THE PRO-*p*-IWAHORI HECKE ALGEBRA OF A REDUCTIVE *p*-ADIC GROUP III (SPHERICAL HECKE ALGEBRAS AND SUPERSINGULAR MODULES)

MARIE-FRANCE VIGNERAS

UMR 7586, Institut de Mathematiques de Jussieu, 4 place Jussieu, Paris 75005, France (vigneras@math.jussieu.fr)

(Received 26 May 2014; accepted 30 March 2015; first published online 3 June 2015)

Abstract Let R be a large field of characteristic p. We classify the supersingular simple modules of the pro-p-Iwahori Hecke R-algebra \mathcal{H} of a general reductive p-adic group G. We show that the functor of pro-p-Iwahori invariants behaves well when restricted to the representations compactly induced from an irreducible smooth R-representation ρ of a special parahoric subgroup K of G. We give an almost-isomorphism between the center of \mathcal{H} and the center of the spherical Hecke algebra $\mathcal{H}(G, K, \rho)$, and a Satake-type isomorphism for $\mathcal{H}(G, K, \rho)$. This generalizes results obtained by Ollivier for G split and K hyperspecial to G general and K special.

Keywords: group theory and generalizations; number theory

2010 Mathematics subject classification: Primary 20C08 Secondary 22E50

Contents

1	Introduction	572
2	The characters of \mathfrak{h} and \mathcal{H}^{aff}	580
3	Distinguished representatives of $W_0 \setminus W$	583
4	$\mathfrak{h} ext{-eigenspace in }\eta\otimes_{\mathfrak{h}}\mathcal{H}$	586
5	Centers	592
6	Supersingular \mathcal{H} -modules	594
7	Pro- <i>p</i> -Iwahori invariants and compact induction	601
References		607

1. Introduction

Let p be a prime number, let F be a finite extension of \mathbb{Q}_p or $\mathbb{F}_p((T))$, and let G be the group of rational points of a connected reductive F-group.

1.1.

The smooth representations of G over an algebraically closed field C of characteristic phave been the subject of many investigations in recent years, in the modulo p Langlands program. The pro-p-Iwahori invariant functor $V \mapsto V^{I(1)}$ relates the representations of G to the modules of the pro-p-Iwahori Hecke C-algebra $\mathcal{H} = \mathcal{H}_C(G, I(1))$ studied in [13–15]. The I(1)-invariant functor and the theory of \mathcal{H} -modules play an increasingly important role in the representation theory of G modulo p. They are the key to the proof of the change of weight in the recent classification of irreducible smooth C-representations of G in terms of supersingular ones (a forthcoming work by Abe et al. [1]). The supersingular smooth irreducible C-representations π of G and their I(1)-invariant remain mysterious, but the supersingular simple \mathcal{H} -modules are classified in this paper, and the supersingularity of $\pi^{I(1)}$ and of π are related. A variant of the modulo p Langlands program seems to exist for \mathcal{H} -modules. Grosse-Kloenne [5] constructed a functor from finite-dimensional $\mathcal{H}_{\mathcal{C}}(GL(n, \mathbb{Q}_p), I(1))$ -modules to finite-dimensional smooth C-representations of $\operatorname{Gal}_{\mathbb{Q}_p}$, inducing a bijection between the simple supersingular $\mathcal{H}_{\mathcal{C}}(GL(n, F), I(1))$ -modules of dimension n and the irreducible smooth C-representations of Gal_F (the absolute Galois group of F) of dimension n as in [9, 14].

In this paper, we prove that the I(1)-invariant functor behaves well when restricted to compactly induced representations $\operatorname{c-Ind}_{K}^{G} \rho$, where ρ is an irreducible smooth C-representation of a special parahoric subgroup K of G. The vector space $\rho^{I(1)}$ has dimension 1, and the pro-p-Iwahori Hecke C-algebra $\mathfrak{h} = H_{C}(K, I(1))$ of K acts on $\rho^{I(1)}$ by a character η . The \mathcal{H} -module (c-Ind_{K}^{G} \rho)^{I(1)} is isomorphic to $\eta \otimes_{\mathfrak{h}} \mathcal{H}$, and the spherical algebra $\operatorname{End}_{CG}(\operatorname{c-Ind}_{K}^{G} \rho)$ is isomorphic to the algebra $\operatorname{End}_{\mathcal{H}}(\eta \otimes_{\mathfrak{h}} \mathcal{H})$. This paper is devoted to the study of the modules $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ and of the spherical Hecke algebras $\operatorname{End}_{\mathcal{H}}(\eta \otimes_{\mathfrak{h}} \mathcal{H})$. In the last section, we transfer our results from \mathcal{H} to the group G using the I(1)-invariant functor.

Let ρ be an irreducible smooth *C*-representation of *K*, and let η , η_1 be two arbitrary characters of \mathfrak{h} . We obtain the following:

(i) Isomorphisms

 $(\operatorname{c-Ind}_K^G \rho)^{I(1)} \simeq \rho^{I(1)} \otimes_{\mathfrak{h}} \mathcal{H}, \quad \operatorname{End}_{CG}(\operatorname{c-Ind}_K^G \rho) \simeq \operatorname{End}_{\mathcal{H}}(\rho^{I(1)} \otimes_{\mathfrak{h}} \mathcal{H}).$

- (ii) A Satake-type isomorphism for the spherical Hecke algebra $\mathcal{H}(\mathfrak{h}, \eta) = \operatorname{End}_{\mathcal{H}}(\eta \otimes_{\mathfrak{h}} \mathcal{H}).$
- (iii) A basis of the space of intertwiners $\operatorname{Hom}_{\mathcal{H}}(\eta_1 \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H})$.
- (iv) An almost-isomorphism from the center of \mathcal{H} to the center of $\mathcal{H}(\mathfrak{h},\eta)$ (an isomorphism between finite index affine subalgebras).
- (v) The classification of the supersingular simple \mathcal{H} -modules.

573

When G is split and K hyperspecial, Ollivier proved (i), (ii), (iv) and (v). We follow her method. The alcove walk bases of \mathcal{H} and the product formula [12, 15] allow us to simplify her method and to extend it to G general and K special. Analogs of 2, 3 were proved for G in [6, 7] and 5 for G remains a wide-open question.

In the rest of this introduction, we consider the content of 2, 3, 4, 5.

After [13, 14], a generalization of $\mathcal{H}_C(G, I(1))$ was introduced in [12] when G is split, and in [15] for G general, in order to study it. This is an algebra $\mathcal{H}_R(q_s, c_{\tilde{s}})$ over a commutative ring R with two sets of parameters $(q_s), (c_{\tilde{s}})$. The properties of this algebra are often proved by reduction to $(q_s) = (1)$ (this changes the parameters $(c_{\tilde{s}})$), and transferred to $\mathcal{H}_R(0, c_{\tilde{s}})$ by specialization to $(q_s) = (0)$. The algebra $\mathcal{H}_R(q_s, c_{\tilde{s}})$ contains a natural finite-dimensional subalgebra $\mathfrak{h}_R(q_s, c_{\tilde{s}})$.

In 1.2 and 1.3, we recall the basic properties of $\mathcal{H}_R(q_s, c_{\tilde{s}})$ used in this work and the dictionary between $\mathfrak{h}_R(q_s, c_{\tilde{s}}), \mathcal{H}_R(q_s, c_{\tilde{s}})$ and $\mathcal{H}_R(K, I(1)), \mathcal{H}_R(G, I(1))$ [15, 16]. Theorems 1.2, 1.3, 1.4, and 1.5 are proved for $\mathfrak{h}_R(0, c_{\tilde{s}}), \mathcal{H}_R(0, c_{\tilde{s}})$, and are given in 1.4. They apply to the algebras $\mathcal{H}_R(K, I(1)), \mathcal{H}_R(G, I(1))$ when R has characteristic p.

1.2.

Let $\mathcal{W} = (\Sigma, \Delta, \Omega, \Lambda, \nu, W, Z_k, W(1))$ be data consisting of the following:

- (i) a reduced root system Σ of basis Δ associated with the finite Weyl Coxeter system (W_0, S) of an affine Weyl Coxeter system (W^{aff}, S^{aff}) acting on a real vector space V of dual of basis Δ , with a W_0 -invariant scalar product;
- (ii) three commutative groups, Ω and Λ finitely generated, and Z_k finite;
- (iii) a group $W = W^{\text{aff}} \rtimes \Omega = \Lambda \rtimes W_0$ which is a semi-direct product of subgroups in two different ways, Ω acting on $(W^{\text{aff}}, S^{\text{aff}})$ and W_0 on Λ . The length ℓ and the Bruhat order \leq of $(W^{\text{aff}}, S^{\text{aff}})$ extend trivially to $W = W^{\text{aff}} \rtimes \Omega$;
- (iv) a W_0 -equivariant homomorphism $\nu : \Lambda \to V$ such that the action of W^{aff} on Vand the action of Λ on V by translation $v \mapsto v + \nu(\lambda)$ for $\lambda \in \Lambda, v \in V$, extend to an action of W by affine automorphisms permuting the set of affine hyperplanes $\mathfrak{H} = \{\text{Ker}(\alpha + n), | \alpha + n \in \Sigma^{\text{aff}} = \Sigma + \mathbb{Z}\};$
- (v) a system of the representatives of W_0 in Λ :

$$\Lambda^+ := \{ \mu \in \Lambda \mid \nu(\mu) \in \overline{\mathfrak{D}}^+ \},\$$

where $\overline{\mathfrak{D}}^+ = \{x \in V \mid 0 \leq \alpha(x), \ \alpha \in \Delta\}$ is the dominant closed Weyl chamber;

(vi) an extension $1 \to Z_k \to W(1) \to W \to 1$.

Notation. The inverse image in W(1) of a subset X of W is denoted by X(1), and \tilde{w} denotes an element of W(1) of image $w \in W$. For $c \in R[Z_k]$, the conjugate of c by \tilde{w} depends only on w, and is denoted $w \bullet c := \tilde{w}c\tilde{w}^{-1}$. The dominant Weyl chamber $\mathfrak{D}^+ = \{x \in V \mid 0 < \alpha(x), \alpha \in \Delta\}$ is open. The dominant alcove \mathfrak{C}^+ is the connected component $\mathfrak{D}^+ \cap (V - \bigcup_{H \in \mathfrak{H}} H)$ of vertex $0 \in V$. The set Σ^{aff} , of positive affine roots is the set of $\gamma \in \Sigma^{\text{aff}}$ positive on \mathfrak{C}^+ . The action of W on V defines by functoriality an action of W on Σ^{aff} .

We will often suppose that Λ contains a subgroup Λ_T satisfying the following.

- (T1) $\Lambda = \bigsqcup_{y \in Y} \Lambda_T y$ for a finite set Y.
- (T2) Λ_T is W_0 -stable.
- (T3) There exists a central subgroup $\tilde{\Lambda}_T$ of $\Lambda(1)$ normalized by $W_0(1)$ such that the quotient map $\Lambda(1) \to \Lambda$ induces a group isomorphism $\tilde{\Lambda}_T \xrightarrow{\simeq} \Lambda_T$ sending $\tilde{w} \tilde{\mu} \tilde{w}^{-1}$ to $w \mu w^{-1}$ if $\tilde{w} \in W_0(1)$ lifts $w \in W_0$ and $\tilde{\mu} \in \tilde{\Lambda}_T$ lifts $\mu \in \Lambda_T$.

Let $(q_{\tilde{s}}, c_{\tilde{s}})_{\tilde{s}\in S^{\operatorname{aff}}(1)})$ be a set of elements in $R \times R[Z_k]$ satisfying $q_{\tilde{s}'} = q_{\tilde{s}}, c_{\tilde{s}'} = w \bullet c_{\tilde{s}}$ if $\tilde{s}' = \tilde{w}\tilde{s}\tilde{w}^{-1} \in S^{\operatorname{aff}}(1), \tilde{w} \in W(1)$, and $q_{t\tilde{s}} = q_{\tilde{s}}, c_{t\tilde{s}} = tc_{\tilde{s}}$ if $t \in Z_k$. As $q_{\tilde{s}}$ depends only on the image $s \in S^{\operatorname{aff}}$ of \tilde{s} , we denote also $q_{\tilde{s}} = q_s$.

There is a unique *R*-algebra $\mathcal{H} = \mathcal{H}_R(\mathcal{W}, q_s, c_{\tilde{s}})$, free of basis $(T_{\tilde{w}})_{\tilde{w} \in W(1)}$, with product satisfying

(i) the braid relations:

$$T_{\tilde{w}}T_{\tilde{w}'} = T_{\tilde{w}\tilde{w}'}, \quad \text{if } \tilde{w}, \tilde{w}' \in W(1), \ell(w) + \ell(w') = \ell(ww'), \tag{1}$$

allowing one to identify $R[\Omega(1)]$ to a subalgebra of \mathcal{H} ;

(ii) the quadratic relations:

$$T_{\tilde{s}}T_{\tilde{s}}^* = q_s \tilde{s}^2, \quad \text{if } \tilde{s} \in S^{\text{aff}}(1), T_{\tilde{s}}^* = T_{\tilde{s}} - c_{\tilde{s}}.$$

$$\tag{2}$$

This is called the Iwahori–Matsumoto presentation of $\mathcal{H}_R(\mathcal{W}, q_s, c_{\tilde{s}})$.

The *R*-submodule of basis $(T_{\tilde{w}})_{\tilde{w} \in W_0(1)}$ is a finite subalgebra $\mathfrak{h} = \mathfrak{h}_R(\mathcal{W}, q_s, c_{\tilde{s}})$.

The *R*-submodule of basis $(T_{\tilde{w}})_{\tilde{w}\in W^{\text{aff}}(1)}$ is a subalgebra \mathcal{H}^{aff} . The *R*-algebra \mathcal{H}^{aff} is an algebra like \mathcal{H} with Ω trivial, and \mathcal{H} is isomorphic to the twisted tensor product

$$x \otimes y \mapsto xy : \mathcal{H}^{\mathrm{aff}} \otimes_{R[Z_k]}^t R[\Omega(1)] \to \mathcal{H}$$
(3)

of its subalgebras $R[\Omega(1)]$ and \mathcal{H}^{aff} . The algebra \mathcal{H} admits an involutive *R*-automorphism ι , equal to the identity on $R[\Omega(1)]$ and such that [15, Proposition 4.23]

$$\iota(T_{\tilde{s}}) := -T_{\tilde{s}}^* \quad \text{for } s \in S^{\text{aff}}.$$
(4)

All the orientations that we consider are spherical [15]. For the orientation o associated to an (open) Weyl chamber \mathfrak{D}_o , the o-positive side of the affine hyperplane $\operatorname{Ker}(\alpha + n)$ is the set of $x \in V$ where $\alpha(x) + n > 0$, if $\alpha \in \Sigma$ takes positive values on \mathfrak{D}_o . The dominant orientation o, denoted by o^+ , is associated to the dominant Weyl chamber \mathfrak{D}^+ , and the anti-dominant orientation, denoted by o^- , to the anti-dominant Weyl chamber $-\mathfrak{D}^+ =$ \mathfrak{D}^- . The orientation associated to the Weyl chamber $w^{-1}(\mathfrak{D}_o), w \in W_0$, is denoted by $o \bullet w$. For $w \in W$ of projection $w_0 \in W_0$, the orientation $o \bullet w_0$ is also denoted by $o \bullet w$. We have $o \bullet \lambda = o$ for $\lambda \in \Lambda$. We set

$$S_o^{\text{aff}} := \{ s \in S^{\text{aff}} \mid \mathfrak{C}^+ \text{ is in the } o \text{-positive side of } H_s \}, \quad S_o := S \cap S_o^{\text{aff}}, \tag{5}$$

where H_s is the affine hyperplane of V fixed by s and \mathfrak{C}^+ the dominant alcove (Notation). There exists a unique set of bases $(E_o(\tilde{w}))_{\tilde{w}\in W(1)}$ of \mathcal{H} , parameterized by the orientations o, satisfying [15, § 5.3]

$$E_o(\tilde{s}) := T_{\tilde{s}} \text{ if } s \in S^{\text{aff}} - S_o^{\text{aff}}, \quad E_o(\tilde{s}) := T_{\tilde{s}}^* \text{ if } s \in S_o^{\text{aff}}, \tag{6}$$

and the product formula, for $\tilde{w}, \tilde{w}' \in W(1)$,

$$E_o(\tilde{w})E_{o\bullet w}(\tilde{w}') = E_o(\tilde{w}\tilde{w}') \quad \text{if } \ell(w) + \ell(w') = \ell(ww').$$
(7)

In particular, for $\tilde{\lambda}, \tilde{\lambda}' \in \Lambda(1)$,

 $E_o(\tilde{\lambda})E_o(\tilde{\lambda}') = E_o(\tilde{\lambda}\tilde{\lambda}') \quad \text{if } \nu(\lambda), \nu(\lambda') \text{ belong to a same closed Weyl chamber.} \tag{8}$

We have $E_o(\lambda) = T_\lambda$ when $\nu(\lambda) \in \overline{\mathcal{D}_o}$.

The basis $(E_o(\tilde{w}))_{\tilde{w}\in W(1)}$ is called an alcove walk basis; the alcove walk bases generalize the integral Bernstein bases defined in [11, 14].

The *R*-submodule of basis $(E_o(\tilde{\lambda}))_{\tilde{\lambda} \in \Lambda(1)}$ is a subalgebra \mathcal{A}_o of \mathcal{H} containing the subalgebra \mathcal{A}_o^+ of basis $(E_o(\tilde{\lambda}))_{\tilde{\lambda} \in \Lambda^+(1)}$, isomorphic to $R[\Lambda^+(1)]$.

If $q_s = 0$ for all $s \in S^{\text{aff}}$, then for $\tilde{w}, \tilde{w}' \in W(1)$ such that $\ell(w) + \ell(w') > \ell(ww')$ we have $E_o(\tilde{w})E_{o\bullet w}(\tilde{w}') = 0$; in particular, $E_o(\tilde{\lambda})E_o(\tilde{\lambda}') = 0$ if $\tilde{\lambda}, \tilde{\lambda}' \in \Lambda(1)$, and $\nu(\lambda), \nu(\lambda')$ do not belong to the same closed Weyl chamber.

1.3.

Let F be a local field of finite residue field k with q elements and of characteristic p, and p_F a generator of the maximal ideal of the ring of integers O_F of F. Let G, T, Z, and N be respectively the F-rational points of a connected reductive F-group, a maximal F-split subtorus, its centralizer, and its normalizer. Let \mathfrak{C}^+ be an open alcove of the semi-simple apartment of G defined by T, let x_0 be a special vertex of the closed alcove $\overline{\mathfrak{C}}^+$, and let I, I(1), K, be respectively the Iwahori subgroup of G fixing \mathfrak{C}^+ , its pro-p-Sylow subgroup, and the parahoric subgroup of G fixing x_0 .

We associate to G, T, Z, N, I, I(1), K the data

$$(\mathcal{W} = (\Sigma, \Delta, \Omega, \Lambda, \nu, W, Z_k, W(1)); (q_s, c_{\tilde{s}})),$$

and a group Λ_T , satisfying the properties given in §1.2 with $R = \mathbb{Z}$, as follows.

The apartment defined by T identifies with a Euclidean real vector space V. The set S^{aff} of orthogonal reflections with respect to the walls of \mathfrak{C}^+ generates an affine Coxeter system $(W^{\text{aff}}, S^{\text{aff}})$, given by a based reduced root system (Σ, Δ) . The action of N on the apartment transfers to an action on V. The subgroup Z acts by translations $(z, x) \mapsto x + v_Z(z), (z, x) \in Z \times V$, for an homomorphism $v_Z : Z \to V$ satisfying $\alpha \circ v_Z(t) = -\alpha(t)$ for $t \in T$ and α in the root system Φ of T in G. There is a surjective map $\alpha \mapsto e_{\alpha}\alpha : \Phi \to \Sigma$, where e_{α} is a positive integer for all $\alpha \in \Phi$.

Let $T_0 := T \cap K$ (the maximal compact subgroup of T), $Z_0 := K \cap Z$ (the parahoric subgroup of Z), and let $Z_0(1)$ be the pro-p-Sylow subgroup of Z_0 . Then

$$\begin{split} \Lambda_T &:= T/T_0, \quad \Lambda := Z/Z_0, \quad \Lambda(1) := Z/Z_0(1), \quad Z_k := Z_0/Z_0(1), \\ W_0 &:= N/Z, \quad W := N/Z_0, \quad W(1) := N/Z_0(1). \end{split}$$

The homomorphism ν_Z and the action of N on V are trivial on Z_0 . They induce an homomorphism $\nu : \Lambda \to V$ and an action of W on N. The monoid Λ^+ represents the

orbits of W_0 in Λ [7, 6.3] and the double cosets $K \setminus G/K$. The groups W, W(1) represent the double cosets $I \setminus G/I, I(1) \setminus G/I(1)$. The group Ω is the W-stabilizer of the alcove \mathfrak{C}^+ . We denote by \tilde{w} an element of W(1) of image w in W, and we call \tilde{w} a lift of w.

For $s \in S^{\text{aff}}$, let K_s be the parahoric subgroup of G fixing the face of $\overline{\mathfrak{C}^+}$ fixed by s. The quotient of K_s by its pro-p-radical is the group $G_{s,k}$ of rational points of a k-reductive connected group of rank 1. The image of I(1) in $G_{s,k}$ is the group $U_{s,k}$ of rational points of the unipotent radical of a k-Borel subgroup $Z_k U_{s,k}$ of opposite group $Z_k \overline{U}_{s,k}$. It is known that s admits a lift $n_s \in N \cap K_s$ of image in $G_{s,k}$ belonging to the group $\langle U_{s,k}, \overline{U}_{s,k} \rangle$ generated by $U_{s,k} \cup \overline{U}_{s,k}$. The image of n_s in W(1) is called an admissible lift of s. We set $Z_{k,s} = Z_k \cap \langle U_{s,k}, \overline{U}_{s,k} \rangle$.

For $s \in S^{\text{aff}}$, \tilde{s} an admissible lift of s, and $t \in Z_k$, let

$$q_s = [In_s I : I]$$
 is a power of q , $c_s := (q_s - 1)|Z_{k,s}|^{-1} \sum_{z \in Z_{k,s}} z$,

and $c_{t\tilde{s}} = \sum_{z \in Z_{k,s}} c_{\tilde{s}}(z)tz$, for positive integers $c_{\tilde{s}}(z) = c_{\tilde{s}}(z^{-1})$ of sum $q_s - 1$, constant on each coset modulo $\{xs(x)^{-1} \mid x \in Z_k\}$, and $c_{\tilde{s}} \equiv c_s \mod p$ as in [15, Theorem 2.2].

