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A STRUCTURAL DICHOTOMY IN THE ENUMERATION DEGREES

HRISTO A. GANCHEV, ISKANDER SH. KALIMULLIN, JOSEPH S. MILLER, AND MARIYA I. SOSKOVA

Abstract. We give several new characterizations of the continuous enumeration degrees. The main one
proves that an enumeration degree is continuous if and only if it is not half of a nontrivial relativized K-pair.
This leads to a structural dichotomy in the enumeration degrees.

§1. Introduction. The Turing degrees, DT , measure the computability-theoretic
complexity of sets of natural numbers. By coding, they can be used to measure
the complexity of other mathematical objects. For example, a real number r in
the unit interval can be coded by a function nr : Q+ → Q that takes as input a
positive ε and outputs a rational number q within ε of r. We call nr a name for r.
A real number is thus associated with a set of names, which are discrete objects
and hence have Turing degree. It is not difficult to see that every real number
has a name of least Turing degree: the degree of its binary expansion. In this
way, we can associate a Turing degree to every real number r. In many cases,
however, the Turing degrees are not sufficient to measure the complexity of objects
studied in effective mathematics. An early example of this phenomenon was given
by Richter [19], who proved that we cannot associate a Turing degree to every
countable linear ordering. In fact, the only countable linear orderings that have a
Turing degree are the ones with computable presentations. In search for an answer
to a similar question—“Does every continuous function on the unit interval have
a name of least Turing degree?”—Miller [15] introduced the continuous degrees to
measure of the complexity of continuous functions, and, more generally, points in
computable metric spaces. He proved that the Turing degrees properly embed into
the continuous degrees, and that the continuous degrees, in turn, properly embed
into the enumeration degrees.

Enumeration reducibility, ≤e , and the enumeration degrees, De , were introduced
by Friedberg and Rogers [5]. They form a natural extension of the Turing degrees:
by mapping the Turing degree of a set A to the enumeration degree of A⊕ A we
get an embedding � of DT into De . The image of a Turing degree is called a total
enumeration degree. So, the enumeration degrees turn out to be sufficient to capture
the effective content of a continuous function on the unit interval: there is a least
enumeration degree such that the total degrees bounding it are exactly (the images
of) the Turing degrees of names of the continuous function. The enumeration degrees
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528 HRISTO A. GANCHEV ET AL.

of continuous functions give us a proper subclass of the enumeration degrees: the
continuous enumeration degrees.

The study of the continuous enumeration degrees has revealed an important
connection between degree theory and topology. All proofs that nontotal continuous
enumeration degrees exists—in other words, that the continuous degrees are a proper
extension of the Turing degrees—have used nontrivial topological theorems. Miller’s
original proof [15] uses a variant of Brouwer’s fixed point theorem for multivalued
functions on the Hilbert cube. Levin’s construction of a neutral measure [13] uses
Sperner’s lemma and was shown by Day and Miller [4] to also produce a nontotal
continuous degree. More recently, Kihara and Pauly [12] and independently Hoyrup
(unpublished) use facts from topological dimension theory to prove the existence
of a nontotal continuous enumeration degree. The connection can be followed in
the reverse direction as well. For example, a structural property of the continuous
enumeration degrees was the main tool in Kihara and Pauly’s [12] solution to the
second level Borel isomorphism problem; they constructed an uncountable Polish
space which is neither second-level Borel isomorphic to the unit interval nor to the
Hilbert cube.

Andrews et al. [2] have recently given several characterizations of the continuous
enumeration degrees as a subclass of the enumeration degrees, including a
characterization via a simple structural property: an enumeration degree a is almost
total if and only if for every total enumeration degree x � a we have that x ∨ a is a
total degree. An enumeration degree is continuous if and only if it is almost total.
The total enumeration degrees were shown to be definable by Cai et al. [3], and so the
continuous enumeration degrees also form a definable subclass of the enumeration
degrees.

Another class of enumeration degrees that has been studied extensively is the
class of Kalimullin pairs or K-pairs,1 introduced by Kalimullin [10]. A pair of sets
{A,B} form a K-pair relative to U if and only if there is some setW ≤e U such that
A× B ⊆W and A× B ⊆W . K-pairs lie at the heart of most natural definability
results in the enumeration degrees. Kalimulin [10] proved that they have a natural
structural definition—they are the degrees {a, b} that form a robust minimal pair
relative to a degree u: for all x ≥ u we have that x = (a ∨ x) ∧ (b ∨ x). He then used
them to define the enumeration jump operator. Ganchev and Soskova [6] proved that
K-pairs are definable in D(≤ 0e), the substructure of the Σ0

2 enumeration degrees,
and used them to prove the first order definability of a series of subclasses of
D(≤ 0e), including the total Δ0

2 enumeration degrees [7], the downwards properly
Σ0

2 enumeration degrees, the upwards properly Σ0
2 enumeration degrees [6], and the

Lown and Highn enumeration degrees, for all n ∈ � [8]. A special type of K-pairs—
the maximal K-pairs—were used by Cai et al. [3] to define the total enumeration
degrees.

In this paper we study the relationship between the continuous degrees and K-
pairs more closely. We give several new characterizations of continuous degrees,
leading up to our main new characterization: an enumeration degree is continuous
if and only if it is not half of a nontrivial K-pair relative to any enumeration degree.

1K-pairs were called e-ideal pairs in Kalimullin’s paper. Ganchev and Soskova established the new
name.
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This new characterization gives a simpler first order definition of the continuous
enumeration degrees in terms of quantifier complexity. In the language with ≤ and
∨, the definition via almost total degrees is Π3, while the definition via K-pairs
is Π2. It also allows for an interesting structural dichotomy in the enumeration
degrees. Recall that an enumeration degree a is a strong quasiminimal cover of b if
and only if a > b and for all total enumeration degrees x, if x ≤ a then x ≤ b. The
characterization of the continuous degrees as almost total, along with properties of
nontrivial K-pairs allow us to derive the following:

Theorem 1.1. For every enumeration degree a, exactly one of the following two
properties holds:

(1) The degree x is continuous, so for every total enumeration degree x � a, a ∨ x
is total.

(2) There is a total enumeration degree x � a such that a ∨ x is a strong
quasiminimal cover of x.

