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Abstract

The logic programming paradigm provides the basis for a new intensional view of higher-

order notions. This view is realized primarily by employing the terms of a typed lambda

calculus as representational devices and by using a richer form of unification for probing their

structures. These additions have important meta-programming applications but they also

pose non-trivial implementation problems. One issue concerns the machine representation of

lambda terms suitable to their intended use: an adequate encoding must facilitate comparison

operations over terms in addition to supporting the usual reduction computation. Another

aspect relates to the treatment of a unification operation that has a branching character

and that sometimes calls for the delaying of the solution of unification problems. A final

issue concerns the execution of goals whose structures become apparent only in the course

of computation. These various problems are exposed in this paper and solutions to them

are described. A satisfactory representation for lambda terms is developed by exploiting

the nameless notation of de Bruijn as well as explicit encodings of substitutions. Special

mechanisms are molded into the structure of traditional Prolog implementations to support

branching in unification and carrying of unification problems over other computation steps;

a premium is placed in this context on exploiting determinism and on emulating usual

first-order behaviour. An extended compilation model is presented that treats higher-order

unification and also handles dynamically emergent goals. The ideas described here have been

employed in the Teyjus implementation of the λProlog language, a fact that is used to obtain

a preliminary assessment of their efficacy.

KEYWORDS: lambda calculus, intensional higher-order programming, higher-order unifica-

tion, abstract machine, compilation

1 Introduction

Customary acquaintance with higher-order notions in programming relates to

the imperative or functional programming paradigms. Within these frameworks,
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functions are equated with the methods for computing that are embodied in

procedures. Higher-orderness then consists of the ability to objectify such functions

and, thereby, to embed them in data or pass them as arguments to other functions.

Many interesting applications have been found for such capabilities. However, all

of these are dependent on a uniform extensional view of functions. In particular, the

only observable aspect of such objects is their ability to transform given arguments

into result values.

Logic programming has the potential for supporting a different and, in some

senses, more sophisticated understanding of higher-order notions (Nadathur and

Miller 1998). Functions are used within this paradigm as a means for constructing

descriptions of objects. Such descriptions can be examined by means of unification,

an operation that is useful in the analysis of intensions. Traditional logic program-

ming languages manifest a weak exploitation of this capability because they permit

only individual, non-function, objects as values. However, it is possible to support

the probing of function structure in genuinely higher-order ways by introducing a

mechanism such as the terms of a lambda calculus for encoding function objects and

by complementing this with richer notions of variables and unification. The usual

form of higher-order programming can be realized simply by using the ability to

represent function valued objects and the extensional interpretation built into logic

programming of one kind of function, namely, predicates. The richer intensional view

of functions offers, in addition, many possibilities that have not been systematically

supported by any previous programming paradigm. To consider one important

direction, the ability to use lambda terms as representational devices lends itself

well to an abstract view of syntax that treats binding notions explicitly (Miller

and Nadathur 1987; Pfenning and Elliott 1988), leading thereby to many novel

metalanguage applications for logic programming (Appel and Felty 1999; Felty

1993; Hannan and Miller 1992; Hannan and Pfenning 1992; Pfenning 1988).

While there is considerable application potential for higher-order features in logic

programming, the addition of such features also raises significant implementation

problems. One category of problems arises from the use that is made of the terms of a

lambda calculus essentially as data structures. This is a truly novel role for such terms

in programming, and a representation must be developed for them that supports

their use in this capacity. A satisfactory representation should permit the examination

of term structure and must facilitate the comparison of terms in a situation where

the particular names of bound variables are unimportant, in addition to efficiently

supporting the usual reduction operation on terms. Another class of problems relates

to the fact that the unification computation on lambda terms, known as higher-

order unification (Huet 1975), possesses characteristics that are distinct from those

of the customary first-order unification. In particular, performing this operation may

involve a branching search and it may also be necessary to temporarily ‘suspend’ the

computation before a unifier is found. Suitable dynamic support must be described

for both facets. A third aspect that needs special consideration is the mixing

of intensional and extensional views of predicate objects. There is a distinction

between examining the structure of an object and using this structure to determine

the invocation of code. A satisfactory method must be provided for realizing the
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switch between these roles. Finally, any machinery that is designed for supporting

the new features must be interwoven into the run-time devices and approaches to

compilation that are commonly used in logic programming implementation. The

proper combination of all these mechanisms in one system is itself a non-trivial

issue.

We consider all these problems in this paper and we develop methods for

addressing them. For the sake of concreteness, we describe our new implementation

ideas within the framework of the Warren Abstract Machine (WAM) (Warren

1983), a popular vehicle for realizing logic programming languages. One of our

contributions relates to the representation of lambda terms. We carefully identify

the different issues that become relevant where these terms are used intensionally

and we develop an encoding for them that utilizes mechanisms for eliminating bound

variable names (de Bruijn 1972) and for capturing substitutions in terms (Nadathur

and Wilson 1998) towards addressing these issues. We also outline a low-level

realization of such an encoding and we discuss the integration of operations on these

terms into an abstract machine structure. Another contribution is the development

of machinery for supporting the special needs of higher-order unification. In this

direction we, first of all, describe an explicit encoding of unification problems that

exploits the manner in which these evolve to foster sharing in their representation.

We also propose mechanisms that are suitable for realizing branching in unification

through a depth-first search regimen with the possibility of backtracking. Finally,

recognizing that branching search is, in general, computationally expensive, we

describe a processing structure that facilitates the application of special deterministic

steps and that delays the consideration of branching until after such steps. Using

this approach it is possible to treat first-order unification almost exactly as it would

be treated in a Prolog implementation, a facet recognized to be important even

in higher-order programs (Michaylov and Pfenning 1992). The final contribution

of this paper relates to compilation. We propose enhancements to the structure of

the WAM and modifications to its instruction set that together realize a compiled

execution of programs in a higher-order language. We also outline in this context a

treatment of the transition between intensional and extensional roles of predicates.

The ideas that we develop in this paper have a special practical relevance: they are

useful to the implementation of the logic programming language λProlog (Nadathur

and Miller 1988). This language actually embodies two extensions to a Prolog-like

language in addition to the higher-order features considered here. In one direction,

it makes richer use of logical connectives and quantifiers to introduce notions

of scoping (Miller et al. 1991). In another direction, it includes a polymorphic

typing regimen (Nadathur and Pfenning 1992). Both aspects raise new questions for

implementation that we have addressed elsewhere (Kwon et al. 1994; Nadathur et al.

1995). The machinery that we describe here blends well with these other mechanisms

and all our ideas have, in fact, been amalgamated in a new implementation of λProlog

called Teyjus (Nadathur and Mitchell 1999).

The rest of this paper is structured as follows. In the next section we identify a logic

programming language that embodies the higher-order features that are presently

of interest and we characterize computation in this language. In section 3, we refine
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the description of computation into one that provides the basis for implementation

by outlining the structure of the higher-order unification operation and using this

to develop an abstract interpreter for the language. The remainder of this paper

concerns a low-level realization of this interpreter. In section 4, we discuss issues

relevant to the representation of lambda terms and distill from this an encoding for

them that can be used in an actual implementation. The following section integrates

our term representation into an overall computational model and proposes new

machinery for the realization of higher-order unification. Section 6 makes explicit an

extended abstract machine structure and considers the compilation of first-order like

unification as well as the treatment of higher-order aspects relative to this machine.

Section 7 discusses related work and concludes the paper.

2 A higher-order language

The logical language whose implementation we consider in this paper is an analogue

within Church’s Simple Theory of Types (Church 1940) of the Horn clause language

that underlies Prolog. Church’s logic is one that builds on a typed lambda calculus.

In the interpretation we use here, the types are constructed from given sets of sorts

and type constructors, each element of the latter set being attributed a specific arity.

The set of sorts initially contains o, the type of propositions, and others such as int,

real, etc., with obvious interpretations. We also assume the availability of at least the

unary list type constructor list. Both these sets must be augmentable dynamically in

a programming situation, a fact that we will utilize implicitly. The full collection of

types is the smallest set satisfying the following properties: (i) each sort is a type,

(ii) if α1, . . . , αn are types and c is a type constructor of arity n, then (c α1 . . . αn)

is a type, and (iii) if α and β are types, then so is (α → β). A function type is one

whose top-level structure has the form (α → β). All other types are considered to

be atomic. We minimize the use of parentheses by assuming that the application of

a type constructor has highest priority and that → is right associative. The latter

convention allows any function type to be written in the form α1 → . . . → αn → β

where β is an atomic type. The target type of such a type is β and α1, . . . , αn are

its argument types. This notation and terminology is extended to atomic types by

permitting the argument types to be an empty sequence.