The cocharacter group $X_*(T)$ of T is isomorphic to Λ_T and embeds in $\Lambda(1)$ by the map $\mu \mapsto \mu(p_F)^{-1} : X_*(T) \to Z$ followed by the quotient maps of Z onto Λ and $\Lambda(1)$. Remembering the sign - in the definition of ν ,

$$\mu \in \Lambda_T^+ \Leftrightarrow \alpha(\mu(p_F)) \in O_F \text{ for all } \alpha \in \Delta.$$

We identify μ with its image in Λ_T , and $\tilde{\mu}$ denotes its image in $\Lambda(1)$.

For a commutative ring R, the pro-p-Iwahori Hecke R-algebra $\mathcal{H}_R(G, I(1))$ is isomorphic to the algebra $\mathcal{H}_R(q_s, c_{\tilde{s}})$ associated to this data.

The pro-*p*-Iwahori Hecke *R*-algebra $\mathcal{H}_R(K, I(1))$ of *K* is a subalgebra of $\mathcal{H}_R(G, I(1))$ isomorphic to the finite subalgebra $\mathfrak{h}(q_s, c_{\tilde{s}})$ of \mathcal{H} .

The Iwahori Hecke *R*-algebra $\mathcal{H}_R(G, I)$ is an algebra \mathcal{H} associated to the same data except that $Z_k = \{1\}, W(1) = W, c_s = q_s - 1.$

The group G is split $\Leftrightarrow T = Z \Rightarrow \Lambda_T = \Lambda$. The group G is quasi-split $\Leftrightarrow Z$ is the *F*-points of an *F*-torus $\Rightarrow \Lambda(1)$ is commutative. The group G is semi-simple $\Leftrightarrow \text{Ker } \nu$ is finite $\Rightarrow \Omega$ is finite and ν is injective on Λ_T .

The quotient of K by its pro-p-radical K(1) is the group G_k of k-rational points of a connected reductive k-group. The images in G_k of T_0 , Z_0 , I, and I(1) are the groups T_k , Z_k , B_k , and U_k of k-rational points of a maximal k-split torus, its centralizer (a k-torus), a Borel k-subgroup containing the maximal k-split torus, and its unipotent radical.

The finite Hecke algebras $\mathcal{H}_R(K, I(1))$ and $\mathcal{H}_R(G_k, U_k)$ are isomorphic.

The condition $q_s = 0$ for all $s \in S^{\text{aff}}$ means that the characteristic of R is p. Then,

$$c_{t\tilde{s}} = -|Z_{k,s}|^{-1} \sum_{z \in Z_{k,s}} tz$$

and the irreducible smooth *R*-representations ρ of *K* are trivial on *K*(1); they identify with the irreducible *R*-representations of G_k , in bijection with the characters of $\mathcal{H}_R(G_k, U_k)$ by the U_k -invariant functor $\rho \mapsto \rho^{U_k}$ for *R* as in 1.4. 1.4.

For the remainder of this article, unless otherwise specified, we are in the setting of § 1.2 with $q_s = 0$ for all $s \in S^{\text{aff}}$, and R is a field containing a root of unity of order the exponent of Z_k .

Notation. We denote by \hat{Z}_k the group of *R*-characters of Z_k . For a character $\chi \in \hat{Z}_k$, a character η of \mathfrak{h} , and a character Ξ of \mathcal{H}^{aff} , we set

$$S_{\chi}^{\text{aff}} := \{ s \in S^{\text{aff}} \mid \chi(c_{\tilde{s}}) \neq 0 \}, \quad S_{\chi} := S_{\chi}^{\text{aff}} \cap S, \tag{9}$$

$$S_{\eta} := \{ s \in S \mid \eta(T_{\tilde{s}}) \neq 0 \}, \quad S_{\Xi}^{\text{aff}} := \{ s \in S^{\text{aff}} \mid \Xi(T_{\tilde{s}}) \neq 0 \}.$$
(10)

These sets are independent of the choice of the lift \tilde{s} of s. For $(\tilde{w}, \chi) \in W(1) \times \hat{Z}_k$ we denote by $\chi^w \in \hat{Z}_k$ the character $\chi^w(t) = \chi(\tilde{w}t\tilde{w}^{-1})$ for $t \in Z_k$. The subgroup generated by a subset X of a group is denoted by $\langle X \rangle$. For $\lambda \in \Lambda$ we set

$$\Delta_{\lambda} := \{ \alpha \in \Delta \mid \alpha \circ \nu(\lambda) = 0 \}, \quad S_{\lambda} := \{ s_{\alpha} \mid \alpha \in \Delta_{\lambda} \}.$$
(11)

We recall from § 1.2 the *R*-algebra \mathfrak{h} associated to the finite Coxeter system (W_0, S) and the extension $1 \to Z_k \to W_0(1) \to W_0 \to 1$, of basis $(T_{\tilde{w}})_{\tilde{w} \in W_0(1)}$ satisfying the braid relations and the quadratic relations $T_{\tilde{s}}(T_{\tilde{s}} - c_{\tilde{s}}) = 0$ for $\tilde{s} \in S(1)$.

- **Theorem 1.1** (The characters of \mathfrak{h}). (a) The characters η of \mathfrak{h} are in bijection with the pairs (χ, J) , where $\chi \in \hat{Z}_k$ and $J \subset S_{\chi}$, $\chi = \eta|_{Z_k}$, and $J = S_{\eta}$.
 - (b) For any η , there exists an orientation o such that the equivalent properties $S_{\eta} = S_{\chi} \cap S_o \Leftrightarrow \eta(E_o(\tilde{s})) = 0$, for all $s \in S$, hold true. We set $\chi_o := \eta$.
 - (c) For two characters η_1 , η of \mathfrak{h} , there exists an orientation o such that $\eta_1 = (\chi_1)_o$, $\eta = \chi_o$ if and only if

$$S_\eta \cap S_{\chi_1} = S_{\eta_1} \cap S_\chi.$$

For a reduced decomposition of $\tilde{w} = \tilde{s}_1 \dots \tilde{s}_r$ of W(1), the element $c_{\tilde{w}} = c_{\tilde{s}_1} \dots c_{\tilde{s}_r}$ of $R[Z_k]$ does not depend on the choice of the reduced decomposition [15, Propositions 4.13(ii) and 4.22].

Theorem 1.2 (A basis of the intertwiners). Let η_1 , η be two characters of \mathfrak{h} of restrictions χ_1 , χ to Z_k .

(a) η_1 is contained in $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ (is a submodule) if and only if

$$\chi_1 = \chi^{\lambda}, \quad S_{\eta_1} \cap S_{\lambda} = S_{\eta} \cap S_{\lambda}, \quad for \ some \ \lambda \in \Lambda^+.$$

(b) For $\lambda \in \Lambda^+$ satisfying (a), there exists a non-zero \mathcal{H} -intertwiner

$$\Phi_{\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes \mathcal{E}_{\tilde{\lambda}}: \eta_1 \otimes_{\mathfrak{h}} \mathcal{H} \to \eta \otimes_{\mathfrak{h}} \mathcal{H}, \quad \mathcal{E}_{\tilde{\lambda}}:=\sum_{w_0 \in Y_{\lambda}} \chi_1(c_{\tilde{w}_0})^{-1} \otimes T_{\tilde{\lambda}\tilde{w}_0},$$

where $Y_{\lambda} = \{w_0 \in \langle S_{\chi_1} - S_{\eta_1} \rangle \mid \chi_1^{w_0} = \chi_1, \ell(\lambda w_0) = \ell(\lambda) - \ell(w_0)\}$, and \tilde{w}_0 is a lift of w_0 ; note that $\chi_1(c_{\tilde{w}_0})^{-1} \otimes T_{\tilde{\lambda}\tilde{w}_0}$ does not depend on the choice of the lift. $(\Phi_{\tilde{\lambda}}), \text{ for } \lambda \in \Lambda^+ \text{ satisfying } (a), \text{ is a basis of } \operatorname{Hom}_{\mathcal{H}}(\eta_1 \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}).$

(c) If o satisfies (d) and $\lambda \in \Lambda^+$ satisfies (a), there exists a non-zero \mathcal{H} -intertwiner

 $\Phi_{o,\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes E_o(\tilde{\lambda}): (\chi_1)_o \otimes_{\mathfrak{h}} \mathcal{H} \to \chi_o \otimes_{\mathfrak{h}} \mathcal{H}.$

 $(\Phi_{o,\tilde{\lambda}}), \text{ for } \lambda \in \Lambda^+ \text{ satisfying } (a), \text{ is a basis of } \operatorname{Hom}_{\mathcal{H}}((\chi_1)_o \otimes_{\mathfrak{h}} \mathcal{H}, \chi_o \otimes_{\mathfrak{h}} \mathcal{H}).$

We note that $\chi_1(c_{\tilde{w}_0})^{-1} \otimes T_{\tilde{\lambda}\tilde{w}_0} \in \eta \otimes_{\mathfrak{h}} \mathcal{H}$ does not depend on the choice of the lift \tilde{w}_0 of $w_0 \in Y_{\lambda}$. We set

$$\Lambda_{\chi} := \{ \lambda \in \Lambda \mid \chi^{\lambda} = \chi \}, \quad \text{resp. } \Lambda_{\chi}^{+} := \Lambda^{+} \cap \Lambda_{\chi}.$$
(12)

The idempotent $e_{\chi} := |Z_k|^{-1} \sum_{t \in Z_k} \chi(t)^{-1} t$ of $R[Z_k]$ is central in $R[\Lambda_{\chi}(1)]$, and the *R*-linear map

$$\chi \otimes_{R[Z_k]} R[\Lambda_{\chi}(1)] \to e_{\chi} R[\Lambda_{\chi}(1)] \quad 1 \otimes \tilde{\lambda} \mapsto e_{\chi} \tilde{\lambda} \quad (\lambda \in \Lambda_{\chi})$$
(13)

is an isomomorphism. Any $R\text{-algebra}\;A$ with a basis $(a_{\tilde{\lambda}})_{\lambda\in\Lambda_{\chi}^+}$ satisfying

$$a_{\tilde{\lambda}}a_{\tilde{\lambda}'} = \chi(t)a_{\tilde{\lambda}''} \quad \text{for } \lambda, \lambda', \lambda'' \in \Lambda_{\chi}^+, t \in Z_k, \tilde{\lambda}\tilde{\lambda}' = t\tilde{\lambda}'', \tag{14}$$

is canonically isomorphic to the algebra $e_{\chi} R[\Lambda_{\chi}^+(1)]$ with its natural basis $(e_{\chi} \tilde{\lambda})_{\lambda \in \Lambda_{\chi}^+}$.

For an orientation o, the *R*-submodule $\mathcal{A}_{o,\chi}^+$ of basis $(E_o(\tilde{\lambda}))_{\tilde{\lambda} \in \Lambda_{\chi}^+(1)}$ is a subalgebra of \mathcal{H} . The algebra $\chi \otimes_{R[Z_k]} \mathcal{A}_{o,\chi}^+$ of basis $(1 \otimes E_o(\tilde{\lambda}))_{\lambda \in \Lambda_{\chi}^+}$ is an *R*-algebra with a basis satisfying (14).

A spherical Hecke algebra is the algebra of \mathcal{H} -intertwiners of a right \mathcal{H} -module $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ induced from a character η of \mathfrak{h} , by analogy with the reductive *p*-adic groups

$$\mathcal{H}(\mathfrak{h},\eta) := \operatorname{End}_{\mathcal{H}}(\eta \otimes_{\mathfrak{h}} \mathcal{H}).$$

Theorem 1.2 with $\eta_1 = \eta$ becomes the following.

Theorem 1.3 (A Satake-type isomorphism for the spherical algebra). (a) A basis of the spherical Hecke algebra $\mathcal{H}(\mathfrak{h}, \eta)$ is $(\Phi_{\tilde{\lambda}})_{\lambda \in \Lambda^+_{\tau}}$, where

$$\Phi_{\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes \mathcal{E}_{\tilde{\lambda}}: \eta \otimes_{\mathfrak{h}} \mathcal{H} \to \eta \otimes_{\mathfrak{h}} \mathcal{H}, \quad \mathcal{E}_{\tilde{\lambda}}:= \sum_{w_0 \in Y_{\lambda}} \chi(c_{\tilde{w}_0}) \otimes T_{\tilde{\lambda}\tilde{w}_0}.$$

 $Y_{\lambda} = \{ w_0 \in \langle S_{\chi} - S_{\eta} \rangle \mid \chi^{w_0} = \chi, \ell(\lambda w_0) = \ell(\lambda) - \ell(w_0) \}.$

(b) Let o be an orientation such that $\eta = \chi_o$. For $\lambda \in \Lambda_{\chi}^+$, there exists an injective \mathfrak{h} -intertwiner

 $\Phi_{o,\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes E_o(\tilde{\lambda}): \eta \otimes_{\mathfrak{h}} \mathcal{H} \to \eta \otimes_{\mathfrak{h}} \mathcal{H}.$

 $(\Phi_{o,\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^{+}}$ is a basis of the spherical Hecke algebra $\mathcal{H}(\mathfrak{h}, \eta)$ satisfying (14), inducing an isomorphism

$$\mathcal{H}(\mathfrak{h},\eta)\simeq e_{\chi}R[\Lambda_{\chi}^{+}(1)].$$

We suppose now that Λ_T exists. The center \mathcal{Z} of \mathcal{H} is the algebra $\mathcal{A}_o^{W(1)}$ of W(1)-invariants of \mathcal{A}_o , and is a free *R*-module of basis

$$E(\tilde{C}) = \sum_{\tilde{\lambda} \in \tilde{C}} E_o(\tilde{\lambda}) \tag{15}$$

 $(E(\tilde{C})$ is independent of the choice of o) for all finite conjugacy classes \tilde{C} of W(1). We denote by $\tilde{C}(\mu)$ the W(1)-conjugacy class of $\tilde{\mu}$ for $\mu \in \Lambda_T^+$. The *R*-subspace of

basis $(E(\tilde{C}(\mu)))_{\mu \in \Lambda_T^+}$ is a central subalgebra \mathcal{Z}_T of \mathcal{H} which has better properties than \mathcal{Z} .

A central element $x \in \mathbb{Z}$ induces naturally a \mathcal{H} -intertwiner of $\eta \otimes_{\mathfrak{h}} \mathcal{H}$:

$$\Phi_x : 1 \otimes h \mapsto 1 \otimes xh = 1 \otimes hx \quad \text{for } h \in \mathcal{H}.$$
⁽¹⁶⁾

It is straightforward to check that Φ_x belongs to the center $\mathcal{Z}(\eta, \mathfrak{h})$ of $\mathcal{H}(\eta, \mathfrak{h})$. The *R*-subspace of basis $(\Phi_{E(\tilde{C}(\mu))})_{\mu \in \Lambda_T^+}$ is a central subalgebra $\mathcal{Z}(\eta, \mathcal{H})_T$ of the spherical algebra $\mathcal{H}(\eta, \mathfrak{h})$.

Theorem 1.4 (Almost-isomorphism between the centers of \mathcal{H} and $\mathcal{H}(\eta, \mathfrak{h})$). We suppose that Λ_T exists. Let η be a character of \mathfrak{h} .

- (a) Z_T is a finitely generated central *R*-subalgebra of \mathcal{H} , and \mathcal{H} is a finitely generated Z_T -module. This is also true for $(Z(\eta, \mathcal{H})_T, \mathcal{H}(\eta, \mathfrak{h}))$ instead of (Z_T, \mathcal{H}) .
- (b) $\Phi_{E(\tilde{C}(\mu))} = \Phi_{o,\tilde{\mu}} \text{ for } \mu \in \Lambda_T^+ \text{ and any orientation } o \text{ such that } \eta = \chi_o.$ The linear map $\tilde{\mu} \mapsto \Phi_{E(\tilde{C}(\mu))} : R[\tilde{\Lambda}_T^+] \to \mathcal{Z}(\eta, \mathcal{H})_T$ is an algebra isomorphism.
- (c) The map $x \mapsto \Phi_x : \mathcal{Z} \to \mathcal{Z}(\eta, \mathcal{H})$ restricts to an isomorphism $\mathcal{Z}_T \to \mathcal{Z}(\eta, \mathcal{H})_T$.

We prove (a) over any commutative ring R.

We transfer these results to the group G. The spherical Hecke algebra $\mathcal{H}_R(G, K, \rho) = \operatorname{End}_{RG} \operatorname{c-Ind}_K^G \rho$ of an irreducible smooth representation ρ of K with $\mathcal{H}_R(K, I(1))$ acting by η on $\rho^{I(1)}$ is isomorphic to $\mathcal{H}(\eta, \mathfrak{h})$ by the pro-p-Iwahori invariant functor. We denote by $\mathcal{Z}_R(G, K, \rho)_T$ the algebra corresponding to $\mathcal{Z}(\eta, \mathcal{H})_T$. We denote by $\mathcal{H}_R(Z^+, Z_0, \chi)$ the R-algebra of elements in the Hecke algebra $\mathcal{H}_R(Z^+, Z_0, \chi)$ with support contained in the monoid Z^+ of $z \in Z$ with $\nu_Z(z)$ dominant.

From Theorem 1.3 we obtain an algebra isomomorphism

$$\mathcal{S}_o: \mathcal{H}_R(G, K, \rho) \to \mathcal{H}_R(Z^+, Z_0, \chi) \tag{17}$$

for each orientation o such that $\eta = \chi_o$. This isomorphism restricts to an isomorphism, independent of the choice of o,

$$\mathcal{S}_T : \mathcal{Z}_R(G, K, \rho)_T \to \mathcal{H}_R(T^+, T_0, \chi).$$
(18)

Let π be a smooth R-representation of G such that $\operatorname{Hom}_R(\rho, \pi)$ contains a $\mathcal{Z}_R(G, K, \rho)_T$ -eigenvector A of eigenvalue ξ , seen as an homomorphism $\tilde{\Lambda}_T^+ \to R$ (Theorem 1.4). From Theorem 1.4, for $v \in \rho^{I(1)}$ non-zero and $\mu \in \Lambda_T^+$,

$$\xi(\tilde{\mu})A(v) = A(v)E_o(\tilde{\mu}) = A(v)E(C(\mu)).$$

Theorem 1.5 (Supersingularity in G and in \mathcal{H}). The eigenvalue ξ of the $\mathcal{Z}_R(G, K, \rho)_T$ -eigenvector $A \in \operatorname{Hom}_R(\rho, \pi)$ is supersingular if and only if the submodule $A(v)\mathcal{H}$ of $\pi^{I(1)}$ is supersingular.

We recall that an homomorphism $\tilde{\Lambda}_T^+ \to R$ is called supersingular if it vanishes on the non-invertible elements, and that a simple right \mathcal{H} -module M is called supersingular if $ME(\tilde{C}) = 0$ for all finite conjugacy classes \tilde{C} in W(1) with positive length [13, Definition 1]. This is equivalent to $ME(\tilde{C}(\mu)) = 0$ for all non-invertible $\mu \in \tilde{\Lambda}_T^+$.

In a forthcoming article, we will study the parabolic induction for \mathcal{H} -modules; we hope to prove that the isomorphism \mathcal{S}_o (17) is the Satake isomorphism of [7] for a good choice of o such that $\eta = \chi_o$ (this was proved by Ollivier [10, Theorem 5.5]), when G is split with a simply connected derived group, and K is hyperspecial; as Z = T, we have $\mathcal{S}_o = \mathcal{S}_T$, and that an irreducible smooth admissible representation π is supersingular if and only if $\pi^{I(1)}$ contains a supersingular module (this was proved by Ollivier for G = GL(n, F)and PGL(n, F) [11, Theorem 5.26]).

Finally, we classify the supersingular simple finite-dimensional \mathcal{H} -modules (proved by Ollivier when G is split, and K is hyperspecial [11, Corollary 5.15]).

For a character Ξ of \mathcal{H}^{aff} , the *R*-subalgebra \mathcal{H}_{Ξ} of \mathcal{H} generated by \mathcal{H}^{aff} and the $\Omega(1)$ -fixator of Ξ ,

$$\Omega(1)_{\Xi} := \{ u \in \Omega(1) \mid \Xi(uhu^{-1}) = \Xi(h) \text{ for } h \in \mathcal{H}^{\text{aff}} \},\$$

is identified by (3) with the twisted tensor product $\mathcal{H}^{\mathrm{aff}} \otimes_{R[Z_k]} R[\Omega(1)_{\Xi}] \to \mathcal{H}_{\Xi}$. For a simple finite-dimensional *R*-representation σ of $\Omega(1)_{\Xi}$ equal to Ξ on Z_k , let

$$M(\Xi,\sigma) := (\Xi \otimes \sigma) \otimes_{\mathcal{H}_{\Xi}} \mathcal{H}$$
⁽¹⁹⁾

be the right \mathcal{H} -module induced from the right \mathcal{H}_{Ξ} -module $\Xi \otimes \sigma$. The induced module $M(\Xi, \sigma)$ is finite dimensional. Two pairs $(\Xi_1, \sigma_1), (\Xi_2, \sigma_2)$ are called conjugate by an element $u \in \Omega(1)$ if

$$\Xi_1(uhu^{-1}) = \Xi_2(h), \sigma_1(uvu^{-1}) = \sigma_2(v) \quad \text{for } (h, v) \in \mathcal{H}^{\text{aff}} \times u^{-1}\Omega_{\Xi}(1)u$$

The affine Coxeter system $(W^{\text{aff}}, S^{\text{aff}})$ is the direct product of the irreducible affine Coxeter systems $(W_i^{\text{aff}}, S_i^{\text{aff}})_{1 \leq i \leq r}$ associated to the irreducible components $(\Sigma_i, \Delta_i)_{1 \leq i \leq r}$ of the based reduced root system (Σ, Δ) . The *R*-submodule of basis $(T_{\tilde{w}})_{\tilde{w}_i \in W_i^{\text{aff}}(1)}$ is a subalgebra $\mathcal{H}_i^{\text{aff}}$ of \mathcal{H}^{aff} . The algebras $\mathcal{H}_i^{\text{aff}}$ are called the irreducible components of \mathcal{H}^{aff} .

- **Theorem 1.6** (Supersingular simple modules). (a) The characters Ξ of \mathcal{H}^{aff} are in bijection with the pairs (χ, J) , where $\chi \in \hat{Z}_k$ and $J \subset S_{\chi}^{\text{aff}}$, $\chi = \Xi|_{Z_k}$, and $J = S_{\Xi}^{\text{aff}}$ (10). When $S_{\Xi}^{\text{aff}} = S^{\text{aff}}$, Ξ is called a sign character, and the character $\Xi \circ \iota$ (4) is called a trivial character.
 - (b) A character Ξ of \mathcal{H}^{aff} is supersingular if and only if it is not a sign or trivial character on each irreducible component of \mathcal{H}^{aff} .
 - (c) A finite-dimensional right \mathcal{H} -module is supersingular if and only if it is isomorphic to $M(\Xi, \sigma)$, where Ξ is a supersingular character of \mathcal{H}^{aff} and σ is a simple finite-dimensional *R*-representation σ of $\Omega(1)_{\Xi}$ equal to Ξ on Z_k .
 - (d) $M(\Xi_1, \sigma_1) \simeq M(\Xi_2, \sigma_2)$ if and only if $(\Xi_1, \sigma_1), (\Xi_2, \sigma_2)$ are $\Omega(1)$ -conjugate.

