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Abstract
Coincidence Analysis (CNA) is a configurational comparative method of causal data analysis that is
related to Qualitative Comparative Analysis (QCA) but, contrary to the latter, is custom-built for
analyzing causal structures with multiple outcomes. So far, however, CNA has only been capable of
processing dichotomous variables, which greatly limited its scope of applicability. This paper generalizes
CNA for multi-value variables as well as continuous variables whose values are interpreted as
membership scores in fuzzy sets. This generalization comes with a major adaptation of CNA’s
algorithmic protocol, which, in an extended series of benchmark tests, is shown to give CNA an edge over
QCA not only with respect to multi-outcome structures but also with respect to the analysis of non-ideal
data stemming from single-outcome structures. The inferential power of multi-value and fuzzy-set CNA
is made available to end users in the newest version of the R package cna.

Since the mid-1980s, different variants of configurational comparative methods (CCMs) have
gradually been added to the toolkit for causal data analysis in the social sciences. CCMs are
designed to investigate different hypotheses and uncover different properties of causal structures
than traditional regression analytical methods (RAMs) and, thus, complement the latter (rather
than compete with them). RAMs examine covariation hypotheses as “the more/less of X, the
more/less of Y” that link variables, and they quantify net-effects and effect sizes. CCMs, by
contrast, study implication hypotheses as “X= χi is (non-redundantly) sufficient/necessary for
Y= γi” that link specific values of variables. Moreover, instead of quantifying effect sizes, CCMs
place a Boolean ordering on sets of causes by locating their elements on the same or different
causal paths to the ultimate outcome. In other words, while RAMs investigate the quantitative
properties of causal structures as characterized by statistical or probabilistic theories of causation
(e.g., Suppes 1970), CCMs scrutinize their Boolean properties as described by regularity theories
of causation (Mackie 1974).

The Boolean properties of causation encompass three complexity dimensions. The first is
conjunctivity: to bring about an effect, say, liberal democracy in early modern Europe (D= 1),
different factors need to be instantiated (or not instantiated) jointly; for instance, according to
Downing’s (1992) theory of the origins of liberal democracy, a country must have a history of
medieval constitutionalism (C= 1) and absent military revolutions (R= 0). Only a coincident
instantiation of the conjunction C= 1∗R= 0 produces the effect D= 1. Disjunctivity is a second
complexity dimension: an effect can be brought about along alternative causal paths. Downing
(1992, 78–9, 240) identifies four paths leading to the absence of military revolution (R= 0): a
geography that deters invading armies (G= 1), commercial wealth (W= 1), foreign resource
mobilization (M= 1), and foreign alliances (A= 1). Each condition in the disjunction G= 1 +
W= 1 + M= 1 + A= 1 can bring about the effect R= 0 independently of the other conditions.
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The third complexity dimension is sequentiality: effects tend to cause further effects, propagating
causal influence along causal chains. In Downing’s theory there are multiple chains, for instance,
W= 1 is causally relevant to R= 0, which, in turn, is causally relevant to D= 1, or there is a chain
from A= 1 via R= 0 to D= 1. Overall, the theory entails the following Boolean causal model
(cf. Goertz 2006, 254), where “→ ” stands for the Boolean operation of implication:

ðG= 1 + W = 1 + M = 1 + A= 1→R= 0Þ ∗ ðC= 1∗R= 0→D=1Þ: (1)

The most prominent CCM is Qualitative Comparative Analysis (QCA; Ragin 2008). While the
original variant of QCA introduced in Ragin (1987), crisp-set QCA (csQCA), is restricted to
modeling dichotomous variables, there meanwhile exist fully worked out variants that can
process multi-value variables, multi-value QCA (mvQCA) (Cronqvist and Berg-Schlosser 2009),
and variables with continuous values from the unit interval, fuzzy-set QCA (fsQCA) (Ragin
2009). However, all QCA variants focus on the complexity dimensions of conjunctivity and
disjunctivity only, as QCA treats exactly one factor as endogenous and all other analyzed factors
as exogenous. QCA will thus not find a chain model as (1).1

In light of this restriction, Baumgartner (2009) introduced a new CCM called Coincidence
Analysis (CNA). As a member of the family of CCMs, CNA—just like QCA—investigates
implication hypotheses and scrutinizes the Boolean properties of causation. Contrary to QCA,
however, CNA is capable of analyzing multi-outcome structures and, hence, of uncovering all
Boolean complexity dimensions. CNA is tailor-made to recover chain models as (1).

So far, though, CNA has only been available in a crisp-set variant (csCNA). This paper
removes that limitation by generalizing the method for multi-value variables (mvCNA) and
variables with continuous values from the unit interval that are interpreted as membership scores
in fuzzy-sets (fsCNA). This generalization comes with a major adaptation of the basic algo-
rithmic protocol on the basis of which CNA builds causal models. In a nutshell, while CNA so far
—just like QCA—adopted a top-down approach to model building that first identifies complete
sufficient and necessary conditions of outcomes and then gradually eliminates redundant ele-
ments, the generalized variant of CNA uses a bottom-up approach that progressively combines
factor values to complex but redundancy-free sufficient and necessary conditions.

The CNA algorithm presented here has been implemented in a new version of the R package
cna, version 2.1.1 (Ambühl and Baumgartner 2018), which makes the whole inferential power of
mvCNA and fsCNA available to end-users. By drawing on this software package and the cur-
rently most reliable R package for QCA, QCApro (Thiem 2018),2 the paper also performs a whole
battery of benchmark tests that evaluate and compare the performance of CNA and QCA when
applied to data with varying forms of data deficiencies. The test series reveals that the reversal of
the basic model building approach gives CNA an edge over QCA not only with respect to multi-
outcome structures but also with respect to the analysis of non-ideal data stemming from single-
outcome structures.

The paper is organized as follows. We first introduce the theoretical background of CNA
along with its main input parameters. Next, the generalization of the CNA algorithm is pre-
sented. The final section then reports the results of the test series evaluating and comparing CNA
and QCA. The online appendix contains supplemental information on configurational homo-
geneity and correctness and provides charts with all numeric results of our test series. A repli-
cation script detailing all analytical steps is available in the PSRM dataverse.

1In a recent comment on CNA, Thiem (2015) argues that QCA is not necessarily tied to an algorithm that is restricted to
single-outcome structures. Thiem then suggests a QCA approach to searching for chains that much resembles CNA.

