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Large-eddy simulation (LES) is utilized to investigate flow physics and lower-
fidelity modelling assumptions in the simulation of an oblique shock impinging on
a supersonic turbulent boundary layer (OSTBLI). A database of LES solutions is
presented, covering a range of shock strengths and Reynolds numbers, that is utilized
as a surrogate-truth model to explore three topics. First, detailed conservation budgets
are extracted within the framework of parametric investigation to identify trends that
might be used to mitigate statistical (aleatory) uncertainties in inflow conditions. It is
found, for instance, that an increase in Reynolds number does not significantly affect
length of separation. Additionally, it is found that variation in the shock-generating
wedge angle has the effect of increasing the intensity of low-frequency oscillations
and moving these motions towards longer time scales, even when scaled by interaction
length. Next, utilizing the LES database, a detailed analysis is performed of several
existing models describing the low-frequency unsteady motion of the OSTBLI system.
Most significantly, it is observed that the length scale of streamwise coherent
structures appears to be dependent on Reynolds number, and at the Reynolds number
of the present simulations, these structures do not exist on time scales long enough
to be the primary cause of low-frequency unsteadiness. Finally, modelling errors
associated with turbulence closures using eddy-viscosity and stress-transport-based
Reynolds-averaged Navier–Stokes (RANS) simulations are investigated. It is found that
while the stress-transport models offer improved predictions, inadequacies in modelling
the turbulence transport terms and the isotropic treatment of the dissipation is seen to
limit their accuracy.
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1. Introduction
Although the first measurements of shock-induced separation were made as early

as the late 1930s (Ferri 1940), there is still much about the physical dynamics
of shock/turbulent boundary layer interaction (STBLI) which remains unclear. It
has been shown, for instance, that fully separated STBLIs experience a low-
frequency oscillation of the shock structure and a periodic expansion/contraction of
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FIGURE 1. Illustration of a typical oblique shock/boundary layer interaction (Touber &
Sandham 2008).

the separation bubble (Dolling & Murphy 1983). Despite a number of experimental
and numerical studies on the nature of this low-frequency unsteadiness, there
remains dissidence within the community as to the precise mechanism responsible.
Furthermore, it is generally accepted that traditional eddy-viscosity-based Reynolds-
averaged Navier–Stokes (RANS) simulations may provide unsatisfactory prediction of
mean pressure, skin friction, and heat transfer in all but the weakest of interactions
(Knight & Degrez 1998). Of course, the existence of low-frequency unsteadiness as
a dominant flow feature may contribute to inaccuracies in steady RANS solutions;
however, it has been suggested that more fundamental issues such as the use of
a single length scale or the application of wall functions in eddy viscosity models
may contribute to their inaccuracy in simulations of separated flows (Dolling 2001).
It is therefore the objective of the present work to explore the physics of oblique
STBLI with high-fidelity large-eddy simulation (LES) over a range of incident shock
strengths and Reynolds numbers in order to: (i) identify important trends with respect
to the flow conditions which may, in general, be uncertain; (ii) investigate potential
mechanisms for low-frequency unsteadiness; and (iii) address potential causes of
failure in lower-fidelity RANS models.

STBLIs occur in a number of practical and experimental configurations,
including compression corner, expansion-compression corner, double fin, normal shock
impingement, and oblique shock impingement configurations (Knight et al. 2002). The
present study focuses on the unit problem of an oblique shock wave impinging on a
turbulent boundary layer (OSTBLI), illustrated schematically in figure 1. The incident
shock impinges on a turbulent boundary layer that is developing over a flat plate.
The adverse pressure gradient due to the shock causes a region of separated flow
to form in the boundary layer, and compression waves off the leading edge of this
bubble coalesce to form the reflected shock. On the reverse side of the separated
region, a Prandtl–Meyer expansion fan develops and joins the reflected shock structure.
In addition, the separation bubble undergoes a low-frequency expansion/contraction,
which perhaps causes (or alternately is a result of) a low-frequency motion in the
reflected shock structure.

The cause of this low-frequency unsteadiness remains an open issue, and several
explanations have been proposed. Ganapathisubramani, Clemens & Dolling (2009)
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have proposed that long vortical superstructures of the order of 50 boundary layer
thicknesses exist in the turbulent boundary layer and that the interaction of these
structures with the shock could be the cause of unsteadiness. An acoustic feedback
mechanism has been proposed by Pirozzoli & Grasso (2006) in which acoustic waves
propagate upstream from the tip of the incident shock, are amplified, and create
a resonance which is suggested as responsible for the low-frequency unsteadiness.
Piponniau et al. (2009) have proposed a model for low-frequency unsteadiness based
on the mass budget of a separation bubble requiring periodic entrainment and release
of mass at a long time scale. Robinet (2007) has investigated the linear stability of
STBLI in the context of laminar interactions and found evidence of a global mode
unsteadiness for sufficiently wide domains and large shock angles, which can be linked
to the size of the separation bubble. Although based on a less rigorous multi-time
scale-decomposition argument, Touber & Sandham (2009b) have also observed similar
global-mode instability using a mean flow field derived from turbulent LES of STBLI.
Most recently, Touber & Sandham (2011) have derived a first-order stochastic model
of OSTBLI dynamics, which is shown to respond to white noise with a low-frequency
response. This analysis is further supported by experimental observations by Poggie
& Smits (2005), which revealed that shock position fluctuations in several blunt fin
flows could be modelled accurately by linearly damped Brownian motion, consistent
with the model first described by Plotkin (1975). In the Plotkin model, shock
displacement is postulated to be limited by an unspecified linear restoring mechanism,
such that the shock position could be modelled according to a first-order ordinary
differential equation (ODE). Despite the range of possible mechanisms, however, most
experiments and simulations agree that the unsteadiness occurs at time scales between
10 and 100 times the characteristic time scale of the incoming boundary layer, δ/u∞,
defined based on the undisturbed boundary layer velocity thickness, δ, and the mean
free stream velocity, u∞.

Early experimental work on STBLI has largely focused on the compression ramp
geometry; however, a number of high-quality experiments have recently been carried
out to investigate OSTBLI by groups at Princeton University (Bookey, Wyckham
& Smits 2005a; Bookey et al. 2005b), the Delft University of Technology (TUD)
(Humble, Scarano & van Oudheusden 2007; Humble et al. 2009a,b), the University of
Michigan (Lapsa & Dahm 2010), and Institut Universitaire des Systèmes Thermiques
Industriels (IUSTI) in Marseille, France (Dupont, Haddad & Debieve 2006; Dussauge,
Dupont & Debieve 2006; Debieve & Dupont 2009; Delery & Dussauge 2009). In
the present study we focus on the IUSTI experiments, which were performed at
a more accessible Reynolds number than the TUD experiments. Additionally, these
experiments have been explored by a number of previous computational studies, which
provide a convenient basis for comparison to establish confidence in solution quality.
Touber & Sandham (2009b) and Hadjadj et al. (2010) have previously performed
LES computations of the IUSTI experiment near the experimental Reynolds number
(Reθ = 5100, based on the momentum thickness, θ ), and Pirozzoli & Bernardini
(2011) have recently completed a direct numerical simulation (DNS) of the same flow
conditions, at a reduced Reynolds number of Reθ = 2300. In general, most previous
computational studies have focused on a single set of flow conditions, and there are
only a limited number of studies that consider the effects of parametric variation.
Touber & Sandham (2009a) did perform a study that compared three different large-
eddy simulations of OSTBLI corresponding to three different experimental conditions
at varying Mach number, wedge (shock generator) angle, and Reynolds number. They
found, for instance, that the interaction length is proportional to the impinging shock
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strength when scaled by incoming boundary layer thickness and wall-shear stress.
However, since these simulations varied all three variables simultaneously, it is difficult
to draw conclusions regarding the effect of any single variable on OSTBLI physics.
Pirozzoli et al. (2010) have additionally performed limited parametric variation with
LES, studying variation with respect to four wedge angles at constant Reynolds
number.

In the present study, we present results from an extensive database of LES results,
spanning a total of 19 cases with varying grid resolution, domain size, Reynolds
number, and wedge angle. Work is focused on extracting from this database trends
and diagnostic data that might be useful in identifying or quantifying uncertainties
in RANS simulations of OSTBLI. In § 2, a brief discussion of the mathematical
formulation is presented, including numerical schemes and flow conditions used in the
present study. In § 2.3, the cause and effect of numerical dissipation in the present
high-fidelity numerics is investigated in some detail, and in § 2.4, a baseline simulation
is validated through a grid resolution study and through comparisons with DNS and
experimental data. Then, in § 3, results from the present investigation are presented.
First, in § 3.1, trends are investigated in mean flow variables such as skin friction
and wall pressure, intensity and time scale of low-frequency motion, and the balance
of turbulence kinetic energy (TKE) with respect to variation in wedge angle (shock
strength) and Reynolds number. Next, in § 3.2, an assessment is made of the evidence
for and against several popular mechanisms proposed to explain the low-frequency
unsteady motion of the interaction. To support this analysis, a time history is extracted
from the present database of the integrated conservation equations applied to moving
control volumes representing the separation bubble and the greater interaction region.
Then, in § 3.3, results are compared with RANS simulations utilizing a standard
two-equation model and a full Reynolds stress transport model. Through analysis of
TKE and Reynolds stress transport budgets, weaknesses in existing model formulations
are identified. Finally, in § 4, conclusions are drawn, and recommendations are made
concerning the direction of future work.

2. Computational setup and validation
2.1. Mathematical models

The LES code used in the present study solves the spatially filtered compressible
Navier–Stokes equations for an ideal non-reactive gas. A sixth-order compact
difference scheme (Lele 1992) is used to solve the governing equations in transformed
curvilinear coordinates, and Gauss–Seidel alternate directional implicit factorization
(Obayashi, Fuji & Gavali 1988; Iizuka 2006) is used with three Newton–Raphson
sub-iterations for time integration with second-order backwards differencing. At
each time step, an eighth-order low-pass spatial filtering scheme (Lele 1992) (with
filtering parameter αf = 0.495) is applied once to the conservative variables to ensure
stability, and we utilize second- and fourth-order near-boundary formulas developed
by Gaitonde & Visbal (1998) that retain the tridiagonal form of the equation set. In
order to maintain time accuracy of the solution, the time step is selected such that
the Courant–Friedrichs–Lewy (CFL) number is near, but less than, unity. This choice
of time-integration scheme and time step size has been used previously by Kawai,
Shankar & Lele (2010) and was shown to be sufficiently accurate for the simulation of
compressible turbulence.

Since central differencing schemes, such as the compact differencing scheme
used in the present study, can generate non-physical oscillations in regions of high
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gradient, a shock-capturing scheme is desirable; however, such a scheme must not
be so dissipative that it eliminates smaller scales of turbulence. For this reason, the
localized artificial diffusivity (LAD) method of shock-capturing (Kawai et al. 2010)
is applied. This method, which is based on Cook’s method (Cook 2007) of adding
artificial coefficients to the fluid transport terms (improved by modification of Mani,
Larsson & Moin (2009) and extended for use with curvilinear meshes by Kawai &
Lele (2008)), is enhanced by the addition of a dilatation-based switching function
(shock sensor) in the formulation of the artificial bulk viscosity. This switching
function removes unnecessary bulk viscosity within expansion and shock-free weakly
compressible turbulence regions and allows it to take effect only near shocks. Aside
from the implicit model created by addition of the artificial bulk viscosity and thermal
conductivity, no additional SGS model is used. Detailed description of the governing
equations and the LAD scheme can be found in previous works (Kawai & Lele
2008, 2010; Kawai et al. 2010). Indeed, there are many ways to approach the problem
of modelling the subgrid scales, and an implicit approach such as that used in the
present study is not without its limitations. For this reason, we do not presume to
promote the use of implicit LES in the general sense. However, as Kawai et al. (2010)
have shown, when the high-order numerics used in the present study are applied
with sufficiently high grid resolution, the implicit approach actually out-performs a
traditional LES approach using an explicit SGS model. Specifically, it was found that
use of an explicit SGS model resulted in additional damping of the resolved turbulence
at similar Reynolds number and grid resolution. By conducting a grid resolution
study and by computing TKE dissipation introduced by our numerics, we are able to
establish that our simulations are conducted under the necessary resolution required to
use an implicit approach in an appropriate manner.

The RANS code used in this study is the second-order accurate, unstructured ‘Joe’
code developed at Stanford University. This code solves the compressible Reynolds-
averaged Navier–Stokes equations on unstructured meshes of arbitrary polyhedral
elements using a finite volume approach with implicit time marching. Further details
on the formulation of the Joe RANS/URANS code may be found in the work by
Pecnik et al. (2009).

