replacing b, (W, S).

3. Distinguished representatives of Wy\W

We recall a well-known lemma for the affine Coxeter system (W2, 52y extended to the
group W = W » Q.

For s € $*, we denote by Ay the unique positive affine root such that s(A;) is negative.
We have s(A;) = —Aj [8, 1.3.11]. When s € S we write Ay = a.

Lemma 3.1. (1) For (s,w) € S*M x W, we have
L(ws) =14+ L(w) & wlag) > 0.

(2) Forv<win W and s € S, we have
(a) either sv < w or sv < sw;

(b) either v < sw or sv < sw.

Proof. We recall that W = W % Q. Let (s, u, w) € S x Q x waft,

(1) We have {L(uws) = £(ws), L(uw) = €(w), and L(ws)="L(w)+1<E wx) >0
[8, 1.13.13]. By definition (§ 1.2) an affine root is positive if and only if it is positive
on the dominant alcove €*. As the group Q normalizes €T, it normalizes the set
of positive affine roots, in particular w(as) > 0 <& (uw)(ag) > 0.

(2) Let (v,u’) € W x Q. By definition of the Bruhat-Chevalley partial order
[14, Ap. 2], vu’ < wu is equivalent to u’' = u, v < w. In W [8, 1.3.19],

(a) either sv < w or sv < sw;

(b) either v < sw or sv < sw.
We multiply (a) and (b) by # on the right without changing <. O
Remark 3.2. As {(w) =£L(w™") and v < w < v~ <w™!, in Lemma 3.1(1) we also have
C(sw) = 1+ £(w) & w'(as) > 0, and in Lemma 3.1(2), (a) and (b) can be replaced by

(c) either vs < w or vs < ws;
ws.

(d) either v < ws or vs < ws
We introduce now a distinguished set D of representatives of Wy\W.

Proposition 3.3. The three sets

Di={deW|d " a)>0 for alla € 1},
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Dy = {Awog | (A, wo) € AT x Wo, £(Awg) = £(X) — £(wp)},
D3 ={d e W | L(wod) = £(wo) + £(d) for all wy € Wy},

are equal, and will be denoted by D. The cosets Wod, for d € D, are disjoint of union W.

Proof. The set D; is also equal to
{d e W | L(sd) =¢£(d)+1 for all s € S}, (20)

because one can restrict to o € A in the definition of D; and, for s € S, d~ ' (a;) >
0% £(sd) =4€(d)+1 (Remark 3.2). Let w € W not in Dj. There exists s € § with
L(sw) = £€(w) —1. Then w; = sw satisfies £(w) =1+ £(w;). We reiterate, and after
finitely many steps we obtain (wg, d) € Wy x Dy such that w = wod, £(w) = £(wq) + £(d).
The pair (wo, d) is unique. Indeed, for d, d’ in D; with d’d~' € Wy, for all @ € A we have
dd @)=y € =, and d'(a) =d'~'(y) is positive as d € D;; hence y > 0 as d’ € D;.
This implies d = d’. We deduce that Dy is a set of representatives of Wo\W, that d € D
is the unique element of minimal length in Wod, and that D; C D3. This implies that
D, = Ds.

We now compare the sets D; and D;. For (A, wg) € A x Wy, we deduce from Lemma 3.1
(see [15, Corollary 5.11]) that

L(Awp) = £(A) —L(wp) € aov(rk) >0 foralla € T Nwy(T7). (21)

On the other hand, for all @ € =T, (Awg) @) = u)o_1 (o) + @ o v(A) is positive if and only
if

wal(a)>0,aov(k)20 or wal(a)<0,aov(k)>0 (22)

[15, (36)]. Comparing (21) and (22), we deduce that D = D;. O

Remark 3.4. (i) The distinguished set DM of representatives of Wo\W given by
Proposition 3.3 applied to W is equal to DM = DN W and D = DHQ.

(ii) The distinguished set D of representatives of Wo\W can be inductively
constructed: it is the set of Awg € D for A € AT and wg € Wy, such that wy =1
or wo has a reduced decomposition wyg = s1...s, (s; € §), such that

C(Asy...si41) =L(Asy...s))—1 for 1 <i<r.

Note that As € D < ag0v(A) > 0 when s € S.
We denote by wj the unique element of maximal length in the finite Weyl group Wj.

Lemma 3.5. Let A, u € A™. The double Wy-coset WoAWy has a unique element w; of
maximal length,

wy = wiA, L(wy) =L(w)+LA) and A< p & wy < wy.

The set WolWo N D is equal to D(A) = {Awg | wo € Wo, £(Awg) = £(X) — £(wp)}.
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Proof. The coset Wod of d € D contains a unique element of maximal length, equal to
wid, L(w1d) = £(w1) +£(d). For A € AT, the set DN WoA W, contains a unique element
of maximal length, equal to A (Remark 3.4(ii)). Hence WyA Wy contains a unique element
w;, of maximal length, equal to wiA and £(w;) = £(w1) +£(). As w, = wip, L(w,) =
L(w1) +£€(u), the equivalence A < u < wik < wipn is clear. We have D(L) = AWyND
(Proposition 3.3), and u € WoAWy & u = wiw™! for some we Wy & u=2, as A"
represents the orbits of Wp in A [7, 6.3]. O

Lemma 3.6. Let (A, wg) € AT x Wy, d = Awo € D, and let u € AT.
(1) Fors e S, ds ¢ D & dsd™' € S = €(ds) = £(d) + 1.
2) Fors e S and ds € D, we have £(ds) = £(d)+ 1 & €(wps) = £(wg) — 1.
3) For (w,d") € Wy x D, we haved < wd' = d <d'.
4) For s € S such that ds € D, we haved < u = ds <
5) We haved < wy, & d < A<

(2)
(3)
(4)
(5)

Proof. (1) Let s € S*. By (20) and Remark 3.2,
ds ¢ D & (ds) (@) <0 for some o € A.
Asd ' (B) >0 forall B € =F, and dsd~' € W we have
s(d @) <0 d N a)=A; © a =d(Ay) & sq =dsd™ .

We have £(ds) = €(d) + 1 by Lemma 3.1(1).
(2) Let s € S with ds € D. Then

e(ds) = 6(d) + 1 & L(A) — L(wps) = £(A) — L(wo) + 1 & E(wos) = L(wp) — 1.

(3) d < wd’ and s € S imply that d < swd’ or sd < swd’ by Lemma 3.1(2); as d < sd,
we obtain
d <wd =d<swd.

If w # 1, we choose s such that sw < w. Repeating the procedure, we obtain d < d’ by
induction on the length of w € Wj.

(4) Asd <, ds < pords < us by Lemma 3.1(2). When ws < p, we obtain ds <
Suppose that us > u and ds < us. By Lemma 3.1(1),

ps) = Lmu) +1 < plas) =as —asov(n) > 0 < agov(un) <0
S asov(u) =0« v(p) fixed by s © us =suu,u € ANQ.

We deduce that ds < spu. By (3), ds < pu, because ds, pu € D. As A is commutative,
ds <up. For w € W, there is a unique element u,, € € such that w € u,, W2, By the
definition of the Bruhat—Chevalley order, d < u, ds < up imply that uy = u, = uu,. We
deduce that u = 1,ds < u.

(5) The implications d < w, < d < u < A < pu are obvious, because d < A, u < w
The implication d < w;, = d < p follows from (3), because w, = wipu (Lemma 3.5) and
@ € D. The implication d < u = A < u follows from (4) reiterated finitely many times
for s € S such that £(ds) = £(d) + 1 if d # & (Remark 3.4(ii)). O
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Remark 3.7. Results similar to Proposition 3.3 and Lemma 3.6 are already in
[9, Proposition 2.5, Lemma 2.6, Proposition 2.7], [10, Lemma 2.4], [11, Proposition 1.3],
when W is the Iwahori Weyl group of a split reductive p-adic group G.

Lemma 3.8. In Lemma 3.6, for s € S and A, as in (11),
ds ¢ D & dsd™" = woswy ' € Si & woles) € Ay & wolay) € T, wolag) ov(r) = 0.
This implies that £(wos) = £(wg) + 1 and £(ds) = £(d) + 1 = £(L) — £(wgs) + 2.