2. The characters of \mathfrak{h} and \mathcal{H}^{aff}

Proposition 2.1. A simple \mathfrak{h} -module has dimension 1.

Proof. The finite-dimensional *R*-algebra \mathfrak{h} is generated by Z_k and $T_{\tilde{s}}$ for all $s \in S$. By the hypothesis on R (§ 1.4), a right simple \mathfrak{h} -module is finite dimensional and contains an eigenvector v of Z_k . Following the argument of [4, Theorem 6.10], we choose w in the finite group W_0 of maximal length such that $vT_{\tilde{w}} \neq 0$, and we show that $RvT_{\tilde{w}}$ is \mathfrak{h} -stable.

 $RvT_{\tilde{w}}$ is stable by T_t , because $T_{\tilde{w}}T_t = (w \bullet t)T_{\tilde{w}}$ for $t \in Z_k$. $RvT_{\tilde{w}}$ is stable by $T_{\tilde{s}}$, because

- if $\ell(ws) = \ell(w) + 1$, $vT_{\tilde{w}}T_{\tilde{s}} = vT_{w\tilde{s}}$ and by the hypothesis on w, $vT_{\tilde{w}\tilde{s}} = 0$;
- if $\ell(ws) = \ell(w) 1$, $T_{\tilde{w}}T_{\tilde{s}} = T_{\tilde{w}\tilde{s}^{-1}}T_{\tilde{s}}^2 = T_{\tilde{w}\tilde{s}^{-1}}c_{\tilde{s}}T_{\tilde{s}} = T_{w\tilde{s}^{-1}}T_{\tilde{s}}c_{\tilde{s}} = (w \bullet c_{\tilde{s}})T_{\tilde{w}}$. We used that $T_{\tilde{s}}$ and $c_{\tilde{s}}$ commute.

Proposition 2.2. The characters η of \mathfrak{h} are in bijection with the pairs (χ, J) , where $\chi \in \hat{Z}_k$ and $J \subset S_{\chi}$ (9), by the recipe

$$\eta|_{Z_k} = \chi, \quad S_\eta = \{s \in S \mid \eta(T_{\tilde{s}}) \neq 0\} = J.$$

We have $\eta(T_{\tilde{s}}) = \chi(c_{\tilde{s}})$ if $s \in J$.

The characters Ξ of \mathcal{H}^{aff} are in bijection with the pairs (χ, J) , where $\chi \in \hat{Z}_k$ and $J \subset S_{\chi}^{\text{aff}}$, by the recipe

$$\Xi|_{Z_k} = \chi, \quad S_{\Xi}^{\text{aff}} = \{s \in S^{\text{aff}} \mid \Xi(T_{\tilde{s}}) \neq 0\} = J.$$

We have $\Xi(T_{\tilde{s}}) = \chi(c_{\tilde{s}})$ if $s \in J$.

The set J is independent of the choice of the lift \tilde{s} of s. We call (χ, J) the parameters of the character. The restriction to \mathfrak{h} of the character Ξ of \mathcal{H}^{aff} with parameters $(\chi, S_{\Xi}^{\text{aff}})$ is the character of parameters $(\chi, S_{\Xi}^{\text{aff}} \cap S)$.

Proof. The proposition follows from the Iwahori–Matsumoto presentation in both cases. If $\eta|_{Z_k} = \chi$, we have

$$\eta(T_{\tilde{s}})(\eta(T_{\tilde{s}}) - \chi(c_{\tilde{s}})) = 0$$

for $s \in S$. We can replace η , S by Ξ , S^{aff} .

The involutive automorphism ι of \mathcal{H} (4) has the property for $s \in S$ that

$$\eta(T_{\tilde{s}}) = 0 \Leftrightarrow \eta \circ \iota(T_{\tilde{s}}) = \eta(c_{\tilde{s}}).$$

The same holds for (Ξ, S^{aff}) instead of (η, S) .

Lemma 2.3. Let η be a character with parameters (χ, S_{η}) of \mathfrak{h} . Then $\eta \circ \iota$ is a character of \mathfrak{h} with parameters $(\chi, S_{\chi} - S_{\eta})$. We can replace η, S, \mathfrak{h} by $\Xi, S^{\text{aff}}, \mathcal{H}^{\text{aff}}$.

Let o be an orientation. We recall the notation (5), (6), (9), (10).

Lemma 2.4. Let η be a character of \mathfrak{h} with parameters (χ, S_{η}) . Then $S_{\eta} = S_{\chi} \cap S_{o} \Leftrightarrow \eta(E_{o}(\tilde{s})) = 0$ for all $s \in S$. When this holds true, we denote $\eta = \chi_{o}$. We can replace $(\eta, \mathfrak{h}, S, \chi_{o})$ by $(\Xi, \mathcal{H}^{\text{aff}}, S^{\text{aff}}, \chi_{o}^{\text{aff}})$.

Proof. We compare the values of $E_o(\tilde{s})$ and $\eta(T_{\tilde{s}})$ for $s \in S$:

$$\begin{split} E_o(\tilde{s}) &= T_{\tilde{s}} \Leftrightarrow s \in S - S_o, \\ &= T_{\tilde{s}} - c_{\tilde{s}} \Leftrightarrow s \in S_o, \\ \eta(T_{\tilde{s}}) &= 0 \Leftrightarrow s \in S - S_\eta, \\ &= \chi(c_{\tilde{s}}) \neq 0 \text{ if } s \in S_\eta. \end{split}$$

We see that

 $\begin{array}{l} \text{if } s \in S - S_{\chi}, \, \text{then } \eta(E_o(\tilde{s})) = \eta(T_{\tilde{s}}) = \chi(c_{\tilde{s}}) = 0; \\ \text{if } s \in S_{\chi} - S_{\eta}, \, \text{then } \eta(E_o(\tilde{s})) = \eta(T_{\tilde{s}}) = 0 \Leftrightarrow s \notin (S_{\chi} - S_{\eta}) \cap S_o; \\ \text{if } s \in S_{\eta}, \, \text{then } \eta(E_o(\tilde{s})) = 0 \Leftrightarrow s \in S_{\eta} \cap S_o. \end{array}$

Hence we obtain the lemma for η . The proof is the same for Ξ .

Example 2.5. For the dominant orientation o^+ , $S_{o^+}^{\text{aff}} = S$, and the parameters of χ_{o^+} and of $\chi_{o^+}^{\text{aff}}$ are (χ, S_{χ}) .

For the anti-dominant orientation o^- , $S_{o^-}^{\text{aff}} = S^{\text{aff}} - S$, and the parameters of χ_{o^-} are (χ, \emptyset) , while those of $\chi_{o^-}^{\text{aff}}$ are $(\chi, S_{\chi}^{\text{aff}} - S_{\chi})$.

Lemma 2.6. (i) Any subset of S is equal to S_o for some orientation o.

A character η of \mathfrak{h} of restriction χ to Z_k is equal to χ_o for some orientation o, and

$$\eta = \chi_o \Leftrightarrow S_o \cap S_{\chi} = S_{\eta}.$$

(ii) Two *R*-characters η_1 , η of \mathfrak{h} of parameters $(\chi_1, S_{\eta_1}), (\chi, S_{\eta})$ are equal to $(\chi_1)_o, \chi_o$ for some orientation o if and only if

$$S_{\eta_1} \cap S_{\chi} = S_{\eta} \cap S_{\chi_1}.$$

In this case, $\eta_1 = (\chi_1)_o$ and $\eta = \chi_o \Leftrightarrow S_o \cap (S_{\chi_1} \cup S_{\chi}) = S_{\eta_1} \cup S_{\eta_2}$.

Proof. (i) Let $w_o \in W_0$. For $\alpha \in \Delta$, the root in $\{\alpha, -\alpha\}$ positive on $w_o^{-1}(\mathfrak{D}^+)$ is equal to $\alpha_o = \alpha$ if $w_o(\alpha) > 0$ and $\alpha_o = -\alpha$ if $w_o(\alpha) < 0$; hence

$$s_{\alpha} \in S_o \Leftrightarrow w_o(\alpha) > 0.$$

For a subset X of S, we have $X = S_o$ for the orientation $o = o^+ \bullet w_o$ of Weyl chamber $\mathfrak{D}_o = w_o^{-1}(\mathfrak{D}^+)$, where w_o is the longest element of the group $\langle S - X \rangle$ (w = 1 if S = X). (ii) $S_o \cap S_{\chi_1} = S_{\eta_1}$ and $S_o \cap S_{\chi} = S_{\eta}$ imply that $S_o \cap S_{\chi_1} \cap S_{\chi} = S_{\eta_1} \cap S_{\chi} = S_{\eta} \cap S_{\chi_1}$. If $S_{\eta_1} \cap S_{\chi} = S_{\eta} \cap S_{\chi_1}$, then $S_o \cap (S_{\chi_1} \cup S_{\chi}) = S_{\eta_1} \cup S_{\eta}$ implies that $S_o \cap S_{\chi_1} = S_{\eta_1}$ and $S_o \cap S_{\chi} = S_{\eta}$.

Definition 2.7. A character of \mathfrak{h} not vanishing on $T_{\tilde{s}}$ for all $s \in S$ is called a twisted sign character, and its image by the involution ι is called a twisted trivial character.

We make the same definition for \mathcal{H}^{aff} , S^{aff} replacing \mathfrak{h} , S.

582

The twisted sign characters η are never 0 on $T_{\tilde{w}}$ for $w \in W_0$. The algebra \mathfrak{h} admits no twisted sign or trivial characters when $c_{\tilde{s}} = 0$ for some $s \in S$. They are equal to χ_{o^+} , where $\chi \in \hat{Z}_k$ satisfies $S_{\chi} = S$.

The twisted trivial characters η vanish on $T_{\tilde{w}}$ for all $w \in W_0$. They are equal to χ_{o^-} , where $\chi \in \hat{Z}_k$ satisfies $S_{\chi} = S$.

The same remarks can be made for \mathcal{H}^{aff} , $(W^{\text{aff}}, S^{\text{aff}})$ replacing \mathfrak{h} , (W_0, S) .

3. Distinguished representatives of $W_0 \setminus W$

We recall a well-known lemma for the affine Coxeter system $(W^{\text{aff}}, S^{\text{aff}})$ extended to the group $W = W^{\text{aff}} \rtimes \Omega$.

For $s \in S^{\text{aff}}$, we denote by A_s the unique positive affine root such that $s(A_s)$ is negative. We have $s(A_s) = -A_s$ [8, 1.3.11]. When $s \in S$ we write $A_s = \alpha_s$.

Lemma 3.1. (1) For $(s, w) \in S^{\text{aff}} \times W$, we have

$$\ell(ws) = 1 + \ell(w) \Leftrightarrow w(\alpha_s) > 0$$

- (2) For $v \leq w$ in W and $s \in S^{\text{aff}}$, we have
 - (a) either $sv \leq w$ or $sv \leq sw$;
 - (b) either $v \leq sw$ or $sv \leq sw$.

Proof. We recall that $W = W^{\text{aff}} \rtimes \Omega$. Let $(s, u, w) \in S^{\text{aff}} \times \Omega \times W^{\text{aff}}$.

- (1) We have $\ell(uws) = \ell(ws), \ell(uw) = \ell(w)$, and $\ell(ws) = \ell(w) + 1 \Leftrightarrow w(\alpha_s) > 0$ [8, 1.13.13]. By definition (§ 1.2) an affine root is positive if and only if it is positive on the dominant alcove \mathfrak{C}^+ . As the group Ω normalizes \mathfrak{C}^+ , it normalizes the set of positive affine roots, in particular $w(\alpha_s) > 0 \Leftrightarrow (uw)(\alpha_s) > 0$.
- (2) Let $(v, u') \in W^{\text{aff}} \times \Omega$. By definition of the Bruhat–Chevalley partial order [14, Ap. 2], $vu' \leq wu$ is equivalent to $u' = u, v \leq w$. In W^{aff} [8, 1.3.19],
 - (a) either $sv \leq w$ or $sv \leq sw$;
 - (b) either $v \leq sw$ or $sv \leq sw$.

We multiply (a) and (b) by u on the right without changing \leq .

Remark 3.2. As $\ell(w) = \ell(w^{-1})$ and $v \leq w \Leftrightarrow v^{-1} \leq w^{-1}$, in Lemma 3.1(1) we also have $\ell(sw) = 1 + \ell(w) \Leftrightarrow w^{-1}(\alpha_s) > 0$, and in Lemma 3.1(2), (a) and (b) can be replaced by

- (c) either $vs \leq w$ or $vs \leq ws$;
- (d) either $v \leq ws$ or $vs \leq ws$.

We introduce now a distinguished set \mathcal{D} of representatives of $W_0 \setminus W$.

Proposition 3.3. The three sets

$$\mathcal{D}_1 = \{ d \in W \mid d^{-1}(\alpha) > 0 \text{ for all } \alpha \in \Sigma^+ \},\$$

$$\mathcal{D}_2 = \{ \lambda w_0 \mid (\lambda, w_0) \in \Lambda^+ \times W_0, \, \ell(\lambda w_0) = \ell(\lambda) - \ell(w_0) \},$$

$$\mathcal{D}_3 = \{ d \in W \mid \ell(w_0 d) = \ell(w_0) + \ell(d) \text{ for all } w_0 \in W_0 \},$$

are equal, and will be denoted by \mathcal{D} . The cosets W_0d , for $d \in \mathcal{D}$, are disjoint of union W.

Proof. The set \mathcal{D}_1 is also equal to

$$\{d \in W \mid \ell(sd) = \ell(d) + 1 \text{ for all } s \in S\},\tag{20}$$

because one can restrict to $\alpha \in \Delta$ in the definition of \mathcal{D}_1 and, for $s \in S$, $d^{-1}(\alpha_s) > 0 \Leftrightarrow \ell(sd) = \ell(d) + 1$ (Remark 3.2). Let $w \in W$ not in \mathcal{D}_1 . There exists $s \in S$ with $\ell(sw) = \ell(w) - 1$. Then $w_1 = sw$ satisfies $\ell(w) = 1 + \ell(w_1)$. We reiterate, and after finitely many steps we obtain $(w_0, d) \in W_0 \times \mathcal{D}_1$ such that $w = w_0 d$, $\ell(w) = \ell(w_0) + \ell(d)$. The pair (w_0, d) is unique. Indeed, for d, d' in \mathcal{D}_1 with $d'd^{-1} \in W_0$, for all $\alpha \in \Delta$ we have $d'd^{-1}(\alpha) = \gamma \in \Sigma$, and $d^{-1}(\alpha) = d'^{-1}(\gamma)$ is positive as $d \in \mathcal{D}_1$; hence $\gamma > 0$ as $d' \in \mathcal{D}_1$. This implies d = d'. We deduce that \mathcal{D}_1 is a set of representatives of $W_0 \setminus W$, that $d \in \mathcal{D}_1$ is the unique element of minimal length in W_0d , and that $\mathcal{D}_1 \subset \mathcal{D}_3$. This implies that $\mathcal{D}_1 = \mathcal{D}_3$.

We now compare the sets \mathcal{D}_1 and \mathcal{D}_2 . For $(\lambda, w_0) \in \Lambda \times W_0$, we deduce from Lemma 3.1 (see [15, Corollary 5.11]) that

$$\ell(\lambda w_0) = \ell(\lambda) - \ell(w_0) \Leftrightarrow \alpha \circ \nu(\lambda) > 0 \quad \text{for all } \alpha \in \Sigma^+ \cap w_0(\Sigma^-).$$
(21)

On the other hand, for all $\alpha \in \Sigma^+$, $(\lambda w_0)^{-1}(\alpha) = w_0^{-1}(\alpha) + \alpha \circ \nu(\lambda)$ is positive if and only if

$$w_0^{-1}(\alpha) > 0, \, \alpha \circ \nu(\lambda) \ge 0 \quad \text{or} \quad w_0^{-1}(\alpha) < 0, \, \alpha \circ \nu(\lambda) > 0 \tag{22}$$

[15, (36)]. Comparing (21) and (22), we deduce that $\mathcal{D}_1 = \mathcal{D}_2$.

- **Remark 3.4.** (i) The distinguished set \mathcal{D}^{aff} of representatives of $W_0 \setminus W^{\text{aff}}$ given by Proposition 3.3 applied to W^{aff} is equal to $\mathcal{D}^{\text{aff}} = \mathcal{D} \cap W^{\text{aff}}$, and $\mathcal{D} = \mathcal{D}^{\text{aff}} \Omega$.
 - (ii) The distinguished set \mathcal{D} of representatives of $W_0 \setminus W^{\text{aff}}$ can be inductively constructed: it is the set of $\lambda w_0 \in \mathcal{D}$ for $\lambda \in \Lambda^+$ and $w_0 \in W_0$, such that $w_0 = 1$ or w_0 has a reduced decomposition $w_0 = s_1 \dots s_r$ ($s_i \in S$), such that

$$\ell(\lambda s_1 \dots s_{i+1}) = \ell(\lambda s_1 \dots s_i) - 1 \quad \text{for } 1 \leq i \leq r.$$

Note that $\lambda s \in \mathcal{D} \Leftrightarrow \alpha_s \circ \nu(\lambda) > 0$ when $s \in S$.

We denote by w_1 the unique element of maximal length in the finite Weyl group W_0 .

Lemma 3.5. Let $\lambda, \mu \in \Lambda^+$. The double W_0 -coset $W_0\lambda W_0$ has a unique element w_{λ} of maximal length,

$$w_{\lambda} = w_1 \lambda, \quad \ell(w_{\lambda}) = \ell(w_1) + \ell(\lambda) \quad and \quad \lambda \leqslant \mu \Leftrightarrow w_{\lambda} \leqslant w_{\mu}.$$

The set $W_0 \lambda W_0 \cap \mathcal{D}$ is equal to $\mathcal{D}(\lambda) = \{\lambda w_0 \mid w_0 \in W_0, \ell(\lambda w_0) = \ell(\lambda) - \ell(w_0)\}.$

585

Proof. The coset $W_0 d$ of $d \in \mathcal{D}$ contains a unique element of maximal length, equal to $w_1 d$, $\ell(w_1 d) = \ell(w_1) + \ell(d)$. For $\lambda \in \Lambda^+$, the set $\mathcal{D} \cap W_0 \lambda W_0$ contains a unique element of maximal length, equal to λ (Remark 3.4(ii)). Hence $W_0 \lambda W_0$ contains a unique element w_{λ} of maximal length, equal to $w_1 \lambda$ and $\ell(w_{\lambda}) = \ell(w_1) + \ell(\lambda)$. As $w_{\mu} = w_1 \mu$, $\ell(w_{\mu}) = \ell(w_1) + \ell(\mu)$, the equivalence $\lambda \leq \mu \Leftrightarrow w_1 \lambda \leq w_1 \mu$ is clear. We have $\mathcal{D}(\lambda) = \lambda W_0 \cap \mathcal{D}$ (Proposition 3.3), and $\mu \in W_0 \lambda W_0 \Leftrightarrow \mu = w \lambda w^{-1}$ for some $w \in W_0 \Leftrightarrow \mu = \lambda$, as Λ^+ represents the orbits of W_0 in Λ [7, 6.3].

Lemma 3.6. Let $(\lambda, w_0) \in \Lambda^+ \times W_0$, $d = \lambda w_0 \in \mathcal{D}$, and let $\mu \in \Lambda^+$.

- (1) For $s \in S^{\text{aff}}$, $ds \notin \mathcal{D} \Leftrightarrow dsd^{-1} \in S \Rightarrow \ell(ds) = \ell(d) + 1$.
- (2) For $s \in S$ and $ds \in D$, we have $\ell(ds) = \ell(d) + 1 \Leftrightarrow \ell(w_0 s) = \ell(w_0) 1$.
- (3) For $(w, d') \in W_0 \times \mathcal{D}$, we have $d \leq wd' \Rightarrow d \leq d'$.
- (4) For $s \in S$ such that $ds \in D$, we have $d \leq \mu \Rightarrow ds \leq \mu$.
- (5) We have $d \leq w_{\mu} \Leftrightarrow d \leq \mu \Leftrightarrow \lambda \leq \mu$.

Proof. (1) Let $s \in S^{\text{aff}}$. By (20) and Remark 3.2,

$$ls \notin \mathcal{D} \Leftrightarrow (ds)^{-1}(\alpha) < 0 \text{ for some } \alpha \in \Delta.$$

As $d^{-1}(\beta) > 0$ for all $\beta \in \Sigma^+$, and $dsd^{-1} \in W^{\text{aff}}$, we have

$$s((d^{-1}(\alpha))) < 0 \Leftrightarrow d^{-1}(\alpha) = A_s \Leftrightarrow \alpha = d(A_s) \Leftrightarrow s_\alpha = dsd^{-1}.$$

We have $\ell(ds) = \ell(d) + 1$ by Lemma 3.1(1).

(2) Let $s \in S$ with $ds \in \mathcal{D}$. Then

$$\ell(ds) = \ell(d) + 1 \Leftrightarrow \ell(\lambda) - \ell(w_0 s) = \ell(\lambda) - \ell(w_0) + 1 \Leftrightarrow \ell(w_0 s) = \ell(w_0) - 1.$$

(3) $d \leq wd'$ and $s \in S$ imply that $d \leq swd'$ or $sd \leq swd'$ by Lemma 3.1(2); as d < sd, we obtain

$$d \leqslant wd' \Rightarrow d \leqslant swd'$$

If $w \neq 1$, we choose s such that sw < w. Repeating the procedure, we obtain $d \leq d'$ by induction on the length of $w \in W_0$.

(4) As $d \leq \mu$, $ds \leq \mu$ or $ds \leq \mu s$ by Lemma 3.1(2). When $\mu s < \mu$, we obtain $ds \leq \mu$. Suppose that $\mu s > \mu$ and $ds \leq \mu s$. By Lemma 3.1(1),

$$\ell(\mu s) = \ell(mu) + 1 \Leftrightarrow \mu(\alpha_s) = \alpha_s - \alpha_s \circ \nu(\mu) > 0 \Leftrightarrow \alpha_s \circ \nu(\mu) \le 0,$$

$$\Leftrightarrow \alpha_s \circ \nu(\mu) = 0 \Leftrightarrow \nu(\mu) \text{ fixed by } s \Leftrightarrow \mu s = s\mu u, u \in \Lambda \cap \Omega.$$

We deduce that $ds \leq s\mu u$. By (3), $ds \leq \mu u$, because ds, $\mu u \in \mathcal{D}$. As Λ is commutative, $ds \leq u\mu$. For $w \in W$, there is a unique element $u_w \in \Omega$ such that $w \in u_w W^{\text{aff}}$. By the definition of the Bruhat–Chevalley order, $d \leq \mu$, $ds \leq u\mu$ imply that $u_d = u_\mu = uu_\mu$. We deduce that u = 1, $ds \leq \mu$.