2.2. LES database
The LES database utilized in the present study consists of 19 total simulations of
oblique STBLI over an adiabatic flat plate with free stream Mach number M∞ = 2.28
and varying grid resolutions, domain sizes, Reynolds numbers, and wedge angles,
φ. In all simulations, periodic boundary conditions are applied in the spanwise
direction, and recycling/rescaling with dynamic reflection (RR + DR) (Morgan et al.
2011b) is used to generate inflow turbulence. RR + DR represents an improvement
of the traditional recycling/rescaling (RR) method for compressible boundary layers
developed by Urbin & Knight (2001) in which the recycled profile is first reflected
about a dynamically selected spanwise location. This method has been shown to
eliminate spurious spatiotemporal correlations associated with the recycling frequency
without damaging the physical structure of the turbulence, as illustrated in figure 2.
This figure (reproduced from Morgan et al. 2011b) plots contours of spatiotemporal
covariance of streamwise velocity in Mach 2.28 boundary layers simulated using
standard RR and with the improved RR + DR method. In both simulations, a flow-
through time (FTT) indicates the non-dimensional time required for the potential
flow to traverse from the inlet plane to the recycling capture plane (∼12 boundary
layer thicknesses, δ0). While the leftmost band of contours in the plots in figure 2
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FIGURE 2. Ten logarithmically spaced contours of streamwise velocity spatiotemporal
covariance function, Cov(u(x, t), u(x + 1x, t + 1t)), between 0.1 and 1.0 at y/δ0 = 0.7.
(a) Correlation with standard RR; (b) correlation with improved RR+ DR.

is physical and associated with the natural convection of turbulent structures, the
repeated bands that are observed using standard RR are a product of the periodic
re-introduction of self-similar eddies. With RR + DR, however, spanwise ‘scrambling’
is utilized to eliminate these non-physical correlations; a full discussion of the
formulation and effect of the RR+ DR procedure is given by Morgan et al. (2011b).

Our approach to studying OSTBLI is to simulate an undisturbed turbulent boundary
layer simultaneously and in a separate mesh from the interaction. The recycled
profile is then extracted and imposed as inflow conditions to the interaction mesh.
For this reason, the upstream boundary layer thickness δ0 is evaluated at the inlet
of the interaction mesh (and is equivalent to the capture plane in the undisturbed
boundary layer simulation). The far-field boundary opposite the adiabatic wall is a
buffer region and is sufficiently high that all disturbances exit through a simple
extrapolation outflow. In the interaction mesh, above the incoming boundary layer,
Rankine–Hugoniot relations are used to specify free stream values before and after the
shock at the inlet plane. In the case of wedge angle variations, the height of the shock
on the inlet plane is varied such that the inviscid shock impingement point (that is, the
point at which the oblique shock would impinge on the flat plate in the absence of a
boundary layer), x0, is held constant.

Figure 3 summarizes the various simulations undertaken and establishes the notation
used to refer to simulations in the remainder of this study. Note that the values
in figure 3 are a priori estimations; due to variations in incoming boundary layer
properties, resolutions and Reynolds numbers vary slightly from these values. Tables 3
and 4 in the Appendix provide detailed flow conditions and grid data, respectively, for
each of the 19 simulations computed. Flow conditions are chosen to be generally
comparable to DNS by Pirozzoli & Bernardini (2011) (M∞ = 2.28, Reθ = 2300,
φ = 8◦) and experiment by Piponniau et al. (2009) (M∞ = 2.28, Reθ = 5100,
φ = 7–9.5◦). The ratio of effective mesh spacing 1 = (1x1y1z)1/3 to the local
Kolmogorov length scale in DNS results by Pirozzoli & Bernardini (2011) is reported
to be less than 5 throughout the interaction. At L4 resolution, the present LES results
are comparable to DNS grid spacing in the wall-normal dimension; although they are
coarser by an approximate factor of two in the spanwise and streamwise dimensions.
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FIGURE 3. (Colour online) A colour-coded key to summarize simulation flow conditions and
naming conventions. Grid dimensions given are for the interaction mesh only, and regions
of stretching are indicated by a dash. Descriptor strings are used to refer to individual
simulations without ambiguity. Lx, Ly and Lz refer to the computational domain extent in
the streamwise, wall-normal, and spanwise directions, respectively, in terms of upstream
boundary layer thicknesses (δ0). 1+ denotes grid spacings in wall units.

2.3. Numerical dissipation
As described previously, the numerical code used in the present study employs an
eighth-order, spatial filtering scheme (Lele 1992) (with filtering parameter αf = 0.495)
once per time step to ensure stability. Unless the spatial resolution is very high, the
effect of this filtering can be to dissipate turbulence kinetic energy (TKE), which may
adversely impact the resolved TKE budget. Fortunately, it is possible to quantify the
numerical dissipation due to filtering by computing TKE before and after the filtering
step. In this section, we investigate the role that numerical dissipation may play by
considering the TKE budget for an undisturbed turbulent boundary layer at differing
levels of grid resolution. Each simulation in this section is performed with M∞ = 2.28,
Reθ = 2300, and a non-dimensional time step of 1(tu∞/δ0) = 0.0006 (CFL ≈ 0.5).
The transport equation for TKE (k = ũ′′i u′′i /2) is given in compressible form as follows
(Pirozzoli, Grasso & Gatski 2004):

∂ρk

∂t
= Ck + Tk + Pk + Vk + Kk + Dk. (2.1)

In the above equation, Ck, Tk, Pk, Vk, Dk and Kk represent, respectively, terms
due to convection, turbulent transport, production, viscous diffusion, dissipation, and
compressibility effects. Explicitly, these terms are given by

Ck =−∂ρ ũjk

∂xj
, Pk =−ρũ′′i u′′j

∂ ũi

∂xj
, Vk = ∂

∂xj

(
σ ′iju′′i

)
, (2.2)

Tk =− ∂

∂xj

[
1
2
ρũ′′i u′′i u′′j + p′u′′j

]
, Kk = p′

∂u′′i
∂xi
+ u′′i

(
∂σ ij

∂xj
− ∂p

∂xi

)
, (2.3)
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FIGURE 4. Effect of grid resolution on TKE budget in undisturbed boundary layer.
Normalization by free stream density, free stream velocity, and local boundary layer thickness.
Solid lines, STD-L2-2300-8.0; dashed lines, STD-L4-2300-8.0.

Dk = Dres + Dnum =
[
−σ ′ij

∂u′′i
∂xj

]
−
[ρ∞
1τ

(
k̂ − k

)]
. (2.4)

In these equations, ρ indicates density, t indicates time, xj indicates spatial dimension,
uj indicates the velocity vector, p indicates pressure, and σij indicates the viscous
stress tensor. An overbar is used to denote Reynolds averaging, a tilde denotes Favre
averaging, and a circumflex denotes a quantity computed on the filtered field.

Note that total dissipation, Dk, is defined as the sum of the resolved dissipation,
Dres, and the numerical dissipation, Dnum. In this case, it is assumed that the most
significant contribution to numerical dissipation is the spatial filtering. To assess the
effect of numerical dissipation on the budget, figure 4 plots the TKE budget terms
for two levels of grid resolution (L2 and L4). While it is clear that increasing the
grid resolution decreases the peak |Dnum|, total dissipation and production do not
seem to be significantly changed. There may be some effect on the peak turbulent
transport very near the wall; however, beyond y+ ≈ 25, there appears to be no
difference between the two levels of refinement. Therefore, we conclude that grid
resolution levels L2 and above are sufficient to appropriately resolve TKE production,
with numerical dissipation due to filtering effectively acting as a subgrid model of
dissipation at unresolved scales. Note that values of Kk are not plotted in figure 4
because they are essentially negligible. Expanded discussion of the role of numerical
dissipation in the present numerics is given by Morgan (2012).

2.4. Baseline validation
2.4.1. Effect of grid resolution and domain size

Before examining trends with respect to Reynolds number and wedge angle, it
is important to establish confidence in the quality of the baseline solution; this is
the motivating factor behind the grid resolution and domain sizing studies. It is
desirable to establish that the relevant scales of turbulence are accurately captured
and that the solution is not unduly influenced by the computational domain. Touber
& Sandham (2009b), for instance, have found that a domain which is not sufficiently
wide in the spanwise direction may result in a non-physical increase in the size
of the computed separation bubble. Table 3 in the Appendix tabulates characteristic
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FIGURE 5. Undisturbed incoming boundary layer: (a) van-Driest-transformed mean
streamwise velocity and (b) r.m.s. velocity fluctuations. Top curve, streamwise velocity
components; middle curve, spanwise; bottom curve, wall-normal.

quantities and compares them with DNS (Pirozzoli & Bernardini 2011) and experiment
(Piponniau et al. 2009). It is clear that for levels of refinement L2–L4, the agreement
is quite good in sensitive quantities such as skin friction and friction velocity (taking
into account slight discrepancies in Reθ ), although the present simulation consistently
predicts a shape factor H that is lower than the DNS. Figure 5 compares mean velocity
and r.m.s. velocity fluctuation profiles for the four levels of refinement at the same
flow conditions as the DNS. In figure 5(a), we plot for reference a linear relationship
(in grey) in the viscous sublayer and a logarithmic relationship (with von Kármán
constant κ = 0.41 and log-law constant C = 5.1) in the logarithmic region. With
the exception of the L1 simulation, which is clearly under-resolved, good agreement
is observed with both theory and DNS in mean profile. In figure 5(b), it is again
observed that while the L1 simulation is too coarse, there is good agreement with
DNS for all other levels of grid resolution.

As discussed in § 2.1, recycling/rescaling with a development length of 12δ0

is utilized based on the results of Morgan et al. (2011b). To investigate any
potential upstream influences in pressure, figure 6 illustrates r.m.s. wall pressure
as well as instantaneous wall pressure fluctuations in the boundary layer profile
which is introduced to the inlet of the STD-L2-2300-8.0 interaction simulation at
(x − x0)/δ0 ≈ −5.7. The r.m.s. pressure curve appears to have levelled off well
upstream of the extraction plane, and the r.m.s. value of approximately 3 % of the
free stream is in good agreement with values reported by Pirozzoli & Bernardini
(2011) as well as with the level of fluctuations observed in the instantaneous pressure
plot.

Figure 7 furthermore compares contributions to the TKE budget in the undisturbed
boundary layer with DNS results by Pirozzoli & Bernardini (2011). The comparison
DNS results were obtained using a hybrid central-differencing/fifth-order-weighted
essentially non-oscillatory (WENO) discretization with switching controlled by a
modified Ducros sensor. Although the present work is slightly more resolved in the
outer boundary layer wall-normal direction, the comparison DNS has finer resolution
in the spanwise and streamwise dimensions by approximately a factor of two over the
L4 grid resolution. Additionally, the DNS numerics do not utilize artificial dissipation
or spatial filtering, making the results by Pirozzoli & Bernardini (2011) the highest-
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FIGURE 6. Pressure fluctuations in the undisturbed boundary layer from the STD-L2-2300-
8.0 simulation: (a) spatially varying r.m.s. wall pressure, and (b) instantaneous wall pressure
at the profile extraction plane as a function of time. Solid grey line, mean (µp = 1.0001);
dashed grey lines, one standard deviation (σp = 0.027418).
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FIGURE 7. Comparison of baseline (STD-L2-2300-8.0) TKE budget with DNS by Pirozzoli
& Bernardini (2011) at (x−x0)/δ0 =−5.58. Normalization by free stream density, free stream
velocity, and local boundary layer thickness. Solid lines, present LES; dashed lines, Pirozzoli
DNS.

fidelity simulation data of the IUSTI experiments available to the authors and therefore
a reasonable baseline for validation of our own data. While there are some minor
discrepancies in the location and magnitude of peak quantities, the budgets generally
agree quite well, and recalling figure 4, we consider our statistics to be nearly grid
converged.

In figure 8, solution quality is investigated in the interaction. Figure 8(a) plots
coefficient of skin friction across the interaction, and figure 8(b) plots wall pressure.
These figures highlight how grid resolution can affect the size and location of the
predicted separation bubble. In particular, it is clear that the under-resolved simulation
at grid level L1 predicts separation further downstream, with higher peak skin friction
in the separation bubble. While the L4 simulation agrees quite well with the DNS, the
L2 and L3 simulations seem to slightly under-predict the size of the separation bubble
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FIGURE 8. Effect of grid resolution on separation bubble: (a) skin friction coefficient, and (b)
wall pressure.

and do not appear to capture the complex double-peak behaviour of the skin friction
curve in the separated region. As a result, in figure 8, the pressure rise and recovery
characteristics differ somewhat from the DNS (although the difference in pressure
recovery may also be related to the previously reported discrepancy in undisturbed
boundary layer shape factor).