Proof. By Lemma 3.6(1), ds € D < d(as) = Awp(ay) = wolas) —wolag) ov(d) € A &
wo(as) € A, wo(as) ov(h) = 0 & wo(ay) € Ay. In the proof of Lemma 3.6(1), we saw
that dsd—! = Swolas) = woswal. Note that ds € D implies that £(ds) = £(d)+1 = LX) —
L(wg) +1 # £(A) — L(wps). Hence £(wgps) = L(wg) + 1, €(ds) = £L(Awgs) = £(A) — £(wos) +
2.

By (22),ds € D < aov(A) > 0 for all « € Tt Nwps(X7). We have

ETNwes (7)) = (T Nwo(E7)) — {wo(—ay)}  if wolay) € 7,
= (ZTNwo(Z7) U{wo(ay)} if wolay) € =T,
because, for y € T, we have swo_l(y) < 0 if and only if y € {wo(o)}U (wo(Z7) —

{wo(—ay)}), as recalled at the beginning of this section. As d € D, we have ¢ ov(A) > 0
for all @ € ZT Nwo(Z 7). We deduce that ds ¢ D < wo(ay) € 21, wo(as) ov(h) =0. O

4. h-eigenspace in n®y H

Proposition 4.1. For any choice of lift d of d € D in D(1), the left h-module H is free of
basis (Tj)qep, and the right h-module H is free of basis (Tj-1)geD-

Proof. To the set D of distinguished representatives of the right Wy-cosets in W is
associated a disjoint union W(1) = |_|;cp Wo(1)d. Hence H admits the R-bases

(T, Dwewyy,aep and  (T5-1, ) wew,(1),deD-

A basis of b is (Tw)wew,(1)- By the braid relations, T, ; = T,T; and Tj.,, = T;1Ty,
because £(wd) = £(w) +£(d). O]

Remark 4.2. An element of H can be written as a sum ) _,.p h;T;, where h; € b, and,
for t € Zg,
haTq =hgT,g = hghiTg,  hg=hgh.

The monoid AT represents the orbits of Wy in A, and the double (Wy, Wy)-cosets of
W, because W = A x Wy. The (b, h)-module H is the direct sum

H=H v (23)
AEAT

of the (b, h)-submodules h(A) of R-basis (Ty,) We set D()) := WoAWyND.

weWy(DAWy(1)*
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Corollary 4.3. Let A € A1, The left h-module h(L) is free of basis (T7)aeD(r), and the
right h-module h(X) is free of basis (Tj-1)gepo-1y-

Let n be a character of b of parameters (x, Sy). Let A € AT. By Corollary 4.3, an
R-basis of n ®y h(A) is

(A ®THaeD(n)- (24)

When the algebra H arises from a split reductive p-adic group G, Ollivier proved that
the right h-module n ®j h(1) has multiplicity 1 (private communication by email March
2014). This property is general, and the characters of h contained in n ®y h(1) admit the
following description.

Proposition 4.4. Let n1 be a character of i of parameters (x1, Sy,). The ni-eigenspace of
n®yp h(X) is not 0 if and only if (n1,n, L) satisfies
xi=x" S, NS =S,NS.

When (91, n, L) satisfies these conditions, the ni-eigenspace of n ®y h(X) has dimension 1
and is generated by 1 ® & (defined in Theorem 1.2).

Proof. Let £ € n®y h(r). We write (24) € = ZdeD(k) a;®T;, where a; € R, and, for
t ez,
a‘z®Tg=atg®Tn§=X(t)atg®T~, agzx(t)an;.
For (w,t) € W x Zy and a lift w of w in W (1), using the notation of §§1.2 and 1.4,
ATHT, =1Q@ (we)Ty = x"(t) @ Ty. (25)

Using Proposition 2.2 and (25), £ is an h-eigenvector of n ®y h(1) with eigenvalue n; if
and only if £ satisfies

E= Y a;®T;#0, (26)
deD(), x4=x
ET; =0 forseS—S,, &T;=xi(c)E forseSy,. (27)

The space n ®p h(1) does not contain a h-eigenvector with eigenvalue 1; when the set
X ={d € D(A), x¢ = x1} is empty, and the proposition is obviously true. When v(1) = 0,
we have D(A) = {A} by Lemma 3.5, and the proposition is true, because it is clearly true
when X = {A}.

We suppose that v(A) # 0. For s € S, the set X is the disjoint union of the subsets

Xi1(s) ={d € X | 4(ds) =4(d)+1,ds € D},
Xo(s) ={d € X | ds ¢ D},
X3(s) = {d € X | £(ds) = €(d) — 1).
In 7 ®p h(A), we have
1® Ty (d € X1 ()
(1 ®T(1)T§ = 1®TJT§ = n(Tjg,]—l)@T(j (d € Xo(s))
x1(c5) @ T; (d € X3(s)).
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Indeed, if £(ds) = £(d) + 1, the braid relations imply that T;T; = Tj;.. If ds ¢ D, by

Lemma 3.6, dsd~' € S, Ty = Ti55-15 = Tj55-1T;- 1t €(ds) = €(d) — 1, the braid and

quadratic relations imply that T;T5 = T5; TEZ =Tsc5T5 = &c;c]‘ngrl T; = c?c;d~_1Tg.
Multiplying (26) by T; on the right,

&T; = Z a; ® Ty + Z N(Ty;5-1)a; 9 T;+ Z xi(c)az; @ Tj.
deX(s) deX;(s) deXs(s)

As X (s)s = X3(s), the expansion of £T; in the basis (24) of n ®p h(A) is

ETs= Y n(Tig0a;®@Ti+ Y (agg 1+ xiles)ag) @ T;. (28)
deXs(s) deX3(s)

Relations (27) are equivalent to the following.
For d € X;(s),

N(Tz5-Da; =0 ifseS—=S8,, n(Tz;10a;=xi(cz)a; ifseSy. (29)
For d € X (s),
0=xi(cp)a; ifseS,,.
For d € X3(s),
a1 = xi(cs)ag ifseS—35,, a1 = 0 ifsels,,.

The relations for d € X3(s) = X (s)s~! are equivalent to the following.
For d € X (s),

aj = xi(cs)ag; ifseS—8,, a;=0 ifses,.

The relations associated to (J,cg(X1(s) U X3(s)) are equivalent to

aj=0 ifde [ X0 (30)
SGS,”
aj = x1(c)ag; ifde U X1(5). (31)
seS—S,,l

As v(A) #0, we have X =|J,g(X1(s)UX3(s)), because d = Awg € D(A), wo € Wo
(Lemma 3.5), satisfies ds ¢ D(A) for all s € S if and only if wo(ag) € T, wolas) ov(r) =0
for all s € § (Lemma 3.8), and this is equivalent to v(A) = 0.

For d = Awg € X and d = Ay, the relations (30), (31) are equivalent to

aj = xi(cay) 'a; if woin (Sy, —Sy,).  a; = 0 otherwise. (32)

With the notation &, Y introduced in Theorem 1.2, (32) implies that £ = a; ® &. If
is contained in 7 ®p h(A), then a; # 0, the multiplicity of n; is 1, and x| = x*.
To end the proof of the proposition, we show that the conditions associated to
Uses X2(s) on € = 1®&; are
S — Sy =Sy — 8. (33)
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Relation (29) for d € X»(s) is always true if a; = 0. For £ = 1®¢&;, we have a; #0 &
d € 1Y,. By Lemma 3.8, d € AY; N X»(s) < d = Awg, where
wo € (Syy — Sn)s €Qwo) = L) — L(wp),  x;° = x1, dsd™' =wosw, ' € Sy
For sq = dsd~' € S, and §; = d5d~", we have x(cs,) = x(dc;d™") = x9(c5) = x1(c;). The
conditions associated to | J,cg X2(s) are as follows: for all d € 1Y, N X2(s),
s €S-8, ifseS—-S, and ss€8, ifseS,; (34)

that is, s € S, < sq € Sy when s € S, d € AY, N X»(s). They are equivalent to (33); that
is, s €S, & s €8, when s € §;, because, for d € 1Y, N X2(s), we have sq € S, and
(8, Sy, — Spy) = (Sa, Sy, — Spy); hence sq € Sy, & 5 € 8. O

Let n, n be two characters of ) of parameters (x, S;), (x1,Sy,), and let 0,01 be an
orientation such that n = x,, 11 = (X1)o,-
By the decomposition (23), the h-module n ®y H is a direct sum of h-submodules:

n®yH =P n®h). (35)

rEAT
Proposition 4.5. The character n1 of b is contained in n ®y H if and only if there exists
A such that (n, n1, ) satisfies
reAT, xi=x" S, NS =5,NS.