(5) The implications $d \leq w_{\mu} \leftarrow d \leq \mu \leftarrow \lambda \leq \mu$ are obvious, because $d \leq \lambda, \mu \leq w_{\mu}$. The implication $d \leq w_{\mu} \Rightarrow d \leq \mu$ follows from (3), because $w_{\mu} = w_{1}\mu$ (Lemma 3.5) and $\mu \in \mathcal{D}$. The implication $d \leq \mu \Rightarrow \lambda \leq \mu$ follows from (4) reiterated finitely many times for $s \in S$ such that $\ell(ds) = \ell(d) + 1$ if $d \neq \lambda$ (Remark 3.4(ii)). **Remark 3.7.** Results similar to Proposition 3.3 and Lemma 3.6 are already in [9, Proposition 2.5, Lemma 2.6, Proposition 2.7], [10, Lemma 2.4], [11, Proposition 1.3], when W is the Iwahori Weyl group of a split reductive p-adic group G.

Lemma 3.8. In Lemma 3.6, for $s \in S$ and Δ_{λ} as in (11),

$$ds \notin \mathcal{D} \Leftrightarrow ds d^{-1} = w_0 s w_0^{-1} \in S_{\lambda} \Leftrightarrow w_0(\alpha_s) \in \Delta_{\lambda} \Leftrightarrow w_0(\alpha_s) \in \Sigma^+, w_0(\alpha_s) \circ \nu(\lambda) = 0.$$

This implies that $\ell(w_0 s) = \ell(w_0) + 1$ *and* $\ell(ds) = \ell(d) + 1 = \ell(\lambda) - \ell(w_0 s) + 2$.

Proof. By Lemma 3.6(1), $ds \notin \mathcal{D} \Leftrightarrow d(\alpha_s) = \lambda w_0(\alpha_s) = w_0(\alpha_s) - w_0(\alpha_s) \circ \nu(\lambda) \in \Delta \Leftrightarrow w_0(\alpha_s) \in \Delta, w_0(\alpha_s) \circ \nu(\lambda) = 0 \Leftrightarrow w_0(\alpha_s) \in \Delta_{\lambda}$. In the proof of Lemma 3.6(1), we saw that $dsd^{-1} = s_{w_0(\alpha_s)} = w_0sw_0^{-1}$. Note that $ds \notin D$ implies that $\ell(ds) = \ell(d) + 1 = \ell(\lambda) - \ell(w_0) + 1 \neq \ell(\lambda) - \ell(w_0s)$. Hence $\ell(w_0s) = \ell(w_0) + 1, \ell(ds) = \ell(\lambda w_0s) = \ell(\lambda) - \ell(w_0s) + 2$.

By (22), $ds \in \mathcal{D} \Leftrightarrow \alpha \circ \nu(\lambda) > 0$ for all $\alpha \in \Sigma^+ \cap w_0 s(\Sigma^-)$. We have

$$\begin{split} \Sigma^+ \cap w_0 s(\Sigma^-) &= (\Sigma^+ \cap w_0(\Sigma^-)) - \{w_0(-\alpha_s)\} \quad \text{if } w_0(\alpha_s) \in \Sigma^-, \\ &= (\Sigma^+ \cap w_0(\Sigma^-)) \cup \{w_0(\alpha_s)\} \quad \text{if } w_0(\alpha_s) \in \Sigma^+, \end{split}$$

because, for $\gamma \in \Sigma^+$, we have $sw_0^{-1}(\gamma) < 0$ if and only if $\gamma \in \{w_0(\alpha_s)\} \cup (w_0(\Sigma^-) - \{w_0(-\alpha_s)\})$, as recalled at the beginning of this section. As $d \in \mathcal{D}$, we have $\alpha \circ \nu(\lambda) > 0$ for all $\alpha \in \Sigma^+ \cap w_0(\Sigma^-)$. We deduce that $ds \notin \mathcal{D} \Leftrightarrow w_0(\alpha_s) \in \Sigma^+, w_0(\alpha_s) \circ \nu(\lambda) = 0$. \Box

4. h-eigenspace in $\eta \otimes_{\mathfrak{h}} \mathcal{H}$

Proposition 4.1. For any choice of lift \tilde{d} of $d \in \mathcal{D}$ in $\mathcal{D}(1)$, the left \mathfrak{h} -module \mathcal{H} is free of basis $(T_{\tilde{d}})_{d\in\mathcal{D}}$, and the right \mathfrak{h} -module \mathcal{H} is free of basis $(T_{\tilde{d}^{-1}})_{d\in\mathcal{D}}$.

Proof. To the set \mathcal{D} of distinguished representatives of the right W_0 -cosets in W is associated a disjoint union $W(1) = \bigsqcup_{d \in \mathcal{D}} W_0(1)\tilde{d}$. Hence \mathcal{H} admits the *R*-bases

 $(T_{w\tilde{d}})_{w\in W_0(1),d\in\mathcal{D}}$ and $(T_{\tilde{d}^{-1}w})_{w\in W_0(1),d\in\mathcal{D}}$.

A basis of \mathfrak{h} is $(T_w)_{w \in W_0(1)}$. By the braid relations, $T_{w\tilde{d}} = T_w T_{\tilde{d}}$ and $T_{\tilde{d}^{-1}w} = T_{\tilde{d}^{-1}}T_w$, because $\ell(wd) = \ell(w) + \ell(d)$.

Remark 4.2. An element of \mathcal{H} can be written as a sum $\sum_{d \in \mathcal{D}} h_{\tilde{d}} T_{\tilde{d}}$, where $h_{\tilde{d}} \in \mathfrak{h}$, and, for $t \in \mathbb{Z}_k$,

$$h_{\tilde{d}}T_{\tilde{d}} = h_{t\tilde{d}}T_{t\tilde{d}} = h_{t\tilde{d}}h_tT_{\tilde{d}}, \quad h_{\tilde{d}} = h_{t\tilde{d}}h_t.$$

The monoid Λ^+ represents the orbits of W_0 in Λ , and the double (W_0, W_0) -cosets of W, because $W = \Lambda \rtimes W_0$. The $(\mathfrak{h}, \mathfrak{h})$ -module \mathcal{H} is the direct sum

$$\mathcal{H} = \bigoplus_{\lambda \in \Lambda^+} \mathfrak{h}(\lambda) \tag{23}$$

of the $(\mathfrak{h}, \mathfrak{h})$ -submodules $\mathfrak{h}(\lambda)$ of *R*-basis $(T_w)_{w \in W_0(1)\tilde{\lambda}W_0(1)}$. We set $\mathcal{D}(\lambda) := W_0 \lambda W_0 \cap \mathcal{D}$.

Corollary 4.3. Let $\lambda \in \Lambda^+$. The left \mathfrak{h} -module $\mathfrak{h}(\lambda)$ is free of basis $(T_{\tilde{d}})_{d \in \mathcal{D}(\lambda)}$, and the right \mathfrak{h} -module $\mathfrak{h}(\lambda)$ is free of basis $(T_{\tilde{d}^{-1}})_{d \in \mathcal{D}(\lambda^{-1})}$.

Let η be a character of \mathfrak{h} of parameters (χ, S_{η}) . Let $\lambda \in \Lambda^+$. By Corollary 4.3, an R-basis of $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ is

$$(1 \otimes T_{\tilde{d}})_{d \in \mathcal{D}(\lambda)}.$$
(24)

587

When the algebra \mathcal{H} arises from a split reductive *p*-adic group *G*, Ollivier proved that the right \mathfrak{h} -module $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ has multiplicity 1 (private communication by email March 2014). This property is general, and the characters of \mathfrak{h} contained in $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ admit the following description.

Proposition 4.4. Let η_1 be a character of \mathfrak{h} of parameters (χ_1, S_{η_1}) . The η_1 -eigenspace of $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ is not 0 if and only if (η_1, η, λ) satisfies

$$\chi_1 = \chi^{\lambda}, \quad S_{\eta_1} \cap S_{\lambda} = S_{\eta} \cap S_{\lambda}$$

When (η_1, η, λ) satisfies these conditions, the η_1 -eigenspace of $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ has dimension 1 and is generated by $1 \otimes \mathcal{E}_{\tilde{\lambda}}$ (defined in Theorem 1.2).

Proof. Let $\mathcal{E} \in \eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$. We write (24) $\mathcal{E} = \sum_{d \in \mathcal{D}(\lambda)} a_{\tilde{d}} \otimes T_{\tilde{d}}$, where $a_{\tilde{d}} \in \mathbb{R}$, and, for $t \in \mathbb{Z}_k$,

$$a_{\tilde{d}} \otimes T_{\tilde{d}} = a_{t\tilde{d}} \otimes T_{t\tilde{d}} = \chi(t)a_{t\tilde{d}} \otimes T_{\tilde{d}}, \quad a_{\tilde{d}} = \chi(t)a_{t\tilde{d}}$$

For $(w, t) \in W \times Z_k$ and a lift \tilde{w} of w in W(1), using the notation of §§ 1.2 and 1.4,

$$(1 \otimes T_{\tilde{w}})T_t = 1 \otimes (w \bullet t)T_{\tilde{w}} = \chi^w(t) \otimes T_{\tilde{w}}.$$
(25)

Using Proposition 2.2 and (25), \mathcal{E} is an \mathfrak{h} -eigenvector of $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ with eigenvalue η_1 if and only if \mathcal{E} satisfies

$$\mathcal{E} = \sum_{d \in \mathcal{D}(\lambda), \chi^d = \chi_1} a_{\tilde{d}} \otimes T_{\tilde{d}} \neq 0,$$
(26)

$$\mathcal{E}T_{\tilde{s}} = 0 \quad \text{for } s \in S - S_{\eta_1}, \quad \mathcal{E}T_{\tilde{s}} = \chi_1(c_{\tilde{s}})\mathcal{E} \quad \text{for } s \in S_{\eta_1}.$$
 (27)

The space $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ does not contain a \mathfrak{h} -eigenvector with eigenvalue η_1 when the set $X = \{d \in \mathcal{D}(\lambda), \chi^d = \chi_1\}$ is empty, and the proposition is obviously true. When $\nu(\lambda) = 0$, we have $\mathcal{D}(\lambda) = \{\lambda\}$ by Lemma 3.5, and the proposition is true, because it is clearly true when $X = \{\lambda\}$.

We suppose that $\nu(\lambda) \neq 0$. For $s \in S$, the set X is the disjoint union of the subsets

- $X_1(s) = \{ d \in X \mid \ell(ds) = \ell(d) + 1, ds \in \mathcal{D} \},\$
- $X_2(s) = \{ d \in X \mid ds \notin \mathcal{D} \},\$

$$X_3(s) = \{ d \in X \mid \ell(ds) = \ell(d) - 1 \}$$

In $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$, we have

$$(1 \otimes T_{\tilde{d}})T_{\tilde{s}} = 1 \otimes T_{\tilde{d}}T_{\tilde{s}} = \begin{cases} 1 \otimes T_{\tilde{d}\tilde{s}} & (d \in X_1(s)) \\ \eta(T_{\tilde{d}\tilde{s}\tilde{d}^{-1}}) \otimes T_{\tilde{d}} & (d \in X_2(s)) \\ \chi_1(c_{\tilde{s}}) \otimes T_{\tilde{d}} & (d \in X_3(s)). \end{cases}$$

Indeed, if $\ell(ds) = \ell(d) + 1$, the braid relations imply that $T_{\tilde{d}}T_{\tilde{s}} = T_{\tilde{d}\tilde{s}}$. If $ds \notin \mathcal{D}$, by Lemma 3.6, $dsd^{-1} \in S$, $T_{\tilde{d}\tilde{s}} = T_{\tilde{d}\tilde{s}\tilde{d}^{-1}\tilde{d}} = T_{\tilde{d}\tilde{s}\tilde{d}^{-1}}T_{\tilde{d}}$. If $\ell(ds) = \ell(d) - 1$, the braid and quadratic relations imply that $T_{\tilde{d}}T_{\tilde{s}} = T_{\tilde{d}\tilde{s}^{-1}}T_{\tilde{s}}^2 = T_{\tilde{d}\tilde{s}^{-1}}c_{\tilde{s}}T_{\tilde{s}} = \tilde{d}c_{\tilde{s}}\tilde{d}^{-1}T_{\tilde{d}\tilde{s}^{-1}}T_{\tilde{s}} = \tilde{d}c_{\tilde{s}}\tilde{d}^{-1}T_{\tilde{d}}$.

Multiplying (26) by $T_{\tilde{s}}$ on the right,

$$\mathcal{E}T_{\tilde{s}} = \sum_{d \in X_1(s)} a_{\tilde{d}} \otimes T_{\tilde{d}\tilde{s}} + \sum_{d \in X_2(s)} \eta(T_{\tilde{d}\tilde{s}\tilde{d}^{-1}}) a_{\tilde{d}} \otimes T_{\tilde{d}} + \sum_{d \in X_3(s)} \chi_1(c_{\tilde{s}}) a_{\tilde{d}} \otimes T_{\tilde{d}}.$$

As $X_1(s)s = X_3(s)$, the expansion of $\mathcal{E}T_{\tilde{s}}$ in the basis (24) of $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ is

$$\mathcal{E}T_{\tilde{s}} = \sum_{d \in X_2(s)} \eta(T_{\tilde{d}\tilde{s}\tilde{d}^{-1}})a_{\tilde{d}} \otimes T_{\tilde{d}} + \sum_{d \in X_3(s)} (a_{\tilde{d}(\tilde{s})^{-1}} + \chi_1(c_{\tilde{s}})a_{\tilde{d}}) \otimes T_{\tilde{d}}.$$
(28)

Relations (27) are equivalent to the following. For $d \in X_2(s)$,

$$\eta(T_{\tilde{d}\tilde{s}\tilde{d}^{-1}})a_{\tilde{d}} = 0 \quad \text{if } s \in S - S_{\eta_1}, \quad \eta(T_{\tilde{d}\tilde{s}\tilde{d}^{-1}})a_{\tilde{d}} = \chi_1(c_{\tilde{s}})a_{\tilde{d}} \quad \text{if } s \in S_{\eta_1}.$$
(29)

For $d \in X_1(s)$,

$$0 = \chi_1(c_{\tilde{s}})a_{\tilde{d}}$$
 if $s \in S_{\eta_1}$.

For $d \in X_3(s)$,

$$a_{\tilde{d}(\tilde{s})^{-1}} = \chi_1(c_{\tilde{s}})a_{\tilde{d}}$$
 if $s \in S - S_{\eta_1}$, $a_{\tilde{d}(\tilde{s})^{-1}} = 0$ if $s \in S_{\eta_1}$.

The relations for $d \in X_3(s) = X_1(s)s^{-1}$ are equivalent to the following. For $d \in X_1(s),$

$$a_{\tilde{d}} = \chi_1(c_{\tilde{s}})a_{\tilde{d}\tilde{s}}$$
 if $s \in S - S_{\eta_1}$, $a_{\tilde{d}} = 0$ if $s \in S_{\eta_1}$

The relations associated to $\bigcup_{s \in S} (X_1(s) \cup X_3(s))$ are equivalent to

$$a_{\tilde{d}} = 0 \quad \text{if } d \in \bigcup_{s \in S_{\eta_1}} X_1(s). \tag{30}$$

$$a_{\tilde{d}} = \chi_1(c_{\tilde{s}})a_{\tilde{d}\tilde{s}} \quad \text{if } d \in \bigcup_{s \in S - S_{\eta_1}} X_1(s).$$

$$(31)$$

As $\nu(\lambda) \neq 0$, we have $X = \bigcup_{s \in S} (X_1(s) \cup X_3(s))$, because $d = \lambda w_0 \in \mathcal{D}(\lambda)$, $w_0 \in W_0$ (Lemma 3.5), satisfies $ds \notin \mathcal{D}(\lambda)$ for all $s \in S$ if and only if $w_0(\alpha_s) \in \Sigma^+$, $w_0(\alpha_s) \circ \nu(\lambda) = 0$ for all $s \in S$ (Lemma 3.8), and this is equivalent to $\nu(\lambda) = 0$.

For $d = \lambda w_0 \in X$ and $\tilde{d} = \tilde{\lambda} \tilde{w}_0$, the relations (30), (31) are equivalent to

$$a_{\tilde{d}} = \chi_1(c_{\tilde{w}_0})^{-1} a_{\tilde{\lambda}} \quad \text{if } w_0 \text{ in } \langle S_{\chi_1} - S_{\eta_1} \rangle, \quad a_{\tilde{d}} = 0 \text{ otherwise.}$$
(32)

With the notation $\mathcal{E}_{\tilde{\lambda}}$, Y_{λ} introduced in Theorem 1.2, (32) implies that $\mathcal{E} = a_{\tilde{\lambda}} \otimes \mathcal{E}_{\tilde{\lambda}}$. If η_1 is contained in $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$, then $a_{\tilde{\lambda}} \neq 0$, the multiplicity of η_1 is 1, and $\chi_1 = \chi^{\lambda}$.

To end the proof of the proposition, we show that the conditions associated to $\bigcup_{s \in S} X_2(s)$ on $\mathcal{E} = 1 \otimes \mathcal{E}_{\tilde{\lambda}}$ are

$$S_{\lambda} - S_{\eta_1} = S_{\lambda} - S_{\eta}. \tag{33}$$

Relation (29) for $d \in X_2(s)$ is always true if $a_{\tilde{d}} = 0$. For $\mathcal{E} = 1 \otimes \mathcal{E}_{\tilde{\lambda}}$, we have $a_{\tilde{d}} \neq 0 \Leftrightarrow d \in \lambda Y_{\lambda}$. By Lemma 3.8, $d \in \lambda Y_{\lambda} \cap X_2(s) \Leftrightarrow d = \lambda w_0$, where

$$w_0 \in \langle S_{\chi_1} - S_{\eta_1} \rangle, \quad \ell(\lambda w_0) = \ell(\lambda) - \ell(w_0), \quad \chi_1^{w_0} = \chi_1, \quad dsd^{-1} = w_0sw_0^{-1} \in S_{\lambda}.$$

For $s_d = dsd^{-1} \in S_{\lambda}$ and $\tilde{s}_d = \tilde{d}\tilde{s}\tilde{d}^{-1}$, we have $\chi(c_{\tilde{s}_d}) = \chi(\tilde{d}c_{\tilde{s}}\tilde{d}^{-1}) = \chi^d(c_{\tilde{s}}) = \chi_1(c_{\tilde{s}})$. The conditions associated to $\bigcup_{s \in S} X_2(s)$ are as follows: for all $d \in \lambda Y_{\lambda} \cap X_2(s)$,

$$s_d \in S - S_\eta$$
 if $s \in S - S_{\eta_1}$ and $s_d \in S_\eta$ if $s \in S_{\eta_1}$; (34)

that is, $s \in S_{\eta_1} \Leftrightarrow s_d \in S_{\eta}$ when $s \in S, d \in \lambda Y_{\lambda} \cap X_2(s)$. They are equivalent to (33); that is, $s \in S_{\eta_1} \Leftrightarrow s \in S_{\eta}$ when $s \in S_{\lambda}$, because, for $d \in \lambda Y_{\lambda} \cap X_2(s)$, we have $s_d \in S_{\lambda}$, and $\langle s, S_{\chi_1} - S_{\eta_1} \rangle = \langle s_d, S_{\chi_1} - S_{\eta_1} \rangle$; hence $s_d \in S_{\eta_1} \Leftrightarrow s \in S_{\eta_1}$.

Let η , η_1 be two characters of \mathfrak{h} of parameters $(\chi, S_\eta), (\chi_1, S_{\eta_1})$, and let o, o_1 be an orientation such that $\eta = \chi_o, \eta_1 = (\chi_1)_{o_1}$.

By the decomposition (23), the \mathfrak{h} -module $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ is a direct sum of \mathfrak{h} -submodules:

$$\eta \otimes_{\mathfrak{h}} \mathcal{H} = \bigoplus_{\lambda \in \Lambda^+} \eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda).$$
(35)

Proposition 4.5. The character η_1 of \mathfrak{h} is contained in $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ if and only if there exists λ such that (η, η_1, λ) satisfies

$$\lambda \in \Lambda^+, \quad \chi_1 = \chi^{\lambda}, \quad S_{\eta_1} \cap S_{\lambda} = S_{\eta} \cap S_{\lambda}.$$

The η_1 -eigenspace of $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ admits the *R*-basis $(1 \otimes \mathcal{E}_{\tilde{\lambda}})$ for all λ such that (η, η_1, λ) satisfies these conditions.

For (η, η_1, λ) as in Proposition 4.5, we denote by $\Phi_{\tilde{\lambda}}$ the *H*-intertwiner

 $\Phi_{\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes \mathcal{E}_{\tilde{\lambda}}: \eta_1 \otimes_{\mathfrak{h}} \mathcal{H} \to \eta \otimes_{\mathfrak{h}} \mathcal{H}.$

Corollary 4.6. An *R*-basis of Hom_{\mathcal{H}}($\eta_1 \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}$) is $(\Phi_{\tilde{\lambda}})$ for all λ such that (η, η_1, λ) satisfies the conditions of Proposition 4.5.

Taking $\eta = \eta_1$, and recalling the Λ^+ -fixator Λ^+_{χ} of χ (12), we obtain the following.

Corollary 4.7. $(\Phi_{\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$ is a basis of the spherical Hecke algebra $\mathcal{H}(\eta, \mathfrak{h})$.

To obtain a basis of the spherical Hecke algebra satisfying (14), for an orientation o we construct \mathfrak{h} -eigenvectors of the form

$$1 \otimes E_o(\lambda) \in \chi_o \otimes_{\mathfrak{h}} \mathcal{H}$$

with $\lambda \in \Lambda^+(1)$, where, as in § 1.2, $(E_o(\tilde{w}))_{\tilde{w} \in W(1)}$ is the alcove walk basis of \mathcal{H} associated to o [15, § 5.3 Corollary 5.26], and the character χ_o of \mathfrak{h} is as in Lemma 2.4.

Lemma 4.8. Let $\lambda \in \Lambda$. We have, in $\chi_o \otimes_{\mathfrak{h}} \mathcal{H}$,

$$1 \otimes E_o(\tilde{\lambda}) - 1 \otimes T_{\tilde{\lambda}} \in \sum_d R \otimes T_{\tilde{d}}.$$

where d runs over the elements of \mathcal{D} satisfying $d < \lambda$ and $\chi^d = \chi^{\lambda}$. If $\lambda \in \Lambda^+$, then $1 \otimes E_o(\tilde{\lambda}) \neq 0$ is a Z_k -eigenvector of eigenvalue χ^{λ} .