It has been shown previously that domain size can affect the size of the separation
bubble (Touber & Sandham 2009b). Usually, this occurs when the domain is not wide
enough in the spanwise dimension such that turbulent structures are not de-correlated
and may mimic the effect of spanwise confinement on the separation bubble (Garnier
2009). Of course, a domain which is not long enough in the streamwise direction
might also affect the pressure recovery and, as a result, the size of the separation
bubble. Indeed, the outflow boundary condition is merely first-order extrapolation on
all variables. It is therefore expected that some disturbance should be observed in
the subsonic boundary layer flow at the outlet (e.g. skin friction and wall pressure
behaviour around (x − x0)/δ0 ≈ 5.0 in figure 8). To determine the effect, if any, that
domain size has on our solution, we have computed interactions at L2 resolution using
domains with double spanwise (WIDE) and double streamwise (LONG) dimensions.
Figure 9 plots time-averaged skin friction and wall pressure calculated with these
domains. Two interesting observations may be made from figure 9; first, it is observed
over the region (x − x0)/δ0 = −5 to 5 (the domain of the STD mesh) that there is
virtually no difference in the computed skin friction or wall pressure. Secondly, in the
LONG simulation, the pressure is seen to recover the same outlet value predicted by
the DNS. In the case of the extended streamwise domain, streamwise gradients are less
extreme at the outlet; thus, it is expected that the effect of disturbances at the outlet
should be less severe. The key point to take away from comparison with the LONG
mesh is, therefore, not that an extended domain reduces the disturbance at the outlet.
Rather, the key point is that the physics in the region of interest – the interaction
region – are unaffected by the presence of the disturbance, which is admittedly present
at the outlet of the STD domain.

Figure 10 further investigates the effect of domain size on solution quality by
looking at two-point velocity correlations from the STD-L2-2300-8.0 simulation. In
figure 10(a), contours of the two-point streamwise velocity correlation function Cuu are
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FIGURE 9. Effect of domain size on separation bubble: (a) skin friction coefficient, and (b)
wall pressure.
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baseline (STD-L2-2300-8.0): (a) contours of Cuu plotted against streamwise location and
spanwise distance at y/δ0 = 0.7; (b) Cuu plotted at several streamwise locations.

plotted against streamwise location and spanwise distance at a height of 0.7δ0 above
the wall, where

Cuu(x, y,1z)= u′(x, y, z)u′(x, y, z+1z)/u(x, y)2rms. (2.5)

It is clear that the integral length scale in the interaction region increases then
decreases sharply when compared with the length scale of the incoming boundary
layer. In figure 10(b), however, by plotting the correlations at several streamwise
stations, it is seen that although the integral length scale changes in the separation
bubble, the flow is apparently de-correlated before a distance equal to half the span.
This reinforces the conclusion drawn from figure 9 that the spanwise domain size is
sufficient with the STD meshes. It is also interesting to note that the sharp decrease
in integral length scale occurring around (x− x0)/δ0 =−0.9 corresponds to the second
streamwise skin friction peak observed in figures 8 and 9. This suggests that the shock
wave may be acting as a low-pass filter on larger energetic structures (damping smaller,
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FIGURE 11. Comparison of baseline (STD-L2-2300-8.0) TKE budget with DNS by Pirozzoli
& Bernardini (2011) at (x−x0)/δ0 =−0.14. Normalization by free stream density, free stream
velocity, and local boundary layer thickness. Solid lines, present LES; dashed lines, Pirozzoli
DNS.

high-frequency fluctuations), which is a characteristic observed of the stochastic model
presented by Touber & Sandham (2011).

Finally, in figure 11, contributions to the TKE budget are plotted at a streamwise
station corresponding to the separation bubble in the interaction. While both the LES
and DNS data are somewhat noisier than in the undisturbed boundary layer, we again
see generally good agreement despite what appears to be a shifting trend towards the
left in the LES turbulent transport and convective components. This may indicate that
the average height of the separation bubble is somewhat less in the LES. Despite the
differences that are observed, however, the present LES is found to be in generally
good agreement with the DNS, which provides confidence in the use of our numerics
for exploring the effects of parametric variation where no DNS data are available.

2.4.2. Comparison with experiment
Having established in the previous subsection that the baseline results are reasonably

grid converged and agree well with existing DNS data, it is now desirable to further
validate solution quality through comparison with available PIV data (Piponniau
et al. 2009). However, as previous simulations (Hadjadj et al. 2010; Pirozzoli et al.
2010; Pirozzoli & Bernardini 2011) have found, the size of the separation bubble is
often under-predicted with respect to the experiment. In the present simulations, this
result is no different. It is convenient for experimentalists to measure the interaction
length scale Lint as the difference between the inviscid impingement point x0 and
the approximate start of the reflected shock if it were extended to the wall. (Note
that this length scale should not be confused with the separation length scale Lsep,
which measures the difference between the points of separation and reattachment, as
determined by the skin friction.) In the present refined simulation STD-L4-2300-8.0
as well as in the higher-Reynolds-number simulation STD-L2-4800-8.0, the interaction
length is approximately Lint/δ0 = 2.90. As shown previously by figure 8, this value
agrees quite well with DNS results; however, the experimental interaction length scale
is actually Lint/δ0 = 4.18. When coordinates are scaled by the interaction length scale,
however, good qualitative agreement with experiment is observed, as illustrated by
figure 12.
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FIGURE 12. Mean and r.m.s. velocity distributions from simulation (lines) and PIV data by
Piponniau et al. (2009) (colour contours). Plots (a,c,e,g,i) compare results at L4 resolution
and Reθ = 2300; plots (b,d,f,h,j) compare results at L2 resolution and Reθ = 4800. Fifteen
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More quantitative comparisons with experiment are illustrated in figures 13 and
14. These figures plot, respectively, profiles of mean velocity and Reynolds stress
components at 11 streamwise stations through the interaction. Mean flow profiles in
figure 13, as expected, demonstrate good agreement with experiment and illustrate a
high level of grid convergence between the L2 and L4 grid resolutions. The Reynolds
stress components plotted in figure 14 are more sensitive and indicate some fairly
minor discrepancies between simulation and experiment. In particular, profiles in the
recovering boundary layer downstream of the interaction show the greatest level of
disagreement with the experiment and simulations at Reθ = 2300; it is likely, however,
that these differences are a result of differences in Reynolds number affecting the
growth rate of the recovering boundary layer, as results from the STD-L2-4800-8.0
simulation indicate better agreement with experiment at these locations. Similarly, the
reduced Reynolds number simulations appear to slightly over-estimate the Reynolds
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shear stress near the wall at the (x − x0)/Lint = −0.5 station, which corresponds
roughly with the point of initial separation, xsep, in the simulation. Otherwise, quite
good quantitative agreement is observed with experiment.

3. Results
Having outlined the numerics and established confidence in the quality of the

baseline solution in § 2, we now proceed with our investigation of OSTBLI physics
using the LES database. First, in § 3.1, trends in mean flow characteristics and
conservation budgets are extracted with respect to variations in flow conditions
(Reynolds number and shock strength) which may, in general, be uncertain. Next,
in § 3.2, several potential mechanisms that have been proposed as the cause of low-
frequency unsteadiness are analysed. Finally, in § 3.3, LES results are compared to
RANS simulations of the same phenomenon. Utilizing the validated baseline solution
as a surrogate-truth model, conclusions are drawn regarding the appropriateness of
RANS modelling assumptions.

3.1. Parametric variation
Previous simulations (Hadjadj et al. 2010; Pirozzoli et al. 2010), including the
present baseline and comparison DNS (Pirozzoli & Bernardini 2011), have found
that when utilizing spanwise periodic boundary conditions, the interaction length
scale Lint (that is, the difference between the inviscid impingement point x0 and
the approximate start of the reflected shock extended to the wall) and by extension
the length of separation Lsep are often under-predicted with respect to experiment.
In some instances, this discrepancy has been attributed to a difference in Reynolds
number. Indeed, the present baseline simulation and comparison DNS have both been
performed at Reθ = 2300, while the comparison experiment (Piponniau et al. 2009)
has been performed at Reθ = 5100. Pirozzoli & Bernardini (2011) argue that since
there exists a proportionality between non-dimensional shock strength P = 1p/2τw0

and interaction length (Dupont et al. 2006), interactions at higher Reynolds numbers
(which necessarily have lower incoming wall shear stress) should result in longer
interaction length scales. Note that a factor of 2 is used in the denominator of the
definition of P for compatibility with Dupont et al. (2006). We thus begin our study
of parametric variation by briefly considering the role that Reynolds number plays on
mean flow characteristics, before investigating in more detail the effect of increasing
shock strength via wedge angle.

Figure 15 shows skin friction and wall pressure across the interaction from
simulations with consistent 1+ grid spacing and wedge angle but with varying
Reynolds numbers. Recall that the L2 mesh resolution used here is based on viscous
wall units at a given Reynolds number; thus, as Reθ is increased, the number of
grid points is additionally increased to maintain the same level of viscous wall unit
resolution, as described in table 4 in the Appendix Based on this, we expect to
have the same degree of convergence at Reθ = 1500 and 4800 (where no DNS data
are available) as was previously demonstrated for Reθ = 2300. Recalling figure 8, it
is therefore important to consider that while fine details in skin friction indicated
some grid sensitivity at L2 resolution, length of separation was found to be mostly
insensitive. As expected, it is observed that increasing the Reynolds number decreases
the skin friction of the incoming boundary layer. Secondly, as the Reynolds number
is increased, the qualitative behaviour of the skin friction curve between separation
and reattachment appears to change; this behaviour is also reflected in the inflection
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FIGURE 15. Effect of Reynolds number on separation bubble: (a) skin friction coefficient,
and (b) wall pressure.

of the wall pressure curve. In particular, as Reynolds number is increased, the
magnitude of the first negative skin friction peak decreases, and the second negative
skin friction peak becomes more resolved. In fact, in the case of the STD-L2-4800-
8.0 simulation (which is quite close to the experimental Reynolds number), there
appear to be two completely separate separation bubbles. However, we also notice
that the size of the separation bubble does not appear to be significantly affected by
Reynolds number, which is consistent with observations made by Souverein (2010),
who compared a high-Reynolds-number OSTBLI experiment conducted at TUD
(Reθ = 50 000, M∞ = 1.69, φ = 6.0◦, p2/p∞ = 1.35) with a low-Reynolds-number
experiment conducted at IUSTI (Reθ = 5000, M∞ = 2.28, φ = 5.5◦, p2/p∞ = 1.39) and
found Lint/δ0 to be between 2.2 and 2.3 in each case. In regard to the scaling argument
given by Pirozzoli & Bernardini (2011), it should be noted that the proportionality
described by Dupont et al. (2006) was based on an experimental study in which the
interaction parameter P was varied by changing the wedge angle – not by varying
Reynolds number. It is therefore concluded that, at least over the range of Reynolds
numbers considered in the present study, incoming skin friction is less important than
shock strength in determining separation bubble size.

Attention is now turned to the role of shock strength in the physics of OSTBLI. For
this investigation, conclusions are drawn primarily from seven simulations conducted
at Reθ = 1500. These simulations, which are summarized in table 2, were conducted
such that each simulation was provided the same realizations of inflow turbulence,
and statistics are collected over a total time integration of 1419 δ0/u∞. In figure 16,
skin friction and wall pressure profiles are plotted across the interaction at simulations
with consistent 1+ spacing and Reynolds number for seven different wedge angles,
ranging from weak separation with a 6.5◦ shock generator to strong separation with
a 9.5◦ wedge. In order to ensure that the pressure profiles in figure 16 are unaffected
by outflow boundary conditions, an additional double-length (LONG) simulation was
run with a 9.5◦ wedge angle which indicated no significant effect due to domain size
(Morgan 2012). As expected, it is observed that the stronger incident shocks result in
greater separation. By observing the distance between curves, it is also clear that the
relationship between wedge angle and separation length does not appear to be linear;
that is, the intensity of the interaction appears to increase quite rapidly as the wedge
angle is increased beyond a certain level. Perhaps unexpectedly, neither the minimum
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FIGURE 16. Effects of shock strength on separation bubble for simulations STD-L2-1500-
6.5 through STD-L2-1500-9.5: (a) skin friction coefficient, and (b) wall pressure. Arrows
indicate direction of increasing wedge angle from 6.5 to 9.5◦.

Simulation
(xsep − x0)

δ0

(xret − x0)

δ0
Lsep/δ0 Lint/δ0

Lsep

Lint
h/δ0 h+

STD-L2-1500-6.5 −1.42 −0.59 0.83 2.49 0.33 2.22×10−2 8.12
STD-L2-1500-7.0 −1.57 −0.60 0.97 2.55 0.38 2.21×10−2 8.08
STD-L2-1500-7.5 −1.80 −0.66 1.14 2.61 0.44 2.15×10−2 7.86
STD-L2-1500-8.0 −2.01 −0.67 1.34 2.79 0.48 2.19×10−2 8.01
STD-L2-1500-8.5 −2.32 −0.69 1.64 3.14 0.52 2.14×10−2 7.83
STD-L2-1500-9.0 −2.65 −0.63 2.02 3.46 0.58 2.19×10−2 8.01
STD-L2-1500-9.5 −3.17 −0.50 2.67 3.83 0.70 2.84×10−2 10.4

TABLE 2. Variation in size of interaction as a function of wedge angle: xsep and xret denote,
respectively, the points of mean separation and reattachment as determined by skin friction;
Lsep indicates the length of separation (xret − xsep), and Lint indicates the interaction length
scale (the difference between the inviscid impingement point x0 and the approximate start
of the reflected shock extended to the wall). The maximal bubble height, h, is computed
from the mean dividing streamline.

skin friction nor the location of the reattachment point appear to be significantly
affected by shock strength, although the latter observation is probably a result of
maintaining the inviscid shock impingement location, x0, consistent for all simulations.
It is also interesting to note that for wedge angles above ∼8.0◦, the ‘plateau’ feature
in the skin friction curve appears to become more pronounced. The significance of
this feature is not immediately clear; however, it probably has to do with the incipient
nature of separation associated with weaker incident shocks.

