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We use silicon strip detectors (originally developed for the CLEO III high-energy
particle physics experiment) to measure fluid particle trajectories in turbulence with
temporal resolution of up to 70 000 frames per second. This high frame rate al-
lows the Kolmogorov time scale of a turbulent water flow to be fully resolved for
140 > Rλ > 970. Particle trajectories exhibiting accelerations up to 16 000 m s−2 (40
times the r.m.s. value) are routinely observed. The probability density function of
the acceleration is found to have Reynolds-number-dependent stretched exponential
tails. The moments of the acceleration distribution are calculated. The scaling of the
acceleration component variance with the energy dissipation is found to be consistent
with the results for low-Reynolds-number direct numerical simulations, and with the
K41-based Heisenberg–Yaglom prediction for Rλ > 500. The acceleration flatness is
found to increase with Reynolds number, and to exceed 60 at Rλ = 970. The coupling
of the acceleration to the large-scale anisotropy is found to be large at low Reynolds
number and to decrease as the Reynolds number increases, but to persist at all
Reynolds numbers measured. The dependence of the acceleration variance on the
size and density of the tracer particles is measured. The autocorrelation function of
an acceleration component is measured, and is found to scale with the Kolmogorov
time τη .

1. Introduction
Fluid turbulence may be characterized in terms of variables defined at points

fixed in space (the Eulerian reference frame), or in terms of the trajectories of fluid
particles (the Lagrangian reference frame). This distinction applies both to theoretical
formulations of turbulence and to experimental techniques for characterizing turbulent
flows. Although the formulation of fluid dynamics is generally considered to be more
tractable in terms of Eulerian variables, the critical issues of transport and mixing in
turbulence are more directly related to the properties of fluid trajectories (Shraiman &
Siggia 2000; Yeung 2001b; Sawford 2001), and are often addressed using Lagrangian
techniques (Pope 1994). There are also many applications in which the transport or
aggregation of particulate matter in turbulence is important in its own right, such
as water droplet aggregation in clouds (Vaillancourt & Yau 2000) or the industrial
production of nanoparticles (Pratsinis & Srinivas 1996).

In a basic sense, data obtained from Lagrangian and Eulerian measurements
are complementary. In the Eulerian frame, one is typically concerned with differences
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between quantities (velocity component, scalar concentration, etc.) measured at several
points separated by a fixed distance in space. It would be equally interesting to study
time differences; however making such measurements within the Eulerian framework
is difficult (Kit, Tsinober & Dracos 1993). The true temporal structure of turbulence is
revealed when fluctuations are measured along a particle trajectory, in the Lagrangian
frame.

Turbulence has traditionally been studied in the Eulerian frame rather than the
Lagrangian frame for technical reasons. The hot-wire anemometer used in conjunction
with the Taylor frozen flow hypothesis provides extremely accurate Eulerian data in
turbulent gas flows over a broad range of Reynolds number, but no comparably
effective technique has been available for Lagrangian measurements. However, as
the range of Reynolds number accessible to direct numerical simulations (DNS)
of turbulence has expanded, numerical studies of particle trajectories in isotropic
turbulence have yielded important insights (Yeung & Pope 1989; Vedula & Yeung
1999; Yeung 2001a; Gotoh & Rogallo 1999; Gotoh & Fukayama 2001). Although
very little experimental data for Lagrangian properties in fully developed turbulence
has been available, this is beginning to change. Basic issues, such as the Richardson law
for particle dispersion (Monin & Yaglom 1975), the Heisenberg–Yaglom prediction of
fluid particle accelerations (Heisenberg 1948; Yaglom 1949), and Kolmogorov scaling
of temporal velocity differences have remained untested for many decades. Recent
experiments by Voth, Satyanarayan & Bodenschatz (1998), Ott & Mann (2000), La
Porta et al. (2001), and Mordant et al. (2001) have made significant progress in
addressing each of these but there are still major limitations. In particular, limitations
in spatial and temporal measurement resolution have obscured the small scales at
large Reynolds number. More complete information about particle trajectories in
real (non-idealized) turbulent flows is needed to guide the development of models of
transport in applications (Pope 1994).

In principle, fluid particle trajectories are easily measured by seeding a turbulent
flow with minute tracer particles and following their three-dimensional motions with
an imaging system. In practice, this is a very challenging task because changes
in particle velocity or acceleration can take place on time scales of order of the
Kolmogorov time, τη = (ν/ε)1/2 where ν is the kinematic viscosity and ε is the energy
dissipation per unit mass. In order to observe universal scaling behaviour we require
that the Reynolds number, defined by Re = uL/ν, where u is the r.m.s. velocity and
L is the energy injection scale, approach 105. (This is equivalent to requiring that the
Taylor microscale Reynolds number Rλ = (15Re)1/2 approach 1000.) In a laboratory
water flow (ν ≈ 10−6 m2 s) with a convenient energy injection scale (L ≈ 0.1 m) and
assuming ε = u3/L we must have ε ≈ 10 m2 s−3, which implies τη ≈ 0.3 ms. In order
to measure particle accelerations, motions which take place over this time scale must
be fully resolved.

Although conventional imaging systems based on charge coupled devices (CCD)
have been used for three-dimensional tracking of particles in low-Reynolds-number
flows (Snyder & Lumley 1971; Sato & Yamamoto 1987; Virant & Dracos 1997; Ott
& Mann 2000) they do not provide adequate temporal resolution for use in fully
developed turbulence, as specified above. However, these requirements may be met
by the use of silicon strip detectors as optical imaging elements in a particle tracking
system. The strip detectors used in our experiment were developed to measure sub-
atomic particle tracks in the vertex detector of the CLEO III experiment operating at
the Cornell Electron-Positron Collider (Skubic et al. 1998). When applied to particle
tracking in turbulence each detector measures a one-dimensional projection of the
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image of the tracer particles. Using a data acquisition system designed specifically
for the turbulence experiment several detectors may be simultaneously read out at
70 000 frames per second, making it possible to measure two-dimensional or three-
dimensional particle trajectories with very high spatial and time resolution (Voth et al.
2001; La Porta et al. 2001).

The technical demands of particle tracking in turbulence and the scope of phenom-
ena which become accessible when these demands are met can best be appreciated
by examining one of the more dramatic particle trajectories recorded with the strip
detector particle tracking system. The three-dimensional trajectory shown in figure 1
was recorded in a flow between counter-rotating disks at Rλ = 970 (described below
in § 3) having an r.m.s. velocity of approximately 1 m s−1, a Kolmogorov time τη of
approximately 0.3 ms, and a Kolmogorov distance scale η of 20 µm.

The trajectory was recorded at 70 000 frames per second using a pair of strip
detectors collecting primary and conjugate charge, as will be described in § 2 below.
The particle enters the measurement volume near the top right of figure 1 and appears
to be trapped in a vortical structure. In the third, tightest turn of the helical motion
the acceleration of the particle rises to 16 000 m s−2 within a time interval of 0.5 ms
(≈ 1.5τη). During this trajectory the velocity components of the particle, shown in
figure 2, oscillate wildly, spanning a range considerably larger than the r.m.s. velocity
within a Kolmogorov time. The extreme fluctuations in velocity and acceleration,
which occur on time scales of order of the Kolmogorov time, make great demands
on the particle tracking system.

The trajectory in figures 1 and 2 is also noteworthy in that it seems to lie outside
the characteristic range of the energy cascade. For the first part of the trajectory the
particle appears to be caught in a very intense vortical structure. The tightest loop in
the helical trajectory of the particle is about 300 µm in diameter, or about 15η, which
is in the inertial subrange quite close to the dissipative scale of the turbulence. The
period of the motion appears to be less than 1 ms, of the order of the Kolmogorov
time τη . Yet the velocity fluctuations observed in this trajectory exceed the r.m.s.
velocity, which would normally be associated with the largest scales of the turbulence
(the so called energy-containing range). Events of this nature, which up until now
were experimentally inaccessible, may be interpreted as a manifestation of turbulent
intermittency.

The remainder of the paper is organized as follows. In § 2 the operating principles
and capabilities of the particle tracking system based on a silicon strip detector
are discussed. This includes discussion of the optical system used to image the
tracer particles on the strip detector (§ 2.2). In § 3 the turbulent water flow between
counter-rotating disks is described, and characterized using the silicon strip detector.
This entails measurement of the velocity statistics and an estimate of the energy
dissipation from the transverse-velocity structure function.

The main results are the investigation of the statistics of particle accelerations in
turbulence for 140 6 Rλ 6 970, given in § 4. (A brief account of part of this research
has previously been published in La Porta et al. 2001.) In § 4.1 the probability density
function (PDF) of the acceleration component is measured as a function of Reynolds
number and component direction. In § 4.2 the scaling of the acceleration component
variance is compared with the Heisenberg–Yaglom prediction. It is found that the data
are consistent with DNS results at low Reynolds number, and with the Heisenberg–
Yaglom predicted scaling for Rλ > 500. The flatness of the acceleration component
is found to be quite large and to increase with Reynolds number, exceeding 60 at
Rλ = 970. The acceleration component autocorrelation function is shown in § 4.4.
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Figure 1. Trajectory of a 46 µm diameter tracer particle in turbulence at Rλ = 970 recorded at
frame rate 70 000 f.p.s. The position of the particle at each of 278 frames is represented as a sphere.
The acceleration magnitude is represented by the colour of the trajectory, as indicated by the scale.
The maximum acceleration shown corresponds to about 30 standard deviations from the mean.
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Figure 2. Three components of the velocity of the particle shown in figure 1.

The autocorrelation function is shown to scale with the Kolmogorov time. Finally,
the influence of particle size and density are studied in § 5. It is found that the
acceleration of relatively large particles (diameter > 5η) can be significantly smaller
than that of infinitesimal fluid particles, and that, in this experiment, particle size and
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z

x Conjugate

Primary

Figure 3. Simplified schematic of the strip detector. Dark grey bars represent p-type sense strips.
Light grey bars superimposed on the dark bars represent metal leads evaporated on to the surface
of the detector. The small circles along the diagonal represent paths that connect sense strips to the
leads. Under normal circumstances, only ‘primary’ charge is collected indicating the x-coordinate of
light spots incident on the detector. However, the detector bias may be adjusted so that ‘conjugate’
charge is also detected by the metal leads indicating the z-coordinate, as described in the text.

not density is primarily responsible for this. However, the acceleration variance of the
46 µm particles used for the acceleration measurements differs from that of ideal fluid
particles by only a few percent. Two appendices are also included. The first details
the algorithms used for extracting particle tracks from the strip detector output, and
the second compares the results published here with previous measurements, which
were made with a conventional detection system which had much lower resolution.