Proof. For $t \in Z_k$, we have [15, Example 5.30] $E_o(\tilde{\lambda})T_t = T_{\lambda(t)}E_o(\tilde{\lambda})$, $T_{\tilde{\lambda}}T_t = T_{\lambda(t)}T_{\tilde{\lambda}}$; hence $1 \otimes E_o(\tilde{\lambda})T_t = \chi^{\lambda}(t) \otimes E_o(\tilde{\lambda})$, $(1 \otimes T_{\tilde{\lambda}})T_t = \chi^{\lambda}(t) \otimes T_{\tilde{\lambda}}$. With the disjoint decomposition $W(1) = \bigcup_{d \in \mathcal{D}} W_0(1)\tilde{d}$ and the triangular decomposition of $E_o(\tilde{\lambda})$ in the basis $(T_{\tilde{w}})_{\tilde{w} \in W(1)}$ of \mathcal{H} [15, Corollary 5.26], if $1 \otimes E_o(\tilde{\lambda}) \neq 0$ is a Z_k -eigenvector of eigenvalue χ^{λ} , we have

$$1\otimes E_o(\tilde{\lambda})-1\otimes T_{\tilde{\lambda}}\in \sum_{d\in\mathcal{D},\chi^d=\chi^\lambda}\sum_{\tilde{w}\in W_0(1),wd<\lambda}R\otimes T_{\tilde{w}\tilde{d}}$$

As $\ell(wd) = \ell(w) + \ell(d)$, by the braid relations, $1 \otimes T_{\tilde{w}\tilde{d}} = 1 \otimes T_{\tilde{w}}T_{\tilde{d}} = \eta(T_{\tilde{w}}) \otimes T_{\tilde{d}}$,

$$\sum_{\in W_0(1), wd < \lambda} R(1 \otimes T_{\tilde{w}\tilde{d}}) = R(1 \otimes T_{\tilde{d}}).$$

As d < wd for $w \in W_0$, we deduce that

 \tilde{w}

$$1 \otimes E_o(\tilde{\lambda}) - 1 \otimes T_{\tilde{\lambda}} \in \sum_{d \in \mathcal{D}, \chi^d = \chi^{\lambda}, d < \lambda} R \otimes T_{\tilde{d}}.$$

For $\lambda \in \Lambda^+$, $1 \otimes E_o(\tilde{\lambda})$ is not 0, because $\Lambda^+ \subset \mathcal{D}$, and $(1 \otimes T_{\tilde{d}})_{d \in \mathcal{D}}$ is a basis of $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ (Proposition 4.1).

Lemma 4.9. Let $\lambda \in \Lambda$. Then $1 \otimes E_o(\tilde{\lambda}) \in \chi_o \otimes_{\mathfrak{h}} \mathcal{H}$ is a \mathfrak{h} -eigenvector of eigenvalue $(\chi_1)_{o_1}$ if and only $1 \otimes E_o(\tilde{\lambda}) \neq 0$ and

$$\chi_1 = \chi^{\lambda}, \quad 1 \otimes E_o(\tilde{\lambda}) E_{o_1}(\tilde{s}) = 0 \quad for \ all \ s \in S.$$

Proof. By Lemma 4.8(ii), $1 \otimes E_o(\tilde{\lambda})$ is a \mathfrak{h} -eigenvector with eigenvalue η_1 if and only if $1 \otimes E_o(\tilde{\lambda}) \neq 0$, and $\chi_1 = \chi^{\lambda}$, $(1 \otimes E_o(\tilde{\lambda}))E_{o_1}(\tilde{s}) = 0$ for all $s \in S$ (Lemma 2.4). We have $(1 \otimes E_o(\tilde{\lambda}))E_{o_1}(\tilde{s}) = 1 \otimes E_o(\tilde{\lambda})E_{o_1}(\tilde{s})$.

Lemma 4.10. Let $\lambda \in \Lambda^+$. Then $1 \otimes E_o(\tilde{\lambda})$ is a \mathfrak{h} -eigenvector of eigenvalue $(\chi^{\lambda})_o$ if and only if $\eta(E_o(\tilde{s})) = 0$ for all $s \in S$ such that $\ell(\lambda s) = 1 + \ell(\lambda)$.

Proof. Let $s \in S$.

If $\ell(\lambda s) = \ell(\lambda) - 1$, then $E_o(\tilde{\lambda})E_o(\tilde{s}) = 0$ by the product formula. If $\ell(\lambda s) = \ell(\lambda) + 1$, then $E_o(\tilde{\lambda})E_o(\tilde{s}) = E_o(\lambda \tilde{s}) = E_o(\tilde{s}\tilde{s}^{-1}\lambda \tilde{s}) = E_o(\tilde{s})E_{o\bullet s}(\tilde{s}^{-1}\lambda \tilde{s}).$

The latter equality follows from the fact that the length is constant on a W_0 -orbit in Λ . It implies that $1 \otimes E_o(\tilde{s}) E_{o\bullet s}(\tilde{s}^{-1}\lambda \tilde{s}) = \eta(E_o(\tilde{s})) \otimes E_o(\tilde{\lambda})$. Apply Lemmas 4.8 and 4.9. \Box

Proposition 4.11. Let $\lambda \in \Lambda^+$. Then,

 $1 \otimes E_o(\tilde{\lambda})$ is a \mathfrak{h} -eigenvector in $\chi_o \otimes_{\mathfrak{h}} \mathcal{H}$ of eigenvalue $(\chi^{\lambda})_o$, and $\mathcal{E}_{\tilde{\lambda}}$ is the component of $1 \otimes E_o(\tilde{\lambda})$ in $\chi_o \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$.

Proof. Use Lemmas 2.4 and 4.10 for the first assertion. The non-zero components of $1 \otimes E_o(\tilde{\lambda})$ in the direct decomposition (35) are \mathfrak{h} -eigenvectors of eigenvalue $(\chi^{\lambda})_o$. Apply Proposition 4.4 and Lemma 4.8 for the second assertion.

Corollary 4.12. If $o = o_1$ (Lemma 2.6), an *R*-basis of Hom_H($(\chi_1)_o \otimes_{\mathfrak{h}} \mathcal{H}, \chi_o \otimes_{\mathfrak{h}} \mathcal{H})$ is $(1 \otimes E_o(\tilde{\lambda}))$ for all λ such that $(\chi_o, (\chi_1)_o, \lambda)$ satisfies the conditions of Proposition 4.5.

Proposition 4.13. For each $\lambda \in \Lambda_{\chi}^+$, we have an injective \mathcal{H} -intertwiner

$$\Phi_{o\,\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes E_o(\lambda): \chi_o \otimes_{\mathfrak{h}} \mathcal{H} \to \chi_o \otimes_{\mathfrak{h}} \mathcal{H}.$$

 $(\Phi_{o,\tilde{\lambda}})_{\lambda \in \Lambda^+_{\mathbf{x}}}$ is an *R*-basis satisfying (14) of the spherical Hecke algebra $\mathcal{H}(\chi_o, \mathfrak{h})$.

Proof. By Corollary 4.12 and the product formula (8), $(\Phi_{o,\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$ is an *R*-basis of $\mathcal{H}(\chi_o, \mathfrak{h})$ satisfying (14).

If $\Phi_{o,\tilde{\lambda}}$ is not injective, Ker $\Phi_{o,\tilde{\lambda}}$ contains a simple character η_1 of \mathfrak{h} , and $\Phi_{o,\tilde{\lambda}} \circ \Phi_1 = 0$ for some non-zero $\Phi_1 \in \operatorname{End}_{\mathfrak{h}}(\eta_1 \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H})$.

Expanding $\Phi_1(1 \otimes 1) = \sum_{\mu \in \Lambda^+} a_{\tilde{\mu}} \otimes E_o(\tilde{\mu}), a_{\tilde{\mu}} \in R$, in the basis $(1 \otimes E_o(\tilde{\mu}))_{\mu \in \Lambda^+}$ of $\eta \otimes_{\mathfrak{h}} \mathcal{H}$, and using the product formula $E_o(\tilde{\lambda})E_o(\tilde{\mu}) = E_o(\tilde{\lambda}\tilde{\mu})$, the decomposition of $(\Phi_{o,\tilde{\lambda}} \circ \Phi_1)(1 \otimes 1)$ in this basis is

$$\sum_{\mu \in \Lambda^+} \Phi_{o,\tilde{\lambda}}(a_{\tilde{\mu}} \otimes E_o(\tilde{\mu})) = \sum_{\mu \in \Lambda^+} a_{\tilde{\mu}} \otimes E_o(\tilde{\lambda}) E_o(\tilde{\mu}) = \sum_{\mu \in \Lambda^+} a_{\tilde{\mu}} \otimes E_o(\tilde{\lambda}\tilde{\mu}).$$

We have $\Phi_1 \neq 0 \Leftrightarrow \Phi_1(1 \otimes 1) \neq 0 \Leftrightarrow a_{\tilde{\mu}} \neq 0$ for some $\mu \in \Lambda^+ \Leftrightarrow (\Phi_{o,\tilde{\lambda}} \circ \Phi_1)(1 \otimes 1) \neq 0 \Leftrightarrow \Phi_{o,\tilde{\lambda}} \circ \Phi_1 \neq 0$.

Corollary 4.14. $1 \otimes E_o(\tilde{\lambda}) = 0$ in $\chi_o \otimes_{\mathfrak{h}} \mathcal{H}$ if $\lambda \in \Lambda - \Lambda^+$.

Proof. Let $\lambda \in \Lambda - \Lambda^+$. We choose $\mu \in \Lambda^+_{\chi}$ not 0. Then $\Phi_{o,\tilde{\mu}}$ of $\operatorname{End}_{\mathfrak{h}} \eta \otimes_{\mathfrak{h}} \mathcal{H}$ is injective (Proposition 4.13) and $\Phi_{o,\tilde{\mu}}(1 \otimes E_o(\tilde{\lambda})) = 1 \otimes E_o(\tilde{\mu})E_o(\tilde{\lambda})$. As μ, λ belong to different closed Weyl chambers, $E_o(\tilde{\mu})E_o(\tilde{\lambda}) = 0$; hence $1 \otimes E_o(\tilde{\lambda}) = 0$.

More generally, if $(\chi_o, (\chi_1)_o, \lambda)$ satisfies the conditions of Proposition 4.5, we have the non-zero \mathcal{H} -intertwiner

$$\Phi_{o\,\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes E_o(\lambda): (\chi_1)_o \otimes_{\mathfrak{h}} \mathcal{H} \to \chi_o \otimes_{\mathfrak{h}} \mathcal{H}.$$

An *R*-basis of Hom_{\mathcal{H}}($(\chi_1)_o \otimes \mathcal{H}, \chi_o \otimes \mathcal{H}$) is $(\Phi_{o,\tilde{\lambda}})$ for all λ such that $(\chi_o, (\chi_1)_o, \lambda)$ satisfies the conditions of Proposition 4.5.

We fix $x_1 \in \Lambda$ such that $\chi_1 = \chi^{x_1}$. For $\lambda \in \Lambda$, $\chi_1 = \chi^{\lambda x_1} \Leftrightarrow \lambda \in \Lambda_{\chi}$. We embed $\operatorname{Hom}_{\mathcal{H}}(\eta_1 \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H})$ into the algebra $e_{\chi} R[\Lambda_{\chi}]$ (§1.4) by the *R*-linear map

$$S_{\eta_1,\eta,\tilde{x}_1} : \operatorname{Hom}_{\mathcal{H}}(\eta_1 \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}) \to e_{\chi} R[\Lambda_{\chi}],$$
(36)

$$\Phi_{o,\tilde{\lambda}\tilde{x}_1} \mapsto e_{\chi}\tilde{\lambda} \quad (\lambda \in \Lambda_{\chi} \cap \Lambda^+ x_1^{-1}), \tag{37}$$

where $\tilde{\lambda}, \tilde{x}_1 \in \Lambda(1)$ lift λ, x_1 . If $\eta = \eta_1$ and $\tilde{x}_1 = 1$, the map $S_{\eta,\eta,1} = S_{\eta,\eta}$ embeds the spherical Hecke algebra $\mathcal{H}(\eta, \mathfrak{h}) = \operatorname{End}_{\mathcal{H}}(\eta \otimes_{\mathfrak{h}} \mathcal{H})$ into the algebra $e_{\chi} R[\Lambda_{\chi}]$

$$S_{\eta,\eta} : \mathcal{H}(\eta, \mathfrak{h}) \to e_{\chi} R[\Lambda_{\chi}].$$
 (38)

Lemma 4.15. The composition

 $(A, B) \mapsto B \circ A : \operatorname{Hom}_{\mathcal{H}}(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}) \times \operatorname{End}_{\mathcal{H}}(\eta \otimes_{\mathfrak{h}} \mathcal{H}) \to \operatorname{Hom}_{\mathcal{H}}(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}),$ corresponds to the product $S_{\eta_{1},\eta,\tilde{x}_{1}}(A \circ B) = S_{\eta,\eta}(B)S_{\eta_{1},\eta,\tilde{x}_{1}}(A)$ in $e_{\chi}R[\Lambda_{\chi}].$

Proof. For $\lambda \in \Lambda_{\chi}^+$ and $\lambda_1 \in \Lambda^+$, $\chi^{\lambda_1} = \chi_1, S_{\eta_1} \cap S_{\lambda_1} = S_{\eta} \cap S_{\lambda_1}$, we have

$$\Phi_{o,\tilde{\lambda}} \circ \Phi_{o,\tilde{\lambda}_1}(1 \otimes 1) = \Phi_{o,\tilde{\lambda}}(1 \otimes E_o(\tilde{\lambda}_1)) = 1 \otimes E_o(\tilde{\lambda})E_o(\tilde{\lambda}_1) = 1 \otimes E_o(\tilde{\lambda}\tilde{\lambda}_1)$$

by the product formula (8). Hence $\Phi_{o,\tilde{\lambda}} \circ \Phi_{o,\tilde{\lambda}_1} = \Phi_{o,\tilde{\lambda}\tilde{\lambda}_1}$ and $S_{\eta_1,\eta,\tilde{x}_1}(\Phi_{o,\tilde{\lambda}} \circ \Phi_{o,\tilde{\lambda}_1}) = e_{\chi}\tilde{\lambda}\tilde{\lambda}_1$ $(\tilde{x}_1)^{-1}$. As e_{χ} is a central idempotent of $R[\Lambda_{\chi}]$, we have $e_{\chi}\tilde{\lambda}\tilde{\lambda}_1(\tilde{x}_1)^{-1} = e_{\chi}\tilde{\lambda}e_{\chi}\tilde{\lambda}_1(\tilde{x}_1)^{-1} = S_{\eta,\eta}(\Phi_{o,\tilde{\lambda}})S_{\eta_1,\eta,\tilde{x}_1}(\Phi_{o,\tilde{\lambda}_1})$.

5. Centers

We make the same hypotheses as in §1.2, and we suppose that Λ_T exists.

As $\tilde{\Lambda}_T$ is central in $\Lambda(1)$, the action of W(1) on $\tilde{\Lambda}_T$ factorizes through an action of W_0 , and the *R*-module $\mathcal{A}_o(\Lambda_T)$ of basis $(E_o(\tilde{\mu}))_{\mu \in \Lambda_T}$ is a W_0 -stable subalgebra of the center \mathcal{Z}_o of \mathcal{A}_o , for any orientation o. The quotient map $\Lambda_T(1) \to \Lambda_T$ of splitting $\mu \mapsto \tilde{\mu}$ is W_0 -equivariant. For $\mu \in \Lambda_T$ of W_0 -conjugacy class $C(\mu)$, and $\tilde{C}(\mu)$ the W_0 -conjugacy class of $\tilde{\mu}$, the set $\nu(C(\mu))$ contains a single element in the dominant closed Weyl chamber, and

$$\ell(\mu) = 0 \Leftrightarrow \nu(\mu) = 0 \Leftrightarrow \mu \in \Lambda_T^{W_0} \Leftrightarrow \tilde{C}(\mu) = \tilde{\mu}.$$
(39)

By axiom (T1) (1.2), a W(1)-conjugacy class \tilde{C} is finite if and only if $\tilde{C} \subset \Lambda(1)$.

In the following theorem, R is any commutative ring.

Theorem 5.1. The center Z of $\mathcal{H}_R(q_s, c_{\tilde{s}})$ is the algebra $\mathcal{A}_o^{W(1)}$ of W(1)-invariants of \mathcal{A}_o , equal to the algebra $\mathcal{Z}_o^{W_0}$ of the W_o -invariants of the center \mathcal{Z}_o of \mathcal{A}_o . The center Z is a free R-module of basis (independent of the choice of the orientation o)

$$E(\tilde{C}) = \sum_{\tilde{\lambda} \in \tilde{C}} E_o(\tilde{\lambda}) \quad \text{for } \tilde{C} \text{ running through the finite conjugacy classes of } W(1).$$

The involution ι of \mathcal{H} satisfies, for any finite conjugacy class \tilde{C} of W(1),

$$\iota(E(\tilde{C})) = (-1)^{\ell(C)} E(\tilde{C}).$$
(40)

The algebra $\mathcal{Z}_T = \mathcal{A}_o(\Lambda_T)^{W_0}$ of W_0 -invariants of $\mathcal{A}_o(\Lambda_T)$ is a central subalgebra of \mathcal{H} , and a free *R*-module of basis $(E(\tilde{C}(\mu))_{\mu \in \Lambda_{\infty}^+})$.

The Z_T -modules Z and $\mathcal{H}_R(q_s, c_{\tilde{s}})$ are finitely generated.

When the ring R is noetherian, the R-algebras Z_T , Z, and $\mathcal{H}_R(q_s, c_{\tilde{s}})$ are finitely generated.

Proof. The steps of the proof are as follows.

593

- (1) The center \mathcal{Z}_o of \mathcal{A}_o is a free *R*-module of basis $E_o(\tilde{c}) = \sum_{\tilde{\lambda} \in \tilde{c}} E_o(\tilde{\lambda})$ for all conjugacy classes \tilde{c} of $\Lambda(1)$.
- (2) $\sum_{\tilde{\lambda}\in\tilde{C}} E_o(\tilde{\lambda})$ does not depend on the orientation o, and the center \mathcal{Z} is equal to $\mathcal{A}_{o^-}^{W(1)}$ for the anti-dominant orientation o^- .
- (3) (a) The $\mathcal{A}_o(\Lambda_T)^{W_0}$ -module $\mathcal{A}_o(\Lambda_T)$ is finitely generated, and if R is noetherian the algebra $\mathcal{A}_o(\Lambda_T)^{W_0}$ is finitely generated.
 - (b) The left $\mathcal{A}_o(\Lambda_T)$ -module \mathcal{A}_o is finitely generated.
 - (c) The left \mathcal{A}_o -module $\mathcal{H}_R(q_s, c_{\tilde{s}})$ is finitely generated.

The theorem is proved for the pro-*p*-Iwahori Hecke algebra $\mathcal{H}_R(G, I(1))$, where the assertions on \mathcal{Z}_T are not formulated but are implicit in the proof. Properties (1), (2), (3)(a), (b) and (40) admit exactly the same proofs as in [16, Propositions 2.3, 2.7, Lemma 2.15 and Proposition 3.3]. The same is true for the property (3)(c) [16, Lemma 2.17], once we have strengthened the finiteness property [14, 1.6.3], [16, Lemma 2.16]. This is done in Lemma 5.3 below. As in [16, added in proof], this is a variant of the finiteness of the set of minimal elements in a subset L of \mathbb{Z}^n (n > 0) [12, Lemma 4.2.18].

Let *L* be a group isomorphic to \mathbb{Z}^n . For $a = (a_i), b = (b_i) \in \mathbb{Z}^n$, we write $b \leq a$ if $|a_i| = |b_i| + |a_i - b_i|$ for all *i*. We write b < a if $a \neq b, b \leq a$; we say that $a \in L$ is minimal if $b \in L, b \leq a$ implies that b = a.

Lemma 5.2. (1) Let $a \in L$. There exists $b \in L$ minimal such that $b \leq a$.

(2) The set L_{min} of minimal elements in L is finite.

Proof. We have $|a_i| = |b_i| + |a_i - b_i| \Leftrightarrow b_i = 0$ or $a_i b_i > 0, |b_i| \leq |a_i|$.

(1) If a is not minimal in L, we choose b < a and we reiterate. The processes stops after finitely many steps, because b < a implies that $|b_i| \leq |a_i|$ for $1 \leq i \leq n$, and $|b_i| \in \mathbb{N}$.

(2) Suppose that L_{min} is infinite. If the set $\{a_i \mid a \in L_{min}\}$ is finite, a_i is constant for a in an infinite subset of L_{min} . If the set $\{a_i \mid a \in L_{min}\}$ is infinite, L_{min} contains a sequence $(a(m))_{m \in \mathbb{N}}$ such that $(a(m)_i)_{m \in \mathbb{N}}$ is strictly increasing positive or strictly decreasing negative. Hence L_{min} contains a sequence $(a(m))_{m \in \mathbb{N}}$ such that, for all $1 \leq i \leq n$, $(a(m)_i)_{m \in \mathbb{N}}$ is either constant, or strictly increasing positive or strictly decreasing negative. For all i in the non-empty set where $(a(m)_i)_{m \in \mathbb{N}}$ is not constant, we have $a(m)_i a(m+1)_i > 0$, $|a(m)_i| < |a(m+1)_i|$ for all $m \in \mathbb{N}$. Hence a(m) < a(m+1) for all $m \in \mathbb{N}$. This contradicts the minimality of the a(m).

By axiom (T1), $W = \bigsqcup_{(y,w_0) \in Y \times W_0} \Lambda_T y w_0$. For $(y, w_0) \in Y \times W_0$, let

$$L(y, w_0) = \{\ell(w) = (\ell_{\gamma}(w))_{\gamma \in \Sigma^+} \mid w \in \Lambda_T y w_0\},\$$

where $\ell(w) = \sum_{\gamma \in \Sigma^+} |\ell_{\gamma}(w)|$ and $\ell_{\gamma}(w)$ as in [15, Propositions 5.7 and 5.9]. By Lemma 5.2, the set $L(y, w_0)_{min}$ is finite. Let $X_*(y, w_0)$ be a finite subset of Λ_T such that

$$L(y, w_0)_{min} = \{\ell(w) \mid w \in X_*(y, w_0) y w_0\}.$$

Let X be the finite subset $\bigcup_{(y,w_0)\in Y\times W_0} X_*(y,w_0)y$ of Λ . We have

$$\ell(w) = \ell(ww'^{-1}) + \ell(w') \quad \text{for } w, w' \in \Lambda w_0, \quad \vec{\ell}(w') \leqslant \vec{\ell}(w),$$

[16, Proof of Lemma 2.16(18)]. This implies the following.