A subclass of the enumeration degrees that is larger than the continuous
enumeration degrees is the cototal degrees. A degree is cototal if it contains a cototal
set, that is, a set A, such that A ≤e A. This class arises naturally in many areas
of effective mathematics, including graph theory [1], symbolic dynamics [14] and
computable structure theory [14]. The cototal enumeration degrees also reveal a
topological connection: Kihara et al. [11] showed that the cototal enumeration
degrees are the degrees of points in computably G� topological spaces. Miller and
Soskova [17] prove that they form a dense substructure of the enumeration degrees,
viewed as an upper-semilattice with jump operation. We study the connection
between cototal sets and K-pairs. Our investigation leads us to a conjecture that,
if true, would yield the first order definability of the cototal enumeration degrees
within the structure of the enumeration degrees.

We end with an alternative characterization of the continuous degrees in terms of
the relation “PA above” extended to enumeration oracles, introduced by Miller and
Soskova [16]. This new characterization opens up many questions for future work
on this topic.

§2. Preliminaries. We start by giving formal definitions of standard notions used
throughout this paper. For a more thorough exposition on degree theory, we refer
the reader to Odifreddi [18].

2.1. Enumeration reducibility and the enumeration degrees

Definition 2.1 (Friedberg and Rogers [5]). A ≤e B if and only if there is a c.e.
set W such that

A =W (B) = {x : (∃v) 〈x, v〉 ∈W & Dv ⊆ B}.

Here Dv denotes the finite set with code v in the standard coding of finite sets. The
set W is called an enumeration operator and the pair 〈x,Dv〉 is called an axiom for
x in W.
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We will abuse notation and think of an enumeration operator interchangeably as
a c.e. set of numbers or as a set of axioms 〈x,D〉, where D is a finite set.

Enumeration reducibility gives rise to a degree structure as usual: A is enumeration
equivalent, ≡e , to B if A ≤e B and B ≤e A; the enumeration degree of a set A is
de(A) = {B : A ≡e B}. The preorder ≤e on sets induces a partial order on the
enumeration degrees, De . The least enumeration degree 0e consists of all c.e. sets.
We can supply De with a least upper bound operation by setting de(A) ∨ de(B) =
de(A⊕ B), where A⊕ B = {2n : n ∈ A} ∪ {2n + 1: n ∈ B}. We can also define a
jump operator: de(A)′ = de(KA ⊕KA), where KA =

⊕
e∈� We(A) and {We}e∈� is

some fixed computable enumeration of all c.e. sets, or equivalently enumeration
operators.

As mentioned above, the Turing degrees can be embedded into the enumeration
degrees. The reason should now be clear: it follows easily from the definition of
enumeration reducibility that A ≤T B if and only if A⊕ A ≤e B ⊕ B .

Definition 2.2. A set A is total if A ≤e A (i.e., if A⊕ A ≡e A). An enumeration
degree is total if it contains a total set.

The set of total enumeration degrees as an upper semilattice with jump operation
is an isomorphic copy of the Turing degrees.

Selman [20] provided a useful alternative way to think about enumeration
reducibility. An enumeration of a set A is a total function f : � → � with range
equal to A. The definition of enumeration reducibility given above can be restated
as follows: A is enumeration reducible to B if there is a uniform way to compute an
enumeration of A from an enumeration of B. Selman proved that the uniformity
condition is not necessary.

Theorem 2.3 (Selman [20]). A ≤e B if and only if every enumeration of B computes
an enumeration of A.

2.2. The continuous degrees. A computable presentation of a metric space M
consists of a fixed dense sequenceQM = {qn}n∈� on which the metric is computable
as a function on indices. Metric spaces with computable presentations include
Cantor space 2� , Baire space �� , the continuous functions on the unit interval
C[0, 1], the Hilbert cube [0, 1]� , and many others. For a computable presentation of
C[0, 1], for example, we fix an effective enumeration of the polygonal functions having
segments with rational endpoints. A name for a point x in a computable metric space
is a function nx : Q>0 → � that gives a way to approximate x via the sequence QM:
it takes a rational number ε > 0 as input and produces an index nx(ε) such that
dM(x, qnx (ε)) < ε. Such names can easily be coded as elements of Baire space. For
points x, y in (possibly different computably presented metric spaces), we say that x
reduces to y if every name for y uniformly computes a name for x. This reducibility
induces a degree structure, the continuous degrees. Miller [15] proves that there are
universal computably presented metric spaces: every continuous degree contains
an element of C[0, 1] and, more importantly for our purposes, also an element
of [0, 1]� .

In order to understand the embedding of the continuous degrees into the
enumeration degrees, we use the fact that the Hilbert cube [0, 1]� is universal. We take
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the usual metric on the Hilbert cube: d (α, �) =
∑
n∈� 2–n|α(n) – �(n)|. A dense set

witnessing that [0, 1]� is computable is, for example, a computable enumeration of
the rational sequences with finite support. Given α ∈ [0, 1]� , consider the set

Cα =
⊕
n∈�

{q ∈ Q : q < α(n)} ⊕ {q ∈ Q : q > α(n)}.

Miller [15] proved that enumerating Cα is just as difficult as computing a name for
α. Thus the map α �→ Cα induces an embedding of the continuous degrees into the
enumeration degrees.

Definition 2.4. An enumeration degree a is continuous if it contains a set of the
form Cα , where α ∈ [0, 1]� .

Note that the ith component of Cα is very close to a total set in structure:
{q ∈ Q : q <Q α(i)} ⊕ {q ∈ Q : q >Q α(i)} = X ⊕ X , unless α(i) is rational. The
nonuniformity introduced by the rational components of some α ∈ [0, 1]� suffice to
produce nontotal enumeration degrees:

Theorem 2.5 (Miller [15]). There are nontotal continuous degrees.

We will use two of the three characterizations of continuous enumeration degrees
proved in [2]. We restate the definition of an almost total degree for convenience:

Definition 2.6. We say that an enumeration degree a is almost total if whenever
b � a is total, a ∨ b is also total.

The second characterization relies on an extension of the notion of a Π0
1 class

to an enumeration oracle. We will use 〈A〉 to indicate that we are treating A as an
enumeration oracle rather than a Turing oracle.

Definition 2.7. Let A ⊆ �. Call U ⊆ 2� a Σ0
1〈A〉 class if there is a set W ≤e

A, such that U = [W ]≺ = {X ∈ 2� : (∃� ∈W ) X � �}. A Π0
1〈A〉 class is the

complement of a Σ0
1〈A〉 class.

Note that a Π0
1

〈
A⊕ A

〉
class is just a Π0

1[A] class in the usual sense. Further,
note that the elements of a Π0

1〈A〉 class are infinite binary sequences, hence total
objects. Thus, when we say that a set enumerates a member of a Π0

1 class, we
mean that the set enumerates X ⊕ X , for some X such that the binary sequences
representing X is in the Π0

1 class.