The n1-eigenspace of nQ®yH admits the R-basis (1Q¢&;) for all A such that (n,n1, A)
satisfies these conditions.

For (n, n1, A) as in Proposition 4.5, we denote by ®; the H-intertwiner
;111 1Q& :meyH — n®yH.

Corollary 4.6. An R-basis of Homy (11 @y H, n @y H) is (P5) for all A such that (n, n1, 1)
satisfies the conditions of Proposition 4.5.

Taking n = 11, and recalling the A™*-fixator A;r of x (12), we obtain the following.

Corollary 4.7. (@X)MA; is a basis of the spherical Hecke algebra H(n, h).

To obtain a basis of the spherical Hecke algebra satisfying (14), for an orientation o we
construct h-eigenvectors of the form

1® Eo(A) € %o ®p H

with A € AT (1), where, as in §1.2, (Eo(W))pew 1) is the alcove walk basis of H associated
to o [15, §5.3 Corollary 5.26], and the character x, of b is as in Lemma 2.4.

Lemma 4.8. Let A € A. We have, in x, Qy H,

I1QE,()—1®T €y R®Ty,
d

where d runs over the elements of D satisfying d < A and x¢ = x*. If » € AT, then
1Q E,(A) # 0 is a Zy-eigenvector of eigenvalue x*.
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Proof. Fort € Z;, we have [15, Example 5.30] E,(W)T; = TA(,)EU(X), T; T, = Ty T5; hence
1® E,(MT; = x* () ® E,(A), 1@ T;)T; = x*(1) ® T;. With the disjoint decomposition
W) = Ugep Wo(1)d and the triangular decomposition of E,(%) in the basis (Ta)mew 1)
of H [15, Corollary 5.26], if 1 ® E, (1) # 0 is a Zi-eigenvector of eigenvalue x*, we have
IQE,M—1®@T e Y. > ReTy.
deD, xd=x* weWy(1),wd<i
As L(wd) = £(w) + £(d), by the braid relations, 17T, ; = 1 T;T; = n(Ty) @ T,
Y RUI®T;y)=RIQT).
weWy(1),wd<i
As d < wd for w € Wy, we deduce that
1®E,AM)—1®T; € > R®T;.
deD,xd=x*,d<x

For A € AT, 1® E,(X) is not 0, because AT ¢ D, and (1® T3)aep is a basis of n®yH
(Proposition 4.1). O

Lemma 4.9. Let A € A. Then 1 Q E,(}) € xo ®p H is a h-eigenvector of eigenvalue (x1)o,
if and only 1 ® E,(A) # 0 and

x1=x" 1@E,(\)Ey, () =0 forallses.

Proof. By Lemma 4.8(ii), 1® E,(M) is a h-eigenvector with eigenvalue if and only if
1® E,,()L~) #0, and x| = X{, (1® Ey(A)E, (5) =0 for all s € § (Lemma 2.4). We have
(1®E0()L))E01(§) = 1®E0(A)E01(§)~ O

Lemma 4.10. Let A € AT. Then 1® E,(X) is a h-eigenvector of eigenvalue (x*), if and
only if n(Ey,(5)) =0 for all s € S such that £(As) = 1+£()).
Proof. Let s € S.

If £(1s) = £(A) — 1, then E,(L)E,(5) = 0 by the product formula.

If €(hs) = £(A) + 1, then E,(M)E,() = Ey(A5) = Eo(557'A5) = Ey(5) Epes (571A5).
The latter equality follows from the fact that the length is constant on a Wy-orbit in A.
It implies that 1 ® Ey(5)Epes §71A5) = n(E,(5)) ® Eo(L). Apply Lemmas 4.8 and 4.9. [
Proposition 4.11. Let A € A™. Then,

1® E,(X) is a h-eigenvector in x, ®p H of eigenvalue XM, and
& is the component of 1 ® E,(}) in xo ®p bh).

Proof. Use Lemmas 2.4 and 4.10 for the first assertion. The non-zero components of

1® E, () in the direct decomposition (35) are h-eigenvectors of eigenvalue (x*),. Apply
Proposition 4.4 and Lemma 4.8 for the second assertion. O
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Corollaréf 4.12. If o =01 (Lemma 2.6), an R-basis of Homy ((x1)o ®p H, xo ®n H) is
(1® E, (X)) for all & such that (xo, (X1)0, A) satisfies the conditions of Proposition 4.5.

Proposition 4.13. For each A € AT ¥+ we have an injective H-intertwiner
®,;5: 101> 1QE,() : xo ®yH — xo ®p H.

(q)o,X)AeA; is an R-basis satisfying (14) of the spherical Hecke algebra H(x,, h).

Proof. By Corollary 4.12 and the product formula (8), (P, A)A€A+ is an R-basis of

H(xo, b) satisfying (14).

If o 0.j. 1s not injective, Ker @, ; contains a simple character n; of h, and Q,50P1=0
for some non-zero ®; € Endh(m ®pH, n®py H).

Expanding &;(1®1) = ZueA"' ag; ® Eo(jt), ap € R, in the basis (1® Ey(ft)) ea+ of
n®yp H, and using the product formula E, (M E, (1) = E,(Afl), the decomposition of
(<I>0’X o®)(1®1) in this basis is

3 @@ ®E @) = Y. ai®EME (i) = Y. a5 ® Eo(ijb).

neAt HEAT HEAT

We have &1 #0 & ;(1®1) #0 & a; #0 for some M€A+<:>(CDU’)~\OCD1)(1®1)7£
06,500 #0. O

Corollary 4.14. 1® E,(A) =0 in x, ®y H if A € A — AT,

Proof. Let A € A — A™. We choose u € A; not 0. Then &, ; of Endy n ®, H is injective
(Proposition 4.13) and @, ;(1 Q E,(A) =1® Eo(R)Eo(X). As w, A belong to different
closed Weyl chambers, E, (1) E,(*) = 0; hence 1 ® E, (1) = 0. O

More generally, if (x,, (x1)0, A) satisfies the conditions of Proposition 4.5, we have the
non-zero H-intertwiner

®,5:1®@1 > 1®E, ) : (x1)o ® H — Xo ®p H.

An R-basis of Homy ((x1)o @ H, xo @ H) is (@0,1) for all A such that (x,, (x1)o, A) satisfies
the conditions of Proposition 4.5.
We fix x; € A such that x; = x™. For L€ A, x1 = x™' & re Ay. We embed
Homy, (11 ®y H, n ®p H) into the algebra e, R[A,] (§1.4) by the R-linear map
Syin.5  Homy(n1 ®p H, n®p H) — ex RIA], (36)
D s> eh (he AyNATx, (37)

0,75

where A, % € A(1) lift A, x;. If n =n; and ¥ = 1, the map S, ,1 = S,, embeds the
spherical Hecke algebra H (7, ) = Endy(n ® H) into the algebra e, R[Ay]

Snp t H(n,b) = ey R[A4] (38)
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Lemma 4.15. The composition

(A, B) = BoA :Homy(n ®yH, n®yH) X Endy (n ®y H) — Homy (1 ® H, n @y H),
corresponds to the product Sy, , (Ao B) = 8, ,(B)Sy, 5.5, (A) in ey R[A].

Proof. For A € A;’ and A € AT, M =y, Sy NSy, = 8, NSy, we have

D,50P,5 (181) =, ;(1® E,(h1)) = 1® Eq(ME,(A1) = 1 ® E, (A1),

by the product formula (8). Hence 50 @0’5\1 = CDo,XXl and~S~m,,7’,;| (®,;0 qf(’j“l) =ey 1
@&)~L As ey is a central idempotent of R[A, ], we have exkkl(il)_l = exkexkl(il)_l =
Sn,n(q)o,i)sm,n,il (q>o,7\1)' O
5. Centers

We make the same hypotheses as in § 1.2, and we suppose that A7 exists.