2Recently, version 3.2 of the QCA R package (Duşa 2007) has been published, which introduces very promising new
functionalities. However, the default parameter settings of that package are still such that, too often, many data-fitting models
are not recovered.
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Theoretical background

Boolean difference-making

As all CCMs, CNA searches for causal dependencies as defined by so-called regularity theories of
causation, whose development dates back to David Hume (1999 [1748]). Modern regularity
theories define causation in terms of Boolean difference-making within a fixed causal back-
ground. More specifically, X= χi is a regularity theoretic cause of Y= γi if there exists a (fixed)
configuration of background conditions F such that, in F, a change from X= χk to X= χi,
where χi≠ χk, is systematically and non-redundantly associated with a change from Y= γk to
Y= γi, where γi≠ γk. If X= χi does not make a difference to Y= γi in any context F, X= χi is
redundant to account for Y= γi and, thus, no cause of Y= γi (Mackie 1974; Graßhoff and May
2001; Baumgartner 2013).

To render that idea more precise, some conceptual preliminaries are required. Regularity
theoretic causation holds between variables/factors taking on specific values. (We will use the
terms “variable” and “factor” interchangeably.) Factors represent categorical properties that
partition sets of units of observation (cases) either into two sets, in case of binary properties, or
into more than two (but finitely many) sets, in case of multi-value properties. Factors repre-
senting binary properties can be crisp-set (cs) or fuzzy-set (fs); the former can take on 0 and 1 as
possible values, whereas the latter can take on any (continuous) values from the unit interval.
Factors representing multi-value properties are called multi-value (mv) factors; they can take on
any of an open (but finite) number of possible values {0, 1, 2, … , n}. Values of a cs or fs factor X
are interpretable as membership scores in the set of cases exhibiting the property represented
by X. As is conventional in Boolean algebra, we shall abbreviate membership in a set by upper
case and non-membership by lower case Roman letters; that is, we write “X” for X= 1 and “x”
for X= 0. An alternative interpretation, which lends itself particularly well for causal modeling, is
that “X” stands for the presence of the factor X and “x” for its absence. In case of mv factors, we
will not abbreviate value assignments and, instead, use the explicit “Variable= value” notation by
writing, say, “X= 3” for X taking the value 3.

Apart from the Boolean operations of conjunction, disjunction, and negation, whose classical
definitions are presupposed here, the implication operator “→ ” and the equivalence operator
“↔ ” are of core importance for the regularity theoretic definition of causation. According to a
classical interpretation, an expression as “X= 3→Y= 4” states that whenever X takes the value 3,
Y takes 4; or “X→Y” states that whenever X is present, Y is present. These claims are true if, and
only if (iff), there is no case satisfying the left-hand side of “→ ” and not satisfying the right-hand
side. Furthermore, “X= 3 ↔ Y= 4” and “X↔Y” are true iff the implication holds both ways,
meaning that all cases satisfying the left-hand side of “↔ ” also satisfy the right-hand side, and
vice versa.

For the subsequent generalization of CNA for fs factors the classical Boolean operations must
be translated into fuzzy logic. There exist numerous systems of fuzzy logic (for an overview cf.
Hájek 1998), each of which comes with its own rendering of Boolean operations. We will adopt
the following fuzzy-logic renderings, which have become standard in the context of CCMs:
conjunction X∗Y is defined in terms of the minimum membership score in X and Y, that
is, min(X,Y), disjunction X + Y in terms of the maximum membership score in X and Y, that is,
max(X,Y), negation ¬X (or x) in terms of 1−X, an implication X→Y is taken to express that the
membership score in X is smaller or equal to Y (X≤Y), and an equivalence X↔Y that the
membership scores in X and Y are equal (X=Y).

Based on the implication operator the notions of sufficiency and necessity are defined, which
are the two Boolean dependencies exploited by regularity theories: X is sufficient for Y iff X→Y
holds; and X is necessary for Y iff Y→X holds. Analogously, the more complex expression X= 3
+ Z= 2 is sufficient and necessary for Y= 4 iff X= 3 + Z= 2 ↔ Y= 4 holds.

528 Michael Baumgartner and Mathias Ambühl

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
01

8.
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/psrm.2018.45


Boolean dependencies of sufficiency and necessity amount to mere patterns of co-occurrence
of factor values; as such, they carry no causal connotations whatsoever. In fact, most Boolean
dependencies do not reflect causal dependencies. For that reason, regularity theories rely on a
non-redundancy principle as an additional constraint to filter out those relations of sufficiency
and necessity that are due to underlying causal dependencies: A Boolean dependency structure is
causally interpretable only if it does not contain any redundant elements. Causes are those
elements of sufficient and necessary conditions for which at least one configuration of back-
ground conditions Fexists in which they are indispensable to account for a scrutinized outcome.
In other words, whatever can be removed from sufficient and necessary conditions without
affecting the latter’s sufficiency and necessity is redundant and, therefore, not causally inter-
pretable. Only sufficient and necessary conditions that are completely free of redundant ele-
ments, viz. minimal, possibly reflect causation (Baumgartner 2015).

Boolean causal models

Modern regularity theories formally cash this idea out on the basis of the notion of a minimal
theory. Its complete definition is intricate and beyond the scope of this paper (for the latest
definition see Baumgartner and Falk 2018). For our subsequent purposes, the following rough
characterization will suffice. There are atomic and complex minimal theories. An atomic minimal
theory of an outcome Y is a minimally necessary disjunction of minimally sufficient conditions of Y.
A conjunction Φ of coincidently instantiated factor values (e.g., X1∗X2∗ … ∗Xn) is a minimally
sufficient condition of Y iff Φ is sufficient for Y (Φ→Y), and there does not exist a proper part
Φ' of Φ such that Φ'→Y. A proper part Φ' of Φ is the result of eliminating one or more
conjuncts from Φ. A disjunction Ψ of minimally sufficient conditions (e.g., Φ1 + Φ2 +… + Φn) is
a minimally necessary condition of Y iff Ψ is necessary for Y (Y→Ψ), and there does not exist a
proper part Ψ' of Ψ such that Y→Ψ'. A proper part Ψ' of Ψ is the result of eliminating one or
more disjuncts from Ψ. Overall, an atomic minimal theory of Y states an equivalence of the form
Ψ↔Y (where Ψ is an expression in disjunctive normal form3 and Y is a single factor value).
Atomic minimal theories can be conjunctively concatenated to complex minimal theories.