Definition 2.8. A setA ⊆ � is codable if there is a nonempty Π0
1〈A〉 classP ⊆ 2�

such that for every X ∈ P, A is c.e. relative to X.

Theorem 2.9 (Andrews et al. [2]). Fix A ⊆ �. The following are equivalent

(1) The enumeration degree of A is almost total;
(2) A is codable;
(3) A has continuous enumeration degree.

2.3. Kalimullin pairs. Consider once again the definition of a relativized
Kalimullin pair.
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Definition 2.10 (Kalimullin [10]). A pair of sets of natural numbers {A,B} is
a Kalimullin pair (K-pair) relative to a set U if there is a set W ≤e U such that
A× B ⊆W and A× B ⊆W .

It is very easy to come up with an example of aK-pair relative to any U : ifB ≤e U ,
then for every set A we have that {A,B} is a K-pair relative to U as witnessed by
� × B . Similarly, if A ≤e U . K-pairs of this sort are not interesting; we call the
trivial. Nontrivial K-pairs exist: a standard example of a K-pair relative to Ø is
given by a the pair {A,A}, where A is any semicomputable set. Semicomputable sets
were introduced and studied by Jockusch [9]. He showed that A is semicomputable if
and only if A is a left cut in some computable linear ordering on �. He also showed
that every nonzero Turing degree contains a semicomputable set that is neither c.e.
nor co-c.e.

K-pairs have many interesting properties. For example, if we fix A and consider
the set K(A) = {B : {A,B} is a K-pair}, then K(A) is an ideal with respect to ≤e .
In particular, being half of a K-pair is a degree notion. We summarize the properties
that we will use in the following theorem.

Theorem 2.11 (Kalimullin [10]). Let {A,B} be a nontrivial K-pair relative to U
as witnessed by W.

(1) A ≤e B ⊕W and B ≤e A⊕W .
(2) A ≤e B ⊕W and B ≤e A⊕W .
(3) de(A⊕U ) and de(B ⊕U ) are strong quasiminimal covers of de(U )

We will also need the structural definition of K-pairs as robust minimal pairs.

Theorem 2.12 (Kalimullin [10]). A pair of sets {A,B} are a K-pair relative to U
if and only if their enumeration degrees a, b, and u satisfy:

(∀x ≥ u)[(a ∨ x) ∧ (b ∨ x) = x].

§3. Functions that are codable by extensions. Our first characterization of the
continuous enumeration degrees, and the one that motivated this work, concerns
the notion of a function codable by its extensions.

Definition 3.1. A function f : � → � is codable by extensions if for every
extension h ⊇ f we have that Gf ≤e Gh , where Gx denotes the graph of x.

Clearly, every total function is codable by extensions, because its only extension
is the function itself. The notion becomes interesting when one considers graphs
of nontotal functions. We prove below that the enumeration degrees of the graphs
of functions that are codable by extensions are exactly the continuous enumeration
degrees.

Theorem 3.2. An enumeration degree is continuous if and only if it contains the
graph of a function that is codable by extensions.

Proof. Suppose that a is continuous and fix an element of the Hilbert cube
α ∈ [0, 1]� so that a = de(Cα), where

https://doi.org/10.1017/jsl.2019.72 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.72


A STRUCTURAL DICHOTOMY IN THE ENUMERATION DEGREES 533

Cα =
⊕
n∈�

{q ∈ Q : q < α(n)} ⊕ {q ∈ Q : q > α(n)}.

Consider the function f : � → � such that

f(〈n, q〉) =

{
0, if q < α(n);
1, if α(n) < q.

Note, that ifα(n) = q thenf(〈n, q〉) is undefined. Clearly,Cα ≡e Gf . Furthermore,
for any extension h of f, we have that

Cα =
⊕
n∈�

{q ∈ Q : (∃r > q) h(〈n, r〉) = 0} ⊕ {q ∈ Q : (∃r < q) h(〈n, r〉) = 1}.

Hence Gf ≡e Cα ≤e Gh , and so f is codable by extensions.
For the reverse direction, let f be a function that is codable by extensions. Consider

the set P of the graphs of all extensions of f. Then P is a Π0
1

〈
Gf

〉
class, as P =

2� \ S, where S is the set of finite binary strings that are not initial segments of the
characteristic function of the graph of some extension of f. In other words, � ∈ S if
and only if

(∃x, y, z)
[
�(〈x, y〉) = �(〈x, z〉) = 1 & y �= z

]
or (∃x, y)

[
〈x, y〉 ∈ Gf & �(〈x, y〉) = 0

]
.

Every member of the class P can enumerate Gf , hence Gf is codable and so Gf has
continuous degree by Theorem 2.9. �

The characterizations of the continuous degrees via functions that are codable by
extensions leads to a connection with the notion of a nontrivial K-pair, or rather
the opposite: a continuous degree can never be a part of a nontrivial K-pair relative
to any set U.

Proposition 3.3. If f is codable by extensions, thenGf is not half of any relativized
nontrivial K-pair.

Proof. Suppose towards a contradiction that Gf is codable by extensions and
the pair {Gf,B} is a nontrivial K-pair relative to some set U. LetW ≤e U witness
this. If for some b we find that 〈〈x, y〉, b〉 ∈W and 〈〈x, z〉, b〉 ∈W , where y �= z,
then Gf × B ⊆W ensures that b ∈ B . Since B �e W , there must be some b ∈ B
for which the above is not true and hence {〈x, y〉 : 〈〈x, y〉 , b〉 ∈W } is the graph of a
function h, andGh ≤e W . AsGf × B ⊆W , it follows that f ⊆ h, soGf ≤e Gh ≤e
U , contrary to our assumption that {Gf,B} is nontrivial relative to U. �

A natural questions arises: does this property characterize the continuous degrees?
This will be proved in Section 5.

§4. Array-avoiding sets. Towards a positive answer to the question posed at the
end of the previous section, we explore a combinatorial characterization of the
continuous degrees.
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Definition 4.1. We say that A is array-avoiding if A �= � and for every
computable sequence of finite sets {Dn}n∈� such that for every n we have that
Dn � A, there is some C ⊇ A such that for every n we still have Dn � C , but also
A �e C .

The property above is trivially satisfied by �, just because there cannot be a
sequence of finite sets {Dn}n∈� such that for every n we have that Dn � �; for
that reason we exclude it from the definition. Array-avoiding sets capture the
noncontinuous degrees.