With the database of the LES results presented, it is now possible to better consider
the scaling of the interaction length scale. As previously mentioned, the first OSTBLI
experimental studies at IUSTI by Dupont et al. (2006) treated interaction length as
a function of P (pressure rise over shear stress). However, later work by Souverein
(2010) has indicated that this simple scaling may not adequately collapse data taken at
significantly different Reynolds numbers, a result which is consistent with the present
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investigation. Souverein (2010) suggested instead that the length scale should be scaled
by displacement thickness and a function of the shock strength, g3(φ, β), and that this
interaction length scale should vary as a function of the potential flow; as originally
formulated by Souverein (2010), the function g3 is defined by

g3(φ, β)= sin (β − φ)
sin(β) sin(φ)

, (3.1)

where φ indicates the wedge angle and β indicates the shock angle.
Jaunet, Debieve & Dupont (2012), however, have recently concluded that the

potential flow function utilized by Souverein (2010) is insufficient to adequately
capture the effect of wall heating, and work by Morgan (2012) has shown that scaling
proposed by Jaunet et al. (2012) is again insufficient to capture Reynolds number
effects. Thus, to assess interaction length scale scaling in the present work, basic
dimensional analysis is first invoked. Drawing on the results of these previous studies
and the collected body of knowledge surrounding OSTBLI phenomena, we begin our
dimensional analysis by assuming that the interaction length scale should be a function
of the potential flow conditions, the shock strength, the wall temperature, the adiabatic
wall temperature (Taw), the wall shear stress, and the boundary layer displacement
thickness; this statement is expressed functionally by

Lint =Φ (u∞, ρ∞, µ∞,1p,Tw,Taw, τw, δ
∗) . (3.2)

Notice that the interaction is assumed to be a function of displacement thickness, δ∗,
rather than the momentum thickness. This result derives from analysis by Souverein
(2010), who found little difference when applying scaling arguments based on either
mass conservation or on momentum conservation. If the classical ‘Π theorem’ by
Buckingham (1914) is invoked, it is easily shown that the non-dimensional length
scale may be expressed instead as a function of four non-dimensional parameters,
including a coefficient of pressure (Cp = 1p/(ρ∞u2

∞/2)), the ratio of the wall
temperature to the adiabatic wall temperature, the Reynolds number based on
displacement thickness, and the skin friction coefficient, as expressed by

Lint

δ∗
=Φ

(
Cp,

Tw

Taw
,Reδ∗,Cf

)
. (3.3)

This is, of course, only one choice of several valid sets of non-dimensional
parameters describing the OSTBLI system. However, the present collection of
parameters is selected because it may be used to describe a relationship between
the non-dimensional length scale and a non-dimensional shock strength. To establish
such a relationship, one might be tempted to consider the limit as Reδ∗ →∞ and to
draw on the results of triple deck theory (Stewartson 1974). However, as the present
analysis concerns interactions at relatively low Reynolds number, it is believed that
such scaling would be inappropriate. Therefore, we begin by assuming the form of
a power law monomial in order to determine an empirical relationship. Thus, the
problem of proper scaling is reduced to finding the exponents α1, α2 and α3 that best
collapse the length scale L̂ against the interaction strength parameter P̂ , where L̂ and
P̂ are given explicitly by

L̂= Lint

δ∗g3(β, φ)
, P̂ = Cp

(
Tw

Taw

)α1

(Reδ∗)
α2
(
Cf

)α3 . (3.4)
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FIGURE 17. Scaling of interaction length scale. P̂ = Cp(Tw/Taw)
−1/10

(
Cf

)1/10
. (a) Raw

comparison with experimental data by Jaunet et al. (2012). (b) Scaling with geometrical
correction factor.

Note that the power on Cp is chosen to be unity in order to emphasize interpretation of
the horizontal scaling as a non-dimensional shock strength.

Utilizing the experimental results by Jaunet et al. (2012) to determine α1 and the
present LES results to determine α2 and α3 (as discussed in greater detail by Morgan
2012) yields two valid scalings. In the first scaling, α1 = −1/10, α2 = −1/40 and
α3→ 0; in the second scaling, α1 =−1/10, α3 = 1/10 and α2→ 0. This fact suggests
that the effects of Reynolds number and skin friction may be combined into a single
parameter. It is further encouraging to note that when comparing the two valid scalings
α2 =−(α3/4), which is a result consistent with the empirical relationship suggested by
Blasius (1913), in which skin friction in the undisturbed boundary layer is expected
to scale like Re−1/4

θ . To simplify the present analysis, then, the second scaling is
selected such that the dependence on Reynolds number is dropped, and assumed
to be absorbed by the dependence on skin friction. Although this proposed scaling,
illustrated in figure 17(a), appropriately collapses each data set individually, there still
remains a disparity between the experimental data and the LES data. As discussed
previously, however, the spanwise periodic simulations are known to under-predict the
size of separation with respect to experiment. If this discrepancy is accounted for by
introducing an empirical factor κg = 0.85 to the scaling of the simulation results, as
shown by figure 17(b), the two data sets show excellent collapse.

The effect of parametric variation on the analysis of conservation budgets in the
interaction is considered next. It is expected that such data may be useful when
analysing or improving lower-fidelity models (the subject of § 3.3) or in the analysis of
low-frequency dynamics (the subject of § 3.2). In particular, attention is focused on the
balance of terms in the Navier–Stokes momentum equations

∂

∂t
(ρũi)=− ∂

∂xj

(
ρũiũj

)− ∂p

∂xi
+ ∂

∂xj

(
σ ij − ρũ′′i u′′j

)
(3.5)

(as presented by Huang, Coleman & Bradshaw 1995), as well as the TKE equation
described earlier (equation (2.1)). Note that the mass continuity equation is not
considered here because this equation contains no turbulence terms in the context of
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FIGURE 18. Change in momentum budget terms as a function of wedge angle: (a,c)
streamwise momentum, (b,d) wall-normal momentum; (a,b) (x − x0)/Lint = −0.60, (c,d)
(x − x0)/Lint = 0.00. Arrows indicate direction of increasing wedge angle from 6.5 to 9.5◦.
Solid, C; dashes, P; dots, V; dashes and dots, T . Maximum residual imbalance: +/−0.001.

Favre-averaged mean flow. Nor is the internal energy budget considered here because
heat transfer in this particular problem is minimal in comparison to momentum effects;
however, this analysis may be found in Morgan & Lele (2011).

Denoting the right-hand side terms in (3.5) (moving from left to right) by C, P,
V and T , which indicate, respectively, the contributions due to convection, pressure,
viscous diffusion, and turbulent transport, we now plot in figure 18 the streamwise and
wall-normal momentum budgets at (x−x0)/Lint =−0.60 and 0.00. First, by considering
the streamwise momentum budgets, it is observed that all four terms are active in the
inner boundary layer region, with the greatest contribution due to turbulent transport
and the viscous contribution approaching zero around y/δ0 ≈ 0.08. It is also interesting
to note that upstream of the impinging shock foot, there is a trend of increasing
magnitude with increasing shock strength, while downstream this trend reverses. This
may seem somewhat counter-intuitive at first; however, it is likely a result of the
shock foot being closer to the wall in the case of the smaller wedge angle. That is,
greater wedge angles create greater separation, which results in the sonic line rising
away from the wall with increased wedge angle. Thus, at (x − x0)/Lint = 0.00, terms
related to total stress (viscous stress + Reynolds stress) balance the pressure gradient
near the wall, and this total should be greater for smaller wedge angles due to faster
downstream recovery rates, as shown by figure 16. In the wall-normal accounting,
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FIGURE 19. Change in turbulence kinetic energy budget terms as a function of wedge angle:
(a,b) (x− x0)/Lint =−0.60, (c,d) (x− x0)/Lint = 0.00. Arrows indicate direction of increasing
wedge angle from 6.5 to 9.5◦. (a,c) Solid, Pk; dashes, Dk; dashes and dots, Kk. (b,d) Solid, Tk;
dashes, Vk; dashes and dots, Ck. Maximum residual imbalance: +/−0.0025.

however, the viscous term is negligible, and the convective and turbulent transport
terms balance each other for most of the boundary layer thickness, with the convective
term playing a role only near the shock.

Turning now to the turbulence kinetic energy budget described by (2.1), figure 19
plots the variation in TKE terms with increasing wedge angle. As done previously,
the terms are divided into two plots for clarity, with contributions from production
(Pk), dissipation (Dk), and compressibility (Kk) illustrated separately from contributions
due to turbulent transport (Tk), viscous diffusion (Vk), and convection (Ck). Again, the
familiar trend is observed of increasing magnitude with wedge angle at the upstream
location and decreasing magnitude downstream. It is also notable that in the inner
boundary layer, all terms except convection appear to contribute significantly to the
budget. The convective term appears to be important only in the outer boundary layer
(and in fact changes signs between the upstream and downstream locations), whereas
the viscous diffusion term appears to be important only in the inner boundary layer.
Additionally, while there is some noise in the contribution due to compressibility
terms, it appears that Kk is generally small enough to be disregarded as negligible.
By comparing our STD-L2-1500-8.0 results with the baseline STD-L2-2300-8.0 results
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FIGURE 20. Compensated wall pressure spectra (fE(f )) for simulations STD-L2-1500-(6.5,
8.0, 9.5). Spectra are normalized such that at each streamwise station, the integral over
frequency is unity. 12 contour levels are shown, from 0 to 0.6. Plots (a–c) are normalized by
δ0, and (d–f ) are normalized by Lint ; (a,d) φ = 6.5◦, (b,e) φ = 8.0◦, (c,f ) φ = 9.5◦.

(shown in figure 7), the apparent effect of increasing Reynolds number is to generally
increase the peak magnitudes while simultaneously shifting the location of peak values
closer to the wall.

The effect of wedge angle variation on low-frequency unsteadiness is considered in
figure 20. In figure 20(a–c), compensated wall pressure spectra (that is, the energy
spectral density of wall pressure fluctuations, pre-multiplied by the frequency and
normalized to integrate to unity) are plotted for three wedge angles, with normalization
by the undisturbed boundary layer thickness, δ0, and free stream velocity, u∞;
in figure 20(d–f ), these plots are repeated with length scales normalized by Lint .
When normalized by the constant δ0, as in figure 20(a–c), it is observed that
the location of the characteristic low-frequency peak occurs approximately at the
location of initial separation in each case and that, consistent with figure 16, this
location moves upstream with an increase in shock strength. Furthermore, when
scaling by δ0, it appears that the time scale of the low-frequency peak shifts out
towards lower frequencies, which is consistent with simulations performed by Pirozzoli
et al. (2010). On the other hand, by choosing Lint to scale the spatial dimension,
as in figure 20(d–f ), one may account for the larger scale of interaction with
increased shock strength. Although this scaling essentially fixes the location of the
low-frequency peak in the streamwise dimension, it makes clear the fact that the
strongest interaction contains energy at lower frequencies, even when the increased
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interaction length scale is taken into account. This trend may also be true between
the 6.5 and 8.0◦ interactions, although the evidence is somewhat less conclusive. As
Piponniau et al. (2009) and Souverein (2010) have conjectured, there may be a change
in the dominant mechanism behind low-frequency oscillations when moving from the
incipient to the strongly separated regime. Although the mean flow is separated in
each of the simulations presently considered, as we report in Morgan, Kawai & Lele
(2011a), the maximum probability of flow reversal in the 8.0◦ case, even along the
wall beneath the impinging shock foot, remains near 60 %. Thus, the shift toward
lower frequencies that is observed with increased shock intensity may be due to the
change in the interaction dynamics that is observed when moving away from the
incipient regime and towards the strongly separated regime. Recalling that all three
simulations were provided identical realizations of inflow turbulence, it additionally
seems unlikely that the low-frequency motions should be purely a response to forcing
(either through the interaction with long coherent structures or unintentionally through
the recycling/rescaling procedure) in the undisturbed boundary layer. The mechanism
behind low-frequency unsteadiness will be explored in greater detail in § 3.2.