Lemma 5.3. For any $(\lambda, w_0) \in \Lambda \times W_0$ there exists $x \in X$ such that

$$\lambda x^{-1} \in \Lambda_T$$
, $\ell(\lambda w_0) = \ell(\lambda x^{-1}) + \ell(xw_0)$.

For a central element x of \mathcal{H} , the \mathcal{H} -intertwiner

$$\Phi_x : 1 \otimes h \mapsto 1 \otimes xh = 1 \otimes hx \quad \text{for } h \in \mathcal{H}.$$

$$\tag{41}$$

is central in $\mathcal{H}(\chi_o, \mathfrak{h})$ by Proposition 4.13 and

$$\begin{split} \Phi_x \circ \Phi_{o,\tilde{\lambda}}(1 \otimes 1) &= \Phi_x(1 \otimes E_{o,\tilde{\lambda}}) = 1 \otimes x E_{o,\tilde{\lambda}} \\ &= 1 \otimes E_{o,\tilde{\lambda}} x = \Phi_{o,\tilde{\lambda}}(1 \otimes x) = \Phi_{o,\tilde{\lambda}} \circ \Phi_x(1 \otimes 1). \end{split}$$

We denote by $\mathcal{Z}(\chi_o, \mathfrak{h})$ the center of $\mathcal{H}(\chi_o, \mathfrak{h})$. The homomorphism

$$x \mapsto \Phi_x : \mathcal{Z} \to \mathcal{Z}(\chi_o, \mathfrak{h}) \tag{42}$$

may be not injective or not surjective.

Proposition 5.4. (1) For $\mu \in \Lambda_T^+$, we have $1 \otimes E(\tilde{C}(\mu)) = 1 \otimes E_o(\tilde{\mu})$ and $\Phi_{E(\tilde{C}(\mu))} = \Phi_{o,\tilde{\mu}}$.

(2) $(\Phi_{o,\tilde{\mu}})_{\mu \in \Lambda_T^+}$ is a basis, independent of o, satisfying (14) of a central subalgebra $\mathcal{Z}_T(\eta, \mathfrak{h})$ of the spherical algebra $\mathcal{H}(\eta, \mathfrak{h})$, and $\mathcal{H}(\eta, \mathfrak{h})$ is a finitely generated $\mathcal{Z}_T(\eta, \mathfrak{h})$ -module.

Proof. (1) From Corollary 4.14,

$$1 \otimes E(\tilde{C}(\mu)) = \sum_{\tilde{\lambda} \in \tilde{C}(\mu) \cap \Lambda^+(1)} 1 \otimes E_o(\tilde{\lambda}) \quad \text{in } \chi_o \otimes \mathcal{H}.$$

For $\mu \in \Lambda_T^+$ we have $\tilde{C}(\mu) \cap \Lambda^+(1) = {\tilde{\mu}}$. Hence $1 \otimes E(\tilde{C}(\mu)) = 1 \otimes E_o(\tilde{\mu})$ and $\Phi_{E(\tilde{C}(\mu))} = \Phi_{o,\tilde{\mu}}$.

(2) The canonical isomorphism $\mathcal{H}(\eta, \mathfrak{h}) \to e_{\chi} R[\Lambda_{\chi}^+]$ associated to the basis $(\Phi_{o,\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$ (Proposition 4.13) sends $\mathcal{Z}_T(\eta, \mathfrak{h})$ to $e_{\chi} R[\Lambda_T^+]$, and $e_{\chi} R[\Lambda_{\chi}^+]$ is a finitely generated $e_{\chi} R[\Lambda_T^+]$ -module.

6. Supersingular \mathcal{H} -modules

We make the same hypotheses as in §1.2 and we suppose that Λ_T exists. We construct different filtrations of \mathcal{H} which are all equivalent when the ring R is noetherian.

Lemma 6.1. The *R*-module $\mathcal{F}_{o,n}$ of basis $\{E_o(\tilde{w}) \mid \tilde{w} \in W(1), \ell(w) \ge n\}$ for $n \in \mathbb{N}$ is a right ideal of \mathcal{H} , for any orientation o.

Proof. We have $\mathcal{F}_{o,n}\mathcal{H} \subset \mathcal{F}_{o,n}$, because, for $\tilde{w} \in W(1)$, a basis of \mathcal{H} is $(E_{o \bullet w}(\tilde{w}'))_{\tilde{w}' \in W(1)}$, and $E_o(w)E_{o \bullet w}(\tilde{w}') = E_o(\tilde{w}\tilde{w}')$ if $\ell(w) + \ell(w') = \ell(ww')$ and 0 otherwise.

The length is constant on the projection C in W of a finite W(1)-conjugacy class \tilde{C} , and is denoted by $\ell(\tilde{C}) = \ell(C)$.

Lemma 6.2. The *R*-module $Z_{\ell>0}$ of basis $E(\tilde{C})$ for the finite W(1)-conjugacy classes \tilde{C} of positive length is an ideal of the center Z of \mathcal{H} , stable by the involutive *R*-automorphism ι (4).

Proof. Let \tilde{C}_1, \tilde{C}_2 be two finite W(1)-conjugacy classes. They are contained in $\Lambda(1)$. By the product formula,

$$E(\tilde{C}_1)E(\tilde{C}_2) = \sum_{\tilde{C}} a_{\tilde{C}}E(\tilde{C}), \qquad (43)$$

where \tilde{C} runs over finite conjugacy classes with $\ell(C) = \ell(C_1) + \ell(C_2)$. The stability by ι follows from (40).

It is more convenient to replace the center \mathcal{Z} of \mathcal{H} by the central subalgebra \mathcal{Z}_T of basis $(E(\tilde{C}(\mu)))_{\mu \in X^+_{\tau}(T)}$ which admits better properties.

Lemma 6.3. We have

$$\mathcal{Z}_T = \mathcal{R}_T \oplus \mathcal{Z}_{T,\ell>0},$$

where \mathcal{R}_T is the algebra of basis $(T_{\tilde{\mu}})_{\mu \in \Lambda_T^{W_0}}$, isomorphic to $R[\Lambda_T^{W_0}]$, and $\mathcal{Z}_{T,\ell>0}$ is the ideal of \mathcal{Z}_T of basis $(E(\tilde{C}(\mu)))_{\mu \in \Lambda_T^+, \ell(\mu)>0}$. The algebras \mathcal{R}_T and $\mathcal{Z}_{T,\ell>0}$ are stable by the involutive automorphism ι .

Proof. The proof is straightforward.

The *R*-module $\mathcal{F}_{T,o,n}$ of basis $(E_o(\tilde{\mu}))_{\mu \in \Lambda_T, \ell(\mu) \ge n}$ is contained in $\mathcal{F}_{o,n}$ and contains $(\mathcal{Z}_{T,\ell>0})^n$.

Proposition 6.4. When R is noetherian, the filtrations of \mathcal{H}

 $((\mathcal{Z}_{T,\ell>0})^n\mathcal{H})_{n\in\mathbb{N}},\quad ((\mathcal{Z}_{\ell>0})^n\mathcal{H})_{n\in\mathbb{N}},\quad (\mathcal{F}_{T,o,n})_{n\in\mathbb{N}}\mathcal{H},\quad (\mathcal{F}_{o,n})_{n\in\mathbb{N}},$

are equivalent.

We have $(\mathcal{Z}_{T,\ell>0})^n \mathcal{H} \subset (\mathcal{Z}_{\ell>0})^n \mathcal{H} \subset \mathcal{F}_{o,n}$. The last inclusion uses the product formula, the equality $\tilde{E}(C) = \tilde{E}_o(C)$, and that $(E_o(w))_{w \in W(1)}$ is a basis of \mathcal{H} . The noetherianity of R is used only for the proof (Lemma 6.7) of the property (which implies the proposition):

for $n \in \mathbb{N}$ there exists $n' \in \mathbb{N}$ such that $\mathcal{F}_{o,n'} \subset (\mathcal{Z}_{T,\ell>0})^n \mathcal{H}$.

This property follows from the next three lemmas.

Lemma 6.5. $E(\tilde{C}(\mu))^n E_o(\tilde{\mu}) = E_o(\tilde{\mu}^{n+1})$ for $\mu \in \Lambda_T$ and n > 0.

Proof. By the product formula, $E(C(\tilde{\mu}))E_o(\tilde{\mu}) = E_o(\tilde{\mu}^2)$, because $\tilde{\mu}$ is the only element of $\tilde{C}(\mu)$ sent by ν in the same closed Weyl chamber as $\nu(\mu)$. By induction on n,

$$E(\tilde{C}(\mu))^{n+1}E_{o}(\tilde{\mu}) = E(\tilde{C}(\mu))E(\tilde{C}(\mu))^{n}E_{o}(\tilde{\mu}) = E(\tilde{C}(\mu))E_{o}(\tilde{\mu}^{n+1}) = E(\tilde{C}(\mu))E_{o}(\tilde{\mu})E_{o}(\tilde{\mu}^{n}) = E_{o}(\tilde{\mu}^{2})E_{o}(\tilde{\mu}^{n}) = E_{o}(\tilde{\mu}^{n+2}).$$

Lemma 6.6. There exists a positive integer a such that, for any positive integer n,

$$E_o(\mu) \in \mathcal{Z}_{T,\ell>0}^n \mathcal{A}_o$$

if $\mu \in \Lambda_T$ satisfies $\ell(\mu) \ge na$.

Proof. Let $\overline{\mathfrak{D}}$ be a closed Weyl chamber. We choose μ_1, \ldots, μ_r in $\Lambda_T - \Lambda_T^{W_0}$ such that $\nu(\mu_1), \ldots, \nu(\mu_r)$ generate the monoid $\nu(\Lambda_T) \cap \overline{\mathfrak{D}}$. We show that

$$E_o(\mu) \in \mathcal{Z}_{T,\ell>0}^n \mathcal{A}_o,$$

if $\mu \in \Lambda_T$, $\nu(\mu) \in \overline{\mathfrak{D}}$ and $\ell(\mu) > n(\ell(\mu_1) + \dots + \ell(\mu_r))$. Clearly, this implies the lemma. Let $\mu = \mu_1^{n_1} \dots \mu_r^{n_r} u$ with $u \in (\Lambda_T)^{W_0}, n_1, \dots, n_r$ in \mathbb{N} . We have $\ell(\mu_i) \neq 0$ for $1 \leq i \leq r$

Let $\mu = \mu_1^{n_1} \dots \mu_r^{n_r} u$ with $u \in (\Lambda_T)^{w_0}, n_1, \dots, n_r$ in \mathbb{N} . We have $\ell(\mu_i) \neq 0$ for $1 \leq i \leq r$ and $\ell(\mu) = n_1 \ell(\mu_1) + \dots + n_r \ell(\mu_r)$. Changing the numerotation, we suppose that $n_1 > n$, and obtain

$$E_o(\mu) = E_o(\mu_1)^{n_1}h, \quad h = E_o(\mu_2)^{n_2} \dots E_o(\mu_r)^{n_r} T_u \in \mathcal{A}_o.$$

By Lemma 6.5, $E_o(\mu_1)^{n_1} = E(\tilde{C}(\mu_1))^{n_1-1}E_o(\mu_1)$. Hence $E_o(\mu) \in E(\tilde{C}(\mu_1))^n \mathcal{A}_o \subset \mathcal{Z}^n_{T,\ell>0}\mathcal{A}_o$.

Lemma 6.7. When R is noetherian, for every positive integer n > 0 there exists a positive integer n' > 0 such that $\mathcal{F}_{o,n'} \subset (\mathcal{Z}_{T,\ell>0})^n \mathcal{H}$.

Proof. By Lemma 5.3, we can choose a finite subset $X \subset \Lambda$ such that, for $(\lambda, w_0) \in \Lambda \times W_0$, we have $\ell(\lambda w_0) = \ell(\lambda x^{-1}) + \ell(xw_0)$ for some $x \in X$ with $\mu = \lambda x^{-1} \in \Lambda_T$. By the product formula, $E_o(\lambda w_0) = E_o(\mu)E_o(xw_0)$. If

$$\ell(\lambda w_0) \ge n' = na + \max\{\ell(xw) \mid (x, w) \in X \times W_0\},\$$

we have $\ell(\mu) \ge na$. Taking *a* as in Lemma 6.6, $E_o(\mu) \in (\mathcal{Z}_{T,\ell>0})^n \mathcal{A}_0$; hence $E_o(\lambda w_0) \in (\mathcal{Z}_{T,\ell>0})^n \mathcal{H}$. As (λ, w_0) was arbitrary, we get the lemma.

We define $\mathcal{F}_{o,n}^{\text{aff}}$ as $\mathcal{F}_{o,n}$, with W(1) replaced by $W^{\text{aff}}(1)$. The isomorphism (3) restricts to an isomorphism

$$\mathcal{F}_{o,n}^{\text{aff}} \otimes_{R[Z_k]} R[\Omega(1)] \simeq \mathcal{F}_{o,n}.$$
(44)

The based root system (Φ, Δ) is the finite disjoint union of irreducible based root systems (Φ_i, Δ_i) for $1 \leq i \leq r$, the Coxeter affine Weyl group $(W^{\text{aff}}, S^{\text{aff}})$ is the product of the irreducible Coxeter affine Weyl groups $(W^{\text{aff}}_i, S^{\text{aff}}_i)$, and $W^{\text{aff}}(1)$ is an extension

$$1 \to Z_k \to W^{\mathrm{aff}}(1) \to \prod_i W_i^{\mathrm{aff}} \to 1.$$

The algebras $\mathcal{H}_i^{\text{aff}}$ defined by (Φ_i, Δ_i) identify with the subalgebras of basis $(T_w)_{w \in W_i^{\text{aff}}(1)}$ of \mathcal{H}^{aff} , called the irreducible components of \mathcal{H}^{aff} .

Lemma 6.8. The filtrations of \mathcal{H}^{aff}

$$(\mathcal{F}_{o,n}^{\mathrm{aff}})_{n\in\mathbb{N}}, \quad \left(\sum_{i}\mathcal{F}_{i,o,n}^{\mathrm{aff}}\mathcal{H}^{\mathrm{aff}}\right)_{n\in\mathbb{N}}$$

are equivalent.

Proof. The length of $w_i \in W_i^{\text{aff}}$ seen as an element of $(W_i^{\text{aff}}, S_i^{\text{aff}})$ or of $(W^{\text{aff}}, S^{\text{aff}})$ is the same; hence

$$\mathcal{F}_{i,o,n}^{\mathrm{aff}} \subset \mathcal{F}_{o,n}^{\mathrm{aff}}.$$

For $w \in W^{\text{aff}}$ of components $w_i \in W_i^{\text{aff}}$, we have $\ell(w) = \sum_i \ell(w_i)$ and $E_o(w) = \prod_i E_o(w_i)$ by the product formula, and the factors $E_o(w_i)$ commute. If $\ell(w) \ge nr$, at least one component w_i satisfies $\ell(w_i) \ge n$; hence

$$\mathcal{F}_{o,n}^{\mathrm{aff}} \subset \sum_{i} \mathcal{F}_{i,o,n}^{\mathrm{aff}} \mathcal{H}^{\mathrm{aff}}.$$

Proposition 6.9. Let M be a right \mathcal{H} -module, and let o be an orientation. The following properties are equivalent.

- (1) There exists a positive integer n such that $M\mathcal{F}_{o,n} = 0$.
- (2) There exists a positive integer n such that $M(\mathcal{Z}_{\ell>0})^n = 0$.
- (3) There exists a positive integer n such that $M(\mathcal{Z}_{T,\ell>0})^n = 0$.
- (4) There exists a positive integer n such that $M\mathcal{F}_{T,o,n} = 0$.
- (5) There exists a positive integer n such that $M\mathcal{F}_{o.n}^{aff} = 0$.
- (6) There exists a positive integer n such that $M\mathcal{F}_{i,q,n}^{\text{aff}} = 0$ for $1 \leq i \leq r$.

Proof. The isomorphism (44) shows that $M\mathcal{F}_{o,n} = 0 \Leftrightarrow M\mathcal{F}_{o,n}^{\text{aff}} = 0$, because the action of $\Omega(1)$ is invertible. Applying Proposition 6.4 and Lemma 6.8, the properties are equivalent.

Definition 6.10. A right \mathcal{H} -module M is called supersingular if it is not 0 and satisfies the properties of Proposition 6.9.

For future reference, we present the properties of the supersingular right \mathcal{H} -modules M deduced easily from Proposition 6.9 and Lemma 6.3, as a proposition. For a right \mathcal{H} -module M, we have the right \mathcal{H} -module $\iota(M)$, equal to M with $h \in \mathcal{H}$ acting by $\iota(h)$.

Proposition 6.11. (1) The category of supersingular right H-modules is stable by subquotients, by extensions, and by finite sums.

- (2) A right \mathcal{H} -module is supersingular if and only it is supersingular as a right \mathcal{H}^{aff} -module.
- (3) A right \mathcal{H} -module generated by a supersingular right \mathcal{H}^{aff} -submodule is supersingular.

- (4) A right \mathcal{H}^{aff} -module is supersingular if and only if it is supersingular as a right $\mathcal{H}^{\text{aff}}_{i}$ -module for all the irreducible components $\mathcal{H}^{\text{aff}}_{i}$ of \mathcal{H}^{aff} .
- (5) A right H-module M is supersingular if and only if $\iota(M)$ is supersingular.
- (6) A simple right \mathcal{H} -module M is supersingular if and only if $M\mathcal{Z}_{\ell>0} = 0 \Leftrightarrow M\mathcal{Z}_{T,\ell>0} = 0.$

The properties in (vi) are also equivalent to $M\mathcal{F}_{T,o,1} = 0$. See Remark 6.16.

The classification of the supersingular simple \mathcal{H} -modules reduces to the classification of the supersingular characters of \mathcal{H}^{aff} . For the algebra $\mathcal{H}(G, I(1))$, this was a conjecture for G = GL(n, F) [13] proved in [11, Proposition 5.10] for G split.

Proposition 6.12. A supersingular right \mathcal{H} -module M contains a character of \mathcal{H}^{aff} .

Proof. A non-zero element of M generates a right \mathfrak{h} -module containing a character of \mathfrak{h} (Proposition 2.1). We choose a \mathfrak{h} -eigenvector $v \in M$ of eigenvalue η . Let (χ, S_{η}) be the parameters of η (Proposition 2.2). As M is supersingular, there exists a positive integer n such that $M\mathcal{F}_{o,n} = 0$. We choose $d \in \mathcal{D}$ of maximal length satisfying $vE_o(\tilde{d}) \neq 0$ (Proposition 3.3). We show that $vE_o(\tilde{d})$ is a \mathcal{H}^{aff} -eigenvector. Let $(t, s) \in Z_k \times S^{\text{aff}}$.

We have $v E_o(\tilde{d})T_t = v T_{dtd^{-1}}E_o(\tilde{d}) = \chi(dtd^{-1})v E_o(\tilde{d}) = \chi^d(t)v E_o(\tilde{d}).$

For the computation of $vE_o(\tilde{d})T_{\tilde{s}}$, we distinguish three cases.

(1) $\ell(ds) = \ell(d) - 1$. Then $E_o(\tilde{d}) = T_t E_o(\tilde{d}\tilde{s}) E_o(\tilde{s})$, where $t \in Z_k, t\tilde{d}\tilde{s}^2 = \tilde{d}$.

If $E_o(\tilde{s}) = T_{\tilde{s}} - c_{\tilde{s}}$, we have $E_o(\tilde{s})T_{\tilde{s}} = (T_{\tilde{s}} - c_{\tilde{s}})T_{\tilde{s}} = 0$.

If $E_o(\tilde{s}) = T_{\tilde{s}}$, we have $E_o(\tilde{s})T_{\tilde{s}} = T_{\tilde{s}}^2 = c_{\tilde{s}}T_{\tilde{s}} = c_{\tilde{s}}E_o(\tilde{s})$; as $E_o(\tilde{d}\tilde{s})c_{\tilde{s}} = (ds \bullet c_{\tilde{s}})E_o(\tilde{d}\tilde{s}) = d \bullet c_{\tilde{s}}E_o(\tilde{d}\tilde{s})$, we deduce that $vE_o(\tilde{d})T_{\tilde{s}} = 0$ or $\chi(d \bullet c_{\tilde{s}})vE_o(\tilde{d}) = \chi^d(c_{\tilde{s}})vE_o(\tilde{d})$.

(2) $\ell(ds) = \ell(d) + 1$ and $ds \in Z_k \mathcal{D}$. Either $E_o(\tilde{d})T_{\tilde{s}} = E_o(\tilde{d})E_o(\tilde{s}) = E_o(\tilde{d}\tilde{s})$ or $E_o(\tilde{d})T_{\tilde{s}} = E_o(\tilde{d})(E_o(\tilde{s}) + c_{\tilde{s}}) = E_o(\tilde{d}\tilde{s}) + (d \bullet c_{\tilde{s}})E_o(\tilde{d})$. By the maximality of $\ell(d)$, $vE_o(\tilde{d}\tilde{s}) = 0$ and $vE_o(\tilde{d})T_{\tilde{s}} = 0$ or $\chi(d \bullet c_{\tilde{s}})vE_o(\tilde{d}) = \chi^d(c_{\tilde{s}})vE_o(\tilde{d})$.

(3) $\ell(ds) = \ell(d) + 1$ and $ds \notin Z_k \mathcal{D}$. Let $s_d \in S$ such that $\tilde{d}\tilde{s} = \tilde{s}_d \tilde{d}$ (Lemma 3.8). Either $E_o(\tilde{d})T_{\tilde{s}} = E_o(\tilde{d})E_o(\tilde{s}) = E_o(\tilde{d}\tilde{s}) = E_o(\tilde{s}_d \tilde{d}) = E_o(\tilde{s}_d)E_o(\tilde{d})$ or $E_o(\tilde{d})T_{\tilde{s}} = E_o(\tilde{d})(E_o(\tilde{s}) + c_{\tilde{s}}) = E_o(\tilde{d}\tilde{s}) + E_o(\tilde{d})c_{\tilde{s}} = (E_o(\tilde{s}_d) + d \bullet c_{\tilde{s}})E_o(\tilde{d})$. Hence $vE_o(\tilde{d})T_{\tilde{s}} = \eta(E_o(\tilde{s}_d))vE_o(\tilde{d})$ or $\eta(E_o(\tilde{s}_d) + d \bullet c_{\tilde{s}})vE_o(\tilde{d}) = (\eta(E_o(\tilde{s}_d)) + \chi(d \bullet c_{\tilde{s}}))vE_o(\tilde{d}) = (\eta(E_o(\tilde{s}_d)) + \chi^d(c_{\tilde{s}}))vE_o(\tilde{d})$.

The compatibility of supersingularity for \mathcal{H} and \mathcal{H}^{aff} (Proposition 6.9) and Proposition 6.12 imply the following.