2. Particle tracking system
2.1. Strip detector

A brief description of the the strip detector tracking system is provided below. It is
described in detail in Voth et al. (2001).

The silicon strip detector is essentially a large planar photodiode (sensitive area
51 mm × 25.6 mm) which is segmented into 512 sense strips, as shown in figure 3.
Optical radiation incident on the detector creates electron–hole pairs, and the holes
are collected by p-type strips patterned on the front surface of the n-type detector.
Charge is conducted off the detector chip through metallic leads evaporated onto
the surface of the detector which are oriented perpendicular to the sense strips. The
positive charge collected by the array of strips gives a one-dimensional projection of
the light intensity incident on the detector, allowing the x-coordinate of a particle
that is imaged onto the detector to be measured. However, for certain settings of
the detector bias, electrons appear to become trapped in meta-stable surface states
and couple capacitively to the metallic leads. Under these circumstances, negative
‘conjugate’ charge indicates the projection of the intensity on the axis defined by the
leads (which is perpendicular to the axis defined by the sense strips). By distinguishing
the primary (positive) and conjugate (negative) peaks the two-dimensional projection
of a particle trajectory may be measured using a single detector. Positions measured
from conjugate charge have greater uncertainty, so for most of the data presented
below, and in particular for the acceleration measurements, primary charge was used
for position measurement.
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CLEO III

Strip detector I

RC coupler

Amplifier/multiplexer

Slave computer

Controller

Master computer
(user interface)

Acousto-optic
modulator

CLEO III

Strip detector II

RC coupler

Amplifier/multiplexer

Slave computer

Figure 4. The readout cluster. Each strip detector is read out using an individual slave computer.
A field programmable gate array (FPGA) detector controller generates timing signals for the strip
detector data acquisition hardware, and acousto-optic modulator. A master computer controls the
slave computers via Ethernet messaging and provides the user interface for the system.

As shown in figure 4, the 512 strips of each strip detector are connected to an array
of four resistor–capacitor (RC) chips which provide an individual bias resistor and
coupling capacitor for each channel. The output capacitors are connected to an array
of four integrated amplifier/multiplexer chips, which provide a shaper amplifier and
sample-and-hold amplifier for each strip. After a frame of data is latched on the array
of sample and hold amplifiers, analog multiplexers integrated into the amplifier chips
output the strip intensities as four 10 M sample/s waveforms. A detector controller
generates frame-readout triggers for the strip detectors, readout electronics and an
acousto-optic modulator, and may be configured for readout rates in the range 5 kHz–
70 kHz. The acousto-optic modulator is used to strobe the illumination before the
readout of each frame, which is necessary to optimally drive the shaper amplifiers.
The output waveforms are captured using a pair of dual-channel digital oscilloscope
boards mounted in a PCI bus slave computer. The oscilloscope boards can store
4000 frames of data in internal memory, which is subsequently downloaded into
the computer’s main memory. The slave computer performs pedestal subtraction,
thresholding, and stores compressed data on a local hard disk concurrently with
the acquisition of the next frame of data. The maximum duration of continuous
acquisition ranges from 800 ms at 5 kHz to 58 ms at 70 kHz. The time required to
process and store one 4000 frame sequence is approximately 1 s, and this limits the
duty cycle of the acquisition system at high frame rates.

2.2. Optical imaging system

The optical configuration used to image particles is shown in figure 5. The illumination
beam, generated by a 6 W continuous wave argon-ion laser and gated by the acousto-
optic modulator, is directed through a glass window and passes through the centre
of the flow chamber. The beam is a TM00 Gaussian mode and a beam expander
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Figure 5. (a) Optical layout for acceleration measurements, viewed along the axis of the cylindrical
turbulence chamber (ẑ). The illumination beam is gated by an acousto-optic modulation (AOM)
before being passed through the centre of the turbulence chamber. Optics are used to image the
central volume through a view-port at 45◦ with respect to the illumination. A beam-splitter allows
the image to be projected on two strip detectors which are oriented to measure two orthogonal
coordinates. An additional view-port may also be used to measure the third coordinate. (b) Optical
layout for three-dimensional particle measurement. The apparatus is the same except that imaging
optics are present on both ports. In this case strip detectors are operated with conjugate peaks
enabled (see text) so each port has a detector which measures two position coordinates.

is used to obtain a spot radius ω ≈ 1.0 mm with negligible divergence. This beam
radius is chosen so that the beam fills the field of view of the detector, in this
case approximately 2 mm. Acceleration measurements were taken in the configuration
shown in figure 5(a), in which two strip detectors view a common image and measure
two-dimensional coordinates. Some three-dimensional tracks were recorded in the
configuration shown in figure 5(b), in which two detectors view the volume from
different view-ports so that their detection volumes overlap.

The design of the imaging system sketched in figure 5 is determined by the
requirement that a small measurement volume be imaged at high magnification by
optics which are placed outside the turbulence chamber. These design requirements
were met by the two stage imaging system shown in figure 6(a). In order to maintain
acceptable depth of field, the aperture shown after the first imaging lens (L1 in
figure 6) is used to restrict the numerical aperture of the imaging system to a value of
0.03, giving a spot size ≈ 300 µm for images of particles throughout the measurement
volume. As a result, at least three strips were illuminated by each particle image,
making it possible to locate the particle with sub-strip resolution by fitting each peak
to a Gaussian function.

Although the magnification of the optical system defined in figure 6 is nominally
f3/f2, it is useful to vary the configuration of the system in order to adjust the
magnification and position of the focal plane. In particular, L1 may be repositioned
to change the magnification of the first stage of the system, and L3 is replaced by
a pair of lenses whose separation-dependent effective focal length replaces f3. For
the acceleration data presented below, L1 is a compensated doublet with focal length
15 cm, L2 is a doublet of focal length 3.8 cm and L3 is replaced by a pair of lenses
consisting of a 30 cm focal length plano-convex lens and a −50 cm plano-concave
lens separated by approximately 10 cm. The detector is placed approximately 25 cm
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L3L2L1

(a) (b)

f3f2f1

A

Image
plane

Object

Water
Particle

Figure 6. A simplified schematic of the optical system is shown. (a) Plano-convex lens L1 is place
just outside the fluid chamber and is used to image the active volume with 1 : 1 magnification. A
short-focal-length lens L2 is positioned so that its front focal plane (f2) lies at the centre of the
image formed by L1. As a result, point sources in the image are transformed into parallel ray
bundles by L2. The bundles are focused by L3 at its rear focal plane (f3). A beam splitter may be
inserted between L2 and L3 to allow the image to be projected on a second detector, as shown in
figure 5. The magnification of the system is given by the ratio of the focal lengths f3/f2. The light
collection of the imaging system is controlled by an aperture placed behind lens L1. (b) The tracer
particles are transparent polystyrene spheres with density 1.06 g cm−3 and diameter 46 µm and are
detected via specular reflection from the internal and external surfaces. With illumination at 45◦
and polarization perpendicular to the plane of incidence, the internal reflection is much stronger
than the external reflection so that the particle appears as a single point-like source of light.

behind the plano-concave lens. The magnification of the system is approximately
12.8, so that the 100 µm pitch of the strip detector corresponds to approximately
7.8 µm in the fluid volume, giving a field of view of 2.00 mm× 4.00 mm. The effective
magnification of the system is measured to within 2% using a calibration target that
is positioned in the active region at the centre of the flow chamber. (The variation of
the magnification is less than 1% over the illuminated volume, so it was not necessary
to express the magnification as a function of depth.)

For acceleration data, the strip detectors have the reverse voltage bias set such
that conjugate charge is suppressed, allowing them to measure a single coordinate
using the primary charge signal. In order to measure two-dimensional trajectories, a
beam-splitter is used to project the same image onto two detectors (see figure 5a),
which are oriented to measure orthogonal coordinates. Because of the 2 : 1 aspect
ratio of the detector, the fields of view of the two detectors do not coincide, as
shown in figure 7. In this case, the full area of each detector can be used to measure
one-dimensional trajectories, but two-dimensional trajectories can only be measured
in the region where the two fields overlap. As a result, only half of the 512 strips are
available when analysing two-dimensional trajectories.

2.3. Determination and characterization of tracks

Data files stored by the experiment consist of thresholded intensity data simulta-
neously acquired by the two strip detectors. These data files are passed through
several stages of analysis. This task is similar in principle to that employed in
standard particle tracking studies using CCD cameras, but the algorithms employed
must be tailored to the peculiar characteristics of one-dimensional projection images.
Figure 8 shows a two-dimensional particle track which has been constructed from raw
data. A description of the algorithm used for track extraction is given in Appendix A.
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Figure 7. The relative fields of view of two strip detectors oriented as in figure 5(a) to measure
perpendicular coordinates, where the grey stripes represent the orientation of the charge-collecting
sense strips. Because of the 2 : 1 aspect ratio of the detector, only half of the field of each detector
overlaps with the field of the other, so that only 256 strips can be used for coincident measurements.

Secondary data files, consisting of lists of tracks measured for each data sequence are
stored for subsequent analysis.

The accuracy of the particle positions is estimated by fitting a straight line to very
short track segments (shorter than τη) and measuring the mean deviation between the
data points and the fit. The deviation is found to depend most significantly on the
peak height. Figure 9 shows the error as a function of peak height for a typical run.
For extremely weak peaks (maximum intensity < 0.02 V) the error can be of order
1/2 a strip, but the the analysis routines are configured to limit the data to larger
intensity, so that the mean error is 6 0.1 strips. The error for individual trajectories
can vary depending on focus and aperture, but always remains below 0.2 strips.

The frame period, ∆τ, and the number of measurements per Kolmogorov time
τη/∆t, are tabulated for each Re in table 2 (§ 4.2). ∆t is chosen for most Re so that on
average the particles travel approximately 6 µm or 0.7 strips between frames. The very
highest and lowest Re are limited by the maximum and minimum allowable frame
rates and so have an average travel between frames of 12 µm or 1.5 strips and 4 µm
or 0.5 strips respectively.