3.2. Investigation of low-frequency motion

Attention is now turned to the governing mechanism behind low-frequency
unsteadiness in OSTBLI. Our approach is to utilize the present LES database to
assess some of the most commonly cited mechanisms that have been proposed. In
particular, it is the intention of this section to investigate causal mechanisms suggested
by Pirozzoli & Grasso (2006), Ganapathisubramani et al. (2009) and Piponniau et al.
(2009). To begin, the model described by Piponniau et al. (2009) is considered, which
proposes the following mechanism. First, eddies are formed in the mixing layer near
the separation point and grow as they move downstream. These eddies entrain some
fluid from the separated zone into the mixing layer, and after some distance, the eddies
are shed downstream, bringing with them the mass, momentum, and vorticity that has
been entrained. This action generates a deficit of mass in the separation bubble that
increases over time, which must be re-introduced into the bubble. Using a simplified
geometric description of the separation bubble, Piponniau et al. (2009) then calculate
that the time scale over which this re-introduction of mass takes place should be on
the same order as the low-frequency oscillations. To assess this model, our approach
is to compute the time history of the mass and momentum conservation equations
integrated over the spanwise averaged separation bubble and surrounding area. In this
way, we expect to quantitatively describe the transfer of mass and momentum between
the separation bubble and surrounding area and to analyse the time scale of dynamics
in the separation bubble to determine if it is in agreement with the model described by
Piponniau et al. (2009). For this investigation, a time record from the STD-L2-2300-
8.0 database is utilized spanning 618 δ0/u∞ with instantaneous, spanwise averaged
flow data sampled every 0.02736 δ0/u∞. In order to identify low-frequency behaviour
in our data, a pseudo-Gaussian low-pass filter is applied to the time-varying signals of
the budget terms.

The budgets of two control volumes are considered: one representing the separation
bubble and another representing the more general interaction zone, which encompasses
the area surrounding the separation bubble. The mass conservation equation for an
arbitrary, moving control volume (CV) with a volume denoted by Ω and a boundary
denoted by ∂Ω is given by (3.6) (see Morgan 2012 for the full derivation). In this
equation, vc indicates the local velocity of the control volume boundary, and n̂ denotes
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the local outward normal:

d
dt

∫
Ω

ρ̄ dV︸ ︷︷ ︸
mass flux term

=−
∮

∂Ω

r · n̂ dS︸ ︷︷ ︸
convective term

+
∮

∂Ω

ρ̄
(
vc · n̂

)
dS︸ ︷︷ ︸

term due to unsteady CV

. (3.6)

For the spanwise averaged interaction, r = {ρ̄ũ, ρ̄ṽ}. For ease of notation, we will
denote the mass flux term, the convective term, and the term due to unsteady
CV motion by Ṁρ , Cρ , and UCV

ρ , respectively. Similarly, the streamwise momentum
conservation equation is given by

d
dt

∫
Ω

ρ̄ũ dV︸ ︷︷ ︸
momentum flux

=−
∮

∂Ω

(b+ p+ v+ t) · n̂ dS︸ ︷︷ ︸
convective term

+
∮

∂Ω

ρ̄ũ
(
vc · n̂

)
dS︸ ︷︷ ︸

term due to unsteady CV

, (3.7)

where b = {ρuũ, ρuṽ}, p = {p̄, 0}, v = {−σ11,−σ12}, and t = {ρu′′u′′, ρu′′v′′
}

. Integral
relations of these terms represent, respectively, convective contributions due to bulk
transport (Bρu), pressure (Pρu), viscous diffusion (Vρu), and turbulent transport (Tρu). To
ease notation, we denote the momentum flux term and the term due to unsteady CV
motion by Ṁρu and UCV

ρu ; the convective term will be denoted by its aforementioned
constitutive terms such that Cρu = Bρu + Pρu + Vρu + Tρu. Note that this notation is
similar to the notation used in § 3.1 to describe pointwise momentum conservation
components; in the present section, however, the previous notation is superseded with
these definitions for integrated momentum conservation in a moving control volume.

The boundaries of the separation bubble are defined by the dividing streamline such
that the momentum flux term is identically zero. Note, however, that instantaneously,
there may be more than one set of closed curves defined by the dividing streamline;
that is, there may be more than one bubble. Indeed, in the case of the 8.0◦ interaction,
this is almost always true. To account for this fact, the terms in (3.6) are summed over
all bubbles. To capture the dynamics of the area surrounding the separation bubble,
we define the second control volume with a parabolic arc, as illustrated in figure 21,
fitted through three control points. Its extent is defined by the two points on the wall
where the skin friction coefficient, which has been smoothed with a 15-point pseudo-
Gaussian smoothing filter, is equal to the average of the minimum and maximum
values; that is, the extent is defined by the two points where Ĉf = (Ĉf ,min + Ĉf ,max)/2.
The height of the arc is defined by a third point, chosen to approximate the depth of
penetration of the impinging shock foot. This third point is selected by scanning in
the y-direction for the highest point of the sonic line. As illustrated in figure 21, this
choice of curve is defined such that the majority of the strong vorticity originating
at the foot of the reflected shock is generated within the curve and exits through its
leeward side. Additionally, the curve is defined such that peak TKE is captured within.
By analysing the integrated budgets for both the separation bubble and the surrounding
area (as defined by the parabolic arc segment just defined), we hope to probe for
low-frequency transfer between the bubble itself and the surrounding shear layer.

Figure 22 plots the most significant contributions to the mass and momentum
conservation budgets integrated over the separation bubble and interaction zone control
volumes over a time history of 600 δ0/u∞. For reference, signals indicating the size
of the separation (Lsep), the maximum TKE in the upstream boundary layer (kup),
and location of the reflected shock foot (xshk) are also plotted. (The latter signal is
determined by utilizing the pressure gradient magnitude as a shock sensor outside
the boundary layer, performing a linear least-squares fit to the streamwise location of
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FIGURE 21. Definition of the interaction zone control volume. (a) The exterior control
volume (dashed black) and control points (black circles) are superimposed on colour contours
of d(p/p∞)/d(x/δ0). Vortical structures defined by the Q-criterion are outlined in solid black,
and shock positions are indicated by dotted white lines. (b) The exterior control volume
(dashed black) and control points (black circles) are superimposed on colour contours of
k/u2

∞. Shock positions are indicated by dotted black lines. (c) The filtered skin friction
coefficient, Ĉf (solid black) is superimposed on the raw coefficient (solid grey). Dashed black
lines indicate Cf = 0 and Ĉf = (Ĉf ,min + Ĉf ,max)/2.

maximal pressure gradient, and extending this line to the wall.) Note that a low-pass
filter with a cut-off frequency of 0.25 u∞/δ0 has been applied to all signals to aid
in visualization, while maintaining the full low-frequency spectra. Considering first
mass conservation in the separation bubble, it is observed that the mass flux Ṁρ

is balanced almost entirely by UCV
ρ . In the momentum budget (where the flux term

is zero due to the choice of the dividing streamline as the upper boundary), the
convective contributions due to pressure (Pρu) and turbulent transport (Tρu) mostly
balance, with some nearly constant contribution from viscous diffusion (Vρu). In the
interaction zone, the same two terms balance in the mass equation; however, the
momentum balance is different. While the separation bubble has a mean height of
only 0.0324 δ0/u∞, the momentum bubble extends away from the wall up to the
sonic line. Thus, it is seen in figure 22(d) that the pressure term is balanced by
the bulk transport term (Bρu), rather than the turbulent transport term, as in the
separation bubble. As expected, the momentum flux is non-zero in the interaction
zone; however, this term is balanced exactly by the term due to CV motion (UCV

ρu ).
Although the additional reference signals are plotted here for general comparison only,
some trends may already be identified; for instance, decreases in separation length are
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FIGURE 22. Integrated conservation budgets in moving control volumes. (a,c) Mass
conservation budget: solid black, Ṁρ ; solid grey, UCV

ρ . (b) Streamwise momentum
conservation budget: solid black, Pρu; solid grey, Tρu. (d) Streamwise momentum
conservation budget: solid black, Ṁρu; solid grey, UCV

ρu ; dashed black, Pρu; dashed grey,
Bρu. (e–g) Time signals of separation length scale (Lsep), maximum TKE upstream of the
interaction (at (x− x0)/δ0 =−3.5), and reflected shock position, xshk . All signals filtered using
low-pass filter with cut-off frequency of 0.25 u∞/δ0.

generally preceded by increased upstream TKE. Similarly, decreases in upstream TKE
generally precede upstream motion of the reflected shock foot. Correlations between
shock motion and the upstream boundary layer are examined more rigorously later in
this section when considering the superstructure theory of Ganapathisubramani et al.
(2009). Attention is first turned to the mass entrainment model suggested by Piponniau
et al. (2009).

In figure 23, an attempt is made to assess the role that mass deficit in the separation
bubble may play in the low-frequency dynamics of the OSTBLI system. Temporal
covariance between integrated density in the separation bubble (M = ∫

Ω
ρ̄ dV) and
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FIGURE 23. Spectral content of mass signal in the separation bubble. (a) Temporal
covariance of shock position and total mass signals. (b) Energy spectral density (E(f )) of
reflected shock position (xshk ) and

∫
Ω
ρ̄ dV integrated over separation bubble control volume.

Signals are normalized by their maximal values. Indicated frequencies 1–6 correspond to
St ≈ 0.00324, 0.00853, 0.0148, 0.0237, 0.126 and 0.180.

the streamwise location of the reflected shock foot, xshk , is plotted first. Here and
elsewhere in the present work, the covariance function for two arbitrary signals s1 and
s2 is defined by

Cov (s1, s2)= s′1s′2(
s′1s′1 s′2s′2

)1/2 . (3.8)

Cs1,s2(1t)= Cov (s1(t), s2(t +1t)) . (3.9)

The covariance function illustrated in figure 23 demonstrates that the two signals are
negatively correlated with a time delay of 1t = 9.93δ0/u∞. This indicates that the xshk
signal tends to lag the total mass signal and that (due to the negative correlation),
the shock tends to move upstream when the separation bubble contains more mass
(and conversely move downstream when the bubble contains less mass). Since the
wall-normal density gradient is not very large over the height of the bubble, it may be
assumed that the change in mass is most likely a result of a change in bubble area,
rather than due to compressibility effects.

To investigate the role that the observed correlation may play in low-frequency
dynamics, figure 23 additionally plots the energy spectra of

∫
Ω
ρ̄ dV and of xshk .

From this comparison, it is observed that while the maximal peak for the xshk signal
occurs at a Strouhal number of 0.126 (with a low-frequency peak at St = 0.00853),
the maximal peak for the mass signal occurs at a higher Strouhal number of 0.180.
According to analysis by Piponniau et al. (2009), the frequency of the mass recovery
in the separation bubble should be given by

St = f δ0

u∞
=Φ(Mc)g(r, s)

δ0

h
, (3.10)

where Φ(Mc) indicates the normalized spreading rate of a subsonic half jet (a function
of isentropic convective Mach number), g(r, s) is a function of the velocity and
density ratios (r and s, respectively) across the shear layer, and h is the height of
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the separation bubble as defined by the dividing streamline. Following the procedure
utilized by Piponniau et al. (2009) to determine Φ, we observe that for free stream
Mach numbers greater than 2, Mc ≈ 1.0. Drawing from the normalized spreading rate
described by Smits & Dussauge (2006), we have Φ (Mc = 1) ≈ 0.3. Next, drawing
from our LES database, we determine r ≈ −0.012 and s ≈ 0.531, from which can
be computed g(r, s) ≈ 0.0192. Finally, the mean height of the separation bubble
in LES is computed as h/δ0 = 0.0324. Taking Φ(Mc) = 0.3, g(r, s) = 0.0192, and
h/δ0 = 0.0324, (3.10) predicts that the Strouhal number associated with mass recovery
in the separation bubble should be 0.178, which is in excellent agreement with the
observed maximal frequency in figure 23. The fact that (3.10) is able to accurately
predict the frequency associated with the mass in the separation bubble is strongly
indicative that the mass entrainment mechanism described by Piponniau et al. (2009)
is a physical process that occurs in the interaction. However, it is significant that
the principal mode in the mass signal is significantly higher than the principal mode
in the shock position signal, and the subsequent low-frequency tones do not seem
to be well correlated. This difference in time scales seems to be largely influenced
by the high aspect ratio of the separation bubble in the present simulation. That is,
h/δ0 in the present simulation is approximately 68 % smaller than the height of the
bubble in the 8◦ experiment considered by Piponniau et al. (2009), and as predicted
by (3.10), the smaller bubble should result in a higher frequency of mass recovery
in the bubble. (Recall that the discrepancy in separation bubble size with respect to
experiment was discussed in § 3.1 and found to be a characteristic largely endemic
to high-fidelity simulations with periodic spanwise boundary conditions.) On the other
hand, it is possible that the scaling arguments made by Piponniau et al. (2009) could
still be valid even if the mass entrainment model is not the principal force driving
the low-frequency unsteadiness; that is, if the low-frequency tone number in the xshk
signal were normalized by the functions Φ(Mc) and g(r, s), as suggested by Piponniau
et al. (2009), one might expect the data to collapse to a value between approximately
5 and 9. Indeed, if we normalize the Strouhal number based on interaction length
scale in this way, StL[Φ(Mc)g(r, s)]−1 = 4.28, which given the amount of scatter
in the data, is in reasonable agreement with figure 12 in Piponniau et al. (2009).
However, two facts remain which may suggest that the mass entrainment process is
not the only mechanism forcing low-frequency motion of the reflected shock. First,
as previously noted, the maximal frequency associated with mass in the separation
bubble in the present simulation is higher than the frequency associated with shock
motion; and secondly, there appear to exist additional low-frequency peaks in the
shock motion signal for which there are no significant counterparts in the mass signal
(e.g. St = 0.024 and 0.014). Thus, it is worthwhile considering the potential role other
proposed mechanisms may play in the low-frequency unsteadiness, while allowing for
the possibility of multiple first-order sources of forcing.