Minimal theories connect Boolean dependencies, which—by themselves—are purely func-
tional and non-causal, to causal dependencies: those, and only those, Boolean dependencies that
appear in minimal theories can stem from underlying causal dependencies. Atomic minimal
theories stand for causal structures with one outcome, complex theories represent multi-outcome
structures. To further clarify the causal interpretation of minimal theories, consider the following
complex exemplar:

ðA∗b + a∗B↔CÞ ∗ ðC∗f + D↔ EÞ: (2)

Functionally put, (2) claims that the presence of A in conjunction with the absence of B (i.e., b) as
well as a in conjunction with B are two alternative minimally sufficient conditions of C, and that
C∗f and D are two alternative minimally sufficient conditions of E. Moreover, both A∗b + a∗B and
C∗f + D are claimed to be minimally necessary for C and E, respectively. Against the background
of a regularity theory, these functional relations entail the following causal claims: (i) the factor
values listed on the left-hand sides of “↔ ” are directly causally relevant for the factor values on
the right-hand sides; (ii) A and b are located on the same causal path to C, which differs from the
path on which a and B are located, and C and f are located on the same path to E, which differs
from D’s path; (iii) A∗b and a∗B are two alternative indirect causes of E whose influence is
mediated on a causal chain via C. More generally put, minimal theories ascribe causal relevance
to their constitutive factor values, place them on the same or different paths to the outcomes, and
distinguish between direct and indirect causal relevancies. That is, they render transparent the

3A Boolean expression is said to be in disjunctive normal form iff it is a disjunction of one or more conjunctions of one or
more literals.
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three Boolean complexity dimensions of causality—which is why we shall likewise refer to
minimal theories as Boolean causal models.

Two fundamentals of the interpretation of Boolean causal models must be emphasized. First,
ordinary Boolean models make claims about causal relevance but not about causal irrelevance.
With some additional constraints that are immaterial for our current purposes (for details see
Baumgartner 2013), a regularity theory defines X1 to be a cause of an outcome Y iff there exists a
fixed configuration of context factors F=X2 ∗ . . . ∗Xn in which X1 makes a difference to Y—
meaning that X1∗F and x1∗F are systematically associated with different Y-values. While
establishing causal relevance merely requires demonstrating the existence of at least one such
difference-making context, establishing causal irrelevance would require demonstrating the non-
existence of such a context, which is impossible on the basis of the non-exhaustive data samples
that are typically analyzed in observational studies. Correspondingly, the fact that, say, G does
not appear in (2) does not imply G to be causally irrelevant to either C or E. The non-inclusion of
G simply means that the data from which model (2) has been derived do not contain evidence for
the relevance of G.

Second, Boolean models are to be interpreted relative to the data set δ from which they have
been derived. They do not purport to reveal all of an underlying causal structure’s Boolean
properties but only detail those causally relevant factor values along with those conjunctive,
disjunctive, and sequential groupings for which δ contains evidence. By extension, two different
Boolean modelsmi andmj derived from two different data sets δi and δj are in no disagreement if
the causal claims entailed by mi and mj stand in a subset relation. For example, model (3) does
not conflict with model (2):

ðA +B↔CÞ ∗ ðC +D↔ EÞ: (3)

(3) identifies A and B as alternative direct causes of C and indirect causes of E, moreover C and D
are claimed to be alternative direct causes of E. All of this also follows from (2). The causal claims
entailed by (3) thus constitute a subset of the claims entailed by (2). The two models describe
properties of one and the same underlying causal structure at different degrees of detail and
relative to different data δ(2) and δ(3).

Data, consistency, coverage

CCMs analyze configurational data δ that have the form of m× k matrices, where m is the
number of units of observation (cases) and k is the number of factors. We subsequently refer to
the set of factors F in an analyzed δ as the factor frame of the analysis. While QCA requires that F
be partitioned—prior to the analysis—into a first subset {Y} comprising exactly one endogenous
factor and a second subset F\{Y} comprising all exogenous factors of the analysis, CNA can
dispense with such a partition. If prior causal knowledge is available as to what factors in F are
possible effects and what factors can be excluded as effects, this information can be given to CNA
via an optional argument called a causal ordering. A causal ordering is a relation Xi≺Xj defined
on the elements of F entailing that Xj cannot be a cause of Xi (e.g., because Xi is instantiated
temporally before Xj). If an ordering is provided, CNA only searches for Boolean models in
accordance with the ordering; if no ordering is provided, CNA treats all values of the factors in F
as potential outcomes and explores whether a causal model for them can be inferred from δ.

As real-life data tend to feature noise induced by unmeasured causes of endogenous factors,
strictly sufficient or necessary conditions for an outcome Y often do not exist. To still extract
some causal information from such data, Ragin (2006) has imported consistency and coverage
measures (with values from the interval [0,1]) into the QCA protocol. Both of these measures are
also serviceable for the purposes of CNA. Informally put, consistency (con) reproduces the degree
to which the behavior of an outcome obeys a corresponding sufficiency or necessity relationship
or a whole model, whereas coverage (cov) reproduces the degree to which a sufficiency or
necessity relationship or a whole model accounts for the behavior of the corresponding outcome
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(for formal definitions see the vignette of the cna package, Ambühl and Baumgartner 2018, §3.2.)
If no (strictly Boolean) relations of sufficiency and necessity with con= 1 and cov= 1 can be
inferred from δ, CNA invites its users to lower the consistency and coverage thresholds cont and
covt. For example, by lowering cont to 0.8, CNA is given permission to treat X as sufficient for Y,
even though in 20 percent of the cases X is not associated with Y. Or by lowering covt to 0.8, CNA
is allowed to treat X as necessary for Y, even if 20 percent of the cases featuring Y do not feature X.

Lowering cont and covt must be done with great caution, for the lower these thresholds, the
higher the chance that causal fallacies are committed. In QCA, however, it is common to only
impose lowest bounds—for example, 0.75—for the consistency of configurations comprising
all exogenous factors, so-called minterms. This approach does not guarantee that the con-
sistencies of issued minimally sufficient conditions (or prime implicants, as they are called in
QCA) and of resulting Boolean models are also above the chosen threshold. Accordingly, the
models output by QCA often do not meet the consistency threshold set by the user (cf. the
replication script for examples). Moreover, it is common QCA practice not to require lowest
bounds for coverage. In consequence, QCA models frequently cover less than half of the cases
featuring the outcome in δ.

