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1. THE SEMINAL RESULTS IN LITERATURE

Balakrishnan and Zhao [1] does an excellent job in this issue at reviewing the recent
advances on stochastic comparison between order statistics from independent and het-
erogeneous observations with proportional hazard rates, gamma distribution, geometric
distribution, and negative binomial distributions, the relation between various stochastic
order and majorization order of concerned heterogeneous parameters is highlighted. Some
examples are presented to illustrate main results while pointing out the potential direction
for further discussion.

The set of achieved results in this line of research mainly focus on the independent
observations; however, due to the increasing importance of dependence in survival analysis,
reliability, network security, financial engineering, and actuarial science etc, one is constantly
confronted with observations with interdependence in practical situations, and it is of great
interest to study the stochastic comparison of order statistics from dependent and hetero-
geneous random variables. For example, the isolation times of some users in a network,
lifetimes of components of a system sharing a common environmental effect etc. In such a
context, both the dependence and the heterogeneity among individual observations play an
important role in developing the stochastic orders of order statistics. On the other hand,
being alienated from the real background, the pertinent results in this review are short of
commensurate application, this to some extent delays the forward pace in this direction.
Here we would like to have a discussion on heterogeneous observations with certain depen-
dence structure, and the comments will focus on the usual stochastic order. We hope that
our crude comments may draw forth more insightful theories from capable researchers as
well as some excellent applications in various related areas.

For ease of reference, we restate some notations and results in literatures in the style
conforming to our context.

The random variables V1, . . . , Vn are said to follow proportional hazard rate model if the
survival function of Vi is

F̄Vi
(x) = F̄λi(x), i = 1, . . . , n,
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where F̄ (x) is the survival function of some baseline random variable. Let Vi:n denote the
ith order statistic arising from random variables V1, . . . , Vn. Pledger and Proschan [9] firstly
established the following path-breaking result: let (V1, . . . , Vn) and (V ∗

1 , . . . , V
∗
n ) be two

vectors of independent random variables following proportional hazard rate models with
parameter vectors (ν1, . . . , νn) and (ν∗1 , . . . , ν

∗
n), respectively. Then,

(ν1, . . . , νn) �m (ν∗1 , . . . , ν
∗
n) =⇒ Vk:n ≥st V

∗
k:n, for k = 1, . . . , n.

At a later time, this result was further strengthened by Proschan and Sethuraman [10] from
componentwise stochastic order to multivariate stochastic order. That is,

(ν1, . . . , νn) �m (ν∗1 , . . . , ν
∗
n) =⇒ (V1:n, . . . , Vn:n) ≥st (V ∗

1:n, . . . , V
∗
n:n). (1)

These two results actually broke the path for all research work in this direction. Here,
we consider the stochastic order in (1) under the assumption of the following two interesting
structures of dependence, and as will be seen, they are closely related to the well-known
Marshall–Olkin structure of dependence.

Throughout this section, we denote F̄i the survival function of Xi for i = 1, . . . , n, the
terms increasing and decreasing stand for non-decreasing and non-increasing, respectively.
And expectations are implicitly assumed to exist whenever they appear.

2. EXTENSION TO A DEPENDENCE STRUCTURE

Suppose random variables V1, . . . , Vn+1 follow the proportional hazard rate model with
parameter vector (ν1, . . . , νn, ν). Then,

Xi = min{Vi, Vn+1}, i = 1, . . . , n, (2)

has proportional hazard parameter λi = νi + ν, and (X1, . . . , Xn) has the joint survival
function

P (X1 > x1, . . . , Xn > xn) = F̄ ν

(
n∨

i=1

xi

)
n∏

i=1

F̄ νi(xi). (3)

It is plain that X1, . . . , Xn are independent when ν = 0.
This formulation actually characterizes the server structure in network design. Imagine

V1, . . . , Vn, and Vn+1 the times to failure of n terminal independent users themselves and
that of the server independently providing service to these users, then, (X1, . . . , Xn) mea-
sures the times to isolation of n users in the network. For more on isolation time, one may
refer to Li and Li [3], Li, Parker, and Xu [4]. Under the above framework, we present the
following generalization of (1).

Theorem 1: Let (V1, . . . , Vn+1) and (V ∗
1 , . . . , V

∗
n+1) be two set of independent random

variables following proportional hazard rate models (2) with proportional parameters
(ν1, . . . , νn, ν) and (ν∗1 , . . . , ν

∗
n, ν), respectively. Then,

(λ1, . . . , λn) �m (λ∗1, . . . , λ
∗
n) =⇒ (X1:n, . . . , Xn:n) ≥st (X∗

1:n, . . . , X
∗
n:n).