The acoustic resonance mechanism proposed by Pirozzoli & Grasso (2006) is
considered next. As with the mass entrainment model, the acoustic resonance
mechanism is initiated by vortices shed from the separation point. As Pirozzoli &
Grasso (2006) hypothesize, these vortices then interact with the impinging shock foot,
which results in the upstream propagation of slow-moving acoustic waves. Multiple
pressure waves may then create a resonance with constructive interference and affect
the position of the reflected shock foot. With the proposed mechanism as a starting
point, Pirozzoli & Grasso (2006) then note that for resonance to occur, the shedding
process and the acoustic radiation must share a common characteristic frequency,
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FIGURE 24. Determination of acoustic wave propagation speeds at various locations in the
interaction. (a) Pressure probe locations are indicated by black dots. Thin black lines are
ten evenly spaced contours of pressure between p/p∞ = 1 and 2.8. The thick grey line
indicates the mean location of the sonic line. (b) Temporal covariance function computed for
the pressure signal at probes 35 and 36. (c) Temporal covariance function computed for the
pressure signal at probes 9 and 11.

which is described by

Stn = fnδ0

u∞
= δ0

L∗
n− α

1
κ
+ M∞

γ

. (3.11)

Here, L∗ indicates the distance between the mean separation point and the mean
location of the impinging shock foot (indicated by the streamwise location of the
maximal height of the mean sonic line). Additionally, κ = Uc/u∞ and γ = c−/c∞,
where c∞ indicates the free stream speed of sound, Uc indicates the downstream vortex
convective velocity, c− indicates the upstream speed of acoustic propagation, and α

is an undetermined constant between 0 and 1 associated with the time delay between
shock/vortex interaction and generation of the pressure wave.

In order to determine the values of κ and γ , we perform the same procedure
originally used by Pirozzoli & Grasso (2006). As illustrated in figure 24, pressure
signals at various probe locations throughout the interaction are extracted. Since the
physical spacing of probe locations is known, it is straightforward to compute the
velocities Uc and c− if the time delay between probe locations can be reasonably
determined. To determine this time delay, peaks in the temporal covariance of pressure
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signals are analysed at various probe locations. First, to determine the downstream
convective velocity Uc, probe locations 35 and 36 are selected, which are generally
located along the trajectory of vortical structures shed from the separation point.
The covariance of pressure signals from these two probes (illustrated in figure 24)
demonstrates a significant positive correlation at positive 1t (indicating, as expected,
that the downstream probe signal lags the upstream signal); by extracting this time
delay, the first constant is computed to be κ = 0.359, which is slightly higher than the
value of 0.27 originally computed by Pirozzoli & Grasso (2006) for an interaction at
similar flow conditions. Next, to determine the upstream acoustic propagation velocity
c−, we follow the procedure used by Pirozzoli & Grasso (2006) and consider probe
locations 9 and 11 along the wall in the separated flow region. The covariance of
the pressure signals from these two probes (also illustrated in figure 24) demonstrates
a weak but identifiable peak at negative time delay; by extracting this time delay,
the second constant is computed to be γ = 1.05. This value, however, is quite a bit
higher than the value γ = 0.62 originally reported by Pirozzoli & Grasso (2006). It
should be noted, however, that the value of γ is particularly sensitive to the upstream
time delay, which itself is particularly sensitive to under-sampling in the covariance
of the probe data. Therefore, it is not unexpected that there should be significant
uncertainty in determining the value of γ . Additionally, it is notable that the value
1.05 is much closer to the mean speed of sound (c/c∞) at this location near the wall.
Utilizing the values computed for κ and γ extracted from the LES data, and leaving α
undetermined, the following frequencies are computed for the first five tones:

0.000 6 St1 6 0.207, (3.12a)
0.207 6 St2 6 0.414, (3.12b)
0.414 6 St3 6 0.622, (3.12c)
0.622 6 St4 6 0.829, (3.12d)
0.829 6 St5 6 1.036. (3.12e)

The frequencies given in (3.12) are approximately 80 % greater than the frequencies
predicted by Pirozzoli & Grasso (2006) for a similar interaction, a fact which reflects
the practical difficulties of obtaining accurate values for Uc and c−. In figure 25,
however, the energy spectrum of the pressure signal at probe 9 is plotted, with
the frequencies predicted both by the present work and by the original analysis
by Pirozzoli & Grasso (2006). It is notable that the total time history available in
the present analysis is ∼20 times longer than what was available to Pirozzoli &
Grasso (2006). Although tempering our analysis with this understanding, the results of
figure 25 raise several important issues. First, it is clear that the uncertainty in γ can
lead to significant differences in the ranges predicted. However, regardless of whether
the original ranges or the presently computed ranges are considered, the existence of
significant peaks in the predicted intervals is found to be, at best, inconclusive (as
illustrated in figure 25). While it does seem that there is at least one peak in most of
the predicted intervals, the width of the intervals, as a result of the unknown parameter
α, makes it very dubious that these peaks can be definitively linked with a specific
acoustic resonance. Additionally, there are many intervals, including the interval of
lowest frequencies, which contain multiple peaks – a phenomenon which would not
be consistent with the model described by Pirozzoli & Grasso (2006). Therefore, we
must conclude the following; first, if the acoustic mechanism described by Pirozzoli
& Grasso (2006) exists in the system, then it is almost certainly not the only source
of low-frequency forcing. Secondly, if the acoustic resonance mechanism exists in the
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FIGURE 25. Energy spectrum of the pressure signal from probe 9 normalized to integrate to
unity. Regions corresponding to the location of predicted resonance peaks are indicated by
dashed lines. Frequencies given in (3.12) are overlaid in black, while frequencies predicted by
Pirozzoli & Grasso (2006) are overlaid in grey.
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FIGURE 26. Temporal covariance function between kup, the maximum TKE in the upstream
boundary layer at (x− x0)/δ0 =−3.5, and the length of separation, Lsep.

system, then the simplified model originally described by Pirozzoli & Grasso (2006) is
not adequate to rigorously describe the low-frequency motion of the system until the
parameter α can be closed.

Of course, an alternative hypothesis regarding the mechanism responsible for the
low-frequency unsteadiness holds that forcing in the upstream boundary layer, rather
than dynamics in the interaction itself, may be the underlying cause. Indeed, by
investigating the temporal covariance of TKE in the undisturbed boundary layer
with the separation length, as in figure 26, one can see that there exists a weak,
albeit observable, negative correlation with a positive time delay of ∼6 δ0/u∞. This
correlation should make intuitive sense, as it says that the separation is more likely
to be small when the incoming boundary layer is more energized (and thus more
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FIGURE 27. Assessment of coherence in the undisturbed boundary layer. (a) Contours of the
two-point streamwise velocity correlation function (Cov(u, u)) at y/δ0 = 0.686 (y+ = 320),
y/δ0 = 0.098 (y+ = 45.7), and y/δ0 = 9.04× 10−3 (y+ = 4.21). Black contours range from 0.1
to 1 in increments of 0.1, and the grey contour indicates the −0.05 contour. (b) A comparison
of streamwise velocity correlation function across Reynolds numbers. Present data are taken
at height y/δ0 = 0.098, while experimental data from Ganapathisubramani et al. (2006) are
taken at height y/δ0 = 0.16.

resistant to separation); additionally, since the separation signal lags the upstream TKE
signal, one may infer that the former is a consequence of the latter. This observation,
however, is just a hint that upstream boundary layer characteristics may play a role
in the low-frequency dynamics of the interaction. Ganapathisubramani, Clemens &
Dolling (2006, 2007) and Ganapathisubramani et al. (2009) were the first to identify
the effect that long, coherent structures in the upstream boundary layer could play
in the low-frequency dynamics of their experimental compression corner geometry
at Reθ ≈ 38 000. They found that coherent structures with length scales greater than
30δ0 existed in their boundary layer and that significant correlation could be observed
between these structures and the reflected shock position at time scales of the order
of the low-frequency motions. This result prompted Ganapathisubramani et al. (2009)
to conclude that the low-frequency oscillations were a result of forcing from so-called
superstructures in the upstream boundary layer. We, therefore, intend to assess the
superstructure hypothesis in regard to the present simulations by performing the same
types of analysis used by Ganapathisubramani et al. (2009). For this analysis, it is
necessary to consider instantaneous motions of the reflected shock in the spanwise
plane; so, we therefore make use of a non-spanwise averaged database from the STD-
L2-2300-8.0 simulation covering 2682 δ0/u∞ with snapshots taken every 0.32 δ0/u∞.
Note that this database contains a longer time record than the previously utilized
spanwise averaged database but with a greater delay between time slices.

The coherence of structures in the upstream boundary layer is first
assessed, following the analysis of two-point velocity correlations utilized by
Ganapathisubramani et al. (2006). In figure 27, contours are plotted of the spatial
covariance of streamwise velocity at three different wall-normal heights. These
correlations are computed at the recycling location in the undisturbed boundary layer
mesh, which is injected as the inflow condition to the interaction (as described in
§ 2) at approximately (x − x0)/δ0 =−5.7. It is notable that the qualitative arrangement
of these contours is in good agreement with similar plots made for incompressible
boundary layers by Kovasznay, Kibens & Blackwelder (1970), Ganapathisubramani
et al. (2005) and Hutchins & Marusic (2007); that is, long streamwise coherence is
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observed flanked on either side in the spanwise direction by regions of weak negative
correlation. As Ganapathisubramani et al. (2005) point out, these outboard regions of
negative correlation support the notion of adjacent low- and high-speed zones, which
would be consistent with a hairpin vortex model. If a streamwise length scale λu

x
is defined based on the 0.5 contour, it is found that λu

x at y/δ0 = 0.10 is equal to
0.427δ0. By comparison, the same length scale computed by Ganapathisubramani et al.
(2006) at y/δ0 = 0.16 was found to be ∼1.51δ0. This difference is highlighted in
figure 27(b). In this figure, covariance in the streamwise direction is plotted in order
to compare directly with Ganapathisubramani et al. (2006); however, by additionally
plotting the same covariance function from our higher-Reynolds-number simulation
(STD-L2-4800-8.0), one begins to see what appears to be a trend of increasing length
scale with increased Reynolds number. The scaling of λu

x with Reynolds number
is not well understood (Ganapathisubramani et al. 2006); however, the majority of
the available evidence seems to support the trend observed here. For instance, del
Álamo et al. (2004) and Smits, McKeon & Marusic (2011) have pointed out how
the streamwise velocity spectra tends to scale like the log of the Reynolds number,
indicating that longer coherent structures are expected to be found with increasing
turbulent Reynolds number. Similarly, Christensen et al. (2004) have found λu

x (defined
in the same manner as we have done, based on the two-point velocity correlation)
to increase with Reynolds number for experimental channel flows. Indeed, the length
scale of the incompressible boundary layer described by Ganapathisubramani et al.
(2005) at Reθ = 2500 was found to be four times smaller than the length scale of the
compressible boundary layer at Reθ = 38 000 described in Ganapathisubramani et al.
(2006). It is notable, however, that Hutchins & Marusic (2007) found λu

x to collapse
with scaling by δ0 for some high-Reynolds-number incompressible boundary layers. In
any case, it seems reasonable to conclude that at the relatively low Reynolds number
of the present simulation, one should expect to see a reduction in streamwise length
scale with respect to Ganapathisubramani et al. (2006).

Having established that the length scale of coherent streaks in the upstream
boundary layer of the present simulation is ∼70 % shorter than that of the boundary
layer ahead of the interaction in Ganapathisubramani et al. (2007, 2009), it is
now desirable to identify what effect, if any, the coherent structures play on the
low-frequency dynamics of the interaction. Following the same analysis utilized
by Ganapathisubramani et al. (2007, 2009), correlations are computed between the
location of initial separation, xsep, and the line-averaged streamwise velocity, Uline, of
the upstream boundary layer (that is, the streamwise velocity averaged in a constant
wall-normal plane over a distance of approximately 5δ0 ahead of the separation point,
for a given spanwise location). In the work by Ganapathisubramani et al. (2007, 2009),
particle image velocimetry (PIV) measurements were taken at a height of 0.2δ0, which
required them to utilize a surrogate function for separation; for them, separation was

defined by any point such that u(x, z) < Uline − 4(U′lineU
′
line)

1/2
, where it is assumed that

the line-averaged velocity can be decomposed according to Uline = Uline + U′line. In the
present simulations, data may be extracted much closer to the wall; thus, separation
is presently defined based on the presence of reversed flow at a height of y+ = 4.21.
However, to assess the role of the surrogate, data are additionally considered in the
plane of y/δ0 = 0.1, in which the location of separation, xsep, is identified using the
previously described surrogate function.