One can also consider the mean deviation of the peak from the linear fit as a
function of the position (in strips) modulo 1, shown in figure 10. The dependence of
the mean deviation on the position indicates a nonlinearity in the interpolation of the
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Figure 8. (a) Raw data from the two strip detectors. Only the 256 overlapping strip segments are
shown. (b) Positions vs. time measured from the raw data, where gaps are due to the presence of
inoperative strips. (c) Reconstruction of the two-dimensional track from the position data in (b),
where gaps have been bridged by linear interpolation.

peak centres which is smaller than, but of the same order as, the random uncertainty.
This nonlinearity is compensated for by subtraction of the mean deviation from the
peak positions before processing of the trajectories.

The kinematic properties of the tracks are measured by polynomial fits (parabolic
for acceleration, linear for velocity) to the position vs. time data. The fits are made
using the standard least-squares algorithm, with the relative weight of each data
point proportional to the inverse square of the estimated error (as a function of peak
intensity, figure 9). The length of track over which the fit is performed is a complex
issue, which is discussed in detail below.

One of the greatest challenges in the measurement of accurate statistics of La-
grangian variables is the control of sample biases. From a physical standpoint, one
must take care that the tracer particles uniformly sample the fluid volume and fol-
low the flow field. This requires that the particles be sufficiently small and that the
density match between the particle and the fluid be sufficiently close. This issue is
addressed in § 5, below. It is also necessary to ensure that the measurement and
analysis procedures do not introduce biases in the measurements of the particle tra-
jectories. For instance, if one were to make one measurement for each particle that
enters the measurement volume, a distorted velocity distribution would be obtained,
since the rate at which particles enter the measurement volume is itself proportional
to the velocity of the particle (Buchave, George & Lumley 1979; Voth et al. 1998).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

18
42

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002001842


Measurement of particle accelerations in fully developed turbulence 131

0.6

0.4

0.2

0 0.10 0.20

Peak intensity (V)

D
ev

ia
ti

on
 (

st
ri

ps
)

Figure 9. Estimate of particle position error. The graph shows the r.m.s. deviation of the peak
centre from a linear fit to a short segment of track.
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Figure 10. Deviation of particle position from fit as a function of position modulo 1. The circle
indicates the mean and the error bars indicate the standard deviation of the deviation of the peaks
from the fit.

However, the time that a particle will remain in the measurement volume is inversely
proportional to the velocity, and these two factors cancel. Ideally, one would achieve
uniform sampling within the measurement volume by continuously measuring the
kinematic properties of the track from the time that a particle enters the volume
to the time that it exits. In practice this is impossible to achieve because the accel-
eration and velocity are measured by fitting to a polynomial function, and so the
variables cannot be measured until the particle has been in the measurement volume
for a finite time. Another difficulty is that measurement is not possible when par-
ticles cross paths or traverse inoperative pixels. The strategy employed is to measure
the variables as many times as possible along the trajectory, and make the total
statistical weight of these measurements proportional to the total length of the track.
This seems to give the best approximation of uniform sampling of the measurement
volume.
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Figure 11. Schematic representation of the flow between counter-rotating disks decomposed into
(a) the pumping (poloidal) mode and (b) the shearing (toroidal) mode.

3. Characterization of the flow
The goal of this study is to explore universal characteristics of turbulent flows.

However, our flow deviates significantly from the ideal of homogeneity and isotropy.
The apparatus used to generate the turbulent water flow is described in § 3.1. We have
used the strip-detector particle tracking system to characterize the flow in terms of
standard Eulerian quantities. This includes measurement of the scaling of the r.m.s.
velocity components with propeller speed (§ 3.2), an estimate of the rate of energy
dissipation in terms of the velocity structure functions (§ 3.3), and measurement of
the anisotropy of the mean velocity field at the centre of the flow (§ 3.4).

3.1. Turbulence generator

The turbulence is generated in a flow of water between counter-rotating disks in a
cylindrical container (Voth et al. 1998; La Porta et al. 2000), as represented schemat-
ically in figure 11 and shown in figure 12. This type of flow has been widely used
since Douady, Couder & Brachet (1991) made measurements in a similar apparatus
(Fauve, Laroche & Castaing 1993; Maurer, Tabeling & Zocchi 1994; Cadot, Douady
& Couder 1995; Belin et al. 1996; Aumaitre, Fauve & Pinton 2000; Mordant et al.
2001). The container, mounted vertically, is 48.3 cm in diameter and 60.5 cm long
with eight planar windows mounted flush with the surface of the cylinder at equal
angles along the mid-line of the chamber. All physical quantities are defined with
reference to a Cartesian coordinate system in which the z-axis corresponds to the axis
of symmetry of the cylinder and the x- and y-axes correspond to the optical axes of
the two imaging systems represented in figure 5(b). By symmetry the two transverse
coordinates (x and y) are equivalent, and distinct from the axial coordinate (z). The
disk-shaped propellers are open-ended cylinders 20 cm in diameter and 4.3 cm deep
with twelve internally mounted radial vanes. The propellers are spaced 33 cm apart
and are each driven by 0.9 kW computer controlled dc motors that are coupled to
the propellers with variable speed reducers. A cylindrical tube of diameter 25.4 cm
surrounds each propeller and extends 5 cm beyond it. Stationary radial vanes between
this tube and the container wall have been installed to inhibit large-scale rotation of
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Figure 12. Apparatus, consisting of turbulence chamber with counter-rotating disks (foreground),
illumination beam entering from foreground and two detectors (background).

the flow. For the studies described below, the propeller rotation rate is varied from
0.15 Hz to 7.0 Hz. The lower limit is set by the motors and speed reducers and the
higher limit is set by the temporal resolution of the detector. (The detectors are not
able to adequately resolve the Kolmogorov time at the maximum propeller speed of
9 Hz.)

The averaged flow produced by the propellers can be interpreted as a superposition
of two basic components, a pumping (poloidal) mode and a shearing (toroidal) mode.
Centrifugal pumping by the propellers produces the flow represented schematically in
figure 11(a). The resulting mean strain field at the centre of the chamber (represented
by the arrows in figure 11a) tends to enhance the axial component of the vorticity. In
addition, fluid near the top and bottom of the cylinder tends to rotate collectively with
the counter-rotating propellers, creating a shear layer around the edge of the flow
midway between the propellers, as represented in figure 11(b). Particle accelerations
are measured in a 8 mm3 volume at the centre of the flow chamber. Quantitative
measures of the flow, described in detail below, are derived from measurements in
this volume, and additional measurements in a larger 15 mm× 30 mm volume. More
details regarding this flow are given in Voth et al. (1988) and La Porta et al. (2000).
(See also Appendix B.)

3.2. Measurement of the velocity fluctuations

Velocity statistics may be obtained from analysis of matched trajectories obtained
with the apparatus in its standard configuration, shown in figure 5(a). As mentioned
above, in order to obtain a correct estimate of the r.m.s. velocity, it is necessary to
take care to sample trajectories uniformly by ensuring they are continuously sampled
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Figure 13. (a) The PDF for the velocity. (b) Same data as (a) plotted on a semi-log scale.

as long as they remain in the measurement volume. The PDF of the velocity is
shown for linear and log scales in figure 13. It is evident that the standard deviation
of the transverse component exceeds that of the axial component by about 50%.
The distributions for both components are approximately Gaussian; the flatness is
2.8 for the axial and 3.2 for the longitudinal component. These flatness values are
independent of the propeller rotation frequency (Noullez et al. 1997). It may be noted
that there is a small dip near zero velocity in the axial velocity component PDF. This
occurs because the light sensitivity of the detector decreases when a peak remains on
the same pixel for consecutive frames. (This is due to an inefficiency in the shaping
amplifiers used for this detector.) As a result, the measurement volume is effectively
smaller for trajectories with near-zero velocity, causing a measurement bias. It should
be noted that measurement biases depend mostly on the velocity and do not affect
acceleration measurements, except to the extent that the acceleration and velocity are
correlated.

The scaling of the r.m.s. velocity with propeller rotation frequency is shown in
figure 14. The expected linear dependence on the frequency is observed for both
components, which is consistent with the assumption that the nature of the large-
scale flow is independent of the stirring velocity over the range of Reynolds number
studied. The inset shows that the deviation from the linear scaling law does not
exceed a few percent. This deviation is most pronounced at low propeller speeds,
perhaps indicating that the turbulence is not ‘fully developed’ at the lower end of the
Reynolds number range.

The ratio of the r.m.s. transverse velocity to the r.m.s. axial velocity is shown in
figure 15. The ratio varies only a few percent over the full range of propeller speeds,
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Figure 14. The axial and transverse components of the r.m.s. velocity as a function of propeller
speed. The lines indicate the best fit to a linear relationship ui = kif, with ka = 0.090 for the
axial component and kt = 0.133 for the transverse component. The inset shows the r.m.s. velocity
components normalized by the linear scaling law.
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Figure 15. The ratio of transverse (x) to axial (z) components of the r.m.s. velocity.

again indicating that the large-scale structure of the flow does not change as the
Reynolds number is varied.

3.3. Energy dissipation

In order to compare results with Kolmogorov scaling predictions, it is essential to
measure the energy dissipation rate ε, since all statistical quantities are assumed to
depend on this quantity and upon the kinematic viscosity ν. The turbulent energy
dissipation ε is given by

ε = 2ν〈sijsij〉, (3.1)

where sij is the fluctuating rate of strain tensor, defined by

sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (3.2)
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Figure 16. (a) Experimental setup for dissipation measurements viewed from above (along the axial
direction) showing the orientation of the 45◦ light sheet which illuminates the detection volume. (b)
Illustration of detector view for dissipation measurements. The detector sees the particle separation
and velocity projected on the (x, z)-plane, where z is the axial coordinate.

where ui = Ui−〈Ui〉 is a component of the velocity fluctuation (Pope 2000). Unfortu-
nately Lagrangian particle tracking does not allow us to measure velocity gradients,
so a direct measurement of the energy dissipation is not possible.