Starting from typed collections of constants and variables, the terms in the

language are identified together with their types via the following rules: (i) each

constant and variable of type α is a term of type α, (ii) if x is a variable of type

α and t is a term of type β, then (λx t) is a term of type α → β and is called an

abstraction that binds x and has scope t, and (iii) if t1 and t2 are terms of type

α → β and α respectively, then (t1 t2) is a term of type β and is called an application

of t1 to t2. We reduce the use of parentheses in writing terms by assuming that

application is left associative and that an abstraction has as its scope the largest

well-formed term to the right of the variable it binds.

The constants in the language are partitioned into non-logical and logical ones.

The former set contains an initial collection of elements such as those representing

the integers and is augmentable in some manner that we, once again, leave implicit.
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The set of logical constants consists of the symbols � of type o denoting the

tautologous proposition, ¬ of type o → o denoting negation, ∧, ∨ and ⊃ of type

o → o → o denoting conjunction, disjunction and implication, respectively, and, for

each α, Σα and Πα of type (α → o) → o. The last two ‘families’ of constants represent

generalized existential and universal quantifiers: formulas usually written as ∃xP
and ∀xP are rendered in this logic as Σα λx P and Πα λx P for an appropriate type

α. We will, in fact, use the former as abbreviations of the latter. Although type

subscripts are strictly necessary with Σ and Π, we will omit these when their identity

is obvious or irrelevant to the discussion at hand. We will also adopt the customary

infix notation for the application of ∧, ∨ and ⊃ to two arguments in succession.

We assume the usual notions of free and bound variables and of subterms of a

term. Equality between terms incorporates the rules of lambda conversion. Let us

say that a term s is free for the variable x in the term t if x does not appear free in

t in the scope of an abstraction that binds a free variable of s. Further, let t[x := s]

denote the result of replacing all the free occurrences of x in t by s. The lambda

conversion rules that we use are then the following:

1. (α-conversion) Replacing a subterm of the form λx t in a given term by

λy (t[x := y]), provided y is a variable of the same type as x that is neither free

for x in t nor free in t.

2. (β-conversion) Replacing a subterm of the form (λx t1) t2 in a given term by

t1[x := t2] or vice versa, provided t2 is free for x in t1.

3. (η-conversion) Replacing a subterm of the form t in a given term by λx t x and

vice versa, provided t is of type α → β and x is a variable of type α that is not

free in t.

Two terms are considered to be equal if one can be obtained from the other by

using a sequence of these rules. In determining such equality, it is often necessary

to consider directed applications of these conversion rules. Of particular importance

is an oriented form of the β-conversion rule that is made precise as follows. First,

we identify a term of the form (λx t1) t2 as a β-redex; in the sequel, we shall also

refer to such a term more simply as just a redex and shall call t1 its body and t2 its

argument. Now, the condition permitting the replacement of a subterm of this kind

as per the β-conversion rule may not be satisfied in general, but this can be corrected

by using a sequence of α-conversion steps. We call such a sequence followed by the

desired application of the β-conversion rule a β-contraction.

We will need to consider the idea of unifying two lambda terms. The interest here

is in substituting terms of matching types for free variables so that the two terms

become equal. This substitution operation must be performed with care to ensure

that free variables in the substituted terms do not get accidentally bound in the

result. A correct characterization of this operation can, in fact, be provided using

equality modulo the lambda conversion rules. Thus, suppose that, for 1 � i � n, ti
and xi are a term and a variable of identical type. Then, the set {〈xi, ti〉|1 � i � n}
represents a substitution and the application of this substitution to t is equal to the

term (λx1 . . . λxn t) t1 . . . tn.
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A central part of generalizing Horn clauses to higher-order logic is describing a

suitable notion of atomic formulas. Towards this end, we first identify the class of

positive terms as those lambda terms in which the only logical constants that appear

are ∧, ∨ and Σα. Our atomic formulas or atoms are then all the terms of type o of

the form P t1 . . . tn where P is a (predicate) variable or non-logical constant and,

for 1 � i � n, each ti is a positive term. Such a formula is said to be rigid just in case

P , its predicate head, is a non-logical constant and is said to be flexible otherwise.

We denote arbitrary atoms by A and rigid ones by Ar below. Goal formulas or simply

goals are then the propositional terms that are denoted by G in the syntax rule

G ::= � | A | G ∧ G | G ∨ G | ∃xG.

These formulas are higher-order versions of queries or goals in Prolog; notice, in

particular, that the arguments of atomic goals are lambda terms as opposed to

first-order terms and predicate and function variables are permitted in goals. A

higher-order Horn clause or program clause is the universal closure of a term of the

form Ar or G ⊃ Ar . Program clauses are intended to be interpreted in a computational

setting as (partial) definitions of procedures and from this perspective the restriction

to rigid atoms is well-motivated: such an interpretation is meaningful only if the

‘procedure’ has a definite name.

A multiset of higher-order program clauses constitute a program in our logic

programming language. Computation is engendered by a goal formula being

presented relative to a given program. Such a goal formula typically has existential

quantifiers at its head and the programming task is to find instantiations for the

quantified variables that permit the resulting goal to be solved from the program.

Example 1

Let i be a sort representing individuals and let the set of nonlogical constants contain

the following:

nil of type list i

:: of type i → list i → list i, and

mapfun of type list i → (i → i) → list i → o

Further, assume that :: can be written as an infix, right associative operator. Then

the clauses

∀f (mapfun nil f nil ) and

∀x ∀f ∀l1 ∀l2 (mapfun l1 f l2) ⊃ (mapfun (x :: l1) f ((f x) :: l2))

constitute a program.1 Adopting Prolog’s suggestive manner of writing implications,

its convention of making quantifiers implicit by using names beginning with

uppercase letters for quantified variables and its method for depicting each program

clause, this program can be rendered into the following “friendlier” syntax:

mapfun nil F nil .

mapfun (X :: L1) F ((F X) :: L2) :- mapfun L1 F L2.

1 The omission of types with the quantifiers in these clauses illustrates the convention alluded to earlier.
Here, the type of mapfun uniquely determines the types of the quantified variables.
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Letting g be a constant of type i → i → i and a and b be constants of type i,

the formula ∃l mapfun (a :: b :: nil ) (λx g a x) l constitutes a query. Using Prolog’s

conventions for making quantifiers implicit, this query may be rewritten as

mapfun (a :: b :: nil ) (λx g a x) L.

There is exactly one solution to this query, this being given by the ‘answer’

substitution {〈L, (g a a) :: (g a b) :: nil〉}. Notice that generating this answer

substitution requires, amongst other things, the application of a lambda term to

two different arguments and the subsequent reduction of these terms to normal

form. An alternative query is the following:

mapfun (a :: b :: nil ) F ((g a a) :: (g a b) :: nil ).

This query also has a unique solution, this being the substitution {〈F, λx g a x〉}.
Computing this answer involves unifying two pairs of terms containing a function

variable, these being F a and g a a on the one hand and F b and g a b on the other.

We discuss in the next section a process by which such unification problems may be

solved. For the moment, we note that the first of the pairs of terms has four distinct

most general unifiers given by the following substitutions for F:

{〈F, λx g a a〉}, {〈F, λx g x a〉}, {〈F, λx g x x〉}, and {〈F, λx g a x〉}.

If the two pairs of terms in question are unified sequentially and any but the last

solution is chosen initially for the first pair, then it will be necessary to backtrack to

find a solution for the composite problem.

We shall employ the conventions used for depicting formulas in the above example

freely in the rest of the paper. The predicate mapfun considered in this example

relates a function and two lists just in case the second list is obtained by applying

the function to each element of the first list. The notion of function application is,

however, relatively weak, being given by reduction in a typed lambda calculus with

no interpreted constants. A stronger form of function application, one that invokes

the ability of solving goals in the underlying language, can be realized by using a

predicate version of mapfun as described in the following example.