Corollary 6.13. (1) A simple supersingular right \mathcal{H}^{aff} -module has dimension 1.

(2) A simple right \mathcal{H} -module is supersingular

if and only if it contains a supersingular character of \mathcal{H}^{aff} ;

if and only if any simple right \mathcal{H}^{aff} -submodule is a supersingular character of \mathcal{H}^{aff} .

The classification of the supersingular characters of \mathcal{H}^{aff} , given in Theorem 6.15 after technical Lemma 6.14, follows from the classification of the characters of \mathcal{H}^{aff} (Proposition 2.2). The classification was done for $\mathcal{H}(G, I(1))$ in [13] for G = GL(n, F)and in [11, Lemma 5.11 and Theorem 5.13] for G split.

599

Let Ξ be a character of \mathcal{H}^{aff} , χ a character of Z_k , and o an orientation such that $\Xi|_{\mathfrak{h}} = \chi_o$ (Lemma 2.4). Let $w_o \in W_0$ such that the Weyl chamber of o is $w_o^{-1}(\mathfrak{D}^+)$. For a subset J of S, let w_J be the longest element of the subgroup of W_0 generated by J.

Lemma 6.14. (1) $\Xi(E(\tilde{C}(\mu)) = \Xi(E_o(\tilde{\mu}))$ for $\mu \in \Lambda_T^+$. (2) If $S^{\text{aff}} - S = \{s_0\}$ and $\lambda \in \Lambda^+$ has positive length, we have (i) $\ell(s_0\lambda) = -1 + \ell(\lambda)$:

- (ii) $E_o(\tilde{s}_0) = T_{\tilde{s}_0} \Leftrightarrow w_o(\alpha_0) \in \Sigma^+$, where α_0 is the highest root of Σ^+ ;
- (iii) $E_o(\tilde{\lambda}) = T_{\tilde{s}_0} E_{o \bullet s_0}(\tilde{s}_0^{-1} \tilde{\lambda}))$ if $w_o(\alpha_0) \in \Sigma^+$;
- (iv) $w_J(\alpha_0) \in \Sigma^+ \Leftrightarrow J \neq S$.

Proof. (1) The character ξ factorizes through the canonical homomorphism

$$h \mapsto 1 \otimes h : \mathcal{H}^{\mathrm{aff}} \to \xi|_{\mathfrak{h}} \otimes_{\mathfrak{h}} \mathcal{H}^{\mathrm{aff}},$$

and $1 \otimes E(\tilde{C}(\mu)) = 1 \otimes E_o(\tilde{\mu})$ in $\chi_o \otimes_{\mathfrak{h}} \mathcal{H}^{\mathrm{aff}}$ by Proposition 5.4.

(2) The hypothesis means that the root system Σ is irreducible. The highest positive root $\alpha_0 \in \Sigma^+$ has the following well-known properties: $-\alpha_0 + 1$ is a simple affine root and $s_0 = s_{-\alpha_0+1}, 0 < -\alpha_0(x) + 1 < 1$ for $x \in \mathfrak{C}^+$.

(i) $\ell(s_0\lambda) = -1 + \ell(\lambda) \Leftrightarrow \mathfrak{C}^+$ and $\mathfrak{C}^+ + \nu(\lambda)$ are not on the same side of $\operatorname{Ker}(-\alpha_0 + 1)$ [15, Example 5.4]. This is equivalent to $-\alpha_0(x + \nu(\lambda)) + 1 = -\alpha_0(x) + 1 - \alpha_0 \circ \nu(\lambda)$ is negative for $x \in \mathfrak{C}^+ \Leftrightarrow \alpha_0 \circ \nu(\lambda) \ge 1$, which is true, because $\alpha_0 \circ \nu(\lambda) \in \mathbb{N}_{>0}$ as $\lambda \in \Lambda^+$ has positive length [15, Corollary 5.11].

(ii) By (6), $E_o(\tilde{s}_0) = T_{\tilde{s}_0} \Leftrightarrow \mathfrak{C}^+$ is on the *o*-negative side of Ker $(-\alpha_0 + 1)$. By [15, Definition 5.16], this means that $-\alpha_0$ is *o*-negative, because $-\alpha_0 + 1$ is positive on \mathfrak{C}^+ . The root $-\alpha_0$ is *o*-negative if and only if α_0 is positive on the Weyl chamber $w_o^{-1}(\mathfrak{D}^+)$ of *o*. This is true if and only if $w_o(\alpha_0) \in \Sigma^+$.

(iii) For any orientation o, $E_o(\tilde{\lambda}) = E_o(\tilde{s}_0)E_{o\bullet s_0}(\tilde{s}_0^{-1}\tilde{\lambda})$ by the product formula and $\ell(\lambda) = 1 + \ell(s_0\lambda)$ (i). Apply (ii).

(iv) Let $S = J \cup J'$. We have $\alpha_0 = (\sum_{s \in J} n_s \alpha_s) + (\sum_{s \in J'} n_s \alpha_s)$ with $n_s \in \mathbb{N}_{>0}$, and $w_J(\alpha_0) = -(\sum_{s \in J} n_s \alpha_s) + (\sum_{s \in J'} n_s w_J(\alpha_s))$. If $J' = \emptyset$, then $w_J(\alpha_0) \notin \Sigma^+$. If $J' \neq \emptyset$, for any $s \in J'$, the root $w_J(\alpha_s)$ is positive and does not belong to the group generated by J. The decomposition of $w_J(\alpha_0)$ on the basis $(\alpha_s)_{s \in S}$ has a positive coefficient; i.e., $w_J(\alpha_0) \in \Sigma^+$.

Theorem 6.15. A character of \mathcal{H}^{aff} is supersingular if and only if its restriction to each irreducible component of \mathcal{H}^{aff} is not a twisted sign or trivial character.

Proof. The involutive automorphism ι of \mathcal{H}^{aff} respects supersingularity and exchanges a twisted sign character and a twisted trivial character (Definition 2.7). For $s \in S^{\text{aff}}$ and a character ξ of \mathcal{H}^{aff} , ξ vanishes on T_s or $\iota(T_s)$ (Proposition 2.2). Let $\mu \in \Lambda_T^+$ of positive length. We have $\xi(E(\tilde{C}(\mu))) = \xi(E_o(\tilde{\mu}))$ for any orientation o (Lemma 6.14) and $E_o(\tilde{\mu}) = T_{\mu}$ when o is dominant [15, Example 5.30].

(i) A twisted sign character is not 0 on T_w for all $w \in W(1)$ of positive length; hence it is not 0 on $E(\tilde{C}(\mu))$, and it is not supersingular. Applying ι , a twisted trivial character is not supersingular.

(ii) It remains to prove that, when \mathcal{H}^{aff} is irreducible, i.e., $S^{\text{aff}} - S = \{s_0\}$, a character ξ of \mathcal{H}^{aff} different from a twisted sign or trivial character is supersingular.

Applying ι , it suffices to prove it when $\xi(T_{\tilde{s}_0}) = 0$. The set $J = S - \{s \in S \mid \xi(T_{\tilde{s}}) \neq 0\}$ is different from S, because ξ is not a twisted sign character. Let o be the orientation of Weyl chamber $w_J^{-1}(\mathfrak{D}^+)$. By Lemma 2.6, the restriction of ξ to \mathfrak{h} is of the form χ_o , because $S_o = \{s \in S \mid \xi(T_{\tilde{s}}) \neq 0\}$ (5). Applying Lemma 6.14, we obtain, for any $\mu \in \Lambda_T^+$ of positive length,

$$E_{o}(s_{0}) = T_{\tilde{s}_{0}}, \quad E_{o}(\tilde{\mu}) = T_{\tilde{s}_{0}}E_{o\bullet s_{0}}((\tilde{s}_{0})^{-1}\tilde{\mu}), \quad \xi(E(C(\tilde{\mu}))) = \xi(E_{o}(\tilde{\mu})) = 0.$$

Hence ξ is supersingular.

Remark 6.16. We can complete Proposition 6.11(6): a simple \mathcal{H} -module M is supersingular if and only if $M\mathcal{F}_{T,o,1} = 0$. This follows from Corollary 6.13 and part (ii) in the proof of Theorem 6.15.

Clifford's theory studies classically the induction of representations from normal subgroups. We give a "Clifford's theory style" proposition to describe the simple finite-dimensional \mathcal{H} -modules containing a character of \mathcal{H}^{aff} , as in [13, Proposition 3], [11, Lemma 5.12] for the algebra $\mathcal{H}(G, I(1))$ when G is split.

Let R be a field, and let A be an R-algebra of the form A = JB, where J is an ideal of A and B a subalgebra of A equal to the R-algebra R[G] of a group G.

Let $\Xi: J \to R$ be a character of J with a G-fixator $G_{\Xi} = \{g \in G \mid \Xi^g = \Xi\}$ of Ξ of finite index in G, where Ξ^g is the character $j \mapsto \Xi^g(j) = \Xi(gjg^{-1})$ of J.

Let V be a finite-dimensional right $R[G_{\Xi}]$ -module, where the group $J \cap G$ acts by $\Xi|_{J \cap G}$. For $g \in G$, we denote by V^g the right $R[g^{-1}G_{\Xi}g]$ -module V, where $g^{-1}hg$ acts by h for $h \in G_{\Xi}$.

We extend V to a right $A_{\Xi} = JR[G_{\Xi}]$ -module, where J acts by Ξ , denoted by $\Xi \otimes V$. We induce $\Xi \otimes V$ to a right A-module

$$I(\Xi, V) = (\Xi \otimes V) \otimes_{A_{\Xi}} A.$$

Proposition 6.17. Let R, A, J, G, Ξ, V be as above. We suppose V to be simple. We have the following.

- (i) $I(\Xi, V)$ is finite dimensional and is a simple right A-module.
- (ii) A finite-dimensional simple right A-module containing Ξ as a J-module is isomorphic to I(Ξ, V) for some V.
- (iii) $I(\Xi_1, V_1) \simeq I(\Xi_2, V_2)$ if and only if $(\Xi_2, V_2) = (\Xi_1^g, V_1^g)$, for some element $g \in G$.

Proof [11, Lemma 5.12]. $\Xi \otimes V$ is finite dimensional and is a simple A_{Ξ} -module, because its restriction to the subalgebra $R[G_{\Xi}]$ satisfies these properties. The left A_{Ξ} -module $A = \bigoplus_{g \in G_{\Xi} \setminus G} A_{\Xi}g$ is free of finite rank. The restriction of $I(\Xi \otimes V)$ to J is isomorphic

to a direct sum $\bigoplus^{\dim_R V} \bigoplus_{g \in G_{\Xi} \setminus G} \Xi^g$, and $I(\Xi, V) = \bigoplus_{g \in G_{\Xi} \setminus G} (\Xi^g \otimes V^g)$ is equal to the direct sum of all the conjugates of $\Xi \otimes V$ by G. The dimension of $I(\Xi \otimes V)$ is finite, equal to $[G: G_{\Xi}] \dim_R V$. The restriction to J of a non-zero A-submodule of $I(\Xi \otimes V)$ contains a submodule isomorphic to $\bigoplus_{g \in G_{\Xi} \setminus G} \Xi^g$; hence its Ξ -isotypic component is not 0. The Ξ -isotypic component of $I(\Xi \otimes V)$ is the simple A_{Ξ} -module $\Xi \otimes V$. Therefore $I(\Xi \otimes V)$ is a simple A-module.

Let M be a finite-dimensional simple right A-module with a non-zero Ξ -isotypic component as a J-module. The Ξ -isotypic component is an A_{Ξ} -module of the form $\Xi \otimes V'$ for some finite-dimensional right $R[G_{\Xi}]$ -module V'. The non-zero $R[G_{\Xi}]$ -module V' contains a simple submodule V. The module $\Xi \otimes V$ is isomorphic to an A_{Ξ} -submodule of M, and $I(\Xi \otimes V)$ is isomorphic to an A-submodule of M. As M is simple, $M = I(\Xi, V)$.

The restriction of $I(\Xi \otimes V)$ to J shows that $I(\Xi \otimes V)$ determines the G-orbit of Ξ , the Ξ -isotypic part of $I(\Xi \otimes V)$ determines V, and the Ξ^g -isotypic part of $I(\Xi \otimes V)$ is $\Xi^g \otimes V^g$ for $g \in G$. This implies that $I(\Xi_1, V_1) \simeq I(\Xi_2, V_2)$ if and only if $(\Xi_2, V_2) =$ (Ξ_1^g, V_1^g) , for some $g \in G$.

We can apply Proposition 6.17 to the *R*-algebra $A = \mathcal{H}$, its ideal $J = \mathcal{H}^{\text{aff}}$, the group $G = \Omega(1)$, an arbitrary character Ξ of \mathcal{H}^{aff} , and a finite-dimensional simple right $R[\Omega(1)]$ -module V such that Z_k acts on V by the character $\Xi|_{Z_k}$. As a subgroup of Ω of finite index acts trivially on V, the fixator $\Omega(1)_{\Xi}$ of Ξ has a finite index in $\Omega(1)$.

Corollary 6.13, Theorem 6.15, and Proposition 6.17 imply the following.

Theorem 6.18. The supersingular simple finite-dimensional right \mathcal{H} -modules are isomorphic to the \mathcal{H} -modules $I(\Xi, V)$, where

- (i) Ξ is a character of \mathcal{H}^{aff} different from a twisted sign or trivial character on each irreducible component of \mathcal{H}^{aff} ,
- (ii) V is a simple finite-dimensional right $R[\Omega(1)_{\Xi}]$ -module, where Z_k acts by $\Xi|_{Z_k}$.

Two \mathcal{H} -modules $I(\Xi_1, V_1), I(\Xi_2, V_2)$ are isomorphic if and only if the pairs $(\Xi_1, V_1), (\Xi_2, V_2)$ are $\Omega(1)$ -conjugate.

7. Pro-*p*-Iwahori invariants and compact induction

We use the notation of 1.3, and R is as in 1.4. The algebras \mathcal{H} and \mathfrak{h} denote the pro-p-Iwahori Hecke algebra $\mathcal{H}_R(G, I(1))$ and $\mathcal{H}_R(K, I(1))$.

Let ρ be an irreducible smooth *R*-representation of *K*, let $v \in \rho^{I(1)}$ not 0, let η be the character of \mathfrak{h} on $\rho^{I(1)}$, let χ be the restriction of η to Z_k , and let o be an orientation such that $\eta = \chi_o$ (Lemma 2.4).

We show that the pro-p-Iwahori invariant functor behaves well on compact induced representations of G, generalizing the results of Ollivier [10, Corollary 3.14] proved when G is split.

By Cabanes [3, Theorem 2], the I(1)-invariant functor $\rho \mapsto \rho^{I(1)}$ gives an equivalence

- from the category of finite-dimensional *R*-representations ρ of *K* trivial on K(1), such that ρ and its dual ρ^* are generated by I(1);
- to the category of finite-dimensional right \mathfrak{h} -modules.

Remark 7.1. For $n \in N \cap K$ of image $w \in W_o(1)$, the action on $\rho^{I(1)}$ of the basis element $T_w \in \mathfrak{h}$ is

$$vT_w = \sum_{\gamma \in I(1) \setminus I(1)nI(1)} \gamma^{-1}v = \eta(T_w)v.$$

The action of Z_k on $\rho^{I(1)}$ arising from the action of $Z_0 \subset I$ normalizing I(1) and the action of Z_k embedded in the Hecke algebra \mathfrak{h} on $\rho^{I(1)}$ are inverse from each other.

Let

c-Ind^G_K ρ

be the compactly induced representation of G by right translations on the space of compactly supported functions $f: G \to V(\rho)$ satisfying $f(k_1g) = \rho(k_1)f(g)$ for $k_1 \in K$ and $g \in G$. Let

$$[1, v]_K \in (\operatorname{c-Ind}_K^G \rho)^{I(1)}$$

be the function of support K and value v at 1. The representation $\operatorname{c-Ind}_{K}^{G} \rho$ is generated by $[1, v]_{K}$, and $\dim_{R} \rho^{I(1)} = 1$.

Proposition 7.2. The H-equivariant linear map

$$\rho^{I(1)} \otimes_{\mathfrak{h}} \mathcal{H} \to (\operatorname{c-Ind}_{K}^{G} \rho)^{I(1)} \quad 1 \otimes 1 \mapsto [1, v]_{K}$$

is an isomorphism.

We explain the strategy of the proof, which reduces the proposition to the next lemma. The disjoint union of W into W_0 -cosets corresponds to a disjoint union of G into (K, I)-cosets. A (K, I)-coset is equal to a (K, I(1))-coset. We have

$$G = \bigcup_{d \in \mathcal{D}} K dI = \bigcup_{d \in \mathcal{D}} K \tilde{d} I(1), \tag{45}$$

where, for d in the distinguished set \mathcal{D} of representatives of $W_0 \setminus W$ (Proposition 3.3), $KdI = K\tilde{d}I(1)$ denotes the double coset $Kn_{\tilde{d}}I = Kn_{\tilde{d}}I(1), \tilde{d} \in \mathcal{D}(1)$ lifting d, and $n_{\tilde{d}} \in N$ lifting \tilde{d} , with $n_1 = 1$. The space (c-Ind^G_K ρ)^{I(1)} is the direct sum

$$(\operatorname{c-Ind}_{K}^{G} \rho)^{I(1)} = \bigoplus_{d \in \mathcal{D}} (\operatorname{c-Ind}_{K}^{KdI} \rho)^{I(1)}$$
(46)

of the subspaces of functions in $(c\operatorname{-Ind}_{K}^{G}\rho)^{I(1)}$ with support contained in KdI, for $d \in \mathcal{D}$. The pro-*p*-Iwahori Hecke algebra is the direct sum

$$\mathcal{H} = \bigoplus_{d \in \mathcal{D}} \mathfrak{h} T_{\tilde{d}} \tag{47}$$

of the left \mathfrak{h} -modules $\mathfrak{h}T_{\tilde{d}}$ of functions in \mathcal{H} with support contained in KdI, for $d \in \mathcal{D}$. We denote by η the character of \mathfrak{h} on $\rho^{I(1)}$, and by $f_{\tilde{d}}$ the function in $(\mathbf{c}\operatorname{-Ind}_{K}^{G}\rho)^{I(1)}$ of support KdI with $f(n_{\tilde{d}}) = v$, for $d \in \mathcal{D}$. We have $f_1 = [1, v]_K$. The proposition follows from the following lemma.

Lemma 7.3. (i) For $d \in \mathcal{D}$, we have $K(1)(K \cap n_{\tilde{d}}I(1)n_{\tilde{d}}^{-1}) = I(1)$.

- (ii) A basis of $(\operatorname{c-Ind}_{K}^{G} \rho)^{I(1)}$ is $(f_{\tilde{d}})_{d \in \mathcal{D}}$.
- (iii) $f_{\tilde{d}} = f_1 T_{\tilde{d}}$ for $d \in \mathcal{D}$.
- (iv) f_1 is a \mathfrak{h} -eigenvector in $(\operatorname{c-Ind}_K^G \rho)^{I(1)}$ of eigenvalue η .

Proof. (1) We denote by I' the subgroup of I(1) generated by $U \cap I = U \cap K$ and $U^- \cap I$. We have $I(1) = Z_0(1)I'$ and $Z_0(1) = K(1) \cap Z_0$. The lemma follows from the inclusion

$$U \cap I \subset n_{\tilde{d}} I' n_{\tilde{d}}^{-1},$$

because $K(1)(K \cap n_{\tilde{d}}I(1)n_{\tilde{d}}^{-1}) = K(1)(K \cap n_{\tilde{d}}I'n_{\tilde{d}}^{-1})$ is a pro-*p*-subgroup of *K* and $I(1) = K(1)(U \cap I)$ is a pro-*p*-Sylow subgroup of *K*. The group $U \cap I$ is the product of the groups $U_{\alpha,0} = U_{\alpha} \cap K$ for all α in the set Φ_{red}^+ of positive reduced roots of associated root subgroup U_{α} . By Proposition 3.3 and § 1.3, $d^{-1}(e_{\alpha}\alpha)$ is positive on \mathfrak{C}^+ . As e_{α} is a positive integer, $d^{-1}(\alpha)$ is positive on \mathfrak{C}^+ . By [15, §§ 3.3 and 3.5], $n_{\tilde{d}}^{-1}U_{\alpha,0}n_{\tilde{d}} = U_{d^{-1}(\alpha)}$. As $d^{-1}(\alpha)$ is positive on \mathfrak{C}^+ , $U_{d^{-1}(\alpha)} \subset I'$. Hence $U_{\alpha,0} \subset n_{\tilde{d}}I'n_{\tilde{d}}^{-1}$.

(2) By (46) and $f_{n_{\tilde{d}}} \in (\text{c-Ind}_{K}^{KdI(1)} \rho)^{I(1)}$, it suffices to prove that the dimension of $(\text{c-Ind}_{K}^{Kn_{\tilde{d}}I(1)} \rho)^{I(1)}$ is 1. The value at $n_{\tilde{d}}$ gives a linear map

$$(\operatorname{c-Ind}_{K}^{KdI(1)}\rho)^{I(1)} \to \rho^{K \cap n_{\tilde{d}}I(1)n_{\tilde{d}}^{-1}},$$

because $kf(n_{\tilde{d}}) = f(kn_{\tilde{d}}) = f(n_{\tilde{d}}n_{\tilde{d}}^{-1}kn_{\tilde{d}})$ for $k \in K$. The map is clearly injective, and $\rho^{K \cap n_{\tilde{d}}I(1)n_{\tilde{d}}^{-1}} = \rho^{I(1)}$, because ρ is trivial on K(1) and (1). As $\dim_{R} \rho^{I(1)} = 1$, we have $\dim_{R}(\text{c-Ind}_{K}^{Kn_{\tilde{d}}I(1)}\rho)^{I(1)} = 1$.

(3) We show that the support of the function $f_1 T_{n_{\tilde{d}}}$ is contained in KdI(1) and that the value at $n_{\tilde{d}}$ of $f_1 T_{n_{\tilde{d}}}$ is v.

For $g \in G$, we have

$$f_1 T_g = \sum_{\gamma \in I(1) \setminus I(1)gI(1)} \gamma^{-1} f_1,$$

and $\gamma^{-1} f_1(x) = f_1(x\gamma^{-1})$ for $x \in G$. The support of f_1 is K, and the support of f_1T_g is contained in KgI(1).

In particular, the support of the function $f_1 T_{n_{\tilde{d}}}$ is contained in KdI(1). We have

$$(f_1 T_{n_{\tilde{d}}})(n_{\tilde{d}}) = \sum_{\gamma \in I(1) \setminus I(1) n_{\tilde{d}} I(1)} f_1(n_{\tilde{d}} \gamma^{-1}) = \sum_{u \in (K \cap n_{\tilde{d}} I(1) n_{\tilde{d}}^{-1}) / (I(1) \cap n_{\tilde{d}} I(1) n_{\tilde{d}}^{-1})} f_1(u).$$

By (1), this is equal to $f_1(1) = v$.