In CNA, the consistency and coverage standards are higher—for two reasons. First, the
sufficient conditions that are ultimately causally interpreted by CCMs are not minterms (which
are mere intermediate calculation devices for QCA) but redundancy-free conditions contained in
Boolean models. Hence, consistency thresholds must be imposed on the latter, not on the former.
Second, a model’s coverage being low means that it only accounts for few instances of an
outcome in δ. Or differently, in many cases in δ where the outcome is present there are causes at
work that are not contained (i.e., unmeasured) in the factor frame F. However, unmeasured
causes tend to confound δ—in particular, when they are associated with both exogenous and
endogenous factors in F. The presence of confounders casts doubts on the causal interpretability
of all dependencies manifest in δ, for uncontrolled causes might be covertly responsible for them.
That is, the more likely it is that the data are confounded, the less reliable a causal interpretation
of resulting models becomes. The higher the coverage, the less likely it is that we are facing data
confounding, the more reliable a causal interpretation of issued models becomes. The online
appendix A provides an extended discussion of the conditions under which CNA can be expected
to output correct models.

Generalizing the CNA algorithm
Top-down versus bottom-up search

The goal of CCMs is to infer Boolean causal models from configurational data. The previous
section has shown that Boolean functions are amenable to a causal interpretation only if they
identify redundancy-free sufficient and necessary conditions, and thus amount to minimal
theories that reach imposed consistency (cont) and coverage (covt) thresholds.

There exist two different strategies for building minimal theories: they can be built from the
top down or from the bottom up. The top-down approach proceeds as follows. First, complete
sufficient minterms are identified that meet cont; second, elements are eliminated as redundant as
long as the remaining conditions continue to satisfy cont; third, the minimally sufficient con-
ditions are disjunctively combined to necessary conditions that meet covt; fourth, elements are
eliminated as redundant that are not required to satisfy covt. By contrast, the bottom-up
approach starts with single factor values and tests whether they meet cont; if that is not the case, it
proceeds to test conjunctions of two factor values, then to conjunctions of three, and so on.
Whenever a conjunction meets cont (and no proper part of it has previously been identified to
meet cont), it is automatically redundancy-free, that is, a minimally sufficient condition (MSC),
and supersets of it do not need to be tested for sufficiency any more. Then, the bottom-up
approach tests whether single MSC meet covt; if not, it proceeds to disjunctions of two, then to
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disjunctions of three, and so on. Whenever a disjunction meets covt (and no proper part of it has
previously been identified to meet covt), it is automatically redundancy-free, viz. a minimally
necessary condition, and supersets of it do not need to be tested for necessity.

Both QCA and the original variant of csCNA adopt versions of the top-down approach—
albeit in very different algorithmic implementations (cf. Baumgartner 2015). By contrast, the
generalization of CNA developed here reverses the direction of model building. Prima facie, it
might seem that it does not matter whether models are built from the top down or from the
bottom up because both directions should ultimately lead to the same results. Although that is
indeed the case for some data types, in particular for ideal data, it does not hold generally. For
instance, when applied to data that do not allow for modeling outcomes with perfect consistency,
it can happen that—contrary to the bottom-up approach—the top-down approach does not
succeed in eliminating all redundancies from sufficient conditions. The reason is that when
building models from the top down it is (implicitly) presumed that consistency threshold vio-
lations are monotonic in the following sense: if a factor C cannot be eliminated from a sufficient
condition A∗B∗C because A∗B alone does not meet cont, then C plus some further factor from
A∗B cannot be eliminated either. Therefore, if eliminating C from A∗B∗C leads to a violation of
cont, the top-down approach concludes that C is needed to account for the outcome, meaning C
is a difference-maker. That conclusion, however, is not valid, because consistency threshold
violations are not monotonic.

To see this, consider the data matrix in Table 1A, for which the following consistencies hold:

conðA∗B ∗C→DÞ= 3=4= 0:75

conðA∗B→DÞ= 8=11= 0:73

conðA→DÞ= 15=20= 0:75

That is, if cont is set to 0.75, the condition A∗B∗C, which is sufficient for D with con= 0.75,
satisfies the threshold. By contrast, A∗B, which results from A∗B∗C by eliminating C, falls short of
cont. Nonetheless, further eliminating B lifts the remaining condition above cont again, as A alone
is sufficient for D with con= 0.75. That means, while C initially appears to be a non-redundant
element of the sufficient condition A∗B∗C, it turns out to be redundant after all. The top-down
approach, however, only tests the removability of single factors at a time and infers that a
condition is redundancy-free if removing single factors would push that condition below cont.
Therefore, at cont= 0.75, a procedure that adopts the top-down approach as QCA issues model
(4) for Table 1A.

A∗b∗c + A∗B∗C→D con= 0:83; cov= 0:67: (4)

In contrast, by first testing whether single factors meet cont, the bottom-up approach directly
finds that A itself is sufficient for D. Moreover, it turns out that A is necessary for D, as it
accounts for D with perfect coverage. Overall, at cont= 0.75, a procedure that builds models from
the bottom up issues model (5).

A↔D con= 0:75; cov= 1: (5)

(5) is preferable to (4), for two reasons. First, the product of consistency and coverage, which is a
common measure for overall model fit, is significantly higher for (5). Second, model (5) only
ascribes causal relevance to A, whereas (4) also determines B, C and their negations to be causes
of D, even though the data in Table 1A do not contain evidence that these factors actually make a
difference to D at cont= 0.75. Hence, when applied to noisy data, the top-down approach runs a
risk of drawing causal inferences that go beyond the data.

Also, the top-down approach may abandon an analysis prematurely. To see this, consider
the fs data in Table 1B, where D is the outcome.4 The four configurations in that data have the

4We thank Tim Haesebrouck for this example.
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consistencies listed in the last column of the QCA truth table in Table 1C, meaning that, if
cont is set to 0.75, none of the configurations are sufficient for the outcome. A top-down
procedure as QCA abandons the analysis at this point. That, however, is unwarranted because
there in fact exists a Boolean model for D that meets cont= 0.75 and moreover reaches perfect
coverage:

A∗B↔D con= 0:78; cov= 1: (6)

By starting the analysis with single factors, the bottom-up approach finds model (6) in the second
iteration.