As A7 is central in A(1), the action of W(1) on A7 factorizes through an action of Wy,
and the R-module A,(A7) of basis (E,(i1))uen, is a Wo-stable subalgebra of the center
Z, of A,, for any orientation o. The quotient map Ar(1) — Ar of splitting u +— [ is
Wo-equivariant. For u € A7 of Wy-conjugacy class C (), and C () the Wp-conjugacy class
of fi, the set v(C(u)) contains a single element in the dominant closed Weyl chamber,
and

L =0 v() =0& e A & Cu) =it (39)
By axiom (T1) (1.2), a W(1)-conjugacy class C is finite if and only if C ¢ A(1).

In the following theorem, R is any commutative ring.

Theorem 5.1. The center Z of Hr(qs, c5) is the algebra .sz(]) of W(1)-invariants of A,,
equal to the algebra ZOWO of the Wy-invariants of the center Z, of A,. The center Z is a
free R-module of basis (independent of the choice of the orientation o)

E(C) = Z E,(X) for C running through the finite conjugacy classes of W(1).
reC
The involution v of H satisfies, for any finite conjugacy class C of W(1),
WE(O) = (=D PEQ). (40)

The algebra Zr = Ao(AT)™0 of Wo-invariants of A,(At) is a central subalgebra of H,
and a free R-module of basis (E(C'(u))ueA}r.

The Zr-modules Z and Hg(qs, c;) are finitely generated.

When the ring R is noetherian, the R-algebras Zp, Z, and Hg(qs,cs) are finitely
generated.

Proof. The steps of the proof are as follows.
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(1) The center Z, of A, is a free R-module of basis E,(¢) = ) 5.: Eo (1) for all conjugacy
classes ¢ of A(1).

(2) 256 E,(%) does not depend on the orientation o, and the center Z is equal to

AZV,(I) for the anti-dominant orientation o~.

(3) (a) The A,(A7)"o-module A,(A7) is finitely generated, and if R is noetherian the
algebra A,(A7)W0 is finitely generated.

(b) The left A,(A7)-module A, is finitely generated.
(¢) The left A,-module Hg(gs, cz) is finitely generated.

The theorem is proved for the pro-p-Iwahori Hecke algebra Hg(G, I(1)), where the
assertions on Zr are not formulated but are implicit in the proof. Properties (1),
(2), (3)(a), (b) and (40) admit exactly the same proofs as in [16, Propositions 2.3,
2.7, Lemma 2.15 and Proposition 3.3]. The same is true for the property (3)(c)
[16, Lemma 2.17], once we have strengthened the finiteness property [14, 1.6.3],
[16, Lemma 2.16]. This is done in Lemma 5.3 below. As in [16, added in proof], this
is a variant of the finiteness of the set of minimal elements in a subset L of Z" (n > 0)
[12, Lemma 4.2.18]. O

Let L be a group isomorphic to Z". For a = (a;), b = (b;) € 7", we write b < a if |a;| =
|bi| + |a; — b;| for all i. We write b < a if a # b, b < a; we say that a € L is minimal if
b e L,b < aimplies that b = a.

Lemma 5.2. (1) Leta € L. There exists b € L minimal such that b < a.

(2) The set Lyin of minimal elements in L is finite.

Proof. We have |(li| = |bi| + |(li —bi| < bi =0or a,-bi > 0, |bi| < |a,-|.

(1) If a is not minimal in L, we choose b < a and we reiterate. The processes stops after
finitely many steps, because b < a implies that |b;| < |a;| for 1 <i < n, and |b;| € N.

(2) Suppose that Ly, is infinite. If the set {a; | a € Lyin} is finite, a; is constant
for a in an infinite subset of L,;,. If the set {a; | a € L} is infinite, L,,;, contains
a sequence (a(m))men such that (a(m);)men is strictly increasing positive or strictly
decreasing negative. Hence L,,;, contains a sequence (a(m))eN such that, for all 1 <
i < n, (a(m);j)meN is either constant, or strictly increasing positive or strictly decreasing
negative. For all i in the non-empty set where (a(m);)nen is not constant, we have
a(m)ia(m+1); > 0, la@m);| < |a(m + 1);| for all m € N. Hence a(m) < a(m+1) for all
m € N. This contradicts the minimality of the a(m). O

By axiom (T1), W = I_I(y,wo)erWO Arywq. For (y, wp) € Y x Wy, let

L(y, wo) = {£(w) = (& () ex+ | w € Arywp},

where Z(w)=2y62+ [¢)(w)| and ¢, (w) as in [15, Propositions 5.7 and 5.9]. By
Lemma 5.2, the set L(y, wo)min is finite. Let X,(y, wg) be a finite subset of A7 such
that

L(y, wo)min = {€w) | w € X4 (y, wo)ywo).
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Let X be the finite subset U(y,wo)erWO X, (y, wp)y of A. We have

((w) = Lww ™Y+ e’y for w,w' € Awy, L) < E(w),

[16, Proof of Lemma 2.16(18)]. This implies the following.

Lemma 5.3. For any (A, wo) € A x Wy there exists x € X such that
Tl e Ar, £0awg) = £0x Y + £(xwo).
For a central element x of H, the H-intertwiner
O, 1Qh—> 1Qxh=1Qhx forheH. (41)
is central in H(x,, h) by Proposition 4.13 and
D00, ;(1Q@1) = O(IQE, ;) =1QxE_;
| —1QE,;x=0,;(10x) =b,;00.(181).
We denote by Z(x,, h) the center of H(x,, h). The homomorphism
X Oy Z = Z(X0, h) (42)
may be not injective or not surjective.
Proposition 5.4. (1) For u € AJTF, we have 1Q E(C(w)) =1® Eo(ft) and ®
D, i
(2) (CIDO,ﬂ)ueA;r is a basis, independent of o, satisfying (14) of a central subalgebra

Zr(n,h) of the spherical algebra H(n,H), and Hn,h) is a finitely generated
Zr(n, h)-module.

E(C(w) —

Proof. (1) From Corollary 4.14,

IQEC)= Y. 1®E®}) inx®%H.
reC(u)NA+(1)
For u € At wehave C() N AT (1) = {t}. Hence 1 ® E(C(1)) = 1 ® E,(ji) and DL =
Dy i

(2) The canonical isomorphism H(n, ) — ey R[A;] associated to the basis (CID()’;\)AeA?

(Proposition 4.13) sends Zr(n,h) to eXR[A}']7 and eXR[A;("] is a finitely generated
ey RIAT]-module. O

6. Supersingular H-modules

We make the same hypotheses as in § 1.2 and we suppose that A7 exists. We construct
different filtrations of H which are all equivalent when the ring R is noetherian.

Lemma 6.1. The R-module F, ,, of basis {E,(w) | w € W(1), £(w) = n} forn € N is a right
ideal of H, for any orientation o.
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Proof. We have F, ,H C F, n, because, for v € W(1), a basis of H is (Epew (W) gew (1)

and E,(w)Ey ey (W) = E,(ww’) if £(w) + £(w’) = £(ww’) and 0 otherwise. O

The length is constant on the projection C in W of a finite W (1)-conjugacy class C,
and is denoted by £(C) = £(C).

Lemma 6.2. The R-module Z¢~q of basis E(C) for the finite W(1)-conjugacy classes C of
positive length is an ideal of the center Z of H, stable by the involutive R-automorphism

L (4)-

Proof. Let Cy, C» be two finite W (1)-conjugacy classes. They are contained in A(1). By
the product formula,

E(CDE(C) =) agE(C), (43)
c

where C runs over finite conjugacy classes with £(C) = £(C1) 4+ £(C3). The stability by ¢
follows from (40). O

It is more convenient to replace the center Z of ‘H by the central subalgebra Zr of
basis (E(C(M)))MeXI(T) which admits better properties.

Lemma 6.3. We have
Zr =R7 ® 21050,
where Rt is the algebra of basis (T,;)MGAWO, isomorphic to R[A;VO], and Zr =0 is the
T

ideal of Zr of basis (E(é(“)))ueAPZ(ubO'
The algebras Rt and Zr ¢~o are stable by the involutive automorphism t.

Proof. The proof is straightforward. O

The R-module Fr,, of basis (Eo(fl))uear,e(uy>n is contained in F,, and contains
(Z1,050)".

Proposition 6.4. When R is noetherian, the filtrations of H

((Z7,050)"Hnen,  ((Z0=0)"Hnen,  (FromneNH, (Fon)neN,

are equivalent.