There are several possible indirect methods for measuring the energy dissipation
from particle tracking data (Ott & Mann 2000). The most accessible method requires
measurement of second- (or third-) order velocity structure functions. The velocity
structure functions are the moments of the velocity differences between two points
separated by a fixed difference. The longitudinal and transverse structure functions
are calculated from velocity components parallel to and perpendicular to the line
separating the two points, respectively. From the second-order structure functions,
the energy dissipation can be obtained by comparison with the K41 scaling relations

DLL = C2(εr)
2/3, (3.3)

DNN = 4
3
C2(εr)

2/3, (3.4)

where L and N designate longitudinal and transverse, respectively, and the separation
r is assumed to be within the inertial subrange. C2 is an approximately universal
constant that has been determined empirically (Monin & Yaglom 1975; Pope 2000).

All of these structure functions can be calculated from three-dimensional La-
grangian trajectory data by simultaneously measuring the velocities of pairs of par-
ticles. However, the particle tracking system used in this experiment is currently not
capable of three-dimensional tracking in a volume which would encompass inertial-
range particle separations due to power limitations of the argon-ion laser used for
illumination. To overcome this, we have developed a technique for measuring the
transverse second-order velocity structure function using two-dimensional particle
tracking in conjunction with a light sheet.

The structure function measurements are performed using the configuration shown
in figure 16. There are several significant differences between this and the standard
configuration used for single particle acceleration and velocity measurements. The
magnification has been reduced to 2.89, giving a field of view of 17.7 mm (> 500η),
which allows inertial-range particle separations to be observed. The optical system is
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schematically similar to figure 5, except that the beam-splitter is omitted and a single
detector is used to measure tracks. The bias of the detector is set so that conjugate
peaks are enabled and two-dimensional trajectories can be obtained from the single
detector output, as discussed in § 2.1 above. In order to maintain adequate illumination
intensity over such a large field of view, the illumination beam is configured as a
light sheet approximately 0.1 mm thick and 10 mm wide. The light sheet was created
using a standard Galilean telescope to expand the beam to a large TM00 mode, then
a second cylindrical telescope to compress the horizontal axis and create an elliptical
mode. The measurement would be simpler in principle if the light sheet were parallel
to the image plane, but in practice it must be oriented at 45◦ with respect to the
optical axis in order to obtain sufficiently strong light scattering from the particles.
The data obtained from this configuration consist mostly of short tracks which are
created as the particles pass through the light sheet. The depth of the light sheet is
chosen so that tracks have sufficient length for an accurate velocity measurement to
be made.

Velocity structure functions are measured as a function of r by calculating velocity
differences for all coincident pairs of particles and compiling statistics under the
condition that the separation distance lies within an adjustable range. Such a pair of
particles will appear to the detector as shown in figure 16(b), and it is possible to
measure two velocity components for each particle and two components of the particle
separation vector. However, as illustrated in figure 16(a), the separation vector does
not lie in the same plane as the velocity components. Using the coordinate system
defined in figure 16 the coordinates x and z are measured explicitly and we may
assume that y ≡ x. The velocities are determined by tracking the particle for the
short time that it remains within the finite thickness of the light sheet, and gives the
projection of the velocity on the imaging plane. We therefore measure the components
ux and uz , but uy is unknown.

Using this geometry, it is not possible to measure the longitudinal structure func-
tion because it is in general not possible to measure a velocity component along
the separation vector. However, it is always possible to measure one of the velocity
components perpendicular to the separation vector. To find the measurable transverse
velocity component, we make use of the fact that this component must be perpen-
dicular to both the separation vector r12 and to the vector normal to the image plane
(ŷ). Such a vector may be constructed by taking the cross product of r12 and y. The
transverse velocity component is then

u⊥2 − u⊥1 = (u2 − u1) · (r12 × ŷ)/‖r12 × ŷ‖, (3.5)

where u1 and u2 are the velocities of the two particles. The dot product can be
evaluated even though the y-component is unknown because the y-component of
r12 × ŷ is identically zero.

The structure functions are calculated from the second moment of (u⊥2 − u⊥1)
conditional on r12,

DNN(r̄) = 〈(u⊥2 − u⊥1)
2|r < ‖r12‖ < (1 + s)r〉, (3.6)

where the relative bin width s is maintained constant as r is varied and where r̄ is the
mean value of ‖r12‖ for all events which satisfy the condition.

Raw data used in the structure function are shown in figure 17(a) and x- and
z-coordinate tracks (calculated from primary and conjugate peaks, respectively) are
shown in figure 17(b). The matching of x and z tracks is performed using intensity
correlations (as described in Appendix A below). The results of the matching are
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Figure 17. (a) Raw intensity data, in which dark areas indicate primary (positive) charge and light
areas indicate conjugate (negative) charge. (b) Position vs. time for x (primary) and z (conjugate)
coordinates. (c) Reconstruction of x, z trajectories after track matching. The dashed and dotted
circles indicate a pair of simultaneous tracks from which velocity differences may be measured.
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Figure 18. Log plot of the scaling of DNN with r. The square symbols indicate data at 5 Hz and
the round symbols at 2.5 Hz. The straight lines indicate best fit to r2/3, as indicated in table 1.

shown in figure 17(c). The scaling of DNN with r is shown in figure 18. Both exhibit
the expected r2/3 scaling over a substantial range. The scaling range is limited at
small r because particles are too close together to be well localized by the light sheet
and at large r because their separation is approaching the integral length scale. The
energy dissipation rates obtained from the fits in figure 18 are shown in table 1, and
are consistent with the expected ε = ũ3/L scaling with L = 7.1 cm. Once the energy
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f ũ ε L
(Hz) (m s−1) (m2 s−3) (m)

2.5 0.3095 0.406 0.073
5.0 0.6190 3.367 0.070

Table 1. Turbulence parameters for dissipation data. The integral length scale L is calculated using
ε = ũ3/L and C2 = 2.13 (Sreenivasan 1995).

dissipation has been determined, it is possible to calculate the Taylor microscale,
λ = (15νũ2/ε)1/2 and the Taylor microscale Reynolds number

Rλ =
ũλ

ν
=

(
15ũL

ν

)1/2

=
151/2ε1/6L2/3

ν1/2
. (3.7)

3.4. Mean rate of strain

The optical configuration used for the dissipation measurements is also useful for
investigation of the structure of the large-scale flow near the centre of the apparatus.
Due to the symmetry at the centre of the flow, the off-diagonal elements of the mean
rate of strain tensor ∂Ui/∂xj are zero, and the diagonal elements are constrained by
symmetry in the transverse plane and the incompressibility condition, ∂Ui/∂xi = 0
(using the summation convention), so that ∂Uz/∂z = −2∂Ux/∂x = −2∂Uy/∂y. Mea-
surements at 5.0 Hz and 2.5 Hz show a linear relationship ∂Uz/∂z = ũ/0.0492 m. This
may be compared with a component of the fluctuating strain, which is related to
the dissipation in an isotropic flow by ε = 15ν(∂uz/∂z)

2. The ratio of the fluctuating
strain to the mean strain is therefore

(∂Uz/∂z)

(∂uz/∂z)
=

(15νL)1/2

0.0492
u−1/2 = 0.021u−1/2. (3.8)

This implies that at the maximum propeller speed of 7 Hz, the mean strain is about
2% of the fluctuating strain and rises to about 15% of the fluctuating strain at the
minimum propeller speed of 0.15 Hz.

4. Results: particle acceleration measurements
The primary subject of this paper is the study of fluid particle accelerations in

fully developed turbulence. In contrast to the fluid particle velocity, which is the same
quantity that would be measured by a fixed probe at the same location, the particle
acceleration is most naturally measured using Lagrangian techniques. The acceleration
of a fluid particle a+ corresponds to the substantive derivative of the velocity

a+ ≡ ∂u

∂t
+ (u · ∇)u. (4.1)

In order to determine a+ from Eulerian measurements, it would be necessary to know
∂u/∂t as well u and ∇u at a point in space (which is possible in DNS but not in
experiments). In terms of the fluid particle acceleration, the Navier–Stokes equation
is

a+ = −∇P
ρ

+ ν∇2u, (4.2)
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Figure 19. The PDF of the transverse (x) component of the acceleration at three values of Rλ
plotted on (a) linear and (b) log scale. Each acceleration distribution is measured by parabolic fits
over 0.75τη and is normalized by its standard deviation. The dashed curve is a Gaussian with the
same standard deviation and the solid curve is the parameterization defined in equation (4.3).

where P is the pressure and ρ is the fluid density. In fully developed turbulence, the
viscous term is small compared with the pressure gradient term, so a measurement
of a+ gives information about the pressure gradient, which is difficult to measure
experimentally.

Measurements of the acceleration require the lowest possible position error, and
were made exclusively from primary charge readout (rather than from the less accu-
rate conjugate charge readout). Accelerations were measured from two-dimensional
trajectories recorded in the configuration illustrated in figure 5(a). Accelerations are
therefore known in the (x, z)-plane, giving one axial and one transverse component.
(Due to symmetry, the statistical properties of the unmeasured y-coordinate are
expected to be identical to those of the x-coordinate.)

4.1. Acceleration distribution

The PDF of the x (transverse) component of the acceleration is shown on linear
and logarithmic scales for several values of Rλ in figure 19. It is found that the
distributions have a stretched exponential form for all measured values of Rλ, but
that the extension of the tails increases with Rλ. The distributions are plotted for fits
to a finite time interval τf of 0.75τη . Although there is no qualitative change in the
distribution as the fit time is varied over a range 0.5τη < τf < 2τη , the moments of the
distribution tend to increase as τf is reduced. Estimates of the variance and flatness
of the acceleration distribution (〈a2

i 〉 and 〈a4
i 〉/〈a2

i 〉2, respectively) must therefore be
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Figure 20. The curves show the relative contribution to the second and fourth moments of the
transverse acceleration component (a2
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x〉) respectively, as a function of
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obtained by measuring these quantities as a function of τf and extrapolating to zero,
as will be described in § 4.2 below. However, on the basis of figure 19 it is obvious
that the tails extend far beyond those of a Gaussian distribution of the same variance
and that the flatness of the acceleration is very large (> 40, compared with 3 for a
Gaussian). This result is consistent with the large pressure gradient flatness values
measured at low Reynolds numbers in DNS (Vedula & Yeung 1999).