Theorem 4.2. The enumeration degree a is continuous if and only if some set in a
is not array-avoiding, if and only if no set in a is array-avoiding.

Proof. Suppose first that a is continuous and fix a partial function f such that
Gf ∈ a and f is codable by extensions. We will build a computable sequence of finite
sets {Dn}n∈� that ensures Gf is not array-avoiding. The sequence is quite simple:
it is just a computable listing of all pairs {〈x, y〉, 〈x, z〉} where y �= z. Any C ⊇ Gf
that retains the property that Dn � C for every n is the graph of some extension of
f, and hence Gf ≤e C .

We can extend this idea to every set in the degree a. FixA ∈ a and let Γ be such that
Gf = Γ(A). Consider the sequence {Dn}n∈� that lists finite sets F ∪ E, such that
〈〈x, y〉, F 〉 ∈ Γ and 〈〈x, z〉, E〉 ∈ Γ for some y �= z. (Note that, assumingA �= �, we
can ensure that this is a nonempty sequence by finitely modifying Γ.) Clearly,Dn � A
for every n. On the other hand, ifC ⊇ A and C still has the property thatDn � C for
all n, then Γ(C ) is the graph of a function h ⊇ g and hence A ≤e Gf ≤e Gh ≤e C .

For the reverse direction, suppose that A is not array-avoiding. Let {Dn}n∈�
be a computable sequence of sets that witnesses this. In other words, if C ⊇ A
has the property that Dn � C for all n, then A ≤e C . Then A is easily seen to be
codable because the set of all supersets C ⊇ A that satisfy Dn � C for all n is a
Π0

1〈A〉 class P = 2� \ [S]≺, where � ∈ S if and only if �(x) = 0 for some x ∈ A or
Dn ⊆ x : �(x) = 1 for some n. It is nonempty as A ∈ P, and by assumption, every
member of P enumerates A. �

We will not give a direct proof that being array-avoiding implies being half of
a nontrivial K-pair, although it will follow from the work in the next section. For
now, as a warm-up, we will prove that an apparent strengthening of array-avoiding
is equivalent to being half of a nontrivial K-pair.

Definition 4.3. We say that A is uniformly array-avoiding ifA �= � and there is a
Z such that A �e Z and for every computable sequence of finite sets {Dn}n∈� such
that Dn � A for every n, there is a C ⊇ A such that we still have Dn � C for every
n, but also C ≤e Z.

The proof of the nontrivial direction in the theorem below outlines the main
ideas that ultimately lead to the full characterization of noncontinuous enumeration
degrees as halves of nontrivial K-pairs.

Theorem 4.4. A is half of a nontrivial K-pair if and only if A is uniformly array-
avoiding.
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Proof. Suppose first that {A,B} is a nontrivial K-pair relative to some set U
as witnessed by W. We will show that A is uniformly array-avoiding with Z =W .
Nontriviality ensures that A �e W . Now let {Dn}n∈� be a computable sequence of
finite sets such that Dn � A for all n. Consider the set

B0 = {b : (∃n) Dn × {b} ⊆W }.

ThenB0 ⊆ B andB0 ≤e W . ButB �e W , so we can pick some element b ∈ B \ B0.
Now, consider the set C = {a : 〈a, b〉 ∈W }. The set C extends A and satisfies the
property that for every n the set Dn � C (or else b ∈ B0). On the other hand,
C ≤e W . Hence A is uniformly array-avoiding.

Now let A be uniformly array-avoiding as witnessed by Z. We will build sets B and
W such thatA,B �e W ,A× B ⊆W , andA× B ⊆W . The construction proceeds
by stages. At stage n, we build finite sets Bn, B–

n , and Wn satisfying the following
four conditions:

(1) Bn ⊆ Bn+1, B–
n ⊆ B–

n+1,Wn ⊆Wn+1;
(2) Bn ∩ B–

n = Ø;
(3) A�n × Bn ⊆Wn;
(4) 〈a, b〉 ∈Wn ⇒ (a ∈ A ∨ b ∈ Bn).

We let B =
⋃
n Bn andW =

⋃
n Wn. Properties (1), (3), and (4) ensure that {A,B}

is a K-pair relative to W. What remains is to ensure that A,B �e W . In order to do
this, we ensure that our construction of the sets B and W satisfies the requirements
A �= Γk(W ) and B �= Γk(W ) for every k, where {Γk}k<� is some effective listing of
all enumeration operators. During the construction to every element x ∈ Bn we will
associate a superset Cx ⊇ A such that Cx ≤e Z. Unless otherwise stated Cx = �.
The set Cx may be shrunk infinitely many times, but will always be a superset of A.
We will also associate to every y ∈ B–

n a finite set Ty ⊆ A. Once defined, Ty will not
be changed. (In fact, Ty will be the yth column of W. We will not use this fact here,
but it will be needed in Proposition 6.3.)

We start the construction by setting B0 = B–
0 =W0 = Ø. Suppose we have

constructed Bn, B–
n , andWn and consider the set

Xn =
⋃
x∈Bn

Cx × {x} ∪
⋃
y∈B–

n

Ty × {y} ∪
⋃

z /∈Bn∪B–
n

� × {z}.

By property (1), it follows that for every n we have that Xn+1 ⊆ Xn. We will ensure
that Wn+1 ⊆ Xn, and so W ⊆ Xn for every n. We have two cases, depending on
whether we are at an even or an odd stage.

Suppose that n = 2k. We ensure that A �= Γk(W ), where {Γk}k∈� is some
effective listing of all enumeration operators. Note that Xn ≤e

⊕
x∈Bn Cx ≤e Z,

so A �= Γk(Xn). Fix an element a that witnesses this difference.
Case 1. If a ∈ A, then we setW ∗

n =Wn. Note, thatW ⊆ Xn ensures that we have
satisfied our requirement.

Case 2. If a ∈ Γk(Xn), fix an axiom 〈a,D〉 ∈ Γk such thatD ⊆ Xn. We setW ∗
n =

Wn ∪D. We will ensure that W ∗
n ⊆Wn+1, hence once again we will have satisfied

our requirement.
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We set Bn+1 = Bn ∪ {x : (∃a ∈ A) 〈a, x〉 ∈W ∗
n \Wn}. Note that Bn+1 does not

contain any element from B–
n , because if 〈a, y〉 ∈ Xn and y ∈ B–

n then a ∈ Ty ⊆ A.
We set B–

n+1 = B–
n and setWn+1 =W ∗

n ∪ A�(n + 1) × Bn+1. It is straightforward to
check that properties (1)–(4) still hold.