We have (Z27.¢-0)"H C (Z¢~0)"H C Fp.n. The last inclusion uses the product formula,
the equality E(C) = E,(C), and that (E,(w))wew(1) is a basis of . The noetherianity of
R is used only for the proof (Lemma 6.7) of the property (which implies the proposition):

for n € N there exists n’ € N such that F, ,» C (Z7.¢=0)"H.

This property follows from the next three lemmas.

Lemma 6.5. E(C(w)"E,(i1) = Eo(A"tY) for p € Ar and n > 0.
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Prqof. By the product formula, E(C(1))E, (1) = E,(ji*), because fi is the only element
of C(u) sent by v in the same closed Weyl chamber as v(r). By induction on n,
E(C ()" Eo(i1) = E(C(W)E(C ()" Eo(ft) = E(C()Eo("*)

= E(C(W)Eo(W)Eo(") = Eo(AP) Eo(i") = E,(i"T). O

Lemma 6.6. There exists a positive integer a such that, for any positive integer n,
Eo(n) € Z¥,Z>OA0
if w € At satisfies £() = na.

Proof. Let © be a closed Weyl chamber. We (éoose U1y ooy Uy in AT — ATVYO such that
v(ur), ..., v(y) generate the monoid v(A7) ND. We show that

Eo(n) € Z;,Z>OA’7’

if w e Ar,v(p) € ® and €(u) > n(€(p1) + - - -+ £(unr)). Clearly, this implies the lemma.
Let u = u'l" o u withu € (A7)0, ny, ..., n, in N. We have £(u;) #0for 1 <i <r
and £(u) = n1€(uny) + - - - +n-€(un,). Changing the numerotation, we suppose that ny > n,
and obtain
Eo(u) = Eo(ﬂl)nlh’ h = EU(MZ)nz cee Eo(,ufr)anu € A,.
By Lemma 6.5, E,(uD)" = E(C(u)" 'Eo(u1). Hence Eo(u) € E(C(u1))"A, C
Z;bvo. O

Lemma 6.7. When R is noetherian, for every positive integer n > 0 there exists a positive
integer n’ > 0 such that F, v C (21 ,450)"H.

Proof. By Lemma 5.3, we can choose a finite subset X C A such that, for (A, wg) €
A x Wy, we have £(Awg) = £(Ax~1) +£(xwg) for some x € X with 4 =ix"' € Ay. By
the product formula , E,(Awg) = E,(w) E,(xwop). If

Lwo) = n' = na+max{€(xw) | (x,w) € X x Wy},
we have £(u) > na. Taking a as in Lemma 6.6, E,(u) € (21.¢>0)"Ao; hence E,(Awp) €
(Zr.=0)"H. As (A, wo) was arbitrary, we get the lemma. O

We define ]-"gffl as Fo.n, with W(1) replaced by W*(1). The isomorphism (3) restricts
to an isomorphism
Tl @riz,) RIQ(D] = Fyn. (44)
The based root system (®, A) is the finite disjoint union of irreducible based root systems
(®;, A;) for 1 <i <r, the Coxeter affine Weyl group (W, §2) is the product of the
irreducible Coxeter affine Weyl groups (Wiaff, Sl?lff), and W¥T(1) is an extension

1 —> Zpy —» W¥(1) - ]"[ wat 1.

1
The algebras Hf‘ff defined by (®;, A;) identify with the subalgebras of basis (T,)
of H¥, called the irreducible components of HT.

weWal(1)
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Lemma 6.8. The filtrations of Ht

(Fomdnen (Z E%if,maﬁ)
: neN

1

are equivalent.

Proof. The length of w; € Wl?lff seen as an element of (Wl-aff, Slf“ff) or of (WA safty ig the
same; hence
ff ff
‘T.ﬁo,n - ‘F(?,n'
For we W of components w; € Wiaff7 we have £(w) =);€(w;) and E,(w) =
[1; Eo(w;) by the product formula, and the factors E,(w;) commute. If £(w) > nr, at
least one component w; satisfies £(w;) > n; hence

F oy e M O
i

i,o,n

Proposition 6.9. Let M be a right H-module, and let o be an orientation. The following
properties are equivalent.

(1) There exists a positive integer n such that MF, , = 0.

(2) There exists a positive integer n such that M(Zp=0)" = 0.

(3) There exists a positive integer n such that M(Z2r ¢=0)" = 0.

(4) There exists a positive integer n such that MFr o, = 0.

(5) There exists a positive integer n such that MFT = 0.

(6) There exists a positive integer n such that M]-'lafofn =0for1<i<r.

Proof. The isomorphism (44) shows that MF,, =0 & Mfgfrfl =0, because the action
of (1) is invertible. Applying Proposition 6.4 and Lemma 6.8, the properties are
equivalent. 0

Definition 6.10. A right H-module M is called supersingular if it is not 0 and satisfies
the properties of Proposition 6.9.

For future reference, we present the properties of the supersingular right H-modules
M deduced easily from Proposition 6.9 and Lemma 6.3, as a proposition. For a right
‘H-module M, we have the right H-module (M), equal to M with h € ‘H acting by t(h).

Proposition 6.11. (1) The category of supersingular right H-modules is stable by
subquotients, by extensions, and by finite sums.

(2) A right H-module is supersingular if and only it is supersingular as a right
HY -module.

(3) A right H-module generated by a supersingular right H*-submodule is
supersingular.
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(4) A right H¥ -module is supersingular if and only if it is supersingular as a Tight
H?H—module for all the irreducible components ’H?ff of HME.

(5) A right H-module M is supersingular if and only if (M) is supersingular.

(6) A simple right H-module M is supersingular if and only if MZp0=0<
MZr -0 =0.

The properties in (vi) are also equivalent to MFr 1 = 0. See Remark 6.16.

The classification of the supersingular simple H-modules reduces to the classification

of the supersingular characters of H*T. For the algebra (G, (1)), this was a conjecture
for G = GL(n, F) [13] proved in [11, Proposition 5.10] for G split.

Proposition 6.12. A supersingular right H-module M contains a character of H.

Proof. A non-zero element of M generates a right h-module containing a character of
h (Proposition 2.1). We choose a h-eigenvector v € M of eigenvalue 1. Let (x, S;) be
the parameters of n (Proposition 2.2). As M is supersingular, there exists a positive
integer n such that M F, , = 0. We choose d € D of maximal length satisfying vE, (d) #0
(Proposition 3.3). We show that VE,(d) is a H_eigenvector. Let (1, s) € Zx x ST,

We have vE,(d)T; = vTy,4-1Eo(d) = x(dtd="YWE,(d) = x¢(t)vE,(d).

For the computation of vE,(d)Ts, we distinguish three cases.

(1) £(ds) = £(d) — 1. Then E,(d) = T,E,(d3)E,(3), where t € Z, td5* =d.

If E,(5) = T; — ¢, we have E,(5)T; = (T; —c;)T; = 0.

If E,(5) = T, we have Eo()T; = T? = ¢;T; = c5E,(3); as Eo(d5)c; = (ds e c;) E,(d5) =
doc;Eo(c?E), we deduce that on(c?)Tg =0or x(d oc;)on(c?) = Xd(c§)vE0(d~).

(2) f(ds)=4€d)+1 and ds e ZD. Either E,(d)T; = E,(d)E,(5) = E,(d5) or
Eo(d)T; = Eo(d)(Eo(5) +¢;) = Eo(dS) + (dec;)Ey(d). By the maximality of €(d),
VE,(d5) =0 and vE,(d)T; = 0 or x(d e c;)vE,(d) = x4 (c;)VE,(d).

(3) €(ds) = £(d)+ 1 and ds & Z;D. Let sq € S such that d§ = 5;d (Lemma 3.8). Either
Eo(d)T; = Eo(d)Eo(S) = Eo(dS) = Eo(Sad) = Eo(5a)Eo(d) or Eo(d)T; = Eo(d)(Eo(S) +
¢5) = Eo(ds) + Eo(d)cs = (Eo(Sa) +d e c5)Eo(d). Hence vEq(d)T; = 1n(Eo(Sa))vE,(d) or
N(Eo(5a) +d o c)vEo(d) = N(Eo(5a)) + x (d 0 c))VEo(d) = (n(Eo(5a)) + x (c3))vEo(d).