The acceleration component PDF may be parameterized by the phenomenological
function

P (a) = C exp(−[a2]/[(1 + |aβ/σ|γ)σ2]), (4.3)

where β = 0.539, γ = 1.588, σ = 0.508 and C = 0.786 were obtained for the data at
Rλ = 970. It has been shown by Holzer & Siggia (1993) that if the tails of the
velocity difference distribution are exponential, then the acceleration PDF should
exhibit scaling P (a) ∝ exp(−a1/2). This may be compared with the tails of equation
(4.3) which have the form exp(−|a|0.41).

Beck (2001a) has also shown that the data may be described by a fit which is derived
using Tsallis statistics. Very large amounts of data are required for convergence of
the fourth moment since the acceleration PDF has such long tails. Figure 20 shows
the contribution to the second and fourth moments as a function of acceleration.
Using Tsallis statistics Beck (2001b) argues that the fourth moment should diverge for
Rλ → ∞. In figure 20, the fourth moment seems to be converging, but it is apparent
that even with 5 × 106 acceleration measurements, the convergence is marginal and
no definite conclusions about the fourth moment convergence can be drawn from our
present data.

The extent to which the anisotropy of the flow affects the acceleration PDF is illus-
trated in figure 21. The plot shows the PDFs for ax and az at Rλ = 970. Comparison
with figure 13 shows that the acceleration is much less anisotropic than the velocity.
The small difference in the variances of ax and az will be discussed below in § 4.2.

4.2. Acceleration variance

The variance of particle accelerations in a turbulent flow was first predicted on the
basis of the 1941 scaling theory of Kolmogorov (1941a, b) by Heisenberg and Yaglom
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Figure 21. Acceleration distributions for transverse (x) and axial (z) components of the particle
acceleration for a run at Rλ = 970. The acceleration was calculated for fits over 1τη . The standard
deviations for ax and az are 382 m s−2 and 364 m s−2 respectively.

(Heisenberg 1948; Yaglom 1949). The variance of the acceleration components is
given by

〈aiaj〉 = a0ε
3/2ν−1/2δij , (4.4)

where a0 is predicted to be a universal constant which is approximately 1 in a model
assuming Gaussian fluctuations (Heisenberg 1948). The form of this scaling law can
be deduced from the assumption that the acceleration is a dissipation-scale quantity,
and must be determined only by ε and ν.

Deviations from the Heisenberg–Yaglom scaling law are expected to arise from
turbulent intermittency. Using the refined similarity theory, equation (4.4) is replaced
with

〈aiaj〉 = a0ν
−1/2δij〈ε3/2

r 〉, (4.5)

where εr , the energy dissipation averaged over a sphere of radius r, has taken the
place of the mean energy dissipation, ε. Using the log-normal model for the moments
of εr , this yields

〈aiaj〉 ∝ (L/η)3µ2/8 ∝ R
9µ2/16
λ = R0.14

λ , (4.6)

where a value of 1/4 has been used for the intermittency exponent, µ2. Other models
of intermittency have been developed, such as the explicitly Lagrangian model of
Borgas (1993), which predicts a0 ∝ Rλ

0.135.
Direct numerical simulation of turbulence has shown that at low Reynolds number

a0 ∝ Rλ
1/2 (or ε1/12, using equation (3.8) and assuming constant L and ν). This is

equivalent to an overall scaling of the acceleration variance with ε19/12, which is a
relatively small deviation from the Heisenberg–Yaglom prediction of ε3/2.

In principle, the acceleration variance may be calculated by taking the second
moment of the distributions shown in figure 19. However, in order to calculate the
particle accelerations the track must be fit over a finite time, and the moments of the
distribution depend on this fit time interval. The issue is illustrated in figure 22, which
shows a typical particle trajectory. The raw trajectory appears to be straight, but
when the mean velocity is subtracted off, the particle is seen to be undergoing a small
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Figure 22. (a) An apparently straight particle trajectory recorded at Rλ = 970. The duration of the
track is approximately 150 frames, 2 ms, or 7τη . (b) The same trajectory after the mean velocity has
been subtracted off. The three lines show parabolic fits over intervals of 150, 40 and 5 frames.

time-varying acceleration, which causes it to deviate from a straight trajectory by a
distance corresponding to a few strips on the detector. The acceleration of this track
is approximately 90 m s−2, which is about one quarter of the r.m.s. acceleration – a
typical value. Clearly the correct acceleration will be measured from this track only
if a parabolic fit is made over an appropriate time interval. The fit over 150 frames
does not conform to the trajectory and underestimates the acceleration. The fit over 5
frames conforms to the position measurement errors and dramatically overestimates
the acceleration. The fit over 40 frames (1.8τη) appears to conform to this particular
trajectory.

Ideally, we would like to fix the fit interval at a value where the noise is adequately
averaged and yet the parabolic fits are able to conform to all of the particle trajectories.
Figure 23 shows the normalized variance of the acceleration distribution as a function
of the fit interval τf , and demonstrates that no value of τf exists which satisfies this
criterion, since there is no range of τf where the acceleration variance is independent
of τf . For τη 6 τf 6 9τη there is an approximately exponential dependence of the
acceleration variance on τf which is due to the failure of the fits to conform to the
true particle trajectories. For τf < τη the acceleration variance rises dramatically with
a ≈ τ−5

f power law dependence. This is the τf dependence which would be obtained
from uncorrelated Gaussian distributed noise, and evidently arises from the position
measurement error.

The fact that the onset of position uncertainty occurs at a value of τf where the fits
fail to fully conform to the turbulent trajectories indicates that the frequency spectra
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Figure 23. Normalized acceleration variance (a0) of the x-component as a function of fit interval
normalized by the Kolmogorov time (τf/τη). (a) The circles represent data taken at Rλ = 970, the
solid line indicates the best fit of the function in equation (4.7), and the dashed line shows the
exponential term. (b) The squares represent trajectories obtained from direct numerical simulation
of turbulence at Rλ = 240 (Vedula & Yeung 1999). The solid line indicates the best fit of the function
in equation (4.7), and the dashed line shows the exponential term. The value of a0 obtained from
direct calculation from the simulation is 3.44. The extrapolation technique overestimates this value
by approximately 10%.

of these two processes are not distinct, but overlap. Therefore it is not possible to
distinguish between these two contributions on any given track. However, we can
separate the two effects by making use of the fact that the two contributions to the
acceleration variance have very different scaling with τf . The procedure we use is to
fit the data (shown in figure 23a) of the measured a0 (the normalized acceleration
variance) vs. fit time to the function

f(τ) = AτB + C exp(Dτ+ Eτ2), (4.7)

where A, B, C , D and E are fit parameters. The power law term represents the contri-
bution from the position noise and the exponential term represents the contribution
of the turbulence to the acceleration variance. (The τ2 term is added to model the
slight deviation from exponential dependence observed at large τf .) The best estimate
of a0 is then obtained by evaluating the exponential term in the limit where τf → 0,
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f ũ τs ε τη η ∆t
(Hz) (m s−1) (ms) (m2 s−3) (ms) (µm) Rλ Re (µs) τη/∆t τs/τη

0.15 0.0186 107 9.01× 10−5 105 322 140 1340 205 512 1.02
0.30 0.0371 53.9 7.21× 10−4 37.0 191 200 2690 150 257 1.46
0.41 0.0509 39.7 1.85× 10−3 23.1 151 235 3680 116 200 1.72
0.60 0.0743 26.9 5.77× 10−3 13.1 114 285 5380 74.9 175 2.05
1.75 0.217 9.22 0.143 2.63 51.0 485 15 700 25.9 102 3.50
3.5 0.433 4.62 1.14 0.929 30.3 690 31 400 14.3 65 5.27
7.0 0.867 2.31 9.16 0.329 18.0 970 62 700 14.3 23 6.99

Table 2. Turbulence parameters for acceleration data with ν = 9.89× 10−7m2 s−1 (water at 20.6◦). f
is the propeller rotation frequency and ∆t is the strip detector frame period. ũ = ((ū2

x + ū2
y + ū2

z)/3)1/2

is the r.m.s. velocity. The sweeping time τs is calculated from ũ and the 2.00 mm field of view of
the detector. The energy dissipation is calculated from ε = u3/L with L = 0.071 m, as discussed in
§ 3.3. The Taylor microscale Reynolds number Rλ is calculated from equation (3.7) and the classical
Reynolds number Re is defined by Re = Rλ

2/15.

so that a0 = C . It is known that this extrapolation must overestimate the value of a0

because the slope of the a0 vs. τf curve must go to zero at τf = 0 since the tracks are
differentiable.

To determine how the extrapolation to zero fit time is related to the true accelera-
tion variance, we used a simulation of the detection process. The simulation is based
on three-dimensional particle trajectory data from Vedula & Yeung’s (1999) DNS
simulation at Rλ = 240, which is known to have a0 = 3.44. These trajectories were
dimensionalized using the viscosity of water and the rate of energy dissipation which
would be needed to produce the same Reynolds number in our apparatus. These
scaled trajectories were used as input to a computer model which simulated the illu-
mination of the particles and the imaging of our measurement volume onto the strip
detectors, including diffraction and defocusing of the imaging system. The computer
model also simulated charge collection by the strip detector, including correlated and
uncorrelated noise, charge diffusion, and inoperative pixels. The intensities produced
by the simulation were then run through the real-time thresholding and compression
algorithms used in the experiment, and were subsequently processed by the same data
processing algorithms as used for actual experimental data.

The measurement of a0 as a function of normalized fit interval for the simulation
data is shown in figure 23(b) (which may be compared with figure 23a). The exponen-
tial dependence on τf is reproduced for large τf , as is the power law dependence for
small τf . The extrapolation for τf → 0 gives a value of 3.80. This value is 10% higher
than the value of 3.44 which was measured directly from the simulation (Vedula &
Yeung 1999).

In order to correct for the systematic overestimation of a0 by our analysis technique
we have rescaled all normalized acceleration variance measurements presented in this
paper by 10%. For Rλ other than 240, this correction depends on the assumption
that the dependence of the measured value of a0 on (τf/τη) has a universal form for
small τf .