In figure 28(a), the joint probability density function (p.d.f.) between U′line and
xsep at 1t = 0 is plotted. To construct this p.d.f., signal pairs are taken at each
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FIGURE 28. Assessment of the correlation between upstream coherent structures and low-
frequency motions. (a) Joint p.d.f. between the U′line and x′sep normalized by the total number
of samples. (b) Joint p.d.f. between U′line and xsep shifted by 1t = ts, where ts indicates the
time of maximal correlation. (c) Temporal covariance function between the line-averaged
streamwise velocity fluctuation (U′line = Uline − Uline) and the fluctuating component of the
separation point (x′sep = xsep − xsep).

spanwise location for each time instant in the database for a total of 918 000 samples.
Qualitatively, the joint p.d.f. looks very symmetric about U′line = 0, which is indicative
of little to no correlation between the two signals; indeed, the correlation coefficient
is computed to be less than 0.01, which is in stark contrast to the coefficient of 0.4
computed by Ganapathisubramani et al. (2007). To assess the temporal correlation
between the two signals, figure 28(c) plots the covariance function between U′line and
the fluctuating component of the xsep signal. For comparison, figure 28(b) plots the
joint p.d.f. that is obtained when the xsep signal is shifted in time by 1t = ts, the
time of maximum correlation. Returning to the covariance plot, however, it is observed
that regardless of the wall-normal height at which the covariance is computed, the
result is very similar; this should provide further indication that the surrogate used
by Ganapathisubramani et al. (2007, 2009) gives a good approximation of the true
separation location. However, the covariance signal that is computed is qualitatively
quite different from what was observed by Ganapathisubramani et al. (2009). First
of all, the magnitude and location of the maximal peak is reduced with respect to
Ganapathisubramani et al. (2009), and the correlation in the present simulation is
seen to be strictly on the side of positive time delay. While this relationship makes
intuitive sense (that is, the separation location strictly lags the upstream velocity
signal), it is in contrast to Ganapathisubramani et al. (2009), who observed the tails
of their signal extend into the negative time delay regime up to 1t ≈ −30δ0/u∞.
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Most importantly, however, the bandwidth of the correlation in the present simulation
is significantly diminished with respect to the results of Ganapathisubramani et al.
(2009). This indicates that time scales over which coherent structures in the incoming
boundary layer may act on the separation appears to be limited to no longer than
∼10 δ0/u∞. From this observation, we must conclude that the low-frequency motions
previously described at Strouhal numbers between 0.05–0.01 (illustrated in figures 20
and 23) may not be attributed to forcing by superstructures alone. It should be noted,
however, that this observation is limited to the present range of Reynolds numbers
and is not expected to be applicable at higher Reynolds numbers, where the effect of
superstructures may be more pronounced.

Three potential mechanisms have now been considered that each seek to explain the
low-frequency unsteadiness by various cause-and-effect relationships, and in each case
the results have largely been inconclusive insofar as no single mechanism could be
determined to be the unique cause of the low-frequency motions. Indeed, a collection
of evidence has been presented, some supporting and others in contradiction to each
potential mechanism considered. It seems likely, therefore, that there may be multiple
first-order effects, coupled and indistinguishable from one another, responsible for the
low-frequency unsteadiness in the present flow regime.

3.3. Assessment of RANS models

Having completed our analysis of the flow physics of OSTBLI in §§ 3.1 and 3.2,
we now seek to address uncertainties that may arise in the simulation of OSTBLI
with lower-fidelity RANS models. Such uncertainties may lead to a systematic bias in
RANS results in simulations of shock-induced separated flows. Pirozzoli et al. (2009),
for instance, have compared LES and RANS simulations of OSTBLI (M∞ = 1.7,
φ = 6.0◦) at reduced Reynolds numbers similar to those considered in the present
study; they found that their RANS solution, using the Spalart–Allmaras model (Spalart
& Allmaras 1994), over-predicted separation length with respect to LES by as much as
100 %. In the present work, results using the two-equation Wilcox k–ω model (Wilcox
2006) are compared with LES results and with results obtained from the stress-ω
model (Wilcox 2006), which is a Reynolds stress transport (RST) model that uses the
specific-dissipation rate (ω) to provide turbulence scales. Standard stress limiters are
utilized in the k–ω model, which are meant to reduce eddy viscosity in regions of
high strain rate. In the present section, the basic assumptions made in these models are
analysed and, using the LES database as a surrogate-truth model, the validity of those
assumptions is addressed. For RANS results presented in this section, calculations
were performed using the same flow conditions and grid cross-section as the LES
results to which they are compared. In particular, RANS results are obtained at L2
grid resolution for wedge angles 6.5, 8.0 and 9.5◦ at Reθ = 1500, and results are also
obtained at L4 grid resolution for an 8.0◦ wedge angle at Reθ = 2300 and 4800.

To begin, figure 29 compares some mean flow characteristics captured by the LES
and RANS models. One feature common among the RANS models at Reθ = 1500
and 2300 is the consistent over-prediction of separation in the interaction. Though not
shown here, at Reθ = 4800, the RST-based RANS results showed a slight under-
prediction of the separation region. Overall, the RST model was seen to offer
better predictions than the k–ω model. By considering the pressure traces plotted
in figure 29(a–c), it is observed that even when the RANS solution provides a fairly
accurate solution of shock penetration depth and pressure field in the outer boundary
layer (e.g. the RST solution), the near-wall interaction may still be mis-predicted.
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FIGURE 29. Comparison between LES and RANS simulations. (a–c) Ten evenly spaced
contour levels are plotted between p/p∞ = 1 and 2.8. Shock penetration depth is identified by
plotting the sonic line in thick solid black. (d,e) profiles of skin friction (d) and wall pressure
(e) are additionally compared across three wedge angles. 8.0◦ results are highlighted in black,
while 6.5 and 9.5◦ are shown in grey. Arrows indicate direction of increasing wedge angle.

The k–ω model exploits an analogy between turbulent and molecular mixing to
model the Reynolds stress tensor, Rij, by assuming it is proportional to the strain-rate
tensor, Sij, through an isotropic eddy viscosity that is held constant for each component
of Rij. Even though the RST model uses a fundamentally different closure which
is capable of improved representations of the anisotropy properties of turbulence,
both models exhibit the same propensity to over-predict separation (at Reθ = 1500).
Utilizing the LES database, it is possible to dissect the predictive capability of these
models. To begin, consider in figure 30 profiles of mean TKE and normal stress
components of the Reynolds stress tensor obtained from LES and from the RANS
models. From this figure, it is clear that the RANS models under-predict the R11

component while over-predicting the R22 component, a result which is consistent with
previous work by DeBonis et al. (2012). In particular, the LES R11 component is
found to be as much as five times larger than the LES R22 component. However, in
the RANS, the R22 component and the R11 component are much closer in value. As
a result, the TKE predicted by the RANS solutions more closely resembles the R22

component, whereas in the LES solution, TKE is dominated by R11. While the RST
results offer some improvement over the k–ω results, it is clear that there remains
a qualitative difference in the shape of the Reynolds stress distributions with respect
to LES. The use of viscous near-wall corrections to the RST models, as suggested
in Wilcox (2006), was seen to improve the prediction of the stress anisotropy
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FIGURE 30. Contours of turbulence statistics are compared between LES and RANS. (a) Ten
evenly spaced contours of TKE between k/u2

∞ = 0 and 0.035. (b) Ten evenly spaced contours
of u′u′/u2

∞ between 0 and 0.05. (c) Ten evenly spaced contours of v′v′/u2
∞ between 0 and

0.011. (d) Ten evenly spaced contours of −u′v′/u2
∞ between 0 and 0.007.

for y/δo < 0.1, but did not improve the predictions of the extent of separation or
the skin friction.

To probe further into the reason for the apparent discrepancies in turbulence
quantities, our approach will be to consider how each method handles the transport
of TKE and the Reynolds stresses. Figure 31 plots contours of the TKE budget
terms computed using the three models. In this case, the LES balance has been given
previously by (2.1), while the governing equation in RANS, in this case, is given by

∂

∂t
(ρk)=− ∂

∂xj

(
ρũjk

)
︸ ︷︷ ︸

CRANS
k

+Rij
∂ ũi

∂xj︸ ︷︷ ︸
PRANSk

− 0.09ρkω︸ ︷︷ ︸
DRANS

k

+ ∂

∂xj

(
µ
∂k

∂xj

)
︸ ︷︷ ︸

VRANS
k

+ ∂

∂xj

(
0.6
ρk

ω

∂k

∂xj

)
︸ ︷︷ ︸

TRANSk

.

(3.13)

Notice that the compressibility term, Kk, is neglected in this formulation.
Although we see in figure 31 that the RST model provides significant improvement

in prediction of production and dissipation over the simpler k–ω model, it is notable
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FIGURE 31. Contours of TKE budget terms are compared between LES and RANS. (a)
Contours of production term, Pk. (b) Contours of dissipation term, Dk. (c) Contours of
convective term, Ck. (d) Contours of turbulent transport term, Tk. (e) Contours of viscous
diffusion term, Vk. Note that the vertical axis is reduced in (e) from y/δ0 = 0.0 to 0.1.

that both RANS models severely mis-predict near-wall behaviour and transport
quantities in the shear layer. Specifically, mean convection and turbulent transport
terms are grossly under-predicted. These observations are further quantified by
considering traces of the TKE transport terms at two streamwise locations in figure 31.
Upstream of the interaction in the undisturbed boundary layer, both RANS models are
shown to provide good estimates of maximum production and dissipation, although the
simple model of dissipation is asymptotically incorrect at the wall. In the LES, the
viscous diffusion term largely balances dissipation at the wall, and an undershoot
in viscous diffusion is apparently balanced by turbulent transport. In the RANS
formulations however, the effects of viscous diffusion and turbulent transport are
apparently much weaker. At the downstream location, the LES budget illustrates
further the shortcomings of the RANS models. At this station, we observe that
the production term is much larger than dissipation. Indeed, turbulent transport
and convection seem to play nearly as large a role in balancing the production
as dissipation. The RANS models, on the other hand, are limited in their ability
to capture this phenomenon and thus under-predict production while simultaneously
predicting qualitatively different profiles for turbulent transport.
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FIGURE 32. Comparison of TKE budget at two streamwise locations: (a,b) (x − x0)/δ0 =−4.5 (upstream of interaction); (c,d) (x− x0)/δ0 =−2.0 (within interaction). Light grey, LES;
dark grey, RST; black, k–ω.

With the RST model, we can additionally compare transport of the individual
Reynolds stress components. In the general sense, the transport equation for the
Reynolds stress tensor, Rij, is given by (Morrison 1992)

∂Rij

∂t
= Cij + Pij +Πij +Mij + Vij + Tij + Dij. (3.14)

Here, Cij, Pij, Πij, Mij, Vij, Tij and Dij represent, respectively, terms due to convection,
production, pressure-strain correlation, mass flux variation, viscous diffusion, turbulent
transport, and dissipation. Explicitly, these terms are given by

Cij =−∂ ũkRij

∂xk
, Pij =−Rik

∂ ũj

∂xk
− Rjk

∂ ũi

∂xk
, Πij = p′

∂u′i
∂xj
+ p′

∂u′j
∂xi
, (3.15)

Mij = u′′i

(
∂σ jk

∂xk
+ ∂σ ik

∂xk
− ∂p

∂xj
− ∂p

∂xi

)
, Vij =

∂σ ′iku
′
j + σ ′jku′i
∂xk

, (3.16)

Tij =−
∂
[
ρũ′′i u′′j u′′k +

(
p′u′iδjk + p′u′jδik

)]
∂xk

, Dij = σ ′ik
∂u′j
∂xk
+ σ ′jk

∂u′i
∂xk

. (3.17)

Figure 33 plots contours of a few of the most significant contributors to the R11

budget from both LES and the RST RANS model. From these plots, we see that the
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FIGURE 33. Contours of R11 budget terms are compared between LES and RST. (a)
Contours of production term, P11. (b) (Negated) contours of dissipation term, −D11. (c)
Contours of (negated) pressure-strain term, −Π11. (d) Contours of turbulent transport
term, T11.

RST solution actually captures major trends and the general magnitude of production,
dissipation, and pressure strain quite well. The effect of turbulent transport, however,
is severely under-predicted by the RST solution. In figure 34, the same terms are
plotted for the R22 transport budget. In this case, the LES production term P22

demonstrates a qualitatively different profile as compared with P11; however, this
anisotropy is not captured by the RST results. These observations are further quantified
in figure 35, which plots traces of the production, dissipation, pressure-strain, and
turbulent transport terms at two locations in the flow. At the upstream location in
the undisturbed boundary layer, we see that the LES P11 production is matched
well by the RST results. Within the interaction, the RST results seem to somewhat
under-predict the dissipation and over-predict the pressure-strain correlation, but in
general there is considerable agreement with LES. The R22 budget predicted by RST,
however, differs from LES. In particular, in the LES, it is observed that pressure strain
is approximately balanced by turbulent transport in the near-wall region. Also, the
assumption of isotropic dissipation (i.e. εij = (2/3)0.09ρkωδij) is shown to be poor, as
seen from the comparison of the dissipation terms in the R11 and R22 budgets. It is,
however, interesting to note that the pressure-strain correlation, which is based on the
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FIGURE 34. Contours of R22 budget terms are compared between LES and RST. (a)
Contours of production term, P22. (b) (Negated) contours of dissipation term, −D22. (c)
Contours of pressure-strain term, Π22. (d) Contours of turbulent transport term, T22.

rather simple LRR formulation (Launder, Reece & Rodi 1975) is well represented in
both budgets. As discussed previously, the RST does not correctly capture the effects
of turbulent transport, instead predicting that pressure strain is balanced by negative
production and dissipation.