(4) For $k \in K$, the support of the function f_1T_k is contained in K, and

$$(f_1T_k)(1) = \sum_{\gamma \in I(1) \setminus I(1) \land I(1)} f_1(\gamma^{-1}) = \sum_{\gamma \in I(1) \setminus I(1) \land I(1)} \gamma^{-1} f_1(1) = \eta(T_k)v.$$

Therefore $f_1T_k = \eta(T_k)f_1$ for $k \in K$.

603

Remark 7.4. For $\lambda \in \Lambda$, the isomorphism of Proposition 7.2 restricts to a right \mathfrak{h} -module isomorphism

$$\rho^{I(1)} \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda) \to (\operatorname{c-Ind}_{K}^{K\lambda K} \rho)^{I(1)}.$$

Proposition 7.5. Let ρ_1, ρ be two irreducible smooth *R*-representations of *K*. The I(1)-invariant map

$$\operatorname{Hom}_{RG}(\operatorname{c-Ind}_{K}^{G}\rho_{1},\operatorname{c-Ind}_{K}^{G}\rho) \to \operatorname{Hom}_{\mathcal{H}}((\operatorname{c-Ind}_{K}^{G}\rho_{1})^{I(1)}, (\operatorname{c-Ind}_{K}^{G}\rho)^{I(1)})$$

is an isomorphism.

To explain the strategy of the proof, we recall the adjunction isomorphisms

$$\operatorname{Hom}_{RG}(\operatorname{c-Ind}_{K}^{G}\rho_{1},\pi) \simeq \operatorname{Hom}_{RK}(\rho_{1},\pi) = \operatorname{Hom}_{RK}(\rho_{1},\pi^{K(1)}),$$
$$\operatorname{Hom}_{\mathcal{H}}(\rho_{1}^{I(1)} \otimes_{\mathfrak{h}} \mathcal{H},\pi^{I(1)}) \simeq \operatorname{Hom}_{\mathfrak{h}}(\rho_{1}^{I(1)},\pi^{I(1)}),$$

for any smooth R-representation π of G. The I(1)-invariant map

$$\operatorname{Hom}_{RG}(\operatorname{c-Ind}_{K}^{G}\rho_{1},\pi) \to \operatorname{Hom}_{\mathcal{H}}((\operatorname{c-Ind}_{K}^{G}\rho_{1})^{I(1)},\pi^{I(1)})$$

is an isomorphism if and only if the I(1)-invariant map

$$\operatorname{Hom}_{K}(\rho_{1}, \pi^{K(1)}) \to \operatorname{Hom}_{\mathfrak{h}}(\rho_{1}^{I(1)}, \pi^{I(1)})$$

$$(48)$$

is an isomorphism, by Proposition 7.2. The map (48) is injective, because $\rho^{I(1)}$ generates ρ , but it is not surjective in general. The proposition says that the map (48) is surjective if $\pi = \text{c-Ind}_{K}^{G} \rho$.

The dominant monoid Λ^+ represents the cosets $K \setminus G/K$ (see 1.3). The anti-dominant monoid Λ^- has the same property and is more convenient now. The representation of K on c-Ind^G_K ρ is a direct sum

$$\operatorname{c-Ind}_{K}^{G} \rho = \bigoplus_{\lambda \in \Lambda^{-}} \operatorname{c-Ind}_{K}^{K\lambda K} \rho,$$

where $\operatorname{c-Ind}_{K}^{K\lambda K} \rho$ is the space of functions in $\operatorname{c-Ind}_{K}^{G} \rho$ with support in $K\lambda K$. We will prove that, for all $\lambda \in \Lambda^{-}$, the I(1)-invariant map

$$\operatorname{Hom}_{K}(\rho_{1}, (\operatorname{c-Ind}_{K}^{K\lambda K} \rho)^{K(1)}) \to \operatorname{Hom}_{\mathfrak{h}}(\rho_{1}^{I(1)}, (\operatorname{c-Ind}_{K}^{K\lambda K} \rho)^{I(1)})$$
(49)

is an isomorphism. A representation of K trivial on K(1) generated by its I(1)-invariant vectors identifies with a representation of the finite reductive group G_k generated by its U_k -invariant vectors (using the notation of § 1.3). We describe $(c-\operatorname{Ind}_{K}^{K\lambda K} \rho)^{K(1)}$ as a representation of G_k . Let $z \in Z^-$ lifting λ . We have $KzK = K\lambda K$ and by [7, Proposition 6.13] the group

$$K_{\lambda} = K(1)(K \cap z^{-1}Kz)$$

is the inverse image in K of a parabolic subgroup $P_k = M_k N_k$ of G_k containing B_k , of unipotent radical N_k equal to the image in G_k of $\langle \bigcup_{\alpha \in \Phi^+, \alpha \circ \nu(z) < 0} U_{\alpha,0} \rangle$ as $\nu(z)$ is anti-dominant and $\langle \alpha, z \rangle = \langle \alpha, -\nu(z) \rangle$ in the notation of [7, 6.11]; it is a parahoric

605

subgroup of G of pro-p-radical $K_{\lambda}(1) = K(1)(K \cap z^{-1}K(1)z)$. Let ρ_z be the representation of $K \cap z^{-1}Kz$ on the space $V(\rho)$ of ρ such that $\rho_z(k) = \rho(zkz^{-1})$. The map $f \mapsto \phi$: $k \mapsto f(zk) : \operatorname{Ind}_{K}^{KzK} \rho \to \operatorname{Ind}_{K\cap z^{-1}Kz}^{K} \rho_z$ is a K-equivariant isomorphism. It restricts to a K-equivariant isomorphism

$$(\mathrm{Ind}_{K}^{K_{\mathbb{Z}}K} \rho)^{K(1)} \to (\mathrm{Ind}_{K\cap z^{-1}K_{\mathbb{Z}}}^{K} \rho_{z})^{K(1)} = \mathrm{Ind}_{K_{\lambda}}^{K} (\rho_{z}^{K(1)\cap z^{-1}K_{\mathbb{Z}}}).$$

where the natural representation of $K \cap z^{-1}Kz$ on $\rho_z^{K(1)\cap z^{-1}Kz}$ is extended to a representation of K_{λ} trivial on K(1). The representation $\rho_z^{K(1)\cap z^{-1}Kz}$ of K_{λ} identifies to the representation $\rho_z^{N_k}$ of P_k on the space $V(\rho^{N_k})$ of ρ^{N_k} such that $\rho_z(m) = \rho(zmz^{-1})$ for m in the group $M_0 = \langle Z_0, \bigcup_{\alpha \in \Phi, \alpha \circ \nu(z)=0} U_{\alpha,0} \rangle$. The representation $\operatorname{Ind}_{K_{\lambda}}^K(\rho_z^{K(1)\cap z^{-1}Kz})$ identifies to $\operatorname{Ind}_{P_k}^{G_k}(\rho_z^{N_k})$. The representation $\rho_z^{N_k}$ of P_k is irreducible [2]. The U_k -invariant functor

$$\operatorname{Hom}_{G_k}(\rho_1, \operatorname{Ind}_{P_k}^{G_k}(\rho_z^{N_k})) \to \operatorname{Hom}_{\mathfrak{h}}(\rho_1^{U_k}, (\operatorname{Ind}_{P_k}^{G_k}(\rho_z^{N_k}))^{U_k})$$
(50)

is an isomorphism, by Cabanes's equivalence recalled at the beginning of this section, because $\operatorname{Ind}_{P_k}^{G_k}(\rho_z^{N_k})$ and its contragredient are generated by their U_k -invariant vectors. This is a general property proved in the next lemma.

Lemma 7.6. Let τ be an irreducible *R*-representation of P_k trivial on N_k . The representation $\operatorname{Ind}_{P_k}^{G_k} \tau$ of G_k and its contragredient are isomorphic to a subrepresentation and to a quotient of $\operatorname{Ind}_{U_k}^{G_k} 1$. In particular, they are generated by their U_k -invariant vectors. Their socle and their heads are multiplicity free.

Proof. A representation of G_k is generated by its U_k -invariant vectors if and only if it is a quotient of a direct sum of representations isomorphic to $\operatorname{Ind}_{U_k}^{G_k} 1$.

The representation $\operatorname{Ind}_{P_k}^{G_k} \tau$ is a quotient of $\operatorname{Ind}_{U_k}^{G_k} 1$, because it is generated by a U_k -invariant vector (a function in $\operatorname{Ind}_{P_k}^{G_k} \tau$ of support P_k with non-zero value in $\tau^{U_k \cap M_k}$).

The inflation of τ to P_k is contained in $\operatorname{Ind}_{U_k}^{P_k} 1$. By transitivity of the induction, $\operatorname{Ind}_{P_k}^{G_k} \tau$ is contained in $\operatorname{Ind}_{U_k}^{G_k} 1$.

The contragredient representation $(\operatorname{Ind}_{P_k}^{G_k} \tau)^*$ is a subrepresentation and a quotient of $\operatorname{Ind}_{U_k}^{G_k} 1$, because $\operatorname{Ind}_{U_k}^{G_k} 1$ is isomorphic to its contragredient, the contragredient permutes the irreducible *R*-representations of M_k , and it commutes with the parabolic induction. The socle of a subrepresentation of $\operatorname{Ind}_{U_k}^{G_k} 1$ is contained in the socle of $\operatorname{Ind}_{U_k}^{G_k} 1$.

The socle of a subrepresentation of $\operatorname{Ind}_{U_k}^{G_k} 1$ is contained in the socle of $\operatorname{Ind}_{U_k}^{G_k} 1$. The socle of $\operatorname{Ind}_{U_k}^{G_k} 1$ is multiplicity free, because dim $\rho_{U_k} = 1$, and by adjunction $\operatorname{Hom}_{G_k}(\rho, \operatorname{Ind}_{U_k}^{G_k} 1) \simeq \operatorname{Hom}_{U_k}(\rho_{U_k}, 1)$ for any irreducible *R*-representation ρ of G_k of U_k -coinvariants ρ_{U_k} .

The contragredient of the socle is the head of the contragredient.

With (51) and the I(1)-invariant functor (Proposition 7.5 for $\rho_1 = \rho$), we transfer our results on the spherical algebra $\mathcal{H}(\eta, \mathfrak{h})$ to the spherical algebra $\mathcal{H}_R(G, K, \rho)$, which is the convolution algebra of compactly supported functions

 $\phi: G \to \operatorname{End}_R(V(\rho))$ satisfying $\phi(k_1gk_2) = \rho(k_1)\phi(g)\rho(k_2)$ for $k_1, k_2 \in K, g \in G$.

It is isomorphic to the algebra $\operatorname{End}_{RG} \operatorname{c-Ind}_{K}^{G} \rho$ by the map sending ϕ to the RG-intertwiner E_{ϕ} of $\operatorname{c-Ind}_{K}^{G} \rho$ defined by

$$E_{\phi}(f_1)(g) = \phi(g)(v) \quad (g \in G).$$
 (51)

The spherical Hecke *R*-algebra $\mathcal{H}_R(G, K, \rho)$ admits a natural basis [7, 7.3] $(\mathcal{F}_{\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$, where

$$\mathcal{F}_{\tilde{\lambda}}$$
 has support $K\lambda K$ and $\mathcal{F}_{\tilde{\lambda}}(\tilde{\lambda})(v) = v.$ (52)

The basis $(\mathcal{F}_{\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$ does not satisfy (14) in general. The basis (52) for the spherical Hecke algebra $\mathcal{H}_R(Z, Z_0, \chi)$ is denoted by $(\tau_{\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}}$,

 $\tau_{\tilde{\lambda}}$ has support $Z_0\lambda$ and $\tau_{\tilde{\lambda}}(\tilde{\lambda})(v) = v$.

The basis (52) for the central spherical Hecke subalgebra $\mathcal{H}_R(T, T_0, \rho^{I(1)})$ is $(\tau_{\tilde{\mu}})_{\mu \in \Lambda_T}$, and the $\mathcal{H}_R(T, T_0, \rho^{I(1)})$ -module $\mathcal{H}_R(Z, Z_0, \rho^{I(1)})$ is finitely generated. We denote by $\mathcal{H}_R(T^+, T_0, \rho^{I(1)}) \subset \mathcal{H}_R(Z^+, Z_0, \rho^{I(1)})$ the subalgebras of bases $(\tau_{\tilde{\mu}})_{\mu \in \Lambda_T^+}$ and $(\tau_{\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$. The basis $(\tau_{\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$ satisfies (14).

Theorem 7.7. The R-algebras

$$\mathcal{H}_R(G, K, \rho) \simeq \operatorname{End}_{RG} \operatorname{c-Ind}_K^G \rho \simeq \operatorname{End}_{\mathcal{H}}(\eta \otimes_{\mathfrak{h}} \mathcal{H}) = \mathcal{H}(\eta, \mathfrak{h})$$

are isomorphic via (51) and the I(1)-invariant functor (Proposition 7.5).

The basis $(\mathcal{F}_{\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$ of $\mathcal{H}_R(G, K, \rho)$ (52) corresponds to the basis $(\mathcal{E}_{\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$ of $\mathcal{H}(\eta, \mathfrak{h})$ (Proposition 4.4).

The basis $(\phi_{o,\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$ of $\mathcal{H}_R(G, K, \rho)$ corresponding to the basis $(\Phi_{o,\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^+}$ of $\mathcal{H}(\eta, \mathfrak{h})$ (Proposition 4.13) satisfies (14).

For $\mu \in \Lambda_T^+$, $\phi_{\tilde{\mu}} = \phi_{o,\tilde{\mu}}$ does not depend on the choice of o.

 $(\phi_{\tilde{\mu}})_{\mu \in \Lambda_T^+}$ is a basis of a central subalgebra $\mathcal{Z}_R(G, K, \rho)_T$ of $\mathcal{H}_R(G, K, \rho)$, and $\mathcal{H}_R(G, K, \rho)$ is a finitely generated $\mathcal{Z}_R(G, K, \rho)_T$ -module (Proposition 5.4).

Remark 7.8. The *RG*-endomorphism of c-Ind^{*G*}_{*K*} ρ corresponding to $\phi_{\tilde{\mu}}$ sends $[1, v]_K$ to $[1, v]_K E_o(\tilde{\mu})$ for any orientation o such that $\eta = \chi_o$ (Propositions 7.2 and 4.13). We denote by $\mathcal{A}_{o,T}^+$ the *R*-algebra of basis $(1 \otimes E_o(\tilde{\mu}))_{\mu \in \Lambda_T^+}$.

Corollary 7.9. We have an R-algebra isomorphism

$$(\phi_{o,\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^{+}} \mapsto (\tau_{\tilde{\lambda}})_{\lambda \in \Lambda_{\chi}^{+}} : \mathcal{H}_{R}(G, K, \rho) \xrightarrow{\mathcal{S}_{o}} \mathcal{H}_{R}(Z^{+}, Z_{0}, \chi)$$

restricting to an isomorphism $\mathcal{Z}_R(G, K, \rho)_T \xrightarrow{S_T} \mathcal{H}_R(T^+, T_0, \chi)$ independent of o. We have the *R*-algebra isomorphisms

$$\mathcal{Z}_T \to \mathcal{Z}_R(G, K, \rho)_T \xrightarrow{\mathcal{S}_T} \mathcal{H}_R(T^+, T_0, \chi) \to \mathcal{A}^+_{o,T} \to R[\tilde{\Lambda}^+_T] \to R[\Lambda^+_T]$$
$$(E(\tilde{C}(\mu)))_{\mu \in \Lambda^+_T} \to (\phi_{\tilde{\mu}})_{\mu \in \Lambda^+_T} \to (\tau_{\tilde{\mu}})_{\mu \in \Lambda^+_T} \to (E_o(\tilde{\mu}))_{\mu \in \Lambda^+_T} \to (\tilde{\mu})_{\mu \in \Lambda^+_T} \to (\mu)_{\mu \in \Lambda^+_T}.$$

When the group G is split, $(Z^+, Z_0) = (T^+, T_0)$ and $\mathcal{Z}_R(G, K, \rho)_T = \mathcal{H}_R(G, K, \rho)$.

Theorem 1.5 in §1 follows from Corollary 7.9 and the next proposition. The R-characters ξ of Λ_T^+ identify with the characters of the R-algebras isomorphic to $R[\tilde{\Lambda}_T^+]$ in Corollary 7.9. We write

$$\xi(\tau_{\tilde{\mu}}) = \xi(E(\tilde{C}(\mu))) = \xi(\phi_{\tilde{\mu}}) = \xi(E_o(\tilde{\mu})) = \xi(\tilde{\mu}) = \xi(\mu)$$

for $\mu \in \Lambda_T^+$. Let π be a smooth *R*-representation of *G*. We suppose that $\pi|_K$ contains ρ .

Proposition 7.10. Let $A \in \text{Hom}_{RK}(\rho, \pi)$ be non-zero, and let $\mu \in \Lambda_T^+$. We have

$$(A\phi_{\tilde{\mu}})(v) = A(v)E_o(\tilde{\mu}) = A(v)E(\tilde{C}(\mu)).$$

In particular, if A is a $\mathcal{Z}_R(G, K, \rho)_T$ -eigenvector in $\operatorname{Hom}_{RK}(\rho, \pi)$ of eigenvalue ξ ,

$$\xi(\tilde{\mu})A(v) = A(v)E_o(\tilde{\mu}) = A(v)E(C(\mu)).$$

Proof. By the adjunction isomorphism, A and $A\phi_{\tilde{\mu}}$ correspond to the *RG*-intertwiners c-Ind^G_K $\rho \to \pi$ sending $[1, v]_K$ to A(v) and to $A(v)E_o(\tilde{\mu})$ (Remark 7.8). We deduce that $(A\phi_{\tilde{\mu}})(v) = A(v)E_o(\tilde{\mu})$.

The \mathcal{H} -isomorphism $(\mathbf{c}\operatorname{-Ind}_{K}^{G}\rho)^{I(1)} \to \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}$ of Proposition 7.2 sends $[1, v]_{K} E(\tilde{C}(\mu))$ to $1 \otimes E(\tilde{C}(\mu))$. By Proposition 5.4, $1 \otimes E(\tilde{C}(\mu)) = 1 \otimes E_{0}(\tilde{\mu})$. Hence $[1, v]_{K} E(\tilde{C}(\mu)) = [1, v]_{K} E_{o}(\tilde{\mu})$. Applying the \mathcal{H} -intertwiner $(\mathbf{c}\operatorname{-Ind}_{K}^{G}\rho)^{I(1)} \to \pi^{I(1)}$ corresponding to A sending $[1, v]_{K}$ to A(v), we deduce that $A(v)E_{o}(\tilde{\mu}) = A(v)E(\tilde{C}(\mu))$.

If A is a $\mathcal{Z}_R(G, K, \rho)_T$ -eigenvector in $\operatorname{Hom}_{RK}(\rho, \pi)$ of eigenvalue ξ (Corollary 7.9), we have $A\phi_{\tilde{\mu}} = \xi(\phi_{\tilde{\mu}})A$ for $\mu \in \Lambda_T^+$ (Theorem 7.7).

For $J \subset \Delta$, we denote by μ_J an element of Λ_T^+ such that $\alpha \circ \nu(\mu_J) > 0$ for all $\alpha \in \Delta - J$.

Remark 7.11. Let ξ be an *R*-character of Λ_T^+ . The character ξ is called supersingular if it satisfies the following three equivalent properties.

- (1) $\xi(\mu) = 0$ for all $\mu \in \Lambda_T^+$ non-invertible in Λ_T^+ .
- (2) $\xi(\mu_J) = 0$ for any $J \neq \Delta$.
- (3) For some $n \ge 1, \xi(\mu) = 0$ for all $\mu \in \Lambda_T^+$ with $\ell(\mu) > n$.

In Proposition 7.10, the eigenvalue ξ of A is supersingular if and only if the module $A(v)\mathcal{H}$ is supersingular (Definition 6.10).

Acknowledgements. I am grateful to N. Abe, G. Henniart, and R. Ollivier for helpful discussions. I thank the organizer of the conferences in Mumbai (D. Prasad) and in Berlin (E. Grosse-Kloenne) for their interest and for giving me the opportunity to present this work, and the Institut de Mathématiques de Jussieu for its support. I thank the anonymous referee for having read my article so carefully and for his/her comments.

References

- 1. N. ABE, G. HENNIART, F. HERZIG AND M.-F. VIGNÉRAS, A classification of admissible irreducible modulo *p* representations of reductive *p*-adic groups, preprint, 2014.
- 2. M. CABANES, Irreducible modules and Levi supplements, J. Algebra 90 (1984), 84–97.

- M. CABANES, A criterion of complete reducibility and some applications, in Représentations linéeaires des groupes finis, (ed. M. CABANES), Astérisque, pp. 181–182. (1990) 93–112.
- 4. M. CABANES AND M. ENGUEHARD, *Representation theory of finite reductive groups* (Cambridge University Press, 2004).
- 5. E. GROSSE-KLÖNNE, From pro-p-Iwahori Hecke modules to (ϕ , Γ)-modules, preprint, 2013.
- G. HENNIART AND M.-F. VIGNERAS, Comparison of compact induction with parabolic induction, *Pac. J. Math.* 260(2) (2012), 457–495.
- 7. G. HENNIART AND M.-F. VIGNERAS, A Satake isomorphism for representations modulo *p* of reductive groups over local fields, *J. Reine Angew. Math.* **701** (2015), 33–75.
- 8. S. KUMAR, Kac–Moody groups, their flag varieties and representation theory, *Progr. Math.* **204** (2002).
- 9. R. OLLIVIER, Parabolic Induction and Hecke modules in characteristic p for p-adic GL_n , ANT 4(6) (2010), 701–742.
- 10. R. OLLIVIER, An Inverse Satake isomorphism in characteristic *p*, *Selecta Math.*, preprint, 2012.
- 11. R. OLLIVIER, Compatibility between Satake and Bernstein isomorphisms in characteristic *p*, preprint, 2013.
- 12. N. A. SCHMIDT, Generische pro-p-algebren (Dilpomarbeit, Berlin, 2009).
- M.-F. VIGNÉRAS, On a numerical Langlands correspondence modulo p with the pro-p-Iwahori Hecke ring, Math. Ann. 331(3) 1432–1807. Erratum 333(3) (2005), 699–701.
- M.-F. VIGNÉRAS, Algèbres de Hecke affines génériques, J. Represent. Theory 10 (2006), 1–20.
- 15. M.-F. VIGNÉRAS, The pro-p-Iwahori Hecke algebra of a reductive p-adic group I, preprint, 2013.
- M.-F. VIGNÉRAS, The pro-p-Iwahori Hecke algebra of a reductive p-adic group II, Muenster J. Math. 7 (2014), 363–379.