To avoid the problems of the top-down approach, the generalization of CNA developed in this
paper builds models from the bottom up.

The essentials of the CNA algorithm

The generalized CNA algorithm takes as mandatory inputs (i) a data set δ, (ii) cont and covt
thresholds, and (iii) an upper bound called maxstep for the maximal complexity of atomic
solution formulas (atomic causal models) to be built. Maxstep serves the pragmatic purpose of
keeping the search space computationally tractable in reasonable time. The user can set it to any
complexity level if computational time is not an issue. Optionally, CNA can be given a causal
ordering.

Contrary to QCA, which first transforms the data into an intermediate calculative device
called a truth table, the CNA algorithm operates directly on the data. Data processed by CNA
can either be of type cs, mv, or fs. Examples of each data type are given in Table 2. In what
follows, we first discuss the generalized CNA algorithm in the abstract, using the explicit
“Variable= value” notation, and then we illustrate its procedural steps on the basis of the fs data
in Table 2C.

CNA causally models configurational data δ over a factor frame F in four stages:

Stage 1: On the basis of a provided ordering, CNA first builds a set of potential outcomes
O= {Oh=ωf , … ,Om=ωg} from the factor frame F= {O1 , … ,On} in δ, where 1≤ h≤m≤ n,
and second assigns a set of potential cause factors COi from F\{Oi} to every element Oi=ωk of O.
If no ordering is provided, all value assignments to all elements of F are treated as possible
outcomes in case of mv data, whereas in case of cs and fs data O is set equal to {O1= 1 ,
… ,On= 1}.

Stage 2: CNA attempts to build a set MSCOi =ωk of minimally sufficient conditions that meet
cont for each Oi=ωk ∈O. To this end, it first checks for each value assignment Xh= χj of each

Table 1. Problem Cases for the Top-down Approach

Note: Table 1A is a cs data matrix, where the right-most column lists the number of cases featuring a configuration and D is the outcome.
Table 1B is an fs data matrix with outcome D, and Table 1C the corresponding QCA truth table at cont= 0.75.
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element of COi , such that Xh= χj has a membership score above 0.5 in at least one case in
δ, whether the consistency of Xh= χj →Oi=ωk in δ meets cont, that is, whether con(Xh= χj →
Oi=ωk)≥ cont. If, and only if, that is the case, CNA puts Xh= χj into the set MSCOi =ωk . Next,
CNA checks for each conjunction of two factor values Xm= χj∗Xn= χl from COi , such that
Xm= χj∗Xn= χl has a membership score above 0.5 in at least one case in δ and no part of
Xm= χj∗Xn= χl is already contained in MSCOi =ωk , whether con(Xm= χj∗Xn= χl →Oi=ωk)≥ cont.
If, and only if, that is the case, CNA puts Xm= χj∗Xn= χl into the set MSCOi =ωk . Next, con-
junctions of three factor values with no parts already contained in MSCOi =ωk are tested, then
conjunctions of four factor values, etc., until either all logically possible conjunctions of the
elements of COi have been tested or maxstep is reached. Every non-empty MSCOi =ωk is passed on
to the third stage.

Stage 3: CNA attempts to build a set ASFOi =ωk of atomic solution formulas (atomic causal
models) for every Oi=ωk ∈O, which has a non-empty MSCOi =ωk , by disjunctively concatenating
the elements of MSCOi =ωk to minimally necessary conditions of Oi=ωk that meet covt. To this
end, it first checks for each single condition Φh ∈MSCOi =ωk whether cov(Φh→Oi=ωk)≥ covt. If,
and only if, that is the case, CNA puts Φh into the set ASFOi =ωk . Next, CNA checks for each
disjunction of two conditions Φm + Φn from MSCOi =ωk , such that no part of Φm + Φn is already
contained in ASFOi =ωk , whether cov(Φm + Φn→Oi=ωk)≥ covt. If, and only if, that is the case,
CNA puts Φm + Φn into the set ASFOi =ωk . Next, disjunctions of three conditions from MSCOi =ωk

with no parts already contained in ASFOi =ωk are tested, then disjunctions of four conditions, etc.,
until either all logically possible disjunctions of the elements of MSCOi =ωk have been tested or
maxstep is reached. Every non-empty ASFOi =ωk is passed on to the fourth stage.

Stage 4: CNA attempts to build a set CSFO of complex solution formulas (complex causal
models) encompassing all elements of O. To this end, CNA conjunctively combines exactly one
element from every non-empty ASFOi =ωk . If there is only one non-empty set ASFOi =ωk , that is, if
only one potential outcome can be modeled as an actual outcome, the set of complex solution
formulas CSFO is identical to ASFOi =ωk .

To illustrate all four stages, let us now apply CNA to Table 2C. We set cont= 0.8 and covt= 0.9
and execute the algorithm in the most general manner by not providing an ordering. 2C contains
data of type fs, meaning that the values in the data matrix are interpreted as membership scores
in fuzzy sets. As is customary for this data type, we use uppercase letters for membership in a set
and lowercase letters for non-membership. In the absence of an ordering, the first stage deter-
mines the set of potential outcomes to be O= {A,B,C,D, E}, that is, the presence of each factor in
2C is treated as a potential outcome. Moreover, all other factors are potential cause factors of
every element of O, hence, CA= {B,C,D, E}, CB= {A,C,D, E}, CC= {A,B,D,E}, etc.

Table 2. Data Types Analyzed by Coincidence Analysis
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To construct the sets of minimally sufficient conditions of the elements of O in stage 2, CNA
first tests the values of single potential cause factors for cont compliance and then moves on to
conjunctions of two, of three, and of four factor values. The resulting sets of minimally sufficient
conditions are: MSCA= {b∗C, d∗E}, MSCB= {a∗C,A∗E, d∗E}, MSCC= {A,B, d∗E}, MSCD= {E, a∗C},
MSCE= {D,A∗B}. Only the elements of MSCC and MSCE can be disjunctively combined to atomic
solution formulas that meet covt in stage 3: ASFC= {A + B↔C} and ASFE= {D + A∗B↔ E}. For the
other three elements of O the coverage threshold of 0.9 cannot be satisfied. CNA therefore
abstains from issuing causal models for A, B and D.