The procedure described above was used to calculate the acceleration variance for
the x- and z-components of the acceleration for all values of the Reynolds number.
Figures 24(a) and 24(b) show a0 as a function of τf for the x- and z-components of
the acceleration, respectively. The maximum value of τf for which the acceleration
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Figure 24. Plots of the normalized variance of an acceleration component, a0, as a function of
normalized fit time τf/τη for the full range of Reynolds number. The lines indicate the exponential
term C expDτ + Eτ2 from the best fit for each curve. The tabulated values of a0 are derived from
the extrapolation of this term to τ = 0. (a) x-component, (b) z-component.

variance can be calculated is determined by the length of time the particles remain
in view. This is estimated using the sweeping time τs, which is the length of time a
particle moving at the r.m.s. velocity would remain in the detection volume (tabulated
in table 2). For purposes of fitting to equation (4.7) the range of each a0 curve in
figure 24 was limited at low τf to the value where the power law term contributes an
order of magnitude more than the exponential term, and at high τf to 1.15τs.

Certain conclusions may be drawn from figure 24. The curves for the three high-
Reynolds-number runs collapse onto a single curve, indicating that the scaling of the
acceleration with time is well approximated by K41 scaling. At low Reynolds numbers,
the slopes of the curves and their extrapolations to τf = 0 fail to collapse, indicating
that K41 scaling has broken down. However, the interpretation is somewhat more
complex because the measurement process brings an additional time scale into play.
As the Reynolds number is reduced, the ratio of the residence time of the particles
τs to the Kolmogorov time τη becomes smaller. If there is any correlation between
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Figure 25. The variance of the acceleration plotted as a function of ũ. The straight line is the best
fit of ũ9/2 (ε3/2 with ε = ũ3/L) to the data.

f
(Hz) Rλ (a0)x (a0)z (a0)x/(a0)z

0.15 140 4.60± 0.40 3.01± 0.27 1.53
0.30 200 4.99± 0.28 4.07± 0.48 1.23
0.60 285 5.26± 0.28 4.49± 0.70 1.17
1.75 485 6.01± 0.33 5.12± 0.23 1.17
3.50 690 6.18± 0.42 5.85± 0.27 1.06
7.00 970 5.61± 0.35 5.23± 0.34 1.07

Table 3. a0 as a function of Reynolds number for transverse and axial acceleration.

residence time and acceleration, then this implies that similarity cannot be achieved
by rescaling the time axis with τη . By varying the size of the measurement volume
(and hence the sweeping time τs) we have observed that the slope of the a0 vs. τf
curve has some dependence on the finite size of the measurement volume, although
the extrapolation to τf = 0 is found to be independent of the measurement volume.
For this reason the τf → 0 extrapolation is a more reliable measure of a0 than its
value at any finite τf .

The variance of the (unnormalized) x-component of the acceleration is shown as a
function of the r.m.s. velocity ũ in figure 25. It is found that the predicted scaling

〈a2
x〉 =

a0ũ
9/2

L3/2ν1/2
(4.8)

(from equation (4.4), using ε = ũ3/L), is observed over nearly 7 orders of magnitude
in acceleration variance, or nearly 2 orders of magnitude in velocity variance. The
scaling of a0 with Rλ is plotted in figure 26 and tabulated in table 3. In this plot, a
constant value of a0 would indicate Heisenberg–Yaglom scaling. As Rλ is decreased
below 500 the value of a0 decreases substantially showing a small but significant
departure from universal scaling. The dependence of a0 on Rλ in this regime seems
to be qualitatively consistent with DNS results. It is not surprising that DNS and
experimental results do not match exactly at small Reynolds number, since in this
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Figure 26. The Kolmogorov constant a0 calculated for transverse (filled circles) and axial (filled
squares) components of the acceleration, as a function of Reynolds number. These values have
a 10% correction applied to them as discussed in § 4.2. Values obtained from direct numerical
simulation of turbulence by Vedula & Yeung (1999), and by Gotoh & Fukayama (2001) are also
shown by open squares and open triangles, respectively.

range the acceleration is coupled to the large scales of the flow. The DNS results
were obtained for isotropic turbulence with periodic boundary conditions, which
differs markedly from the anisotropically forced turbulence between counter-rotating
disks used in the experiment. At high Reynolds number (Rλ > 500) a0 appears to
be independent of Rλ, which is consistent with Heisenberg–Yaglom scaling. Due to

experimental uncertainties, very weak deviations such as the R 0.135
λ prediction of the

Borgas multi-fractal model cannot be ruled out by these data.
It has been shown that the mean-squared pressure gradient in a turbulent flow – and

therefore the mean-squared acceleration and a0 – is closely related to the fourth-order
velocity structure functions and to the inertial-range flatness factor (Hill & Wilczak
1995). This would indicate that the a0 vs. Rλ curve in figure 26 could be compared
with the flatness factor (F) vs. Rλ curve reported by Belin et al. (1997) in another
experiment involving a flow between counter-rotating disks. Some similarity is evident,
despite the fact that the flow configurations are quite different (Hill 2001, 2002).

It is also evident that larger a0 values are obtained for the transverse component
than for the axial component of the acceleration, and that the level of anisotropy
decreases as the Reynolds number is increased. The anisotropy of the acceleration
variance is best illustrated by calculating the ratio (a0)x/(a0)z as a function of Rλ,
as shown in figure 27. At the lowest Reynolds number of 140, (a0)x/(a0)y = 1.52,
indicating that the ratio of the standard deviations of the acceleration components is
1.23. As the Reynolds number is increased to 970, the level of anisotropy decreases to a
very small value. This observation is consistent with recent experimental results which
indicate that anisotropy persists to high Reynolds numbers (Kurien & Sreenivasan
2000; Shen & Warhaft 2000).

It is also informative to compare figure 27 with the inset to figure 14, which shows
the ratio of the standard deviations of the velocity components. On the one hand,
the particle velocities are associated mainly with the large scales and the level of
anisotropy is large and independent of Reynolds number, as expected. On the other
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Figure 27. The ratio of a0 calculated for transverse (x) and axial (z) components of the
acceleration as a function of Reynolds number.

hand, the particle accelerations come mainly from the dissipation-range scales. As
expected, the level of anisotropy for the acceleration is smaller than for the velocity,
and decreases as the Reynolds number is increased.

4.3. Acceleration flatness

Even though the convergence of the fourth moment is unclear (§ 4.1, Beck 2001b), it
is interesting to quantify the degree of intermittency of the acceleration by calculating
the acceleration flatness (〈a4

i 〉/〈a2
i 〉2) as a function of Reynolds number. In this case,

one encounters the same difficulty as for the variance: the flatness varies as a function
of the interval over which the acceleration is calculated. One must also confront
the added difficulty that the tails of the acceleration distribution are so long that
prohibitively large data samples would be needed to definitively converge the fourth
moment, as illustrated in figure 20 above. In view of figure 20, it seems possible
that the unconverged tails of the acceleration distribution could make substantial
contributions to the fourth moment. In addition, the ability of the tracer particles to
fully follow rare violent events which contribute most to the flatness has not been
fully established. Therefore, we can only set lower bounds on the flatness.

The flatness for the transverse component of the acceleration is shown as a function
of fit time in figure 28. An increasing trend is evident as τf decreases, but the
dependence on τf is more difficult to define than in the analogous curves for the
acceleration variance (figure 24). We have not found it possible to make a formal
extrapolation for τf → 0 in this case, but by tabulating the flatness at a value of τf
slightly above the onset of power-law position uncertainty we can compile a plot of
lower bounds on the acceleration flatness, shown in figure 29. The flatness is found to
be at least 25 at the lowest Reynolds numbers studied and the lower bound increases
to approximately 60 as the Reynolds number is increased.

These large flatness values indicate that the acceleration is more intermittent
than the other small-scale quantities in turbulence. For example, at Rλ = 200, the
longitudinal velocity derivative flatness is 6.0 (Van Atta & Antonia 1980), and the
scalar gradient flatness is 17 (Shen & Warhaft 2000), while the acceleration flatness
in both experiments and simulation (Vedula & Yeung 1999) is approximately 30.
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Figure 28. Flatness of the transverse component of the acceleration as a function of fit interval τf .
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Figure 29. Lower bound on the flatness of the transverse and axial components of the acceleration
as a function of Rλ. The error bars indicates an estimated uncertainty due to the inability to
extrapolate τf to zero, but do not reflect uncertainty in the convergence of the fourth moment.

4.4. Acceleration correlations

Having measured the acceleration as a function of time for the particle tracks, in
principle it is straightforward to evaluate the acceleration autocovariance

ca+(τ) = 〈a+
i (t)a+

i (t+ τ)〉 (4.9)

and the acceleration autocorrelation function

Ca+(τ) =
〈a+
i (t)a+

i (t+ τ)〉
(〈a+

i (t)2〉〈a+
i (t+ τ)2〉)1/2

, (4.10)

where a+
i (t) is the acceleration component along a particle trajectory and 〈 〉 denotes

averaging over t for an ensemble of tracks. Due to measurement biases a naive
application of equations (4.9) and (4.10) is not appropriate.

The autocorrelation data were compiled using the same trajectories as were used
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Figure 30. (a) The acceleration autocovariance is shown for data at Rλ of 970. The accelerations
are calculated by direct differencing of trajectories which have been smoothed with a Gaussian
kernel with different standard deviations, σk: solid triangles σk = 0.26τη , open circles σk = 0.43τη ,
plus signs σk = 0.60τη , open triangles σk = 1τη . The inset shows a zoomed-out view of the figure
in which the acceleration variance that was determined in § 4.2 is marked with an arrow. (b) The
acceleration autocorrelation at Rλ = 690 and Rλ = 970 is shown for σk = 0.15τη and σk = 0.26τη
respectively. The time axis has been scaled by the Kolmogorov time τη .

for the study of the acceleration moments. This presents some difficulty because of
the small size of the measurement volume, i.e. the lengths of the tracks are of order
a few τη . The variances 〈a+

i (t)2〉 and 〈a+
i (t + τ)2〉 are compiled from different data

samples and differ slightly, particularly at large τ.
In addition, particles with large accelerations are less likely to remain in view

than particles with small accelerations. The autocorrelation function ca+(t) differs
depending on whether all the tracks or only tracks which are at least τmax long are
used.