Proof: Let (λ(1), . . . , λ(n)) and (ν(1), . . . , ν(n)) be the ascending rearrangement of
(λ1, . . . , λn) and (ν1, . . . , νn), respectively. Since λ(i) = ν(i) + ν for i = 1, . . . , n, we have
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i=1 λ(i) = nν +

∑n
i=1 νi and

k∑
i=1

λ(i) =
k∑

i=1

ν(i) + kν, for k = 1, . . . , n− 1.

The majorization (λ1, . . . , λn) �m (λ∗1, . . . , λ
∗
n) implies

∑n
i=1 λ(i) =

∑n
i=1 λ

∗
(i),

k∑
i=1

λ(i) ≤
k∑

i=1

λ∗(i), for k = 1, . . . , n− 1,

and hence
∑n

i=1 νi =
∑n

i=1 ν
∗
i ,

ν(1) + · · · + ν(n−k) ≤ ν∗(1) + · · · + ν∗(n−k), for k = 1, . . . , n− 1.

That is, (ν1, . . . , νn) �m (ν∗1 , . . . , ν
∗
n). By (1), we have

(V1:n, . . . , Vn:n) ≥st (V ∗
1:n, . . . , V

∗
n:n).

For any increasing function φ : R
n → R, let

g(x1, . . . , xn) = φ(x1 ∧ y, . . . , xn ∧ y), for any y.

Because g(x ) is increasing in x , we get

E[φ(V1:n ∧ y, . . . , Vn:n ∧ y)] = E[g(V1:n, . . . , Vn:n)]

≥ E[g(V ∗
1:n, . . . , V

∗
n:n)]

= E[φ(V ∗
1:n ∧ y}, . . . , V ∗

n:n ∧ y)].

Note that Vn+1 and (V1:n · · · , Vn:n) are independent, V ∗
n+1 and (V ∗

1:n · · · , V ∗
n:n) are indepen-

dent, and Vn+1 and V ∗
n+1 share a common distribution. By the total expectation, it holds

that

E[φ(V1:n ∧ Vn+1, . . . , Vn:n ∧ Vn+1)] ≥ E[φ(V ∗
1:n ∧ V ∗

n+1, . . . , V
∗
n:n ∧ V ∗

n+1)].

In view of (2), we have

E[φ(X1:n, . . . , Xn:n)] ≥ E[φ(X∗
1:n, . . . , X

∗
n:n)].

This complete the proof. �

Next example tells that the stochastic order in Theorem 1 fails to hold when Vn+1 and
V ∗

n+1 do not have a common distribution.

Example 1: Assume (V1, V2, V3) be a vector of independent exponential random variables
with hazard rate vector (2, 7, 1), and (V ∗

1 , V
∗
2 , V

∗
3 ) be a vector of independent exponen-

tial random variables with hazard rate vector (2, 5, 2). Then, (λ1, λ2) = (3, 8) �m (4, 7) =
(λ∗1, λ

∗
2). However, for all x ≥ 0,

P (X1:2 > x) = P (V1 > x, V2 > x, V3 > x) = e−10x < e−9x = P (X∗
1:2 > x).

This implies X1:2 ≤st X
∗
1:2 and hence invalidates Theorem 1.
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Boland et al. [2] pointed out that the result of Pledger and Proschan [9] can not be
strengthened to the hazard rate order, but they established that

(ν1, ν2) �m (ν∗1 , ν
∗
2 ) =⇒ V2:2 ≥hr V

∗
2:2 (4)

holds for Vi and V ∗
i with exponential distributions. Let us extend the above result to the

case with dependence.

Theorem 2: Suppose (V1, V2, V3) and (V ∗
1 , V

∗
2 , V

∗
3 ) be two vectors of independent exponen-

tial random variables with hazard rate parameters (ν1, ν2, ν) and (ν∗1 , ν
∗
2 , ν), respectively.

Then,

(λ1, λ2) �m (λ∗1, λ
∗
2) =⇒ X2:2 ≥hr X

∗
2:2.

Proof: (λ1, λ2) �m (λ∗1, λ
∗
2) implies (ν1, ν2) �m (ν∗1 , ν

∗
2 ). In view of (4), we have V2:2 ≥hr

V ∗
2:2, which implies that P (V2:2 > x)/P (V ∗

2:2 > x) is increasing in x. Consequently,

P (X2:2 > x)
P (X∗

2:2 > x)
=
P (V2:2 > x, V3 > x)
P (V ∗

2:2 > x, V ∗
3 > x)

=
P (V2:2 > x)
P (V ∗

2:2 > x)

is increasing in x. That is, X2:2 ≥hr X
∗
2:2. �

Set F̄i(xi) = [F̄ (xi)]νi+ν = ui, we get F̄−1
i (ui) = F̄−1(u1/(νi+ν)

i ), for i = 1, . . . , n. In
view of (3), (X1, . . . , Xn) has the survival copula

Ĉ(u1, . . . , un) = F̄ ν

(
n∨

i=1

F̄−1(u1/(νi+ν)
i )

)
n∏

i=1

F̄ νi(F̄−1(u1/(νi+ν)
i ))

=
n∧

i=1

u
ν/(νi+ν)
i

n∏
i=1

u
νi/(νi+ν)
i .