Finally, stage 4 conjunctively combines ASFC and ASFE to the following complex solution
formula CSFO, which constitutes CNA’s final causal model for Table 2C:

ðA + B↔CÞ ∗ ðD + A∗B↔ EÞ con= 0:808; cov= 0:925: (7)

Two features of this algorithm deserve (re-)emphasis. First, while the computational cores of
configurational methods that build models from the top down are constituted by procedures for
redundancy elimination turning maximal into minimal sufficient and necessary conditions, all
conditions that CNA finds to comply with cont and covt are automatically redundancy-free. That
is, CNA directly identifies minimally sufficient and necessary conditions, rendering redundancy
elimination itself redundant. Second, whereas QCA dichotomizes fs data in a truth table before
processing it, CNA processes fs data in the very same vein as cs and mv data, viz. by building all
viable conjunctions and disjunctions of potential causes and systematically testing for cont and
covt compliance. By directly applying the same algorithm to all configurational data types, CNA
renders the detour via truth tables redundant.

Evaluation and comparison
Before a new method can be applied in real-life studies, it must, on the one hand, be shown that
the method correctly analyzes data that, by the method’s own standards, faithfully reflect data-
generating causal structures, and, on the other, an estimate should be provided of how the
method performs under different constellations of data deficiencies.5 Accordingly, this section
reports the results of a series of evaluation tests that follow the template of so-called inverse
searches, which reverse the order of causal discovery in scientific practice. An inverse search
comprises three steps: (1) a causal structure Δ is presupposed, (2) artificial data δ is generated
by letting the involved factors behave in accordance with Δ, and (3) δ is processed by a
scrutinized method. The method successfully completes the inverse search iff its conclusions are
true of Δ.

In what follows, we not only evaluate the performance of the generalized CNA algorithm,
but also compare it with QCA’s most reliable search strategy, viz. the parsimonious one
(Baumgartner and Thiem 2017). To secure the comparability with QCA, the evaluation focuses
on CNA’s stages 1-3, which search for single-outcome structures (as does QCA) and constitute
the method’s analytical core.

For the test series, we use the R packages cna (Ambühl and Baumgartner 2018), which—in its
newest version 2.1.1—implements the generalized CNA algorithm developed here, and QCApro
(Thiem 2018), which is the most dependable QCA software currently available and additionally
offers many valuable tools for method evaluation.6 The command line interfaces of these R
packages facilitate performing and replicating inverse searches—as detailed in the appended

5For more on CNA’s correctness standards see the online appendix A.
6As anticipated in footnote 2, the most recent version of the QCA R package (Duşa 2007) holds a lot of promise; in

particular, because it supplies a new search algorithm, called CCubes, that also adopts the bottom-up approach. Moreover,
the package provides search parameters (e.g., for solution consistency and coverage) that allow for closely approximating the
CNA algorithm developed in this paper. All of that is new and not part of the QCA protocol (yet). Accordingly, none of the
conclusions drawn from the ensuing comparison of CNA and QCA have any bearing on CCubes.
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replication script. The two packages provide all functions needed for a wide array of trials. The
most relevant among these functions are randomDGS, which randomly draws data-generating
structures Δ from a factor frame F, allCombs, which generates the whole space of logically
possible configurations of the factors in F, some and sample, which randomly sample a
specified number of cases from a data set, makeFuzzy, which fuzzifies the data (e.g., to
simulate background noise), selectCases, which selects the cases that comply with Δ and
randomly adds outlier cases not complying with Δ while ensuring that specified cont and covt
thresholds remain satisfied, submodels, which generates the set of correct models (as defined
in online appendix A), and cna and eQMC, which analyze the data by means of CNA and QCA,
respectively.7

Against that background, inverse search trials revolve around the following steps.

1. Use randomDGS to draw a data-generating structure Δ from a factor frame F.
2. Use allCombs to generate the space α of all logically possible configurations from a

factor frame F'⊇ F.
3. If the data shall be of type fs (e.g., featuring background noise), use makeFuzzy to fuzzify

α.
4. Use selectCases to select, from α, the set of cases δ complying with Δ, and to add

outlier cases not complying with Δ as long as cont and covt remain satisfied.
5. If the data shall be fragmentary, use some or sample to randomly sample a set of cases

δ′ from δ; otherwise δ′= δ.
6. If relevant factors shall be omitted from the data, eliminate columns from δ′; otherwise

δ′= δ.
7. Analyze δ′ by means of cna and eQMC at consistency and coverage thresholds of cont and

covt.
8. Check whether the outputs of cna and eQMC feature a correctness-preserving model

contained in submodels(Δ). The trial counts as passed iff this check is positive.

Depending on the concrete data scenario to be simulated, the particularities and the
arrangement of these steps must be suitably varied. More specifically, in order to simulate model
overspecification, that is, the inclusion of factors in the simulated data that are causally irrelevant
in the targeted structure Δ, F' must be determined to be a superset of F in step 2. Corre-
spondingly, to simulate model underspecification, that is, the omission of factors from the data
that are causally relevant in Δ, step 6 must be executed. To simulate data fragmentation (or
limited diversity), the number of cases drawn in step 5 must be smaller than the exhaustive set of
cases compatible with Δ. To simulate inconsistencies and imperfect solution coverages, cont and
covt must be set to values below 1 in step 4. The resulting data is of type fs if step 3 is executed,
otherwise it is of type cs or mv, depending on what types of factors are chosen for Δ. Finally, to
simulate data that are ideal by the standards of configurational causal modeling, F' must be
identical to F in step 2, cont and covt must be set to 1 in step 4, and steps 5 and 6 must not be
executed.

We perform a total of 48 different types of tests. In each test type, we randomly draw 30–50
data-generating structures (depending on the calculative complexity of the analysis), on which we
then perform inverse search trials using both CNA and QCA. 16 of the test types are run on cs
data, 16 on fs data, and 16 on mv data. We simulate data scenarios resulting from all logically
possible combinations of the following four types of data deficiencies: overspecification (O),
underspecification (U), data fragmentation (F) and imperfect solution consistencies and cov-
erages (I). For instance, a scenario as OuFi is one with overspecification, without

7For details on the parameters and arguments of these functions as well as their usage, the reader is referred to the
reference manuals of cna and QCApro.