Example 2

In addition to the constants and types of Example 1, assume that mappred is

a constant of type list i → (i → i → o) → list i → o. Then, using the Prolog

convention of depicting conjunctions by commas, the following clauses correspond

to a program:

mappred nil P nil .

mappred (X :: L1) P (Y :: L2) :- (P X Y ), (mappred L1 P L2).

Let bob, john , mary , sue, dick and kate be constants of type i and let parent be a

constant of type i → i → o. Then the following additional clauses define a ‘parent’

relationship between different individuals:
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parent bob john .

parent john mary .

parent sue dick .

parent dick kate.

In this context, the following term constitutes a query:

mappred (bob :: sue :: nil ) parent L.

The sole answer to this query is the substitution {〈L, john :: dick :: nil〉}. In solving

this query, two new goals of the form (parent bob Y1) and (parent sue Y2) will have

to be dynamically formed and solved. Another example of a query is

mappred (bob :: sue :: nil ) (λx λy ∃z (parent x z) ∧ (parent z y)) L.

This goal asks for the grandparents of bob and sue and has as its solution the

substitution {〈L,mary :: kate :: nil〉}. Finding this answer requires two new goals

with complex structures – each with an embedded conjunction and existential

quantifier – to be constructed at runtime and then solved.

Example 2 motivates the particular structure chosen for atomic formulas in the

definition of our higher-order logic programming language. Logical constants that

appear in the arguments of predicate expressions can become top-level symbols in

a goal constructed at runtime. These constants must, therefore, be limited to ones

that can legitimately appear in such a position, a requirement that is achieved by

the restriction to positive terms. In a different direction, in contrasting this example

with Example 1, a question that arises is whether or not the mappred predicate can

be run in ‘reverse’. For example, is the query

mappred (bob :: sue :: nil ) P (john :: dick :: nil )

computationally meaningful? It is tempting to decide that it is and that it has

{〈P , parent〉} as an answer substitution. However, a little thought reveals that there

are too many relations that are true of bob and john on the one hand and sue

and dick on the other and so this query is, in a sense, an ill-formed one. We note

that the ‘solution’ {〈P , λx λy �〉} actually subsumes all others in a logical sense and,

consistent with the present viewpoint, we may treat this as the only legitimate answer

to the posed query.

The idea of solving a goal that we have discussed only intuitively thus far can be

made logically precise using the notion of provability in classical logic (Nadathur

and Miller 1990). Operationally, this sanctions a recipe for solving a closed goal

from a program P that is based on the structure of the goal:

1. The goal � is solved immediately.

2. The goal G1 ∧ G2 is solved by solving both G1 and G2.

3. The goal G1 ∨ G2 is solved by solving one of G1 and G2.

4. The goal ∃xG is solved by solving G[x := t] for some closed positive term t.

5. A rigid atomic goal Ar is solved either (a) by determining that it is equal to a

ground instance of a clause in P, or (b) by finding a ground instance G ⊃ A′
r

of a clause in P such that Ar and A′
r are equal and then solving G.
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In this description, a ground instance of a program clause is generated by substituting

closed positive terms for the universally quantified variables in the clauses.

The recipe described above clarifies the operational semantics of our language,

but needs refinement to become the basis for implementation. In particular, it is

necessary to eliminate from it the oracle used for picking an appropriate instance

of an existentially quantified goal and to embed in it some method for treating the

choices that have to be made concerning the disjunct of a disjunctive goal that is to

be solved and the clause that is to be used to solve an atomic formula. These kinds of

issues have actually to be dealt with already in a first-order language. In that context,

existential goals are treated by delaying the choice of specific instantiations till such

time that information is available for making the ‘right’ choices. Thus, the goal ∃xG
is transformed into one of the form G[x := X] where X is a new variable that may

be instantiated in the course of computation. Actual instantiations for such variables

are determined at the time of solving atomic goals. Given the atomic goal A, we

look for a clause of the form ∀y1 . . . ∀yn A′ or ∀y1 . . . ∀yn (G′ ⊃ A′) that is such that A

unifies with the formula that results from A′ by replacing the universally quantified

variables with new variables. If a clause of this kind is found, then, depending on

its form, either the atomic goal succeeds immediately or the next task becomes that

of solving the resulting instance of G′. With regard to nondeterminism, the usual

solution is to make choices in a predetermined manner and to reconsider these in case

of subsequent failure. Now, the treatment of the logical connectives, the sequencing

through program clauses and much of the unification computation can, in fact, be

compiled and this is what is actually done within machine models such as the WAM.

The ideas discussed above have obvious applicability in the implementation of

our language as well. However, their precise deployment must take into account

the higher-order nature of this language. A detailed exposition of the new problems

posed by this aspect and an integration of their treatment into the basic framework

described above is the subject of the rest of this paper.

Before concluding this section, we comment briefly on the rigidity of the typing

regimen used in our language. The predicates mapfun and mappred as we have

defined them here are, for instance, restricted to apply to lists of individuals and

cannot be used with lists of integers, lists of lists or lists of function objects. This

inflexibility can be alleviated by injecting a form of polymorphism through the use

of type variables. Thus, with an appropriate change to the underlying typing scheme,

mapfun may have been defined to be of type list A → (A → B) → list B → o, where

A and B can be instantiated by arbitrary types. A polymorphism of this kind is, in

reality, supported by λProlog. However, we elide this polymorphism here because it

poses additional implementation problems that we presently do not wish to consider.

For the interested reader, these problems are discussed for a first-order language in

Kwon et al. (1994). The solutions provided therein are entirely compatible with the

implementation methods we develop here for our simply typed language.

3 An abstract interpreter

The desired refinement of our recipe for solving goal formulas requires an under-

standing of higher-order unification problems and of a procedure for their solution.
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Problems of this kind are defined by finite multisets of pairs of terms in which

the two terms in each pair have identical types. We will refer to a collection of

this sort as a disagreement set. A solution to, or a unifier for, such a problem is a

substitution whose application to the terms in each pair makes them equal. Higher-

order unification problems are, in the general case, undecidable ones and also do

not admit of finite sets of most general unifiers. There is, nevertheless, a systematic

way to check for unifiability and to enumerate non-redundant sets of preunifiers

in the process. This method, that is due to Huet (1975), has been used in several

programming systems and has demonstrated a practical usefulness to higher-order

unification despite the theoretical characteristics of the problem.

Huet’s method relies on what is known as a head normal form for a term. A term

is in this form if it has the structure λx1 . . . λxn (A t1 . . . tm) where A is either a

constant or a variable. Given such a term, A is called its head, the abstractions at the

front of the term are collectively called its binder, t1, . . . tm are called its arguments,

(A t1 . . . tm) is called its body and the term is said to be rigid if A is a constant or

an element of {x1, . . . , xn}, and flexible otherwise. Every term in our typed language

can be transformed into such a form modulo the lambda conversion rules (Andrews

1971). Moreover, the results of applying a substitution to a term and to any one

of its head normal forms are equal under these rules. Thus, we may restrict our

attention to terms in such a form as we henceforth do.

The unification procedure consists of the repetitive use of two phases for trans-

forming a given disagreement set into a form for which it can be decided no unifiers

exist or for which unifiability is evident. The first of these phases is akin to the

term simplification that is an intrinsic part of first-order unification. Consider two

head normal forms that are of the same type. The binders of these terms may

be distinct both in the choice of variable names and in length at the outset, but

these can be arranged to be identical through the use of the α- and η-conversion

rules. We may therefore assume that the terms in question are, in fact, of the

form λx1 . . . λxn (A1 s1 . . . si) and λx1 . . . λxn (A2 r1 . . . rj) respectively. Now, if

both terms are rigid, it can be seen that they are unifiable only if A1 and A2 are

identical and, in this case, they have the same unifiers as the set

{〈λx1 . . . λxn s1, λx1 . . . λxn r1〉, . . . , 〈λx1 . . . λxn si, λx1 . . . λxn ri〉};

note that the identity of types ensure that i = j if A1 = A2. Thus, given an arbitrary

disagreement set, this observation can be used either to conclude that it has no

unifiers or to reduce it to another disagreement set with the same unifiers and in

which each pair has at least one flexible term. We assume below that this kind of

simplification is carried out by a function called SIMPL that returns a distinguished

value F in the case that it detects the impossibility of unification.