Suppose that n = 2k + 1. In this case, we would like to ensure that B �= Γk(W ).
If Γk(Xn) is finite, then we do not need to do anything; by a close inspection
of the even stages, B will be infinite. So suppose that Γk(Xn) is infinite and fix
z ∈ Γk(Xn) \ Bn ∪ B–

n . We would like to use this z to create a difference. Pick an
axiom 〈z,D〉 ∈ Γk such that D ⊆ Xn. If we can enumerate z into B–

n+1 and D into
Wn+1 then this would accomplish the desired difference. Unfortunately, this might
be in conflict with our desire to preserve properties (2) and (4), namely it could
be that 〈a, z〉 ∈ D for some a ∈ A. So, we will be more careful and consider the
following two cases:

Case 1. There is an axiom 〈z,D〉 ∈ Γk such that for all 〈a, x〉 ∈ D:

(1) if x ∈ Bn ∪ {z}, then 〈a, x〉 ∈Wn or a ∈ A;
(2) if x ∈ B–

n , then a ∈ Tx .

Note that these conditions ensure thatD ⊆ Xn. In this case, we can proceed with our
original plan: we setW ∗

n =Wn ∪D andBn+1 = Bn ∪ {b : (∃〈a, b〉 ∈ D) a /∈ A}. We
set B–

n+1 = B–
n ∪ {z} and Tz = a : 〈a, z〉 ∈W ∗

n . Note that Tz ⊆ A by our choice of
D. Finally, we setWn+1 =W ∗

n ∪ A�(n + 1) × Bn+1. Once again it is easy to see that
properties (1)–(4) still hold.

Case 2. Every axiom 〈z,D〉 ∈ Γk such that

(∀x ∈ B–
n ) if 〈a, x〉 ∈ D, then a ∈ Tx,

has the property that {a : (∃x ∈ Bn ∪ {z}) 〈a, x〉 ∈ D \Wn} � A. In that case, the
sequence {Fm}m∈� listing all such sets—which is nonempty as z ∈ Γk(Xn)—is a
computable sequence of finite sets such that for all m, we have that Fm � A. By
the uniform array-avoidance of A, there is a C ⊇ A such that C ≤e Z and C still
has the property that Fm � C for all m. We set Cz = C and for every x ∈ Bn we
give the parameter Cx a new value namely (Cx ∩ C ) ∪ {a : 〈a, x〉 ∈Wn} and we
set Bn+1 = Bn ∪ {z}. This ensures that z /∈ Γk(Xn+1), as every axiom for z in Γk
that satisfies the restriction imposed by B–

n on Xn+1 contains an element 〈a, x〉 such
that x ∈ Bn+1 and 〈a, x〉 /∈Wn ∪ C . We have thus satisfied our requirement. We set
B–
n+1 = B–

n andWn+1 =Wn ∪ A�(n + 1) × Bn+1. �

§5. Forcing with Π0
1〈A〉 classes. We use the main ideas from the proof of Theorem

4.4 to show the link between K-pairs and the noncontinuous degrees.

Theorem 5.1. If A does not have continuous degree, then A is half of a nontrivial
relativized K-pair.

Proof. We will use a forcing notionF to construct B and W, so thatB × A ⊆W ,
B × A ⊆W , and A,B �e W . A forcing condition p has the form 〈�, {�i}i∈�, P〉,
where � ∈ 2<� , {�i}i∈� is a sequence of finite binary strings such that for all i ≥ |� |,
�i = Ø, and P is a nonempty Π0

1〈A〉 class, satisfying a certain list of properties that
we describe below. We think of P as subset of (2�)� , that is, every element X ∈ P
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codes a sequence of sets {Xk}k∈� (in fact,X =
⊕
k Xk). We let Pi consist of the i-th

projection of the elements in P, that is,

Pi =
{
Xi : (∃X0, ... , Xi–1, Xi+1, ... )

⊕
k∈�
Xk ∈ P

}
.

It is not difficult to see that each Pi is also a Π0
1〈A〉 class, although that will not be

relevant for the construction. We think of each elementX ∈ P as providing a bound
on W, in the sense thatW ⊆ X for someX ∈ P. We think of � as an initial segment
of the set B. Every �i codes a finite setDi = {x : �i(x) = 1}. We approximate W by
Wp =

⋃
i∈�{i} ×Di =

⋃
i<|�|{i} ×Di . We ask that, in addition, forcing conditions

satisfy the following properties:

(1) If �(i) = 0, then Di ⊆ A and Pi = {�i0�}.
(2) If �(i) �= 0, then for every X ∈ Pi , we have that �i � X and A ⊆ X .
(3) If X ∈ P and Y ⊆ X is such that if we write Y as

⊕
i Yi , then for every i we

have that the above two conditions hold, that is,

• if �(i) = 0, then Yi = �i0� and
• if �(i) �= 0, then �i � Yi and A ⊆ Yi ;

then Y ∈ P.

Note that the forcing condition ensures thatWp ⊆ X for all X ∈ P.
We say that a condition q = 〈	, {
i}i∈�,Q〉 extends a condition p =

〈�, {�i}i∈�, P〉, written as q ≤ p, if

• � � 	;
• for all i, �i � 
i ;
• each X ∈ Q is a subset of some Y ∈ P.

We build a sequence of conditions p0 ≥ p1 ≥ p2 ≥ ··· . In the end, B =
⋃
n∈� �pn

and W =
⋃
n Wpn will be the required sets. Note that property (2) of a condition

ensures that if i ∈ B , then �i is an initial segment of a superset of A. Hence if we
ensure that �i grows unboundedly in length for all i ∈ B , then we automatically get
that B × A ⊆W . On the other hand, property (1) ensures that B × A ⊆W . We
only need to further ensure that A,B �e W .

The initial condition is p0 = (Ø, (Ø,Ø, ... ), S)), where S is the Π0
1〈A〉 class

consisting of all supersets of A. Suppose that we have built pn = 〈�n, {�i}i∈�, P〉.
We describe how to extend pn to pn+1 = 〈�n+1, {
i}i∈�,Q〉. We have two cases
depending on the parity of n.

Suppose that n = 2k. We ensure that A �= Γk(W ). We first check if there is an
a ∈ A such that Qa = {X ∈ P : a /∈ Γk(X )} is nonempty. If there is such an a then
we let �n+1 = �n, 
i = �i for all i, andQ = Qa . It is straightforward to see that pn+1

is a condition: Q is a Π0
1〈A〉 subclass of P so properties (1) and (2) are trivially

satisfied. Property (3) is satisfied because if a /∈ Γk(X ) andY ⊆ X then a /∈ Γk(Y ).
Furthermore, this condition forces a ∈ A \ Γ(W ).