Michael Baumgartner and Mathias Ambühl536

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
01

8.
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/psrm.2018.45


underspecification, with data fragmentation, and without imperfect (i.e., with perfect) con-
sistencies and coverages, OUFI, in contrast, features all four types of deficiencies, while oufi is
free of all deficiencies and, hence, results in ideal configurational data.

In order to keep the whole test series easily replicable, the complexity of the randomly drawn
data-generating structures is kept comparably simple: they feature between three and four exo-
genous factors and one outcome each. To simulate overspecification, one irrelevant factor is added
to the data; and underspecification is simulated by removing one relevant factor. Moreover, in
scenarios with data fragmentation, half of the cases that are compatible with the data-generating
structure are removed in case of cs or fs data, while in case ofmv data we remove 80 percent of the
compatible cases; that is, we simulate diversity indices of 0.5 and 0.2, respectively. Finally, in
scenarios with imperfect solution consistencies and coverages, the targeted data-generating
structures are set to only reach consistencies and coverages of 0.8 in the simulated data.

The bar charts in Figure 1 contrast the correctness ratios obtained in each test type, that is, the
ratios of the number of trials passing the test to the total number of trials in each test type. For
instance, a ratio of 1 means that every trial produced at least one correct model or 0.7 that 70
percent of the trials did. A number of aspects of our results deserve separate emphasis. First,
CNA significantly outperforms QCA in regard to correctness in a number of data scenarios and
performs equally well in all others. Second, all data scenarios featuring neither underspecification
nor inconsistencies (oufi;Oufi; ouFi;OuFi), which are the scenarios satisfying configurational
homogeneity (see online appendix A), are faultlessly analyzed by both methods.8 In mv data, even
combinations of over- and underspecification do not diminish correctness ratios. This is strong
evidence that both CNA and QCA indeed are correct methods of causal inference: if the relevant
background assumption concerning data quality, configurational homogeneity, is satisfied, both
methods guarantee correct results. Third, as is to be expected, neither method performs without
error in the increasingly deficient data scenarios. No method can faultlessly analyze deficient data
that do not faithfully reflect data-generating structures. But while QCA’s correctness ratios
plummet in certain cases, in particular, when over- and underspecification are combined with
imperfect consistencies and coverages, CNA maintains reasonable correctness ratios even in
those cases.

A proper interpretation of this last finding requires some differentiation. Primarily, it must be
emphasized that if CNAhas a high andQCA a low correctness ratio in a particular test that does not
automatically mean that CNA issues exactly one correct model throughout that test, while QCA
keeps misfiring. Rather, it means that CNA does not commit causal fallacies where QCA does. But
causal fallacies can be avoided in various ways. For instance, CNA can pass a trial by abstaining from
producing any models at all, while QCA issues false models. To assess the frequency of that
constellation in our test series, we additionally calculated the ratios of trials within each test type in
which CNA and QCA produce no model at all—the results are presented in Figure 3 of the online
appendix B. It turns out that abstinence from drawing a causal inference is the main reason why
CNA outperforms QCA in case of severely deficient mv data (i.e., tests 43–48) and one reason,
among others, in case of deficient fs data (i.e., tests 25–32). In those data scenarios, CNA’s reliance
on both consistency and coverage as authoritative model building criteria prompts CNA to abstain
from drawing causal inferences because consistency and coverage thresholds cannot be met. By
contrast, QCA, which does not impose coverage thresholds and gives less weight to consistency,
continues to draw inferences, committing causal fallacies more often than not.

Alternatively, in cases of data for which multiple equally fitting models exist, a difference in
CNA’s and QCA’s correctness ratios may be due to the fact that CNA more thoroughly uncovers
the space of all data-fitting models. Plainly, the more exhaustive the set of alternative models
returned by a method, the higher the chances that a correct one is contained therein; and

8In regard to the evaluation of QCA, this finding confirms recent results of Baumgartner and Thiem (2017) and contrasts
with claims made by Lucas and Szatrowski (2014).
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contrapositively, the fewer models a method returns, the lower the chances that one of them is
correct. In order to assess the impact of CNA’s and QCA’s capacities to detect model ambiguities
on their overall correctness ratios, Figure 4 (in online appendix B) provides the ratios of trials
within each test type in which CNA and QCA produce more than one model. For both methods,
the ratio of model ambiguities increases with the degree of data deficiency. While QCA has a
higher ambiguity ratio than CNA in case of deficient mv data (i.e., tests 41, 44, 47, 48), CNA
more frequently than QCA issues multiple models in case of deficient cs and fs data (i.e., tests 11–
13, 15, 16, 29, 31, 32). However, when QCA outputs multiple models, often none of them are
correct (e.g., in tests 16, 26, 29, 44, 48), whereas when CNA generates multiple models, at least
one of them tends to be correct (cf. tests 8, 11–16, 23, 28–32). Hence, CNA not just issues more
models than QCA and, for that reason, has a higher chance of hitting the target on mere
quantitative grounds; rather, the quality of its models exceeds the quality of QCA’s models.

This is a consequence of CNA’s reliance on the bottom-up approach, which more rigorously
eliminates redundant factors than QCA’s top-down approach. As a result, QCA regularly fails to
eliminate irrelevant factors in data scenarios where overspecification is combined with imperfect
consistencies and coverages (and possibly other deficiencies).9 By contrast, the combination of
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Figure 1. A comparison of correctness ratios of Coincidence Analysis (CNA) and Qualitative Comparative Analysis (QCA) for
each test type. The latter are listed on the x-axis and numbered in correspondence with the replication script.

9An interesting exception is test 46, where the combination of overspecification and imperfect consistencies/coverages
does not seem to pose a critical problem for QCA.
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overspecification and imperfect consistencies/coverages does not prevent CNA from reliably
eliminating irrelevant factors. Ultimately, this is the main reason why CNA’s correctness ratio
exceeds QCA’s in case of severely deficient cs data and a substantial reason in case of deficient
fs data.