Here, the accelerations were determined by direct differencing of trajectories which
have been smoothed by a Gaussian kernel with standard deviation σk , hereafter
referred to as the kernel width. This is similar to using a parabolic fit as in § 4.2
but is more tractable for this calculation. Figure 23 shows that ca+(0) at large σk is
overestimated and at small σk is underestimated and the true value can only be found
by an extrapolation back to σk = 0. This makes the normalization of ca+(t) to obtain
Ca+(t) as in equation (4.10) inaccurate. Nevertheless, it is still possible to measure the
autocovariance and autocorrelation for τ > 0.

In order to correct for biasing errors and make a sensible normalization we calculate

c̃a+(τ) =
〈a+
i (t)a+

i (t+ τ)〉t&τ
(〈a+

i (t)2〉t&τ〈a+
i (t+ τ)2〉)1/2

t&τ

〈a+
i (t)2〉t, (4.11)

C̃a+(τ) =
c̃a+(τ)

a0ν−1/2ε3/2
; (4.12)

〈 〉t&τ indicates that only measurements of acceleration where a measurement at both
t and t+ τ existed on the given particle track were averaged over; 〈 〉t indicates that
all measurements of acceleration were averaged over.

Figure 30(a) shows c̃a+(τ) for Rλ = 970 at σk = 0.26τη , 0.43τη , 0.60τη and 1.0τη .
For small kernel widths, the oscillation can be attributed to the convolution with the
Gaussian kernel (N. Mordant 2002, private communication). For sufficiently large τ,
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all of the curves collapse for σk < 1τη . This shows that at sufficiently large τ the true
shape of the autocovariance is measured.

Figure 30(b) shows C̃a+(τ) for Rλ of 970 and 690. The time axis is scaled by the
Kolmogorov time and the data collapse between the two Reynolds numbers shows
that Kolmogorov scaling is observed. In order to compare our curves to those of
the available direct numerical simulations, we determine the exponential decay time
τ1/e, Ca+(τ1/e) = 1/e. Although Yeung & Pope (1989) specify the zero crossing τ0

(Ca+τ0 = 0), we find that τ1/e is a more appropriate choice in our case. At this point
the statistics are better and less prone to biasing errors due to the small measurement
volume. The curve at the zero crossing has a shallow slope so small deviations in it
can cause large deviations in the zero crossing. We find that τ1/e = (0.73 ± 0.05)τη
for Rλ = 690 and τ1/e = (0.80± 0.05)τη for Rλ = 970. Measurements from figure 7 in
Yeung & Pope (1989) give τ1/e = 1.3±0.1 for direct numerical simulations at Rλ = 93
which is 60% larger than the experimental value.

5. Effect of finite particle size on particle accelerations
An important question which must be considered is the extent to which the

polystyrene tracer particles are equivalent to ideal fluid particles. In order to address
this question, we have repeated our acceleration measurements using tracer particles
with a range of particle diameters and fluid densities. Not only are these measurements
essential to validate the Lagrangian measurements, but the data for large particle sizes
offer a new perspective on the motion of finite size particles in turbulence.

Phenomenologically, we can identify two mechanisms by which a discrepancy
between statistics of tracer particle trajectories and fluid particle trajectories could
arise. (i) It is possible that the tracer particle’s density is different from that of the
fluid, so that it experiences an acceleration that is different from the acceleration
that would be experienced by a fluid particle at the same location. We call this the
density-dependent effect. (ii) It is possible that the tracer particle’s size is large enough
that the unperturbed flow would change significantly over the volume of the particle.
Since this effect remains even when the tracers are density matched, we call this the
density-independent effect. The dimensionless numbers that measure these effects are
the ratio of the particle to fluid density, ρp/ρf , and the ratio of the particle diameter to
the smallest length scale in the flow, d/η. A commonly used parameter is the ratio of
the Stokes time (d2ρp/νρf) to the Kolmogorov time (η2/ν) which is the combination
of the size and density parameters.

Particle motion in fluid flows has been extensively studied both as a fundamental
fluid dynamics topic (Basset 1888; Corrsin & Lumley 1956; Maxey & Riley 1983) and
in order to validate measurement techniques that rely on tracer particles (Buchave
et al. 1979). Most of the work in this area has focused on the dynamics of particles
when the density-independent effect is negligible. Not only is this regime amenable to
exact theoretical modelling, but it also is a good approximation for the tracers used
in many particle image velocimetry and laser Doppler anemometry experiments. In
those experiments, it is desirable to have the spacing between particles less than or
equal to the size of the smallest flow structures, so the particle size must be much
smaller than the smallest structures.

In order to determine the effects of finite particle size on the acceleration mea-
surements, we repeated the measurements at Rλ = 970 using particles of diameters
between 26 µm and 450 µm (1.44η and 26η). The Stokes times for these particles
ranges from 0.67 ms to 216 ms, which should be compared to the Kolmogorov time of
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Figure 31. PDF of the acceleration for different particle sizes and fluid densities at Rλ = 970
normalized by the r.m.s. acceleration. Out to 10 standard deviations the shape of the curve is
not strongly affected. •, 50 µm diameter, ρeff = 1.06, 〈a2〉1/2 = 0.015 m s−2. ©, 450 µm diameter,

ρeff = 1.06, 〈a2〉1/2 = 0.005 m s−2. 4, 450 µm diameter, ρeff = 0.96, 〈a2〉1/2 = 0.006 m s−2.
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Figure 32. Normalized acceleration variance (a0) as a function of particle diameter at Rλ = 970.
Open circles with error bars are for particles of relative density 1.06. The solid circle with error bars
is for particles of relative density 1.0. The Kolmogorov length is 18 µm and the relative density is
defined as ρeff = ρparticle/ρfluid. The solid line shows d−2/3 scaling.

0.32 ms. We also measured the acceleration of 450 µm particles in NaCl solutions with
densities between 1.00 g cm−3 and 1.11 g cm−3. Since the particle density is 1.06 g cm−3,
this range of densities encompasses both negative and positive particle buoyancy.
Figure 31 shows the PDF of the acceleration for different particle sizes and fluid
densities. Out to 10 standard deviations, the shape of the distribution is not strongly
affected by particle size.

In figure 32, the measured Kolmogorov constant a0 is shown as a function of
particle size for acceleration data taken with pure water at Rλ = 970. A 70% decrease
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Figure 33. a0 (normalized acceleration variance) as a function of relative particle density for
450 µm particles at Rλ = 970.

is seen in the measured acceleration variance between the smallest and largest particles
used.

The dependence of the particle acceleration on the density mismatch is shown in
figure 33, where a0 is plotted as a function of relative density (ρeff = ρparticle/ρfluid) for
450 µm diameter particles at Rλ = 970. In this case, the density of the fluid is varied
by the addition of NaCl, and the values of a0 are corrected for the slight change in
kinematic viscosity which occurs as the density is varied. The data for pure water
appear at effective particle density ρeff = 1.06, and reflect the strong underestimate of
particle accelerations with large dense particles. If the suppression of a0 were due to
density mismatch, the effect would reverse in the case where the particles are lighter
than the fluid they displace, and the a0 values would exceed the small particle limit.
The data at ρeff = 0.96 in figure 33 (taken at high salt concentration) show that
although a0 increases somewhat, it still remains far below the small-particle limit of 6
as seen in figure 32. These data demonstrate that for our measurements the effective
coarse graining by the finite size particles is more important than the differential
buoyancy due to the density mismatch in our experiment.

A simple model based on the K41 phenomenology can be used to predict the scaling
of the acceleration with particle size in this regime where density mismatch is not
important. We assume that the effect of finite particle size is that only flow structures
larger than the particle size contribute to the acceleration. This means that the scaling
of the acceleration variance can be determined by starting with 〈a2

x〉 ∼ ε3/2ν−1/2, and
replacing the viscosity with the value that would make the Kolmogorov scale equal
to the particle diameter, ν → ε1/3d4/3. Consequently, the acceleration variance should
scale as d−2/3 for large particle sizes. We expect that below some particle size this
scaling is no longer adhered to, and the acceleration becomes independent of particle
size. The solid line in figure 32 shows the d−2/3 scaling. There are not enough data to
confirm this theory, but the data are consistent with this scaling. For large particle
size, the data can be interpreted as following the d−2/3 scaling, and for particle size
less than 100 µm (5η) there is a change over to the acceleration being independent of
particle size.

To provide an upper limit on the possible deviation of tracer particle acceleration
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from that of fluid particles, we note that the dependence of a0 on particle diameter
in figure 32 could be interpreted as being roughly linear. An extrapolation of the
linear dependence to zero particle size indicates that the acceleration variance of the
46 µm particles used for the acceleration measurements reported above is within 7%
of that of fluid particles. This is really a worst case scenario, since the values obtained
for 26 µm and 46 µm particles are indistinguishable within experimental uncertainties,
and it is expected that the particle size dependence has zero slope at the origin. Note
that these data are at the largest Reynolds number reported in this paper, and the
particle size dependence will be weaker at lower Reynolds numbers. We conclude
that the 46 µm particles are small enough to measure the acceleration variance at the
10% accuracy which we have reported.

6. Conclusion
We have reported high-resolution measurements of the Lagrangian properties of

a high-Reynolds-number turbulent flow. The particle tracking system, based on the
CLEO III silicon strip detector, is able to measure positions with spatial resolution
of 0.5 µm (1/40 of the Kolmogorov distance, or 1/6400 of the field of view) and
temporal resolution of 14 µs (1/20 of the Kolmogorov time) in an Rλ = 970 flow.

The primary results of this paper concern the fluid particle accelerations. We tested
the long-standing Heisenberg–Yaglom prediction that the acceleration variance scales
as ε3/2 (or ũ9/2). At low Reynolds number, our data are consistent with DNS. However,
we find that for 500 > Rλ > 970 the value of a0 is approximately constant, indicating
that K41 theory approximates the acceleration scaling in this range of Rλ well.
Turbulent intermittency models generally predict a very weak dependence of a0 on
Reynolds number (for example, R0.135

λ in Borgas’ model) but experimental uncertainty
currently makes it impossible to test such predictions.

The fact that the flow between counter-rotating disks has a well-defined anisotropy
allows us to test the coupling of the acceleration to the structure of the large-scale
flow. While the velocity exhibits a significant anisotropy which is independent of
Reynolds number, the acceleration exhibits a smaller anisotropy which decreases as
the Reynolds number is increased, as shown in figure 27.