If there is no a ∈ A such that Qa is nonempty, then A is a subset of Γk(X ) for
every X ∈ P. Since A does not have continuous degree and hence by Theorem 2.9
is not codable, there must be some element X ∈ P that does not enumerate A via
Γk . So A ⊂ Γk(X ) and we can fix a ∈ Γk(X ) \ A. Fix s such that a ∈ Γk(X �s). We
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can think of X �s as
⊕
i<m 
i , where m > |�n| and pick s large enough so that for

every i < |�n| we have that �i ≺ 
i . Let �n+1 be the string of length m obtained by
appending 1s to �n and let 
i = Ø for i ≥ m. Notice that here we are ensuring that
|
i | > |�i |. Since this case will definitely be the true case every time Γk(X ) = � for
all X, we will ensure that B × A ⊆W as discussed above. Finally we set Q to be
the subclass of P, subject to the restraints in properties (1) and (2), namely Q =
{Y ∈ P : X �s � Y}. This is nonempty Π0

1〈A〉 class because X ∈ Q. The resulting
pn+1 is easily seen to be a condition. Furthermore, for all q ≤ pn+1 we have that
a ∈ Γk(Wq), hence this ensures that A �= Γk(W ), as promised.

Suppose that n = 2k + 1. We ensure that B �= Γk(W ). We first check if there is
a b > |�n| and X ∈ P such that b ∈ Γk(X ). If not, we do not need to make any
changes to pn at this stage, so we set pn+1 = pn. The even steps ensure that B is an
infinite set, hence the requirement is automatically satisfied. So suppose that there
is a b > |�n| such that b ∈ Γk(X ) for some X ∈ P. We would like to define �n+1 so
that �n+1(b) = 0 and Q so that every element in Q enumerates b via Γk . Just like in
the proof of Theorem 2.9, this might not be possible because it could be that every
axiom in Γk for b contains an element 〈b, a〉, where a ∈ A, so we cannot build Q
satisfying condition (1). This is why we consider two cases.

Case 1. There is an axiom 〈b,D〉 ∈ Γk , such that D ⊆ X for some X and for
every pair 〈i, a〉 ∈ D we have that �i(a) = 1 or a ∈ A. (Note that if �(i) = 0 and
〈i, a〉 ∈ D, then �i(a) = 1 because D ⊆ X .) In that case we can proceed with our
original plan: first to ensure property (1) fix 
b to be the initial segment of A covering
all a such that 〈b, a〉 ∈ D. Next we trim the elements of the Π0

1〈A〉 class P to get P′

so that P′
b = {
b0�} and for all i �= b we have that P′

i = Pi . Note, that we still have
D ⊆ X ′, where X ′ is obtained by this trimming process from X, by our choice of 
b .
Furthermore, P′ is a Π0

1〈A〉 class. To see this, write P = 2� \ [U ]≺ where U ≤e A.
We may assume that U is closed upward. ThenP′ = 2� \ [V ]≺ where � ∈ V if when
we write � =

⊕
i �i , we have that either �b is incompatible with 
b , or if all strings �∗

that we get by replacing �b by strings of the same length are in U. It is straightforward
to see that P′ ⊆ 2� \ [V ]≺. On the other hand, if X /∈ P′, but Xb = �b0� , then by
compactness there must be some level s such that all possible strings �∗ obtained as
above from the string � = X �s must be thrown into U and so X /∈ 2� \ [V ]≺. The
set V is clearly enumeration reducible to A.

We now fix s large enough so thatD ⊆ X ′�s and X ′�s can be written as
⊕
i<m 
i ,

wherem > b and �i � 
i for all i < |�n| or i = b. We extend �n to �n+1 of length m,
so that �n+1(b) = 0 and for all i �= b such that |�n| ≤ i < m, we set �n+1(i) = 1. We
set 
i = Ø if i ≥ m. We set Q = {Y ∈ P′ : X ′�s � Y}. Thus we have ensured that
b /∈ B and b ∈ Γk(Wq) for every q ≤ pn.

Case 2. For everyX ∈ P, if 〈b,D〉 ∈ Γk andD ⊆ X , then there is a pair 〈i, a〉 ∈ D
such that �i(a) �= 1 (so it is either undefined or equals 0) and a /∈ A. Consider
the Π0

1〈A〉 class Q = {X ∈ P : b /∈ Γk(X )}. This is a nonempty class because
by property (3) of P the sequence Y =

⊕
Yi where Yi = �i0� if �n(i) = 0 and

otherwise

Yi(x) =

{
�i(x), if x < |�i |;
A(x), if x ≥ |�i |
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must be a member of Q. We set �n+1 to be the string of length b + 1 obtained by
adding 1s to �n and leave 
i = �i for all i. Once again, since Q ⊆ P and we have
added no new 0s to �n+1, it is easy to see that Q satisfies properties (1) and (2). To
see that it satisfies (3), we again note that if Y ⊆ X and b /∈ Γk(X ) then b /∈ Γk(Y )
and hence pn+1 is a condition. This condition forces b ∈ B \ Γk(W ). �

Putting everything together, we get:

Theorem 5.2. For a set A ⊆ �, the following are equivalent:

(1) A has continuous enumeration degree.
(2) The degree of A contains the graph of function that is codable by extensions.
(3) A is not array-avoiding.
(4) A is not uniformly array-avoiding.
(5) A is not half of a nontrivial relativized K-pair.

Combining the characterization of the continuous degrees in terms of K-pairs
with the characterization as the almost total degrees from [2], we get the promised
structural dichotomy in the enumeration degrees.

Theorem 1.1. For every enumeration degree a, exactly one of the following two
properties holds:

(1) The degree x is continuous, so for every total enumeration degree x � a, a ∨ x
is total.

(2) There is a total enumeration degree x� a such that a∨x is a strong quasiminimal
cover of x.

Proof. The first property is exactly the definition of almost totality. If a is not
continuous, then by Theorem 5.2, we get that a is half of a nontrivial K-pair; let
b and u be such that {a, b} is a nontrivial K-pair relative to u. Using forcing, it is
not hard to build a total enumeration degree x ≥ u such that a � x and b � x. (For
example, this follows from a much more general theorem of Soskov [21] about jump
inversion in De .) Note that {a, b} is a nontrivial K-pair relative to x. By Theorem
2.11, a ∨ x is a strong quasiminimal cover of x. �

§6. Cototal sets and K-pairs. In this section, we briefly examine the connection
between cototal sets and K-pairs, ending with a conjectured definition of cototality
in the enumeration degrees.