The question remains how frequently the two methods output a unique model. To answer
that, Figure 5 (online appendix B) furnishes the ratios of trials within each test type in which
CNA and QCA produce exactly one model. This comparison reveals an important difference
between QCA and CNA. Exactly one model is QCA’s dominant type of output throughout all 48
tests. For CNA, by contrast, this is only the dominant output type in the tests with mild degrees
of data deficiency (or none at all). The crucial follow-up question then becomes: what are
the ratios of trials such that one unique model is issued that moreover correctly reflects the
data-generating structure? That question is answered in Figure 6 (online appendix B). Unsur-
prisingly, QCA’s insistence on a unique model has negative effects on the method’s overall
correctness ratio in all data scenarios with severe deficiencies, for that unique model tends not to
be correct in those scenarios. By contrast, no such negative effects result in some data scenarios
with only mild data deficiencies. Notably, in tests 3, 8, 24, 35, and 38, QCA produces a single
model more frequently than CNA, but still reaches overall correctness ratios that are comparable
to CNA’s ratios. Hence, these are tests where QCA draws more precise causal inferences than
CNA. This difference in output precision occurs in data scenarios featuring underspecification
but no inconsistencies. Those are scenarios where solution coverages tend to be low because
relevant factors that are responsible for certain instances of analyzed outcomes are unmeasured,
meaning that these instances are not covered by resulting models. As QCA does not impose a
coverage threshold, it nonetheless produces outputs, which, since the overall degree of data
deficiency is mild, often are correct. CNA, by contrast, imposes authoritative coverage thresholds
and is hence disposed to abstain from issuing any models in those cases. By lowering coverage
cutoffs, CNA could be induced to behave less cautiously and draw more precise causal inferences
in those data scenarios as well. Furthermore, there also exist tests—in particular, tests 10, 17, 18,
37, and 42—in which CNA, even when high coverage standards are enforced, draws more precise
inferences than QCA by more frequently issuing one correct unique model and, thus, reaching
equal and sometimes considerably better correctness ratios than QCA.

To round off this evaluation, we not only culled correctness, ambiguity, uniqueness, and ‘no
model’ ratios from the 48 test types, but also completeness ratios.10 The completeness ratio in a
test type is the ratio of the number of trials in which a method completely uncovers the data-
generating structure to the total number of trials. Completeness ratios are presented in Figure 2.
As is to be expected, CNA and QCA can only systematically uncover all properties of data-
generating structures when the data quality is very high.11 Moreover, it is clear that in cases of
underspecification neither method has a chance of ever finding the complete structure. Apart
from these confirmations of theoretical expectations, Figure 2 shows that the completeness ratios
of the two methods are very close together across the whole test series, except for the tests 10, 20,
21, 26, 37, and 42 where CNA has a significant edge over QCA.12 That is, CNA’s superior
correctness ratios are not offset by overall lower completeness ratios; rather, with regard to
completeness, CNA likewise outperforms QCA in a number of data scenarios and performs
comparably in all other scenarios.

10For details on completeness and its relation to correctness see the online appendix A.
11Note, however, that only CNA reliably recovers the complete data-generating structure from ideal data (cf. tests 1, 17,

and 33). QCA fails to find the complete structure in 3 out of 50 trials with ideal fs data (test 17). As any method should
always be able to infer the complete data-generating structure from ideal data, this is a disturbing finding that calls for further
investigation.

12There are further tests in which the completeness ratios of the two methods come apart slightly. In tests 5, 23, 27, and 30
CNA’s completeness ratio exceeds QCA’s, whereas in tests 14, 19, and 25 QCA’s ratio exceeds CNA’s. We take these
differences to be non-significant, as they are subject to variations in the replication seeds.
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We end this discussion with some qualifications. The forms of data deficiencies analyzed here
do not exhaust the space of possible deficiencies. For instance, all the data we simulated feature
evenly distributed case frequencies, that is, different configurations are represented by roughly
equally many cases. Of course, that is often not the case in real-life data. It is thus an open
question how CNA and QCA fare and compare under biased case frequencies. Also, our test
series sets consistency and coverage thresholds as well as diversity indices to constant values
without exploring how the methods perform under variations of these values. Finally, although
we only tested how CNA and QCA perform under various sorts of data deficiencies, we do not
intend to suggest that data deficiencies are the only conceivable source of causal fallacies—apart
from errors in the internal protocol of a method. There are a host of other sources for causal
fallacies: for instance, errors in study designs, faulty background theories, or misapplications of a
method. Our test series bracketed all of these problems. All findings reported above must hence
be relativized to the particular sources of causal fallacies we chose to simulate.

Conclusion
This paper has generalized CNA, a CCM of causal data analysis, for multi-value variables and
variables with continuous values from the unit interval that are interpreted as membership scores
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Figure 2. Completeness ratios for each test type, which are listed on the x-axis and numbered in correspondence with the
replication script.
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in fuzzy-sets. Moreover, it has shown in an extended series of benchmark tests that CNA
performs both correctly and completely in ideal data scenarios and maintains reliable correctness
ratios across a wide range of data deficiencies.

CNA differs from QCA, the currently dominant CCM, in numerous respects. First, CNA not
only uncovers single-outcome structures but also structures with multiple outcomes. It is the only
CCM custom-built to uncover the Boolean complexity dimension of sequentiality. Second, CNA
builds causal models from the bottom up rather than from the top down. Thereby, it renders
redundancy elimination (or minimization) itself redundant—which constitutes the algorithmic
core of QCA. This reversal of the basic model building approach, on the one hand, allows CNA
to abstain from erroneously causally interpreting irrelevant factors in cases of model over-
specification and, on the other, permits CNA to directly apply one and the same algorithmic
protocol to all data types, without a detour via truth tables. Third, CNA imposes authoritative
consistency and coverage cutoffs on causal models (and all their elements), whereas QCA only
uses a consistency threshold in truth table generation. In consequence, CNA is much more risk-
averse than QCA when it comes to drawing causal inferences, which, in turn, yields that CNA
maintains reasonably high correctness ratios even in scenarios featuring severe data deficiencies
that cause QCA’s ratios to plummet. At the same time, we have seen that this inferential caution
does not entail that CNA would fail to completely uncover data-generating structures where
QCA succeeds in doing so.

Overall, the generalized version of CNA not only reliably uncovers all Boolean dimensions of
causal structures from crisp-set, multi-value, and fuzzy-set data, but also has effective inbuilt
controls that abandon an analysis that is too risky due to data deficiencies. In that light, CNA
constitutes a powerful methodological alternative for researchers interested in the Boolean
dimensions of causality.

Supplementary Materials. To view supplementary material for this article, please visit https://doi.org/10.1017/
psrm.2018.45
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