The autocorrelation function of the acceleration component was also measured.
Because of measurement volume effects, this measurement was restricted to relatively
high Reynolds numbers. The functions are narrower than low-Rλ direct numerical
simulations, and exhibit Kolmogorov scaling of the time.

The acceleration is found to be an extremely intermittent variable, as evidenced by
the very long stretched exponential tails of the acceleration component PDF, shown in
figures 19 and 21. The level of intermittency, reflected in the acceleration component
flatness, is found to increase with Reynolds number. This is consistent both with the
general expectation that turbulent intermittency should increase as the width of the
scaling range increases, and with DNS measurements of the flatness at low Reynolds
number.

The fast temporal response of the particle tracking system allows us to resolve
the extremely violent events that make up the tails of the acceleration component
PDF. The trajectory in figure 1 represents one such event, in which the particle
acceleration rises to 16 000 m s−2, 1600 times the acceleration due to gravity, and 40
times the r.m.s. value. Although we do not have quantitative evidence, we make the
observation that the high-acceleration events appearing in the tails of the acceleration
distributions (such as figure 1) seem to be associated with coherent structures which
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persist for many Kolmogorov times, substantially longer than the correlation time of
the acceleration components.

Particular attention has been paid to the determination of measurement errors.
We have developed a numerical simulation of the detection process that takes input
trajectories and models the optics and electronics to create artificial data. Using this
approach we have measured the extrapolation error in the acceleration variance data
and corrected for it. We have also confirmed that our analysis codes and choices for
the analysis parameters are not biasing the results.

The dependence of the particle acceleration variance on the tracer particle size
and density was also measured. It is found that the acceleration observed with 46 µm
diameter polystyrene particles is within 7% of the value that would be obtained from
ideal fluid particles, even at the highest Reynolds numbers studied. We find that
particles of diameter 450 µm (26η) have an acceleration variance that is a factor of
3.6 smaller than fluid particles. In our experiment, this is caused primarily by the
size of the particles and is only slightly affected by their density mismatch with the
fluid. These measurements validate our Lagrangian acceleration measurements, and
in addition they highlight the need for a deeper understanding of the motion of large
density-matched particles in turbulence.

The techniques and measurements presented in this paper suggest many possibilities
for the future development of optical particle tracking in turbulence. The use of
high-resolution imaging equipment and careful attention to measurement errors will
continue to be essential in future measurements. Possible extensions of the techniques
presented here include lengthening the tracking times, improving the resolution of the
three-dimensional measurements and tracking larger numbers of particles simulta-
neously. These will allow precise high-Reynolds-number experimental measurements
of additional quantities including relative dispersion, scaling in the inertial time range,
and the geometry of multi-particle Lagrangian motion.

We would like to thank the National Science Foundation for generous support
under grant number PHY9988755. We are grateful to R. Hill, M. Nelkin, S. B. Pope,
E. Siggia, Z. Warhaft and P. K. Yeung for stimulating discussions and suggestions
throughout the project. We also thank R. Hill for carefully reading the manuscript, N.
Mordant for discussions and suggestions regarding the acceleration autocorrelation
function, and P. Vedula and P. K. Yeung for providing particle trajectories from their
simulation data at Rλ = 240 from Vedula & Yeung (1999) that were used to simulate
the detection process as described in § 4.2. We also thank C. Ward for helping with
the initial development of the detector.

Appendix A. Extraction of particle tracks from intensity data
The raw data from the strip detector consist of a series of one-dimensional intensity

profiles taken at regular time intervals. The task of recognizing peaks in these intensity
profiles and assembling them into two-dimensional or three-dimensional tracks is, in
principle, similar to the case of two-dimensional CCD images (Virant & Dracos 1997;
Ott & Mann 2000; Dracos 1996). However, the strip detector poses unique challenges.
Particle tracks cross much more often in one-dimensional than in two-dimensional,
and flaws in the detector lead to a number of inoperative strips. Both of these
effects cause frequent drop-outs in tracks, which would result in fragmentation of the
trajectories.

The strategy for extracting tracks from the intensity data is as follows. The task
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is divided into four phases: peak detection, track building, track splicing and track
filtering. In cases where two-dimensional trajectories are investigated, the tracks are
then passed to a matching algorithm which associates x and y tracks to form two-
dimensional trajectories.
Peak Detection. The algorithm scans each frame and identifies distinct groups of
above-threshold strips, and searches each group for one or more peaks, taking into
account the existence of inoperative strips. Valid peaks are passed to a routine which
calculates moments of the peak and fits it to a Gaussian function, returning properties
including peak centre, amplitude, full-width at half-maximum, area skewness and
flatness. The output of the peak detection algorithm is a list of peaks for each frame.
Track Building. The track finding algorithm assembles the peaks found by the peak
detector into time-continuous tracks. This algorithm builds tracks incrementally,
extrapolating each track forward one frame and searching for a peak which is the
continuation of the track. If any ambiguity is found – if there is more than one peak
which might continue the track, or if there is more than one track which might
continue onto a peak – the track building algorithm fails to resolve the match and
begins new tracks as necessary.
Splicing. The list of tracks generated by the track builder is passed to a splicer which
connects track fragments which the track builder failed to connect due to ambiguities.
Such ambiguities are quite common in one-dimensional projection, since tracks can
cross in one-dimensional projection even when the two-dimensional trajectories are
distinct. The track builder looks more than one frame ahead, and compares forward
extrapolations of the ends of tracks to backward extrapolations of the beginnings
of tracks. It uses an iterative algorithm to make the best matches, while leaving
ambiguous matches unresolved.
Filtering. After the splicing algorithm has exited, the tracks are processed by a filtering
algorithm. The algorithm will delete data points which meet certain criteria. These
criteria include upper and lower limits on the amplitude, and upper limits on the
width and flatness of the peak. The algorithm also deletes data points which coincide
with a list of inoperative strips. The idea is to keep marginally accurate data during
the track assembly process to maintain the continuity of the tracks, but to exclude
such data from subsequent statistical analysis, where the large uncertainties could be
detrimental to the analysis.
Coordinate matching. Most of the acceleration data reported below are derived from
two-dimensional trajectories. To obtain two-dimensional trajectories, it is necessary
to match the x vs. t and z vs. t trajectories which are obtained from the two strip
detectors. All such data are taken in the configuration shown in figure 5(a), in which
the same image is projected on two strip detectors, and only the segments of tracks
that lie in the overlap region of the two detectors (see figure 7) are used. In this
case, the optical intensity recorded by the two detectors for a single track is highly
correlated. The autocorrelation function between the two trajectories is therefore a
good means for matching the tracks.

Appendix B. Reinterpretation of previous data
The data presented in this paper should be compared with previously published

measurements of the same quantities in the same turbulent flow, but using a conven-
tional position-sensitive photodiode instead of the strip detector to measure particle
trajectories (Voth et al. 1998). The previous study reached the correct conclusion
that the Heisenberg–Yaglom scaling of the acceleration variance is observed at high
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Reynolds numbers, but because of limitations of the detector technology the numerical
values obtained for the physical quantities involved were inaccurate.

The discrepancy can be largely attributed to the high noise level in the position-
sensitive photodiode that resulted in much greater uncertainty in the particle position
measurements and which necessitated the use of much larger tracer particles. The
intrinsic bandwidth of the UDT DLS-10 position-sensitive photodiode used in the
previous experiments is approximately 5 MHz, but temporal averaging of the signal
was used to increase the effective position resolution at the expense of temporal
resolution. Signal averaging with an effective bandwidth of 100 kHz was used in
conjunction with tracer particles of diameter 250 µm or 450 µm, which gave a position
resolution of 10 µm over a field of 1.5 mm, corresponding to a dynamic range of 150.
By contrast, the strip detector at 70 kHz has a position uncertainty of approximately
0.1 strips on a field of 512 strips (0.8 µm over a field of 4 mm), giving a dynamic range
of 5000, which is a factor of 30 improvement. Another critical advantage of the strip
detector is that it is able to make these position measurements with 46 µm diameter
particles. As reported in § 5 above, the 250 µm particles which were required by the
position-sensitive photodiode do not follow the flow at high Reynolds number and
result in a significant underestimate of the acceleration.

The position-sensitive photodiode is strictly limited to single-particle statistics, so
that the energy dissipation could not be measured in terms of velocity structure
functions. Instead, the acceleration autocorrelation function was compared with DNS
results to estimate the Kolmogorov time, and this value was used to determine the
rate of energy dissipation. Presumably due to the fact that the 250 µm particles did
not adequately follow the flow, the estimate of the Kolmogorov time was a factor 2.37
larger than the current value, and using τη = (ν/ε)1/2, this gave an estimate of the
energy dissipation which is a factor 5.63 below the current value at a given propeller
speed. The r.m.s. velocity ũ was also underestimated by 10% in the old experiment,
and using equation (3.7) the new values obtained for Rλ are smaller than the old by a
factor of 0.52, so the previously reported range of Rλ (985–2021) would correspond to
(512–1037) using the new calibration. The ability to work at much smaller Rλ (down
to 140) results from the use of smaller particles, which do not settle out of the flow
even at very slow propeller speeds.

The Kolmogorov constant a0 is calculated from

a0 = 〈a2
i 〉ν

1/2

ε3/2
(B 1)

and is also affected by this inaccuracy in the estimate of ε, and would have increased
the value of a0 by a factor of 17. However, the particle size effects and low spatial
resolution caused the acceleration variance to be underestimated by a large factor.
In the old study, an extrapolation to zero fit time was attempted, but large position
errors obscured the exponential dependence of acceleration variance on fit time that is
seen in figure 23. What was interpreted as ‘measurement noise’ was in reality a blend
of measurement error and short-time turbulence contributions. The algorithm used to
calculate the acceleration variance gave a value which was effectively coarse grained
over a time interval which was believed to be 2.5τη using the old calibration, but
which is actually 6τη using the new calibration. As may be seen from figure 23, this
results in a substantial underestimate of the acceleration variance. The acceleration
variance was further reduced by the particle size effect associated with the use of
250 µm particles. The fact that the value of a0 reported in the previous experiment
(7± 3) is close to the value now reported (≈ 6) is due to the fortuitous cancel-
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lation of errors in the measurement of the dissipation rate and of the acceleration
variance.
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