Definition 6.1. A set A is cototal if A ≤e A. An enumeration degree is cototal if
it contains a cototal set.

Andrews et al. [1] note that if A has cototal enumeration degree, thenKA is cototal
representative of that degree. In fact, they show that the operator that maps de(A) to
de(KA) is degree invariant and call it the skip operator. The skip of de(A) is denoted
by de(A)♦, so we have that A is cototal if and only if de(A) ≤e de(A)♦.

It is straightforward to see that every total enumeration degree is cototal, as

A⊕ A = A⊕ A ≡e A⊕ A. More generally, every continuous degree is cototal.
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Recall that an enumeration degree is continuous if it contains a set of the form
Cα =

⊕
i∈� {q ∈ Q : q <Q α(i)} ⊕ {q ∈ Q : q >Q α(i)}, for some α ∈ [0, 1]� . It

follows that every continuous degree is cototal as, 2〈i, q〉 ∈ Cα if and only if there
is an r > q such that 2〈i, r〉 + 1 ∈ Cα , and similarly, 2〈i, q〉 + 1 ∈ Cα if and only if
there is an r < q such that 2〈i, r〉 ∈ Cα .

The class of cototal enumeration degrees is strictly bigger than the continuous
degrees. For example, cototal enumeration degrees can be halves of nontrivial K-
pairs. One way to see this is to note that every Σ0

2 enumeration degree is cototal [1].
As we already saw, if A is semicomputable, then {A,A} is a K-pair, and A can be
chosen as a non-c.e. and non-co-c.e. member of any nonzero Turing degree. On the
other hand, the kind of K-pairs that cototal sets can be part of is restricted, as can
be seen by the following result.

Proposition 6.2. If A is of cototal enumeration degree and {A,B} is a nontrivial
K-pair relative to U, then A ≤e U ′.

Proof. Suppose that A has cototal enumeration degree and that {A,B} is a
nontrivial K-pair relative to U. Then as A ≡e KA, it follows that {KA,B} is a
nontrivial K-pair relative to U. LetW ≤e U be such that KA × B ⊆W and KA ×
B ⊆W . By the properties of K-pairs outlined in Theorem 2.11, we have thatKA ≤e
KA ≤e B ⊕W . Of course KA ≤e A⊕W , so

de(KA) ≤e de(KA ⊕W ⊕U ) ∧ de(B ⊕W ⊕U ) = de(W ⊕U ) ≤e de(U )′.

Hence A ≤e U ′. �
Ideally, we would hope that the reverse statement is true as well: if A is not cototal

then there are sets B and U such that A �e U ′ and {A,B} are a nontrivial K-
pair relative to U. Unfortunately, our current methods do not suffice to prove this
statement. What we can show is much weaker.

Proposition 6.3. If A is not cototal, then there are sets B and W such thatA �e W
and {A,B} are a nontrivial K-pair relative to W.

Proof. Let A �e A. Then A is not of continuous degree and hence by Theorem
5.2 it is uniformly array-avoiding. Let Z witness that. We will build sets B and W
such that A,B �e W ,A �e W , A× B ⊆W , and A× B ⊆W . The construction is
a slight modification of the one in Theorem 4.4. At stage n we build finite sets Bn,
B–
n , andWn satisfying the following four conditions:

(1) Bn ⊆ Bn+1, B–
n ⊆ B–

n+1,Wn ⊆Wn+1;
(2) Bn ∩ B–

n = Ø;
(3) A�n × Bn ⊆Wn;
(4) 〈a, b〉 ∈Wn ⇒ (a ∈ A ∨ b ∈ Bn).

We let B =
⋃
n Bn andW =

⋃
n Wn. Properties (1), (3), and (4) ensure that {A,B}

is a K-pair relative to W. What remains is to ensure that A,B �e W and A �e W .
In order to do this, to every x ∈ Bn we will associate a superset Cx ⊇ A such that
Cx ≤e Z. Unless otherwise stated, Cx = �. The set Cx may be shrunk infinitely
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many times, but will always be a superset of A. We will also associate to every
y ∈ B–

n a finite set Ty ⊆ A. Once defined, Ty will not be changed and will be the yth
column of W.

We start the construction by setting B0 = B–
0 =W0 = Ø. Suppose we have

constructed Bn, B–
n , andWn. As before, we ensure thatWn+1 ⊆ Xn, where

Xn =
⋃
x∈Bn

Cx × {x} ∪
⋃
y∈B–

n

Ty × {y} ∪
⋃

z /∈Bn∪B–
n

� × {z}.

From what we have said so far, it follows that we will also ensure that thatWn+1 ⊆ Yn,
where

Yn =Wn ∩
( ⋃
x∈Bn

A× {x} ∪
⋃
y∈B–

n

Ty × {y} ∪
⋃

z /∈Bn∪B–
n

� × {z}
)
.

In this case as well we have that Yn+1 ⊆ Yn, and soW ⊆ Yn for all n.
Fix an effective listing of all enumeration operators {Γk}k∈� . We have three cases

depending on the stage.
If n = 3k, then we ensure that A �= Γk(W ) in exactly the same way as we did in

Theorem 4.4. If n = 3k + 1, then we ensure that B �= Γk(W ), again using the same
steps as in Theorem 4.4.

Suppose that n = 3k + 2. We ensure that A �= Γk(W ). Note that Yn ≤e A, so
A �= Γk(Yn). Fix an a witnessing this difference.

Case 1. If a ∈ A, then we do not need to do anything, asW ⊆ Yn ensures that we
have satisfied our requirement. We just move on to the next stage.

Case 2. If a ∈ Γk(Yn), then fix an axiom 〈a,D〉 ∈ Γk such thatD ⊆ Yn. We would
like to add D toW . We do this by shrinking the sets Cx and by adding elements to
B–
n+1: For all 〈b, x〉 ∈ D such that x ∈ Bn, we have that b /∈ A and 〈b, x〉 /∈Wn, so

we can remove b from Cx (without interfering with the requirements that A ⊆ Cx
andWn+1 ⊆ Xn+1). For all 〈b, y〉 such that y ∈ B–

n , we have that b ∈ Ty and since
Ty does not change, we can be sure that 〈b, y〉 ∈W . Finally, if 〈b, z〉 ∈ D and
z /∈ Bn ∪ B–

n , we enumerate z ∈ B–
n+1 and set Tz = {c : 〈c, z〉 ∈Wn}, which is safe

becauseD ⊆Wn. We set Bn+1 = Bn andWn+1 =Wn. It is straightforward to check
that properties (1)–(4) still hold. �

There seem to be serious obstacles to modifying the construction above to get
A �e W ′ = KW ⊕KW . Nevertheless, we conjecture that the reverse is still true.