One of the possibilities for the value returned by SIMPL is that it is a disagreement

set that has only “flexible-flexible” pairs. A set of this kind is known to be unifiable

but, in the case that it is non-empty, a complete search for its unifiers can be

unconstrained (Huet 1975). The best strategy for these sets is therefore to treat them

as constraints on any further processing or, if computation is at an end, to present

them as such on computed answers.
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{〈F a, g a a〉}

{〈H1 a, a〉, 〈H2 a, a〉}

{〈H2 a, a〉} {〈H2 a, a〉}

{〈H2, λx x〉}

{}{} {} {}

{〈H2, λx x〉}

F

{〈H2, λx a〉}{〈H2, λx a〉}

{〈F, λx x〉}{〈F, λx g (H1 x) (H2 x)〉}

{〈H1, λx a〉} {〈H1, λx x〉}

Fig. 1. A matching tree for {〈(F a), (g a a)〉}.

The second phase in unification becomes relevant when SIMPL returns a set that

has at least one “flexible-rigid” pair. A substitution may be posited for reducing

the difference between the terms in the pair in this case. Two kinds of elementary

substitutions completely cover all the possible ways of doing this. In particular, let t1
be the flexible term with F as its head and let t2 be the rigid term with c as its head.

Further, let the types of F and c be α1 → · · · → αk → β and γ1 → · · · → γj → β

respectively, where β is an atomic type. Then

1. the imitation substitution is defined only when c is a constant and is

{〈F, λw1 . . . λwk (c (H1 w1 . . . wk) . . . (Hj w1 . . . wk))〉},

assuming that H1, . . . , Hj are new free variables of appropriate types, and

2. for 1 � i � k, the ith projection substitution is defined only when αi is of the

form β1 → · · · → βl → β and is

{〈F, λw1 . . . λwk (wi (H1 w1 . . . wk) . . . (Hl w1 . . . wk))〉},

assuming H1, . . . , Hl are new free variables of appropriate types.

Notice that these substitutions are determined entirely by the heads of the flexible

and rigid terms in question and they are finite in number.

The iterative use of the two described phases in unification naturally involves

a search whose structure can be visualized through a matching tree (Huet 1975).

Figure 1 presents such a tree for the unification problem {〈F a, g a a〉} encountered

in Example 1. The arcs in this tree are labelled with the relevant imitation and

projection substitutions and the nodes represent the result of transforming the set

on the prior node by first applying the substitution on the incoming arc and then

carrying out the simplification embodied in SIMPL. The leaves of a matching tree

are labelled either with F or with a multiset of flexible-flexible pairs. A solution

to the original unification problem can be obtained by composing the substitutions

on the path to the latter kind of leaf with a unifier for that leaf. In the example
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presented, observing that an empty disagreement set has the empty substitution as its

most general unifier, these solutions involve substituting λx g a a, λx g a x, λx g x a

and λx g x x for F . A matching tree is exhaustive in that the unifiers of the leaves

of a completely expanded tree can be used in this fashion to produce all the unifiers

of the original set. However, such a tree can, in principle, include nonterminating

branches and can also have an infinite number of “success” nodes.

Our refinement to the earlier model for solving goal formulas consists of viewing

a state in the process as a composite of a collection of goals and a disagreement

set, the latter component arising from the attempt to solve atomic goals. Progress

through this state space is made by simplification steps applied either to the goals

or to the disagreement set. In any given case, these steps must be relativized to a

particular program P. The notion of a P-derivation (Nadathur and Miller 1990) that

generalizes SLD derivations described in Apt and van Emden (1982) for first-order

Horn clause logic makes this idea precise.

Definition 1

Let P be a program, let G be a symbol for multisets of goal formulas that we

refer to also as goal sets, and let θ be a symbol for substitutions. Further, let D be

a symbol for a disagreement set or the special value F. Finally, let MATCH be a

function on flexible-rigid disagreement pairs that produces the set of imitation and

projection substitutions for any given pair. Then a tuple 〈G2,D2, θ2〉 is said to be

P-derivable from a tuple 〈G1,D1, θ1〉 in which D1 �= F if it is obtainable from the

latter by one of the following steps:2

1. Goal simplification step: θ2 = ∅, D2 = D1, and for some G ∈ G1 it is the case

that

(a) G is � and G2 = G1 − {G}, or

(b) G is G1 ∧ G2 and G2 = (G1 − {G}) ∪ {G1, G2}, or

(c) G is G1 ∨ G2 and, for i = 1 or i = 2, G2 = (G1 − {G}) ∪ {Gi}, or

(d) G is Σ P and G2 = (G1 − {G}) ∪ {P Y } where Y is a new variable.

2. Backchaining step: θ2 = ∅ and, for some rigid atom G ∈ G1 either

(a) A is an atom obtained by instantiating the universal quantifiers in a clause

in P with new variables and G2 = G1 − {G} and D2 = SIMPL(D1 ∪
{〈G,A〉}), or

(b) G′ ⊃ A is obtained by instantiating the universal quantifiers in a clause in

P with new variables and G2 = (G1 − {G}) ∪ {G′}, and D2 = SIMPL(D1 ∪
{〈G,A〉}).

3. Flexible goal solution step: G ∈ G1 is an atomic goal formula that has the (free)

variable Y of type α1 → · · · → αn → o as its head, and θ2 = {〈Y , λx1 . . . λxn �〉},
G2 = θ2(G1−{G}) and D2 = SIMPL(θ2(D1)); the application of a substitution to

a goal set and a disagreement set here and below corresponds to its application

to the component terms of these sets.

2 We intend ∪ and − to be interpreted as multiset operations in these clauses.
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4. Unification step: For some flexible-rigid pair χ ∈ D1, either MATCH (χ) = ∅
and D2 = F, or θ2 ∈ MATCH (χ) and G2 = θ2(G1) and D2 = SIMPL(θ2(D1)).

A sequence of the form 〈Gi,Di, θi〉1�i�n is a P-derivation sequence for a goal formula

G if G1 = {G}, D1 = ∅ and θ1 = ∅, and for 1 � j < n, 〈Gj+1,Dj+1, θj+1〉 is P-derivable

from 〈Gj ,Dj , θj〉. Such a sequence terminates in failure if Dn = F and with success

if Gn = ∅ and Dn is either empty or contains only flexible-flexible pairs. In the latter

case, we say that the sequence is a P-derivation of G. Such a sequence embodies

in it a solution to the query G in the context of the program P and the answer

substitution corresponding to it is obtained by composing θn ◦· · ·◦θ1 with any unifier

for Dn and restricting the resulting substitution to the free variables of G.

An abstract interpreter for our language may be thought of as a procedure that,

given a program P, attempts to construct a P-derivation for goal formulas. Such

an interpreter would function by trying to extend an existing P-derivation and will

typically be faced with alternatives in this process. This interpreter can without loss

of completeness choose to use a unification step whenever one is applicable. The

only choices that are critical are, in fact, those of the disjunct to use when simplifying

a disjunctive goal, the clause to use in a backchaining step, the substitution to use

in a unification step and the point at which to solve a flexible goal. We assume a

depth-first approach with the possibility of backtracking in the treatment of the first

three aspects. The first two kinds of choices are present in a first-order language as

well and similar methods can be used for treating them here. In particular, we use a

left-to-right processing order in the treatment of disjunctive goals and we base the

selection of clauses in a backchaining step on an ordering on the multiset determined

by their presentation sequence. Moreover, the cases with a potential of success can

be considerably narrowed down by techniques such as indexing on predicate names

and the structure of arguments, a fact that we utilize in section 6. The treatment

of choices in the unification step and the bookkeeping mechanisms for realizing

backtracking relative to these is a matter we discuss in a later section. Finally, we

assume an initial ordering on goals that we maintain through an ordered, “in-place”

insertion of the subgoals produced by a goal simplification or backchaining step and

we use this ordering to drive their selection. This eventually determines the point at

which flexible goals are processed. This choice may, on occasion, lead to a loss of

completeness but we believe this to be pragmatically justifiable.

4 The representation of lambda terms

The abstract interpreter described in the previous section assumes a ready availability

of head normal forms and an immediate access to their components. In reality, these

forms must be computed. The efficiency of this computation and of the access

to the structures of terms is mediated eventually by the representation chosen

for terms. We discuss the various factors influencing this choice below, thereby

motivating the encoding that has been used in the Teyjus system. Our discussion

also highlights the tradeoffs that are relevant to the representation question. Lambda

terms evolve during computation in a manner that is difficult to predict statically,
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making experimentation with actual implementations a necessary component to

quantifying the tradeoffs. An instrumented version of the Teyjus system is currently

being used to obtain such an assessment. We indicate some of the observations

from these studies here, leaving a detailed exposition to other papers (Liang and

Nadathur 2002; Nadathur and Qi 2003; Liang et al. 2003).