O

The compatibility of supersingularity for # and H*T (Proposition 6.9) and
Proposition 6.12 imply the following.

Corollary 6.13. (1) A simple supersingular right H*-module has dimension 1.
(2) A simple right H-module is supersingular
if and only if it contains a supersingular character of H*;

if and only if any simple right H* -submodule is a supersingular character of
'Haff’

The classification of the supersingular characters of H*, given in Theorem 6.15
after technical Lemma 6.14, follows from the classification of the characters of H
(Proposition 2.2). The classification was done for H(G, I (1)) in [13] for G = GL(n, F)
and in [11, Lemma 5.11 and Theorem 5.13] for G split.
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Let E be a character of H, x a character of Zg, and o an orientation such that
Elp = xo (Lemma 2.4). Let w, € Wy such that the Weyl chamber of o is w;1(©+). For
a subset J of S, let w; be the longest element of the subgroup of Wy generated by J.

Lemma 6.14. (1) E(E(C(n)) = E(E, () for u e A}'.
(2) If S¥ — S = {50} and A € AT has positive length, we have
(1) L(sor) = —1+£(Q);
(ii) Eo(S0) = T3, < wo(ao) € T, where ag is the highest root of £ ;
(iil) Eo(h) = T5)Eousy (55 ' M) if wolcg) € BF;
(iv) wy(ag) € Tt & J £ S.

Proof. (1) The character & factorizes through the canonical homomorphism
his 1@h: HY — &)y @ HT,

and 1® E(C(w) = 1® Ey(t) in x, ®, H* by Proposition 5.4.

(2) The hypothesis means that the root system ¥ is irreducible. The highest positive
root ag € L has the following well-known properties: —ag -+ 1 is a simple affine root and
50 = S—go+1, 0 < —ap(x)+1 < 1 for x € €*.

(i) £(sor) = —1+£(A) & €T and € +v(A) are not on the same side of Ker(—ag+ 1)
[15, Example 5.4]. This is equivalent to —ao(x +v(A))+1 = —ap(x)+1—0apov(R) is
negative for x € €* & agov(L) > 1, which is true, because agov(L) € Nog as A € AT
has positive length [15, Corollary 5.11].

(ii) By (6), Eo(S0) =T; < €' is on the o-negative side of Ker(—ap+1). By
[15, Definition 5.16], this means that —aq is o-negative, because —a+ 1 is positive on
€*. The root —ay is o-negative if and only if ag is positive on the Weyl chamber w;l @)
of 0. This is true if and only if w,(ag) € T 7.

(iii) For any orientation o, E (%) = E5(50) Evesy (5 %) by the product formula and
L(A) = 1+ L(sor) (1). Apply (ii).

(iv) Let S=JUJ'. We have ag = (D c;nses) + (Q ;e nsts) with ng € Nop, and
wy () = — (X ey nsets) + (O ey nswylay)). If J' =0, then wy(ag) ¢ T If J' # @, for
any s € J/, the root wy(ay) is positive and does not belong to the group generated
by J. The decomposition of wy(ap) on the basis («y)ses has a positive coefficient; i.e.,
wy (o) € BT O

Theorem 6.15. A character of H* is supersingular if and only if its restriction to each
irreducible component of H™ is not a twisted sign or trivial character.

Proof. The involutive automorphism ¢ of H* respects supersingularity and exchanges
a twisted sign character and a twisted trivial character (Definition 2.7). For s € $2f
and a character £ of H*T & vanishes on Ty or ((Ty) (Proposition 2.2). Let u € A}' of
positive length. We have E(E(@(u))) = &(E,(1)) for any orientation o (Lemma 6.14) and
E,(ft) = T, when o is dominant [15, Example 5.30].
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(i) A twisted sign character is not 0 on Ty, for all w € W (1) of positive length; hence it
is not 0 on E(C(w)), and it is not supersingular. Applying ¢, a twisted trivial character
is not supersingular.

(ii) It remains to prove that, when HT is irreducible, i.e., S# — § = {50}, a character
£ of HM different from a twisted sign or trivial character is supersingular.

Applying ¢, it suffices to prove it when £(T;) =0. The set J =85 —{s € § | £(T;) # 0}
is different from S, because & is not a twisted sign character. Let o be the orientation
of Weyl chamber w;1(©+). By Lemma 2.6, the restriction of & to b is of the form y,,
because S, = {s € S | £(T3) # 0} (5). Applying Lemma 6.14, we obtain, for any u € AJTr
of positive length,

Eo(50) = Tsy,  Eo(it) = T5,Eoasy (G0) "0, E(E(C())) = E(Eo(jV)) = 0.

Hence & is supersingular. O

Remark 6.16. We can complete Proposition 6.11(6): a simple #H-module M is
supersingular if and only if MFr, 1 = 0. This follows from Corollary 6.13 and part (ii)
in the proof of Theorem 6.15.

Clifford’s theory studies classically the induction of representations from normal
subgroups. We give a “Clifford’s theory style” proposition to describe the simple
finite-dimensional #-modules containing a character of H*", as in [13, Proposition 3],
[11, Lemma 5.12] for the algebra H(G, I(1)) when G is split.

Let R be a field, and let A be an R-algebra of the form A = JB, where J is an ideal of
A and B a subalgebra of A equal to the R-algebra R[G] of a group G.

Let E:J — R be a character of J with a G-fixator Gg ={g € G| E8 = E} of E of
finite index in G, where E¢ is the character j — E8(j) = E(gjg~") of J.

Let V be a finite-dimensional right R[Gg]-module, where the group JNG acts by
E|snG. For g € G, we denote by V& the right R[g~!Gggl-module V, where g~ 'hg acts
by h for h € Gg.

We extend V to a right Az = JR[Gz]-module, where J acts by E, denoted by E® V.
We induce E® V to a right A-module

I(E,V)=(E®V)Qag A.

Proposition 6.17. Let R, A, J, G, E, V be as above. We suppose V to be simple. We have

the following.
(i) I1(E, V) is finite dimensional and is a simple right A-module.
(ii) A finite-dimensional simple right A-module containing E as a J-module is
isomorphic to I(8, V) for some V.

(iil) I(Ey, V1) =~ I(82, V2) if and only if (Ea, V2) = (E‘f, Vlg), for some element g € G.

Proof [11, Lemma 5.12]. E ® V is finite dimensional and is a simple Ag-module, because
its restriction to the subalgebra R[Gz] satisfies these properties. The left Az-module
A= @gecs\c Agzg is free of finite rank. The restriction of I(E ® V) to J is isomorphic
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to a direct sum @dimR v @geGE\G Ef and I(E,V) = @geGE\G(Eg ® V38) is equal to the
direct sum of all the conjugates of E® V by G. The dimension of I (E ® V) is finite, equal
to [G : Gg]ldimg V. The restriction to J of a non-zero A-submodule of I (2 ® V) contains
a submodule isomorphic to @gGGE\G E8; hence its E-isotypic component is not 0. The
E-isotypic component of I (E ® V) is the simple Ag-module E ® V. Therefore I(EQ® V)
is a simple A-module.

Let M be a finite-dimensional simple right A-module with a non-zero E-isotypic
component as a J-module. The E-isotypic component is an Ag-module of the form
E ® V' for some finite-dimensional right R[Gg]-module V’. The non-zero R[G g]-module
V' contains a simple submodule V. The module E ® V is isomorphic to an Az-submodule
of M, and I (E ® V) is isomorphic to an A-submodule of M. As M is simple, M = I (E, V).

The restriction of I(E® V) to J shows that I(E® V) determines the G-orbit of E,
the E-isotypic part of I(E® V) determines V, and the Eé-isotypic part of I(E® V)
is S ®@ V& for g € G. This implies that I(E1, V1) >~ I (87, V,) if and only if (E;, V2) =
(Ef, Vlg), for some g € G. O

We can apply Proposition 6.17 to the R-algebra A =, its ideal J = T, the
group G = Q(1), an arbitrary character & of H*, and a finite-dimensional simple right
R[Q(1)]-module V such that Z; acts on V by the character &|z,. As a subgroup of € of
finite index acts trivially on V, the fixator Q(1)z of E has a finite index in (1).

Corollary 6.13, Theorem 6.15, and Proposition 6.17 imply the following.