In the context of Reynolds stress transport budgets, we have seen how qualitative
differences in the shape of the production field in LES are not captured by the
RANS simulations, suggesting that effects of anisotropy are being missed. Thus, to
better visualize the effect of anisotropy in the Reynolds stress tensor, the barycentric
mapping technique proposed by Banerjee et al. (2007) is utilized. This method
uses a linear reconstruction of the anisotropy eigenvalues, rather than the nonlinear
form proposed by Lumley & Newman (1977), to provide a non-distorted visual
representation of the anisotropy invariant map. Equation (3.18) describes how the
three barycentric coordinates, Cic, are computed from the ordered eigenvalues (λi) of
the Reynolds stress anisotropy tensor and how these coordinates are then mapped onto
a triangle with vertices (xic, yic):

C1c = λ1 − λ2, (3.18a)
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FIGURE 35. Comparison of R11 (a,b) and R22 (c,d) budgets at two streamwise locations: (a,c)
(x − x0)/δ0 = −4.5 (upstream of interaction); (b,d) (x − x0)/δ0 = −2.0 (within interaction).
Light grey, LES; black, RST.

C2c = 2 (λ2 − λ3) , (3.18b)
C3c = 3λ3 + 1, (3.18c)

x = C1cx1c + C2cx2c + C3cx3c, (3.18d)
y= C1cy1c + C2cy2c + C3cy3c. (3.18e)

Since the barycentric coordinates are linear in construction and since they sum to
unity, it is possible to visualize the anisotropy of a flow field by interpreting the
barycentric coordinates as a red-green-blue (RGB) colour value and generating an
image from these values, as illustrated in figure 36. For this visualization, a map
has been chosen such that C1c is mapped to red, C2c is mapped to green, and
C3c is mapped to blue. Thus, the flow field visualization will appear more red,
green, or blue to correspond to respective one-, two-, or three-component shifts in
the local anisotropy tensor. By comparing flow field anisotropy in this way between
the LES and RANS results, one is able to quickly identify some qualitative trends
in the turbulence which are present in the LES but missing in the RANS. For
instance, in figure 37, in which the RGB-coded anisotropy mapping is applied to
the flow fields obtained using both LES and RANS, one can see how the RANS
approaches miss the strongly one-component nature of the upstream boundary layer
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3-component

2-component 1-component

FIGURE 36. The barycentric anisotropy mapping technique. Invariants of the anisotropy
tensor are mapped to a coordinate in the equilateral triangle and to a three-component RGB
colour code.
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FIGURE 37. The barycentric anisotropy mapping technique applied to the OSTBLI problem
solved with LES (a), RST (b), and k–ω (c). Interaction is coloured by RGB colour
corresponding to the location of anisotropy invariants in the barycentric map illustrated in
figure 36. Ten evenly spaced contours of pressure from p/p∞ are overlaid in black.

near the wall. Additionally, it is clear in the LES that this one-component behaviour
extends into the interaction as the boundary layer separates away from the wall.
However, neither of the RANS solutions are able to capture this feature. Indeed it is
likely that the failure of the RANS models to capture this feature is related to the
previously discussed shortcomings of the RANS models to properly predict the effects
of turbulent transport, especially in the shear layer. Similarly, it is observed in the LES
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that the near-wall anisotropy in the recovering boundary layer demonstrates strong two-
component behaviour, while the lower-fidelity solutions generally fail to capture this
behaviour as well. Perhaps the most striking observation to be made from figure 37,
however, is the similarity of the anisotropy fields in the two RANS approaches. This
observation should suggest that it may not be enough to solve additional transport
equations to fully capture the effects of anisotropy in the flow field.

4. Conclusions

In the present work, a numerical database of large-eddy simulations, covering a
range of parametric variations, has been utilized to investigate the flow physics
and modelling of oblique shock/turbulent boundary layer interaction. To establish
confidence in baseline results, in § 2.3, we first sought to describe the role of
numerical dissipation in our calculations. Although it was found that the filtering
operation introduced unwanted numerical dissipation, it was determined that grid
resolution levels L2 and higher were sufficient to resolve TKE production, proving
that the numerical dissipation due to filtering serves essentially as a subgrid model
of dissipation without causing significant damage to the turbulence budgets. By
then comparing TKE budget terms with available DNS data in § 2.4, confidence
was established in a baseline solution by demonstrating good agreement in both the
upstream and interaction regions for all terms in the TKE budget.

In § 3.1, trends have been extracted in mean flow characteristics and conservation
budgets with respect to flow conditions (Reynolds number and shock strength)
which may, in general, be uncertain. It was found, for instance, that the mean
separation length scale was not heavily dependent on Reynolds number, over the range
considered (Reθ = 1500–4800); this numerical result was found to be in agreement
with experimental comparisons made by Souverein (2010) between interactions at
Reθ = 50 000 and Reθ = 5100. By varying the shock-generating wedge angle, it was
observed how the increased shock strength associated with a change of as little as 1◦

could move an interaction from the incipient regime to fully separated. Analysis of
the spectral content of these simulations demonstrated how increased shock strength
could lead to more intense low-frequency oscillation at longer time scales, even when
normalizing to account for the increased length of interaction. Additionally, since the
results analysed in this manner were provided the same inflow turbulence (at different
wedge angles), a preliminary indication was given that upstream dynamics in the
boundary layer were probably not the primary driver of low-frequency unsteadiness,
at least in the case of the strongest interactions. Attention was then turned to the
effect of shock strength on the various terms in the momentum and turbulence kinetic
energy budgets. For each equation, budget terms were plotted for the seven available
wedge angles at streamwise stations upstream and downstream of the incident shock
foot. In the streamwise momentum budget, it was observed that at the upstream
station, the magnitude of budget terms tended to increase with increasing wedge angle,
while downstream this trend was reversed. While somewhat counter-intuitive, this
observation may be explained by the penetration depth of the incident shock, which
extends deeper in the case of a weaker shock. In the wall-normal momentum budget, it
was found that only contributions due to pressure gradient and turbulent transport are
important in most of the boundary layer. By plotting the TKE budget terms, a trend of
increasing magnitude upstream and decreasing magnitude downstream with increasing
wedge angle was again observed.
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Next, in § 3.2, an evaluation has been made of several proposed mechanisms
underlying the previously discussed low-frequency unsteady motion in the separation
bubble and reflected shock position. First, the mass entrainment model proposed by
Piponniau et al. (2009) was considered, which suggests that a deficit of mass in
the separation bubble might require recovery on a long time scale, which could
be responsible for the low-frequency unsteadiness. To assess the potential for this
mechanism to exist in the present simulations, integrated mass and momentum
budgets were computed on moving control volumes representing both the separation
bubble and the greater interaction region. By computing the correlations between and
comparing spectral content of the shock position and the integrated mass signal in
the separation bubble, some evidence was found to suggest the two are related –
specifically that the two are negatively correlated with a positive time delay, indicating
that the reflected shock moves upstream as a result of increased mass in the separation
bubble. Additionally, the predicted time frequency of the principal mode of the
mass recovery (that is, the frequency with the greatest energy density) was found
to be in excellent agreement with the frequency predicted analytically by Piponniau
et al. (2009). However, the primary mode of the shock position signal was found
to be somewhat lower, and it was observed that several additional low-frequency
tones exist in the shock position signal which could not be accounted for from the
integral mass signal alone. Therefore, it is likely that additional mechanisms contribute
to the low-frequency forcing of the shock position. Following this reasoning, the
acoustic resonance mechanism described by Pirozzoli & Grasso (2006) was considered
next, which hypothesizes that upstream-propagating acoustic waves generated by
shock/vortex interactions at the impinging shock foot could create a resonance with
constructive interference that would influence the position of the reflected shock foot.
Following the same procedure utilized by Pirozzoli & Grasso (2006), upstream and
downstream speeds of acoustic propagation were extracted to determine the modes
that would be visible if such a mechanism were to exist in our system. The ranges
predicted, however, proved to be generally inconclusive, as each range was quite large,
due to the existence of the unclosed parameter α; additionally, many ranges contained
more than one peak, which would not be consistent with the proposed model. Thus,
it is concluded that for the acoustic resonance model to be useful as a diagnostic
tool, more work must be done to determine α, the time delay between shock/vortex
interaction and the release of upstream-propagating pressure waves. To assess the
potential effect of forcing due to structures in the incoming boundary layer, attention
was next turned to the superstructure theory proposed by Ganapathisubramani et al.
(2009), who identified a strong correlation between the existence of long, coherent
structures in their experimental boundary layer at Reθ = 38 000 and the position of
the reflected shock in a compression corner interaction. Although some evidence is
found in the present LES to indicate a correlation between upstream TKE and the
position of the reflected shock, the length scale of structures in the incoming boundary
layer is found to be much shorter than in the experiments by Ganapathisubramani
et al. (2009). As a result, correlation between the location of separation and the
upstream line-averaged velocity is found to extend only out to ∼10δ0/u∞, which
could not account for the low-frequency peaks observed as low as St = 0.00853.
However, limited variation in Reynolds number did suggest a trend towards increasing
length scale with increasing Reynolds number, which very likely could account for the
discrepancy. We therefore conclude that forcing due to superstructures is not the cause
of the lowest-frequency motions in the present simulations, although the effect of this
type of forcing is expected to be much greater at higher Reynolds number.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

30
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.301


278 B. Morgan, K. Duraisamy, N. Nguyen, S. Kawai and S. K. Lele

Finally, in § 3.3, we have sought to address the cause of modelling errors in
representative eddy-viscosity and RST-based RANS solutions of OSTBLI. These
results demonstrated a systematic bias towards over-prediction of the size of
separation with respect to the LES in the low-Reynolds-number simulations. Further
investigation revealed that the RANS models were misrepresenting, both qualitatively
and quantitatively, the TKE due largely to the relative under-prediction of the R11 and
over-prediction of the R22 normal components in the Reynolds stress tensor. To address
this issue, contributions to the TKE and Reynolds stress transport equations were
plotted, which indicated that the biggest discrepancy in the RANS models was due to
a failure to account for the effects of turbulent transport in the shear layer. Overall,
these results suggest that the RST model offers improved predictions as it is able
to better represent some aspects of the turbulence anisotropy when compared to the
eddy-viscosity model. Even though encouraging representations of the pressure-strain
correlation are noted, the treatment of the turbulence transport term using a simple
gradient diffusion hypothesis and the assumption of an isotropic dissipation rate are
seen to limit the accuracy of the RST model. By utilizing the barycentric mapping
technique described by Banerjee et al. (2007) and assigning an RGB colour value
to each barycentric component of the transformed invariants of the anisotropy tensor,
it was possible to visualize the two-dimensional anisotropy field in each simulation.
These visualizations confirmed earlier observations that the mostly single-component
turbulence from the near-wall region in the LES was extending into the interaction and
that this feature is apparently missed by RANS, especially in the shear layer region.

Taken as a whole, the present work represents the culmination of a concerted
effort to investigate a few of the lingering questions associated with the physics and
simulation of OSTBLI. It is our belief that only through the better understanding
and quantification of uncertainties can the flow physics community move towards
improved confidence in lower-fidelity simulations involving shock-induced separation.
For instance, by providing data identifying the effect of variation in inflow parameters,
it is possible to identify regions that may be sensitive to aleatory uncertainties.
Similarly, by providing information on the appropriateness of turbulence closures, it
is possible to identify regions that may be sensitive to epistemic uncertainties; and, by
better understanding the inherent unsteadiness, it may be possible to better predict and
account for fluctuating pressure and thermal loads in the design of physical systems.
The present work, therefore, represents an important step towards these goals in the
understanding and mitigation of uncertainties in shock/boundary layer interactions.

Acknowledgements

This research was conducted with government support under and awarded by
DoD, AFOSR, NDSEG Fellowship, 32 CFR 168a and by the DoE PSAAP Program.
Computer time has been provided by NASA NAS, HPCC at LLNL, and HPC at
LANL. We would also like to recognize Dr M. R. Visbal at AFRL for providing the
FDL3DI code that has been extended and used in the present study.

Appendix

Tables 3 and 4 provide detailed flow conditions and grid data, respectively, for each
of the 19 simulations computed.
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DEL ÁLAMO, J., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R. D. 2004 Scaling of the energy
spectra of turbulent channels. J. Fluid Mech. 500, 135–144.

BANERJEE, S., KRAHL, R., DURST, F. & ZENGER, C. 2007 Presentation of anisotropy properties of
turbulence, invariants versus eigenvalue approaches. J. Turbul. 8, 1–27.
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