4.1 The representation of bound variables

Presentations of lambda terms usually employ a name-based rendition of bound

variables. When such a representation is used also in an implementation, it becomes

necessary to consider the α-conversion rule in comparison operations. For example,

a common calculation within higher-order unification is determining whether the

heads of two rigid terms are identical. Thus, suppose that we desire to unify the terms

λy1 . . . λyn (yi t1 . . . tm) and λz1 . . . λzn (zi s1 . . . sm). Term simplification reduces this

task to that of unifying the set

{〈λy1 . . . λyn t1, λz1 . . . λzn s1〉, . . . , 〈λy1 . . . λyn tm, λz1 . . . λzn sm〉}.

However, a prelude to effecting this transformation is recognizing that the heads

of the two terms match and this clearly involves a renaming operation under the

chosen representation.

If the kind of comparison described above arises often in computation, it is

desirable to use a representation for terms that eliminates the need for bound

variable renaming. A scheme that is suitable from this perspective is that of de Bruijn

(1972). Under this scheme, the connection between binding and bound occurrences

of variables in lambda terms is manifest not through names but by using indices at

the bound occurrences that count the number of abstractions in a parse structure of

the term up to the one binding the occurrence. Thus, the term λx ((λy λz y x) (λw x))

is denoted using the de Bruijn approach by the expression λ ((λ λ#2 #3) (λ#2)),

where #i is the representation of index i. Subterms of a term may have bound

variable occurrences that are free in the local context. An occurrence of this kind

is indicated by an index whose value exceeds the number of abstractions it is

embedded under, as happens in the subterm (λ#2) of the term considered above.

The original de Bruijn encoding describes also a translation of globally free variable

occurrences to indices. This part of the scheme is, however, not useful in our context.

Globally free variables correspond in our computational model to variables that can

be instantiated. A characteristic of all the substitutions that we consider for such

variables is that the only unbound variables they contain are ones that are once

again globally free; this property holds, for instance, of the imitation and projection

substitutions discussed in the previous section. Given this, these variables are best

treated, in the usual logic programming style, as pointers to cells in memory that

are tagged as unbound variables with instantiations being realized immediately by

changing the contents of these cells.

The above discussion indicates a difference in representation and treatment at a

pragmatic level between two kinds of variables that are similar in the underlying

logic. Terminology that distinguishes between these variables will also be convenient
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in exposition. We henceforth use the expression “logic variable” for a variable that

is globally free, i.e. is not bound by any explicit abstraction, reserving the terms

‘bound variable’ and “free variable” for those variables that may be bound or free

in a local context but that are ultimately captured by an abstraction and hence

represented by a de Bruijn index.

The de Bruijn representation solves the problem mentioned at the outset. The

two terms considered there translate under this scheme into λ . . . λ (#i t̂1 . . . t̂m) and

λ . . . λ (#i ŝ1 . . . ŝm), where, for 1 � i � m, t̂i and ŝi are the de Bruijn representations

of ti and si respectively. The heads of the two terms are identical under this

representation and, in general, the check for compatibility of the heads of two rigid

terms in the term simplification phase of unification becomes a simple identity test.

The de Bruijn notation has another significant benefit in that it allows the

abstractions that appear at the front of terms to be dispensed with in several

situations. Such abstractions are often used in the unification process to encode

the contexts in which to view the two terms that are to be unified. When these

contexts are identical, as would be the case under the de Bruijn scheme, they can

be left implicit. To understand the pragmatic impact of this observation, consider

again the task of unifying the terms λ . . . λ (#i t̂1 . . . t̂m) and λ . . . λ (#i ŝ1 . . . ŝm).

This task can be reduced simply to that of unifying the set {〈t̂1, ŝ1〉, . . . , 〈t̂m, ŝm〉}, i.e.

the outer abstractions do not need to be appended to the front of the argument

terms. Term simplification thus takes a form that is closely related to the first-order

version: if the heads of the two rigid terms being considered are identical, the

problem simply becomes one of recursively unifying their arguments. In contrast to

the situation where the outer abstractions need to be replicated and added in front

of the arguments, this transformation is one that can be easily implemented in a

low-level abstract machine.

Although the de Bruijn notation obviates α-conversion in the determination of

equality, renaming or, more precisely, renumbering is still necessary in the correct

realization of β-contraction. To understand what exactly is needed, let us consider

the reduction of the term λx ((λy λz y x) (λw x)) whose de Bruijn representation,

as we have seen, is λ ((λ λ#2 #3) (λ#2)). This term reduces to λx λz ((λw x) x), a

term whose de Bruijn representation is λ λ ((λ#3) #2). Comparing the two de Bruijn

terms, we observe the following. First, there may be free variables in the argument

part of a redex and the indices corresponding to these may have to be renumbered

as it is substituted into the body upon performing a β-contraction; in the example

considered, the subterm (λ#2) is transformed into (λ#3) by this process. Second,

β-contraction eliminates an abstraction and the indices for variable occurrences that

were free in the body have to be decremented by 1 to account for this action; once

again, in our example, this is reflected in the renumbering of the index 3 in the body

of the redex to 2. This part of the renumbering work can, however, be realized in

the same structure traversal that carries out the substitution of the argument into

the body of the redex.

Renaming is, of course, also necessary in β-contraction under a name-based

representation. However, in contrast to the situation under the nameless scheme,

renaming now affects only the body of a redex. Thus, in β-contracting the term
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(λx t1) t2, it is necessary to consider renaming only the variables explicitly bound

within the subterm t1. Even this kind of renaming can be avoided if it can be

determined that the names of these bound variables do not clash with those

of the free variables in t2. However determining this requires a traversal of the

argument part of the redex to calculate the set of variables that are free in it. A

more efficient approach, used, for instance, in (Aiello and Prini 1981), is to always

rename but, in a manner similar to that suggested for the de Bruijn case, to fold

such renamings into the same structure traversal that realizes the β-contraction

substitution.

From this discussion, it becomes clear that the separating factor between the

name-based and nameless treatments of bound variables from the perspective of

implementing β-contraction is the effort expended in renumbering the argument

parts of redexes under the latter regime. We believe this effort to be small in

practice for two reasons. First, actual renumbering can be often be finessed. For

example, if there are no externally bound variables in the argument of the redex

or if substitution is not made into a context embedded under abstractions, then

renumbering is actually vacuous. This, in fact, is often the situation under a popular

style of programming in λProlog (Miller 1991), and other features of the lambda

term representation that we describe in this section allow such properties to be

recognized and utilized in reduction. Second, not all the cases where a nontrivial

renumbering needs to be done constitute an extra cost. In general, when a term

is substituted in, it is necessary also to examine its structure and possibly reduce

it to an appropriate normal form. The necessary renumbering can, in this case, be

incorporated into the same walk as the one that carries out this introspection. The

main drawback of this approach is that it leads to a loss of sharing in reduction if

the same term is substituted, and reduced, in more than one place since the required

renumbering may be different in each of these contexts. However, empirical evidence

suggests that the actual loss of such sharing is negligible (Liang and Nadathur 2002),

indicating thereby that any renumbering can be profitably folded into a required

reduction walk.

In summary, then, the de Bruijn representation of bound variables has few real

drawbacks in realizing β-contraction and significant advantages in checking identity

modulo α-conversion and implementing higher-order unification. It has been used

for this reason in the Teyjus implementation and we orient the rest of our discussion

of term representation around it.