It is easy to verify that, for ν ≥ 0 and all ui ∈ (0, 1) with i = 1, . . . , n,

Ĉ(u1, . . . , un) ≥
n∏

i=1

u
ν/(νi+ν)
i

n∏
i=1

u
νi/(νi+ν)
i =

n∏
i=1

ui.

That is, X1, . . . , Xn are positively upper orthant dependent. Note that the above equation
holds when ν = 0, the dependence structure in (2) does include the independence as one of
its special case. By the way, using the same argument as Proposition 7 in Lin and Li [6],
we can also show that the random vector (X1, . . . , Xn) with survival function (2) is right
corner set increasing (RCSI), that is, P (X1 > x1, . . . , Xn > xn | X1 > t1, . . . , Xn > tn) is
increasing in (t1, . . . , tn) for all (x1, . . . , xn)..
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3. EXTENSION TO ONE STRUCTURE OF STRICT DEPENDENCE

Suppose (V1, . . . , Vn) be a vector of independent random variables with proportional
coefficients vector (ν1, . . . , νn). It is easy to check that

Xi =
∧
j �=i

Vj , i = 1, . . . , n, (5)

follow the proportional hazard rate model with parameters λi =
∑

j �=i νj , and (X1, . . . , Xn)
has the survival function

Ḡ(x1, . . . , xn) =
n∏

i=1

F̄ νi

⎛⎝∨
j �=i

xj

⎞⎠ , for i = 1, . . . , n. (6)

The formulation in (5) actually characterizes the P2P (peer-to-peer) structure in net-
work design. Let V1, . . . , Vn be times to failure of n terminal independent users themselves.
To increase the network security, each node must obtain some 1 ≤ k < n keys from the other
n− 1 neighbors so as to be entitle to look into the privacy. If k = n− 1, then, (X1, . . . , Xn)
above measures the times to be locked of n users in the network. For more on isolation time,
one may refer to Li and Li [3], Li et al. [4]. Now, let us present main result in this context.

Theorem 3: Let (V1, . . . , Vn) and (V ∗
1 , . . . , V

∗
n ) be two vector of independent random

variables with proportional hazard rate vector (ν1, . . . , νn) and (ν∗1 , . . . , ν
∗
n), respectively.

Then,

(λ1, . . . , λn) �m (λ∗1, . . . , λ
∗
n) =⇒ (X1:n, . . . , Xn:n) ≥st (X∗

1:n, . . . , X
∗
n:n),

here λ∗i =
∑

j �=i ν
∗
j and X∗

i =
∧

j �=i V
∗
j .

Proof: Denote ν(i) = 0 for i ≥ n+ 1. Then,

λ(i) = ν(1) + · · · + ν(n−i) + ν(n−i+2) + · · · + ν(n), for i = 1, . . . , n.

It is easy to verify that
∑n

i=1 λ(i) = (n− 1)
∑n

i=1 νi and

k∑
i=1

λ(i) = (k − 1)
n∑

i=1

νi + ν(1) + · · · + ν(n−k), for k = 1, . . . , n− 1.

Due to (λ1, . . . , λn) �m (λ∗1, . . . , λ
∗
n), it holds that

∑n
i=1 λ(i) =

∑n
i=1 λ

∗
(i) and

k∑
i=1

λ(i) ≤
k∑

i=1

λ∗(i), for k = 1, . . . , n− 1.

This implies
∑n

i=1 νi =
∑n

i=1 ν
∗
i and ν(1) + · · · + ν(n−k) ≤ ν∗(1) + · · · + ν∗(n−k) for k =

1, . . . , n− 1. That is, (ν1, . . . , νn) �m (ν∗1 , . . . , ν
∗
n).
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By (1), we have
(V1:n, . . . , Vn:n) ≥st (V ∗

1:n, . . . , V
∗
n:n).