Theorem 6.18. The supersingular simple finite-dimensional right H-modules are
isomorphic to the H-modules I (2, V), where

(i) E is a character of HAT different from a twisted sign or trivial character on each
irreducible component of HT,

(ii) V is a simple finite-dimensional right R[Q(1)g]-module, where Zi acts by Elz,.

Two H-modules I1(Z1, V1), I(Ey, Vo) are isomorphic if and only if the pairs
(E1, V1), (B2, V2) are Q2(1)-conjugate.

7. Pro-p-Iwahori invariants and compact induction

We use the notation of 1.3, and R is as in 1.4. The algebras H and b denote the
pro-p-Iwahori Hecke algebra Hg (G, I1(1)) and Hg(K, I(1)).

Let p be an irreducible smooth R-representation of K, let v € p!) not 0, let  be the
character of h on p/™M| let x be the restriction of n to Zi, and let o be an orientation
such that n = x, (Lemma 2.4).

We show that the pro-p-Iwahori invariant functor behaves well on compact induced
representations of G, generalizing the results of Ollivier [10, Corollary 3.14] proved when
G is split.

By Cabanes [3, Theorem 2], the I(1)-invariant functor p > p!/() gives an equivalence

— from the category of finite-dimensional R-representations p of K trivial on K (1),
such that p and its dual p* are generated by I(1);

— to the category of finite-dimensional right h-modules.
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Remark 7.1. For n € NN K of image w € W,(1), the action on p!( of the basis element
Ty €bis
vl = Z y v = n(Ty)v.
yel(D\I(DnI(1)
The action of Zx on p! arising from the action of Zy C I normalizing I(1) and the
action of Z; embedded in the Hecke algebra h on p!(M are inverse from each other.

Let
c-Indg 0
be the compactly induced representation of G by right translations on the space of
compactly supported functions f : G — V(p) satisfying f(kig) = p(k1)f(g) for k; € K
and g € G. Let
[1,v]k € (c-Indg p)'

be the function of support K and value v at 1. The representation c-Indg p is generated
by [1, v]lg, and dimg pl(l) =1.

Proposition 7.2. The H-equivariant linear map
o'V @y H — (c-Ind% p)'D 1@1 - [1,vik
is an isomorphism.

We explain the strategy of the proof, which reduces the proposition to the next lemma.
The disjoint union of W into Wp-cosets corresponds to a disjoint union of G into
(K, I-cosets. A (K, I)-coset is equal to a (K, I(1))-coset. We have

G=|Jkdi=|]KdID. (45)

deD deD

where, for d in the distinguished set D of representatives of Wo\W (Proposition 3.3),
Kdl = KdI (1) denotes the double coset Knjl = Kn;I(1),d € D(1) liftingd, andn; € N
lifting d, with n; = 1. The space (C—Indg p)! D is the direct sum

(c-Ind§ p)! D = @) (c-Indf ! p)! D (46)
deD

of the subspaces of functions in (C-Indg 0)' D with support contained in KdI, for d € D.
The pro-p-Iwahori Hecke algebra is the direct sum

H=EPnr; (47)
deD
of the left h-modules hT; of functions in H with support contained in KdI, for d € D.
We denote by 5 the character of h on p/, and by f; the function in (c-Indg o) D of
support KdI with f(nj) = v, for d € D. We have f; = [1, vlx. The proposition follows
from the following lemma.
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Lemma 7.3. (i) Ford € D, we have K(1)(K ﬂnjl(l)n;l) =1(1).

(ii) A basis of (c-Ind§ p)! D is (f7)aen-
(iii) f; = fiT; ford € D.

(iv) fi1 is a h-eigenvector in (c-Ind§ p)! D of eigenvalue .

Proof. (1) We denote by I’ the subgroup of I (1) generated by UNI =UNK and U~ N 1.
We have I(1) = Zyg(1)I’ and Zy(1) = K(1) N Zy. The lemma follows from the inclusion

7 —1
UﬂICna;InJ ,

because K (1)(K ﬂngl(l)ngl) =K()(K ﬂnjl/n;) is a pro-p-subgroup of K and 7(1) =
KU NI) is a pro-p-Sylow subgroup of K. The group UNI is the product of the
groups Uy = Uy, NK for all @ in the set CD;';d of positive reduced roots of associated
root subgroup U,. By Proposition 3.3 and §1.3, d ' (eq) is positive on €T. As e, is a
positive integer, d () is positive on €*. By [15, §§3.3 and 3.5, n;Uo[,ond~ =Uy1()-
Asd Ya) is positive on €T, Ug-1a) C I’. Hence Uy, C ngl’n(gl.

(2) By (46) and f,; € (C—Indgd”l) 0)' it suffices to prove that the dimension of

KnI(1
(c-IndKnd ey p)! is 1. The value at nj; gives a linear map
- —1
(c-IndKdT D) oy 1)y pKOngl Dy

because kf(n;) = f(knz) = f(ngnglkng) for k € K. The map is clearly injective, and

) -1
pKMal g™ _ 1) because p is trivial on K (1) and (1). As dimg p!™M =1, we have

S (1

dimR(c-Indgnd[( )p)l(l) =1.

(3) We show that the support of the function f; Ty; is contained in KdI(1) and that
the value at nj of fi T,,J is v.

For g € G, we have

Ny = > v~
yel(D\I(1)gI(1)

and y~! fi(x) = fi(xy ™) for x € G. The support of f] is K, and the support of fi Ty, is
contained in KglI(1).

In particular, the support of the function f; Ty, is contained in KdI(1). We have

(117n~)(’13) = fl(n,;)fl) = f1(u).
d
y el (DN (DngI (1) ue(Kﬁnjl(])n(;l)/(l(l)ﬂnd-l(l)n;)

By (1), this is equal to fi(1) = v.
(4) For k € K, the support of the function f;T; is contained in K, and

GO = Y A h= Y yTAM =@,
yel (D\I(DkI(1) yel (DN (DkI(1)
Therefore f1Ty = n(Ty) f) for k € K. O
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Remark 7.4. For A € A, the isomorphism of Proposition 7.2 restricts to a right h-module
isomorphism

o'V @y () — (c-IndfH p)! D).

Proposition 7.5. Let p1,p be two irreducible smooth R-representations of K. The
1(1)-invariant map

Hompzg (c-Ind,Cé 01, c-Indg 0) — HomH((c-Indg pl)l(l), (c—Indg ,0)1(1))
is an isomorphism.

To explain the strategy of the proof, we recall the adjunction isomorphisms

Homgg (c-Ind§ pi, ) =~ Homgk (o1, 7) = Homgg (p1, ¥ 1),
I I(1
HomH(pl( ) ®p H, 711(1)) ~ Homh(pl( ), JTI(I)),
for any smooth R-representation 7w of G. The I(1)-invariant map
HomR(;(c—Indg p1,T) —> HomH((c—Indg pl)’(l), n’(l))

is an isomorphism if and only if the I (1)-invariant map
Homg (p1, 7¥1) — Homy, (pll(l), 1) (48)

is an isomorphism, by Proposition 7.2. The map (48) is injective, because p’ () generates
p, but it is not surjective in general. The proposition says that the map (48) is surjective
ifr = c-Indg 0.