4.2 Encoding substitutions in terms

The manner in which substitutions are effected over lambda terms is critical to

the efficiency of implementation of the β-contraction operation. A potentially

desirable feature in the realization of such substitutions is the ability to perform

them in a lazy fashion. For example, consider the task of determining whether

the (de Bruijn) terms ((λ λ λ#3 #2 s) (λ#1)) and ((λ λ λ#3 #1 t) (λ#1)) can be

unified. We assume that s and t denote arbitrary terms here. We can conclude
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that these two terms cannot be unified by observing that they reduce respectively

to λ λ#2 s′ and λ λ#1 t′, where s′ and t′ are terms that result from s and t by

appropriate substitutions. In making this determination, we do not actually need

to calculate the results of the substitutions over the terms s and t. To achieve this

conservation of effort, however, it is necessary that we be able to represent s′ and

t′ as combinations of s and t with relevant substitutions. Similarly, consider the

reduction of a term of the form ((λ ((λ t1) t2)) t3) to head normal form. Let t′2 be the

term obtained from t2 by substituting t3 for the first free variable and decrementing

the indices of all the other free variables by one. Then, producing the head normal

form involves substituting t′2 and t3 for the first and second free variables in t1
and decrementing the indices of all other free variables by two. Each of these

substitutions involves a walk over the same structure, i.e. the structure of t1. It

would obviously be beneficial if all these traversals could be combined into one. The

ability to do this depends, once again, on the possibility of temporarily suspending a

substitution generated by a β-contraction so that it can later be composed with other

substitutions.

The delaying of substitutions has, in fact, been used extensively in the imple-

mentation of functional programming languages (e.g. see Cousineau et al. (1987),

Fairbairn and Wray (1987) and Henderson and Morris (1976)). In these contexts,

the necessary delaying is realized by the simple device of combining a term with an

environment that represents bindings for free variables that occur in it. When the

de Bruijn representation is used, this simple device is adequate only if the overall

term is closed and if subterms embedded within abstractions need not be explored.

These assumptions are acceptable in the implementation of functional programming

languages but, unfortunately, not in the context of interest to us: the production of

the head normal forms needed during unification may well require the β-contraction

of redexes embedded within abstractions as well as the propagation of substitutions

under abstractions. In these cases, a more complicated substitution operation needs

to be encoded. Thus, suppose that we need to β-contract a term of the form (λ t) s

that appears embedded within some abstractions. Now, t might contain variables

that are bound by outside abstractions. If the result of β-contracting this redex is to

be encoded by the term t and an “environment”, the environment must record not

just the substitution of s for the first free variable in t but also the decrementing of

the indices corresponding to all the other free variables. Similarly, imagine that we

wish to propagate an environment under the abstraction in a term of the form λ t.

If the result is to be represented by a term of the form λ t′ where t′ is itself encoded

as t and an environment, then this environment must be obtained from the earlier

one by “shifting up” the index for the variables to be substituted for by one and

adding an identity substitution for the variable with index 1. Further, the indices of

the free variables in the terms that appear in the environment must themselves be

incremented by 1.

Explicit substitution notations that have been developed in recent years for the

lambda calculus offer a complete treatment of this kind of encoding of substitutions

(Abadi et al. 1991; Benaissa et al. 1996; Field 1990; Kamareddine and Rı́os 1997;

Nadathur and Wilson 1998). We outline here a version of such a notation that

https://doi.org/10.1017/S1471068404002297 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002297


322 G. Nadathur

we have developed for use specifically in the implementation of our higher-order

language (Nadathur 1999).3 Our notation builds on the traditional de Bruijn notation

by adding a new category of terms called a suspension. A suspension represents a

‘skeletal’ term together with a suspended substitution. Such a term has the structure

[[t, ol, nl, e]], where t is a term, ol and nl are natural numbers and e is an environment.

This suspension corresponds, intuitively, to a term t that used to occur inside ol

abstractions but that now appears within nl of them. In generating the underlying

de Bruijn term, therefore, the bound variables with indices greater than ol have to

have their index values adjusted by the difference between ol and nl. Substitutions

for the first ol bound variables are, on the other hand, contained in the environment

e. Conceptually, the elements of such an environment are either substitution terms

generated by a contraction or are dummy substitutions corresponding to abstractions

that persist in an outer context. However, some renumbering of indices may have to

be done at the place of actual substitution. To encode this renumbering, each element

of the environment is annotated with the number of remaining abstractions under

which the abstraction relevant to that element appears. This relative ‘embedding

level’ can be used together with the overall embedding level nl to completely

determine the needed renumbering.

The syntax of lambda terms in the new notation is given formally by the category

〈T 〉 defined by the following rules:

〈ET 〉 ::= @〈N〉 | (〈T 〉, 〈N〉)
〈E〉 ::= nil | 〈ET 〉 :: 〈E〉
〈T 〉 ::= 〈C〉 | 〈V 〉 | #〈I〉 | (〈T 〉 〈T 〉) | (λ〈T 〉) | [[〈T 〉, 〈N〉, 〈N〉, 〈E〉]]

In these rules, 〈C〉 and 〈V 〉 represent constants and logic variables, 〈I〉 is the

category of positive numbers and 〈N〉 is the category of natural numbers. Further,

〈E〉 and 〈ET 〉 are to be read as the categories of environments and environment

terms, respectively. Terms of the form [[t, i, j, e]] must satisfy certain wellformedness

constraints that have a natural basis in our informal understanding of their content:

viewing the environment e as a list, its length must be equal to i, each element of it

of the form @(l) must be such that l < j and each element of the form (t, l) must

be such that l � j.

In addition to the syntactic expressions, the suspension notation includes a

collection of rewrite rule schemata whose purpose is to simulate β-contractions.

These schemata are presented in Figure 2. In these rules we use the notation e[i] to

denote the ith element of the environment. Of the rules presented, the ones labelled

(βs) and (β′
s) generate the substitutions corresponding to the β-contraction rule on

de Bruijn terms and the rules (r1)-(r9), referred to as the reading rules, serve to

actually carry out these substitutions.

The (β′
s) schema has a special place in the calculus: it makes possible the

combination of substitutions arising from different β-contractions. To understand

its use, let us consider the head normalization of the term (λ ((λ t1) t2)) t3. As the

first step in this process, we might produce the term [[(λ t1) t2, 1, 0, (t3, 0) :: nil ]]. The

3 This notation has also been used in the Standard ML of New Jersey compiler (Shao et al. 1998).
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(βs) (λt1) t2 −→ [[t1, 1, 0, (t2, 0) :: nil ]]

(β′
s) (λ[[t1, ol + 1, nl + 1,@nl :: e]]) t2 −→ [[t1, ol + 1, nl, (t2, nl) :: e]]

(r1) [[c, ol, nl, e]] −→ c, provided c is a constant.

(r2) [[x, ol, nl, e]] −→ x, provided x is a logic variable.

(r3) [[#i, ol, nl, e]] −→ #j, provided i > ol and j = i − ol + nl.

(r4) [[#i, ol, nl, e]] −→ #j, provided i � ol and e[i] = @(l) and j = nl − l.

(r5) [[#i, ol, nl, e]] −→ [[t, 0, nl − l, nil ]],

provided i � ol and e[i] = (t, l) and j = nl − l.

(r6) [[t1 t2, ol, nl, e]] −→ [[t1, ol, nl, e]] [[t2, ol, nl, e]].

(r7) [[λt, ol, nl, e]] −→ λ[[t, ol + 1, nl + 1,@nl :: e]].

(r8) [[[[t, ol, nl, e]], 0, nl′, nil ]] −→ [[t, ol, nl + nl′, e]].

(r9) [[t, 0, 0, nil ]] −→ t.

Fig. 2. Rule schemata for rewriting terms in the suspension notation.

substitution may now be percolated inwards using the reading rules so as to reveal

a β-redex at the top level. This produces the term

(λ [[t1, 2, 1,@(0) :: (t3, 0) :: nil ]]) [[t2, 1, 0, (t3, 0) :: nil )]].

At this point the β′
s rule schema is applicable and using it produces the term

[[t1, 2, 0, ([[t2, 1, 0, (t3, 0) :: nil ]], 0) :: (t3, 0) :: nil ]].

Notice that the substitutions generated by contracting the two β-redexes have been

combined at this point into one environment and can be performed in a single walk

over the structure of t1.

In the translation of a suspension, it will eventually be necessary to substitute the

arguments of β-redexes for bound variable indices. This operation is carried out in

our calculus by instances of the rule schema (r5). There is, in general, a necessity to

renumber indices in the term being substituted in and this is manifest in the schema

(r5) in the construction of a suitable suspension. The rule schemata (r8) and (r9)

recognize special circumstances relative to such renumbering. The schema (r9) allows

vacuous renumbering to be eliminated. By so doing, this rule facilitates a continued

sharing relative to the substituted term. The schema (r8), on the other hand, permits

a nontrivial renumbering walk to be combined with a walk affecting substitutions

arising out of earlier β-contractions. Uses of the schemata (r8) and (r9) can be

folded into the application of the schema (r5) and this is actually done in the Teyjus

implementation. An interesting aspect of our overall system is that by utilizing the

(β′
s), (r8) and (r9) schemata within the control strategy for generating head normal

forms that we describe later, it is possible to eliminate nearly all occurrences of

nested suspensions in practice. This has obvious consequences with respect to the

sharing of substitution walks.