For any increasing function ψ : R
n → R,

g(x1, . . . , xn) = ψ

⎛⎝∧
j �=n

xj , . . . ,
∧
j �=1

xj

⎞⎠
is increasing in (x1, . . . , xn) and thus we have

E

⎡⎣ψ
⎛⎝∧

j �=n

Vj:n, · · · ,
∧
j �=1

Vj:n

⎞⎠⎤⎦ = E[g(V1:n, . . . , Vn:n)]

≥ E[g(V ∗
1:n, . . . , V

∗
n:n)]

= E

⎡⎣ψ
⎛⎝∧

j �=n

V ∗
j:n, · · · ,

∧
j �=1

V ∗
j:n

⎞⎠⎤⎦ .
Denote Vk:n = ∞ for k > n. Then, for k = 1, . . . , n,

Xi:n =
∧

j �=n−i+1

Vj:n, X∗
i:n =

∧
j �=n−i+1

V ∗
j:n.

As a consequence, it holds that

E[ψ(X1:n, . . . , Xn:n)] ≥ E[ψ(X∗
1:n, . . . , X

∗
n:n)].

By the arbitrariness of ψ, this completes the proof. �

Setting F̄i(xi) = [F̄ (xi)]
∑

j �=i νj = ui, we have F̄−1
i (ui) = F̄−1(u

1/
∑

j �=i νj

i ), for i =
1, . . . , n. Due to (6), (X1, . . . , Xn) has the survival copula

Ĉ(u1, . . . , un) = Ḡ(F̄−1
1 (u1), . . . , F̄−1

n (un))

=
n∏

k=1

F̄ νk

⎛⎝∨
i�=k

F̄−1
i (ui)

⎞⎠
=

n∏
k=1

F̄ νk

⎛⎝∨
i�=k

F̄−1(u
1/
∑

j �=i νj

i )

⎞⎠
=

n∏
k=1

F̄ νk

⎛⎝F̄−1

⎛⎝∧
i�=k

u
1/
∑

j �=i νj

i

⎞⎠⎞⎠
=

n∏
k=1

∧
i�=k

u
νk/

∑
j �=i νj

i .

It is easy to verify that

Ĉ(u1, . . . , un) ≥
n∏

i=1

ui, for all ui ∈ (0, 1), i = 1, . . . , n.
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For n = 2, X1 = V2 and X2 = V1 are independent. Then, Ĉ(u, v) = uv. For n ≥ 3, X1 =∧
j �=1 Vj and X2 =

∧
j �=2 Vj strictly depend on (V3, . . . , Vn). This implies

Ĉ(u1, . . . , un) >
n∏

i=1

ui.

That is, the dependence structure in (5) does not include the independence as one of its
special case when n ≥ 3. Likewise, in the same manner as Proposition 7 in Lin and Li [6],
the random vector (X1, . . . , Xn) with survival function (6) may be proved to be RCSI.

By the end, we have a discussion on connections between the model in (5) and Marshall–
Olkin dependence structure.

After Marshal and Olkin [7] firstly proposed the bivariate Marshall–Oikin exponential
distribution, Muliere and Scarsini [8] built the Marshall–Olkin proportional hazard distri-
bution. Subsequently, Li and Pellerey [5] introduced generalized bivariate Marshall–Olkin
distributions, including the above two models as special cases. Recently, Lin and Li [6]
further studied the multivariate generalized Marshall–Olkin distributions.

Denote I = {i1, . . . , ir} ⊆ {1, . . . , n} and Ik = I\{ik} for k = 1, . . . , r. Let Ic be the
complement of I. Then, we have

lim
xi→0
i∈Ic

∨
i�=ik

xi =
∨

i∈Ik

xi, for k = 1, . . . , r,

and

lim
xi→0
i∈Ic

∨
i�=k

xi =
∨
i∈I

xi, for k ∈ Ic.

In view of (6), we have

ḠI(xi1 , . . . , xir
) = lim

xi→0
i∈Ic

Ḡ(x1, . . . , xn)

= lim
xi→0
i∈Ic

n∏
k=1

F̄ νk

⎛⎝∨
i�=k

xi

⎞⎠
= F̄

∑
j∈Ic νj

(∨
i∈I

xi

)
r∏

k=1

F̄ νik

(∨
i∈Ik

xi

)
. (7)

Set I = {l, r} ∈ {1, . . . , n}, (7) yields

ḠI(xl, xr) = [F̄ (xl ∨ xr)]
∑

j �=l,r νj F̄ νr (xl)F̄ νl(xr).

By (1.4) in Lin and Li [6], the two-dimensional marginal follows from Marshall–Olkin
proportional hazard model.

Set I = {l, r, k} ∈ {1, . . . , n} in (7), we have

ḠI(xl, xr, xk) = [F̄ (xl ∨ xr ∨ xk)]
∑

j �=l,r,k νj [F̄ (xr ∨ xk)]νl [F̄ (xl ∨ xk)]νr [F̄ (xl ∨ xr)]νk ,

which does not follow Marshall–Olkin proportional hazard model. Moreover, the r-
dimensional marginal in (7) does not follow Marshall–Olkin proportional hazard model
for r ≥ 4 either.
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