Conjecture 6.4. A degree a is cototal if and only if, whenever {a, b} is a nontrivial
K-pair relative to u we have that a ≤ u′.

§7. PA relative to an enumeration oracle. In this final section of our paper, we
propose two more properties that relate to the continuous and to the cototal
enumeration degree. Both properties rely on the extension of the relation “PA above”
to enumeration oracle.

Definition 7.1 (Miller, Soskova [16]). 〈B〉 is PA above 〈A〉 if B enumerates a
member of every Π0

1〈A〉 class.
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Note that this relation is degree invariant. We write de(A) � de(B) if 〈B〉 is PA
above 〈A〉. Furthermore, it is an extension of the usual relation on Turing degrees,
because if x and y are Turing degrees, then x � y if and only if �(x) � �(y), that
is, the relation is preserved under the embedding � : DT ↪→ De . (Recall, that � maps
dT (A) to de(A⊕ A).) On nontotal enumeration degrees, however, the relation “PA
above” can behave strikingly differently.

Definition 7.2. A set A is 〈self 〉-PA if 〈A〉 is PA above 〈A〉.
Miller and Soskova [16] prove the existence of Δ0

2〈self〉-PA sets. Furthermore,
they show that the set of total degrees below a 〈self〉-PA set A forms a Scott set, that
is, an ideal closed with respect to the relation “PA above”.

We consider the following two new properties.

Definition 7.3. Let A ⊆ �.

(1) Say that A is PA bounded if for every set B, if 〈B〉 is PA above 〈A〉, then
A ≤e B .

(2) Say that there is a universal Π0
1〈A〉 class if there is a Π0

1〈A〉 class U such that
for every member X ∈ U we have that

〈
X ⊕ X

〉
is PA above 〈A〉.

Both properties clearly hold for total enumeration degrees, and so they exhibit
the “expected” behavior of sets with respect to the relation “PA above”. We show
that the two properties together characterize the continuous degrees, while the first
property implies cototality.

Proposition 7.4. Fix A ⊆ �.

(1) A is PA bounded and there is a universal Π0
1〈A〉 class if and only if A has

continuous degree.
(2) If A is PA bounded, then A has cototal degree.

Proof. (1) If A is continuous, then A is codable; fix a Π0
1〈A〉 class P such that

every member in P enumerates A. To see that A is PA bounded, note that every set
B such that 〈B〉 is PA above 〈A〉 enumerates a member of the Π0

1〈A〉 class P and
hence enumerates A.

To see that there is a universal Π0
1〈A〉 class, we build a new class R by joining

each X ∈ P with DNCX2 , the standard Π0
1[X ] class consisting of all {0, 1}-valued

diagonally noncomputable functions relative to X. Recall that a function f is
diagonally noncomputable relative to X if for every e, we have that ϕXe (e) �= f(e). It
is not hard to see that if f is {0, 1}-valued, then it (is the characteristic function of a
set that) is PA above X.

Fix S ≤e A such that P = 2� \ [S]≺. We let

R = {� ⊕ 
 : � ∈ S ∨ ∃n (
(n) = ϕ�n,|�|(n))}.

Then U = 2� \R is a Π0
1〈A〉 class and every member of this class has the form

Z = X ⊕ Y , where A is c.e. in X (equivalently A ≤e X ⊕ X ) and Y is PA above X
(in the Turing sense). It follows that

〈
Z ⊕ Z

〉
is PA above 〈A〉 for every Z ∈ U , and

so U is a universal Π0
1〈A〉 class.
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For the reverse direction, suppose that A is PA bounded and that there is a
universal Π0

1〈A〉 class U. Every member of U is PA relative to 〈A〉, and so by
boundedness enumerates A. It follows that A is codable, hence by Theorem 2.9, it
has continuous degrees.

(2) Suppose that A is PA bounded. Consider a total set X ⊕ X above the skip of
A, that is, such that KA ≤e X ⊕ X . We claim that

〈
X ⊕ X

〉
is PA above 〈A〉. To see

this, consider a nonempty Π0
1〈A〉 class P = 2� \ [S]≺. We may assume that S ≤e A

is closed upward. Consider the set E = {� : ∀n∃
 (|
| = n & 
 ⊇ � & 
 /∈ S)} of
strings that can be extended to an element of P. Note that E ≤e KA, and so it is c.e.
in X. It follows that X ⊕ X can enumerate an element in P, proving that

〈
X ⊕ X

〉
is

PA above 〈A〉. By PA boundedness,A ≤e X ⊕ X . This holds for any total setX ⊕ X
above KA, so by Selman’s theorem, A ≤e KA. Therefore, A has cototal degree. �

It is not clear that PA boundedness characterizes the cototal enumeration degrees.
We do know, at least, that cototality does not imply the existence of a universal class.
As noted previously, there are Δ0

2 sets, hence sets of cototal degree, that are 〈self〉-PA.
This combined with the following proposition yields the desired conclusion.

Proposition 7.5. If A is 〈self 〉-PA, then A does not have a universal Π0
1〈A〉 class.

Proof. Fix a 〈self〉-PA set A. If there were a Π0
1〈A〉 class consisting of sets that

are PA above 〈A〉, then A would enumerate a set X ⊕ X such that
〈
X ⊕ X

〉
is PA

above 〈A〉. In that case, X would be PA (in the Turing sense) above every Y such
that Y ⊕ Y ≤e A. In particular, X would be PA above X. But this is impossible, as
the “PA above” relation is strict when restricted to Turing oracles. �

The statement above gives an alternative, though similar, proof that the degrees of
〈self〉-PA sets are disjoint from the continuous degrees. This was originally proved
by Miller and Soskova [16], who show that there is a universal Martin-Löf test
relative to every continuous degree, but not relative to any 〈self〉-PA degree.

We are left with the following questions:

(1) Are there cototal degrees that are not PA bounded?
(2) Are there PA bounded degrees that are not of continuous degree? In particular,

can a 〈self〉-PA degree be PA bounded?

In very recent work Franklin et al.2 have answered both of these questions by
showing that the PA bounded degrees are exactly the continuous enumeration
degrees. On the other hand, they reveal that the class of degrees whose members
have universal Π0

1 classes is nontrivial and worth further investigation.
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