While there is a case in principle for laziness in performing substitutions, it is still

necessary to determine how this plays out in real applications. In situations where

https://doi.org/10.1017/S1471068404002297 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002297


324 G. Nadathur

lambda terms are employed in an essential way in programming, empirical studies

indicate that using the suspension notation and the rules (β′
s) and (r8) judiciously

can reduce substitution walks to between a third and an eighth of what is needed

when substitutions are performed eagerly (Liang and Nadathur 2002). There is a

noticeable reduction in computation time as a result, up to 35%—measured over

all computations, including backchaining over logic programming clauses—in some

important cases.

4.3 A dependence annotation on terms

There is a refinement to the suspension notation that can have practical benefits.

This refinement consists of annotating terms to determine whether or not they

contain variables bound by external abstractions. Referring to the two categories

of terms as open and closed with obvious connotations, these annotations can be

determined statically for de Bruijn terms as follows. At the atomic level, de Bruijn

indices are open whereas logic variables and constants are closed. For complex

terms, an application is open if either its “function” or “argument” part is open

and is closed otherwise, and an abstraction is open exactly when there is a bound

variable occurrence within its scope that has a (relative) index greater than 1.

Rewrite rules that transform terms in the course of computation can be modified in

a straightforward way to maintain and propagate these annotations. For example,

if a β-redex of the form (λ t1) t2 is closed, then the suspension [[t1, 1, 0, (t2, 0) :: nil ]]

that is generated from it must also be closed. Similarly, given a suspension of

the form [[t1 t2, ol, nl, e]] that is closed, the two top-level components of the term

([[t1, ol, nl, e]] [[t2, ol, nl, e]]) that is obtained from distributing the substitution over

the application must be closed. A complete presentation of these refined rewrite

rules and a characterization of their properties may be found in Nadathur (1999).

The cost of maintaining the annotations discussed can be made small by using

suitable low-level devices. In the emulator that is part of the Teyjus system, for

example, an otherwise unused low-end bit is employed to indicate the annotation

and the determination and setting of its value is folded into the overall manipulation

of term tags. The advantage of maintaining annotations is at least twofold. First,

the rewriting effort in determining the head normal form of a given term can be

reduced. For example, consider a term of the form [[t, i, j, e]] where it is known that

t is a term that is not dependent on outside abstractions. Then this term can be

simplified immediately to (a pointer to) t. Second, this kind of simplification can

foster a greater sharing of terms and, consequently, of rewriting steps. Thus, consider,

once again, the term [[t, ol, nl, e]], but this time assuming that t is of the form (t1 t2)

that may possibly be shared with other contexts. Attempting to reduce this term

to head normal form in a situation where annotations are not used would result in

the production of the term ([[t1, ol, nl, e]] [[t2, ol, nl, e]]), in the process breaking the

sharing over t. In contrast, with the use of annotations, the given suspension term

will be simplified immediately to t and the subsequent reduction of t will be shared

with all the other contexts in which it is used.
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An obvious question is if the virtues of annotations are relevant to realistic

computations in our higher-order language. We mention two situations in which

these could be of benefit. In the first instance, observe that the substitutions that

are computed by the higher-order unification process are actually closed in the

sense discussed. Now, if occurrences of the variables being substituted for appear

embedded within β-redexes, then the propagation of reduction substitutions over

instantiations of these variables can be calculated trivially by utilizing annotations.

As another example consider a β-redex of the form (λ t1) t2 where t2 is a closed term

as would be the case if this term appears statically at the top-level. The contraction

of this term yields the suspension [[t1, 1, 0, (t2, 0) :: nil ]]. The percolation of the

substitution of t2 over the structure of t1 might eventually lead to the replacement of

a bound variable index by t2. With reference to the rules in Figure 2, this replacement

would produce a term of the form [[t2, 0, l, nil ]], i.e. a term that corresponds to t2
with a suitable renumbering of indices corresponding to free variable occurrences.

By utilizing the fact that t2 is known to be closed, the renumbering can be effected

trivially. Furthermore, the bound variable that t2 needs to be substituted for may

occur in more than one place within t1. In this case the use of the annotation on t2
will also be responsible for the preservation of a meaningful sharing opportunity.

At an empirical level, we have observed that the use of annotations yields

a substantial speedup relative to an eager approach to propagating reduction

substitutions, the reduction in computation time being over 70% in several cases

(Liang and Nadathur 2002). While there is still a payoff from annotations when

laziness in substitution and the combination of substitution walks as described in

section 4.2 are used, these appear to be of a much smaller kind. Thus, certain

optimizations seem to overlap with others and a better understanding of these

interactions is needed.

4.4 The implementation of reduction

An issue of obvious importance is the order in which various operations are to be

carried out on terms. From the perspective of unification, the main requirement is

that of transforming terms into a form in which the head is exposed; in particular, the

arguments of terms may be left in the form of suspensions. The idea of head normal

forms has been generalized to the suspension notation and its relationship to the

conventional understanding of this notion has been explored in Nadathur (1999) as

a prelude to its use in unification. At an implementation level, a strategy that might

be used is one that produces these head normal forms only on demand and that

does this by repeatedly rewriting the leftmost, outermost redex relative to the rules

in Figure 2 till such time that an atomic head is revealed, possibly embedded under

some abstractions. This strategy is an obvious generalization of the one used for

rewriting β-redexes towards producing head normal forms in the usual setting and

also has practical advantages: it provides the basis for delaying substitution walks as

discussed in section 4.2 and the different possibilities for combining term traversals

during substitution and the adjustment of indices present themselves within it as
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Fig. 3. Non-destructive reduction of lambda terms.

well-defined choices between rewrite rules applicable at the same time. We discuss

the realization of this approach within the Teyjus system further in section 5.1.

Another issue to consider is whether to implement the rewriting of terms in a

destructive or non-destructive manner. To understand the tradeoffs involved, let us

consider the reduction of the term λ λ ((λ t1) t2), in which t1 and t2 are arbitrary

terms, to head normal form. Anticipating a discussion of internal representations,

we may depict terms by graphical structures. Each term in such a representation

translates to a node labelled with its category and containing its fixed length parts

and pointers to relevant subterms and environments. Assuming such a visualization,

the internal structure of the term of interest may be shown by the graph in the left

half of Figure 3. Now, this term has a redex, given by the subterm (λ t1) t2, that has

to be β-contracted in producing a head normal form. If a destructive implementation

of reduction is used, then this rewriting step will be effected by replacing the redex

in-place by the term [[t1, 1, 0, (t2, 0) :: nil ]].4 The consequences of this replacement

will be felt immediately in all places where the redex appears as a subterm. If the

β-contraction is done non-destructively, on the other hand, the subterm would be

left intact but a new suspension term would be returned. To obtain the effect of this

rewriting step in the overall context, it would now be necessary to replicate around

the suspension the structure of the term within which the redex is embedded. Thus,

4 The representation of different kinds of terms generally require different amounts of space in an
concrete realization. In this case, a destructive change may be achieved by using a special kind of term
that serves as a “reference” to a value stored elsewhere.
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a non-destructive implementation of the β-contraction operation would eventually

have to produce the structure shown in the right half of Figure 3.

Based on the above understanding, a destructive implementation appears to be an

obvious choice in a context where reduction is deterministic, i.e. where future events

will not require rewriting steps to be undone. The in-place replacement obviates a

copying of the embedding context. Furthermore, it is only such a replacement that

admits of any possibility of sharing in reduction; the effect of replacing (λ t1) t2
with [[t1, 1, 0, (t2, 0) :: nil ]] will be felt in other contexts only if the term is changed

physically at the place where these point to. A non-destructive implementation

actually has an additional cost that is inhibiting. Consider, for instance, an attempt

to head normalize a term that is already in head normal form but that is not known

statically to be in this form. Since copying of structure is needed in some cases, a

naive implementation might simply replicate the structure of the term even when

its subparts are unchanged. However, this is undesirable: a mere “look-up” should

not cause a new structure to be created. This kind of a copying can be avoided

by putting explicit checks into the normalization procedure to determine when

copying is necessary. This incurs a time penalty that does not arise in a destructive

implementation.