The dominant monoid AT represents the cosets K\G/K (see 1.3). The anti-dominant
monoid A~ has the same property and is more convenient now. The representation of K
on C—Indg p is a direct sum

C-Indg p= @ C-Ind?\K 0,
AEAT
where c-IndI,g)‘K p is the space of functions in c-Indg p with support in KAK. We will
prove that, for all A € A, the I(1)-invariant map

Homg (o1, (c-Ind§*% p)X D)y — Homy (o] V), (c-Ind§*K p)! (1) (49)

is an isomorphism. A representation of K trivial on K (1) generated by its I(1)-invariant
vectors identifies with a representation of the finite reductive group Gj generated by
its Ug-invariant vectors (using the notation of §1.3). We describe (c-Indgu{ ) KM
as a representation of Gy. Let z € Z~ lifting A. We have KzK = KAK and by [7,
Proposition 6.13] the group

Ky =K()(KNz'Kz)

is the inverse image in K of a parabolic subgroup Py = MyN; of Gy containing By,
of unipotent radical N; equal to the image in G; of (Uaeqﬁ,aou(zko Uy o) as v(z) is
anti-dominant and (e, z) = (@, —v(z)) in the notation of [7, 6.11]; it is a parahoric
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subgroup of G of pro-p-radical K, (1) = K(1)(K Nz~ 'K (1)z). Let p, be the representation
of KNz 'Kz on the space V(p) of p such that p.(k) = p(zkz™"). The map f > ¢ :
k+— f(zk): Ind’IgZK p — Ind is a K-equivariant isomorphism. It restricts to a
K-equivariant isomorphism

(Ind§X p)¥V — (Ind

K
Knz—1Kz Pz

1 -

Ilgmz—le ;OZ)K( ) — Indllg,\(ﬂzK( Nz KZ)7
i -1 KN 'Kz

where the natural representation of KNz 'Kz on p; tonded to

—1
representation of K trivial on K(1). The representation pX "™ X% of K, identifies

to the representation pZN" of Py on the space V(p™¥) of p™k such that p,(m) = p(zmz™")

K(l)ﬂz_le)

for m in the group My = (Zo, U Uq.0). The representation Ind§A (p;

aed,aov(z)=0
identifies to Indg: (o). The representation p2* of Py is irreducible [2]. The Uj-invariant
functor

Homg, (p1, Tndg) (02'*)) — Homy (py*, (Ind ¥ (p1) %) (50)

is an isomorphism, by Cabanes’s equivalence recalled at the beginning of this section,
because Indg: (,ozlvV ¥) and its contragredient are generated by their Ug-invariant vectors.
This is a general property proved in the next lemma.

Lemma 7.6. Let t be an idrreducible R-representation of Pr trivial on Ny. The
representation Indg: T of Gi and its contragredient are isomorphic to a subrepresentation

and to a quotient of Indgl’: 1. In particular, they are gemerated by their Ug-invariant
vectors. Their socle and their heads are multiplicity free.

Proof. A representation of Gy is generated by its Ug-invariant vectors if and only if it is

a quotient of a direct sum of representations isomorphic to Indg: 1.

The representation Indg" T is a quotient of Indg" 1, because it is generated by a
e k
Uy-invariant vector (a function in Indgk" T of support Py with non-zero value in ¢U"Mk),
The inflation of T to Py is contained in Indﬁ’; 1. By transitivity of the induction, Indglf T
is contained in Indgic 1.
The contragredient representation (Indg: 7)™ is a subrepresentation and a quotient of

Indg: 1, because Inle,: 1 is isomorphic to its contragredient, the contragredient permutes
the irreducible R-representations of My, and it commutes with the parabolic induction.

The socle of a subrepresentation of Indg]’:l is contained in the socle of Indg]’: 1.
The socle of Indgl’: 1 is multiplicity free, because dimpy, =1, and by adjunction
Homg, (p, Indg]f 1) ~ Homy, (py,, 1) for any irreducible R-representation p of Gy of
Uy-coinvariants py, -

The contragredient of the socle is the head of the contragredient. O

With (51) and the I (1)-invariant functor (Proposition 7.5 for p; = p), we transfer our
results on the spherical algebra H(n, h) to the spherical algebra Hg(G, K, p), which is
the convolution algebra of compactly supported functions

¢ : G — Endr(V(p)) satistying ¢ (kigk2) = p(k1)¢(g)p(k2) for ki, kx € K, g € G.
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It is isomorphic to the algebra Endgg C—Ind,((;,o by the map sending ¢ to the
RG-intertwiner Ey of c-Ind,Cj o defined by

Ey(f1)(8) = ¢(9)(v) (g €G). (51)

The spherical Hecke R-algebra Hg(G, K, p) admits a natural basis [7, 7.3 (f;\))\eA;,
where

F; has support KAK and .FX(X)(U) =v. (52)

The basis (F3), ¢ A does not satisfy (14) in general. The basis (52) for the spherical Hecke
algebra Hr(Z, Zo, x) is denoted by (t7)ren,
7; has support ZoA and r;\():)(v) = .

The basis (52) for the central spherical Hecke subalgebra Hg(T, Tp, ol M)y is (Ti)pear;
and the Hg(T, Ty, p' M)-module Hg(Z, Zo, p'V) is finitely generated. We denote by
Hr(TH, Ty, o' D) € Hr(Z*, Zo, p'V) the subalgebras of bases (T pent and (1);cns-
The basis (73);ept satisfies (14).

Theorem 7.7. The R-algebras

Hr(G. K, p) ~ Endgc c-Ind§ p ~ Endy(n ®5 H) = H(n. b)

are isomorphic via (51) and the I (1)-invariant functor (Proposition 7.5).

The basis (FX)AeA; of Hr(G, K, p) (52) corresponds to the basis (55\)A€A; of H(n, b)
(Proposition 4.4).

The basis (qbo’x)ke[\; of Hr(G, K, p) corresponding to the basis (<1>0’X)A€A; of H(n, h)
(Proposition 4.13) satisfies (14).

For u e A‘;, 5 = ¢, does not depend on the choice of o.

(¢,1)M€A}r 18 a basis of a central subalgebra Zgr(G, K, p)r of Hr(G, K, p), and
Hr(G, K, p) is a finitely generated Zgr(G, K, p)r-module (Proposition 5.4).

Remark 7.8. The RG-endomorphism of C-Indg p corresponding to ¢; sends [1, v]x to
[1, vlg Eo(f2) for any orientation o such that n = x, (Propositions 7.2 and 4.13).
We denote by AZT the R-algebra of basis (1® Ev(ﬁ))ueA;“

Corollary 7.9. We have an R-algebra isomorphism
S,
@0 )near P (Tieay * HR(G, K, p) — HR(Z™. Zo. x)

L. . . S .
restricting to an isomorphism Zg(G, K, p)T 21, Hr(TT, Ty, x) independent of o. We
have the R-algebra isomorphisms

Zr — ZR(G. K, )1 2> Hp(T*, To, x) — A*; — RIAF] — RIA}]
(ECHN yens = @pent = Tpent = Eolyens = ([@yeps = (0 ,ent-

When the group G is split, (ZT, Zg) = (T, To) and Zr(G, K, p)7 = Hr(G, K, p).
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Theorem 1.5 in §1 follows from Corollary 7.9 and the next proposition. The
R-characters & of A? identify with the characters of the R-algebras isomorphic to R[AJTF]
in Corollary 7.9. We write

E(rp) = E(E(C(W)) = &(dp) = E(Eo(1)) = E(R) = E()

for u € AJTF. Let m be a smooth R-representation of G. We suppose that 7| contains p.

Proposition 7.10. Let A € Homgg (p, ) be non-zero, and let u € A‘}'. We have

(Adp) (V) = AW)Eo(fi) = A(W)E(C(n)).
In particular, if A is a Zr(G, K, p)T-eigenvector in Homgg (0, w) of eigenvalue &,
E(WA®W) = AW Eo(i) = AW)E(C(n)).

Proof. By the adjunction isomorphism, A and A¢j; correspond to the RG-intertwiners
c-Indg p — 7 sending [1, v]lx to A(v) and to A(v)E,(ft) (Remark 7.8). We deduce that
(Agp)(v) = AW Eo(f1).

The H-isomorphism (c-Indg )M — ) ®p H of Proposition 7.2 sends [1, v]KE(é(u))
to 1® E(C(u)). By Proposition 5.4, 1® E(C(n)) = 1 ® Eo(i1). Hence [1, vlx E(C(n)) =
[1,vlg Eo(f1). Applying the H-intertwiner (C-Indg o)W — 71D corresponding to A
sending [1, v]g to A(v), we deduce that A(vV)E,(it) = AW E(C(w)).

If Ais a ZR(G, K, p)T-eigenvector in Homgg (p, ) of eigenvalue & (Corollary 7.9), we
have Ag; = &(¢z)A for u € A (Theorem 7.7). O

For J C A, we denote by @y an element of A"} such that e ov(uy) > Oforalla € A —J.

Remark 7.11. Let & be an R-character of AJTF. The character & is called supersingular if
it satisfies the following three equivalent properties.

(1) &(w)=0forall u e AJTr non-invertible in A‘;.

(2) &(uy) =0 for any J # A.
(3) For somen > 1, &(u) =0 for all u € A"} with £(n) > n.

In Proposition 7.10, the eigenvalue & of A is supersingular if and only if the module
A(v)H is supersingular (Definition 6.10).
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