Our interest is, of course, eventually in a context where backtracking over

reduction computations may be necessary. As a specific example, a β-redex may

manifest itself in a term as a result of a substitution for a variable that may have to

be repealed at a later point. In this situation, a destructive implementation has the

drawback that the in-place changes may have to be trailed to facilitate a subsequent

resetting of state. A interesting point to note is that the form of trailing that is

needed here is one that saves old values of cells and not simply the pointers to

affected cells as in conventional Prolog implementations. The efficiency of such an

implementation can obviously be improved by mechanisms that detect redundancy in

trailing. The simplest method that can be used for this purpose is one that compares

the location in heap of the term being changed with the most recent heap backtrack

point to decide the necessity for trailing. Controlled forms of eagerness that push

necessary rewriting steps to before the setting up of choice points are also useful.

Another aspect that bears careful investigation is the possibility of committing to

heap a cascade of reduction steps, such as those corresponding to a β-contraction

and the propagation of the substitution it generates, only at the very end, thereby

obviating the retraction of intermediate steps. The present version of the Teyjus

system employs a graph based, destructive implementation of reduction and, as

such, provides an effective vehicle for experimenting with these various possibilities.5

The implementation of logic programming languages have, in the past, consider

two different methods for the treatment of terms appearing in program clauses. In

the structure sharing approach, these are represented as a combination of a fixed

structure and bindings for variables (Warren 1977). In the more popular structure

copying approach, entirely new copies of these terms are created through compiled

5 Such experimentation with reduction strategies has actually been carried out since the preparation of
this paper. Details may be found in Nadathur and Qi (2003) and Liang et al. (2003).
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code in each instance of use (Warren 1983). The destructive implementation of

reduction is compatible only with this structure copying approach and we therefore

assume its use in later sections.

4.5 Internal representation

The final issue that we consider is the low-level representation of terms that embodies

the various mechanisms that we have described. The most natural such encoding is

the one that uses a cell bearing a tag that indicates the relevant syntactic category

for each term and that is complemented by additional cells containing information

about further components. In the case that the dependency annotations discussed

in section 4.3 are used, it is best if the information they provide can also be

accessed independently of the term category. In the emulator underlying the Teyjus

implementation, this purpose is achieved by reserving the low-end bit of the tag

bearing cell for these annotations.

The information that needs to be provided in addition to the term category

depends, of course, on the category of the term. If this is a constant or a bound

variable, all that is needed is a pointer to the descriptor for the constant or the index,

and this can be folded into the cell bearing the tag. In the case of a logic variable that

is as yet uninstantiated, the contents of the cell are unimportant and the instantiation

of such a variable is realized by changing the contents of this cell to correspond to

one of the other term categories. An abstraction cell must contain a pointer to the

body of the abstraction. A suspension term requires the maintenance of its two in-

dices, a pointer to the skeletal term and a pointer to its environment. An environment

can be represented as a list and, in this form, admits of considerable sharing.

The representation of the final category of terms, namely, applications, requires

more care. The most natural, and perhaps the conceptually clearest, approach is

to utilize the curried structure, rendering each application into a pair of pointers

to its function and argument parts. Unfortunately, this kind of rendition incurs a

high cost in the most common form of access to terms. The objective with terms is

typically to get to the heads of their head normal forms. Further, operations such as

term simplification in unification are best realized if the arguments in a head normal

form are available as a vector. Suppose that we have a term that at compile time

has the structure λ . . . λ (h t1 . . . tn). If a curried representation is used for this term,

n applications will have to be traversed before the head is reached and a vector of

arguments will also have to be explicitly constructed in the course of this descent

under application structure.

An alternative encoding of application that is reminiscent of the treatment of

terms in conventional logic programming implementations is to translate it into a

structure containing three components: a function part, a pointer to a vector of

arguments and an “arity” that indicates the size of the arguments vector. Such a

representation has especially nice properties when the program at hand is a first-

order one. In this case the top-level structure of every compound (application)

term that is encountered during computation is already available at compile time.
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Thus, the head normal forms of these terms are available without any reduction

calculations and the described representation allows a quick determination of this

fact as well as an immediate access to the functor and arguments parts. These

appear to be important properties since efficiency over first-order like computations

is significant even to a higher-order logic programming language (Michaylov and

Pfenning 1992).

Our low-level representation for terms comes close to the one generally employed

for first-order terms with the described encoding of applications. However, there

are still differences that should be mentioned. One difference concerns the specific

structure chosen for compound terms. In the first-order case, internal nodes in the

tree representation of terms cannot change. This fact can be exploited to fold the

functor and arguments parts into one vector and, thereby, to reduce compound

terms to a single pointer. A similar optimization is not possible in the higher-order

context. The contraction of a β-redex, for instance, transforms an n-fold application

into an (n − 1)-fold one and there must be sufficient flexibility in the encoding

of terms to capture this situation. The other difference lies in the registration

of destructive changes for the purposes of backtracking. First-order terms evolve

during computation only by virtue of bindings for logic variables. By picking a

uniform representation for such variables, the state prior to such a change can be

recorded simply by retaining a pointer to the cell for the corresponding variable.

This kind of optimization is not available in the higher-order context when reduction

is implemented destructively and, as we have already noted, the original value of

the modified cell needs also to be remembered in order to resurrect the previous

state.

We have up to this point not considered explicitly the fact that the terms of

interest to us have types associated with them. These types have a twofold role in

the language (Nadathur and Pfenning 1992). At one level, they serve to limit the

set of acceptable programs. At another level, they participate in the computational

mechanism of the language; this role is apparent from the manner in which types

determine the imitation and projection substitutions that are to be generated for

a flexible-rigid pair. The first function of types is relevant to compilation but

does not affect the execution of a program and so does not have a bearing on

runtime representations. As for the second purpose, we observe that it is sufficient

to maintain types with only the constants and logic variables appearing in lambda

terms. Maintaining such annotations is also necessary: the types of logic variables

are needed for both the imitation and projection substitutions and the types of

constants are needed in determining the imitation substitutions.

The need to maintain types adds a extra component – a pointer to a type – to

the representation of logic variables. The representation of constants is unchanged

since the type information can be combined with the other data comprising their

descriptors. While we do not discuss this issue in detail here, in the presence of

polymorphism, types are best represented by pointers to a type “skeleton” and a

type environment (Kwon et al. 1994). The treatment of polymorphism thus adds an

extra cell to the representations of constants and logic variables.
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5 Runtime support for higher-order unification

We now consider the task of supporting the enhanced notion of unification present

in our language. The problems that have to be dealt with are threefold. First, it is

necessary to consider the normalization of terms during execution. Second, states in

our abstract interpreter are given also by disagreement sets and an efficient method

for maintaining such sets explicitly is needed. Finally, higher-order unification has a

branching character, a facet we realize through depth-first search with backtracking.

In implementing this approach, it is necessary to identify the important components

of state that need to be remembered and also to describe suitable encodings for such

information. We discuss these various issues below and we describe approaches to

accounting for them within an actual implementation.

5.1 Normalization of terms

The simplification operation and the postulation of substitutions within unification

depend on terms being presented in (a generalized) head normal form. Terms can

arise during computation that are not in this form; consider, for instance, the

structure of a term after a substitution dictated by imitation or projection has

been made for a variable of function type that appears in it. Mechanisms for

normalizing terms are therefore needed as also is a protocol for deploying these at

points where head normal forms are desired. As discussed in section 4.4, a strategy

that rewrites the leftmost, outermost redex at each stage is a natural one to use

for head normalization. The suspension notation allows the substitution generated

by a β-contraction to be treated as a truly atomic operation and thereby facilitates

an iterative, stack based realization of this strategy. Such an approach is embedded

in the implementation of normalization within the Teyjus system. We sketch this

component of the system below as a prelude to explaining its use in the overall

computation scheme. A more detailed description of the reduction procedure may

be found in Nadathur (1998).

The Teyjus implementation of head normalization actually uses two stacks called

the structures list or SL stack and the applications stack, the latter facilitating a

destructive realization of reduction. Both stacks store references to terms and can

share a common space in an abstract machine, with their tops growing towards each

other. The reduction procedure looks at the term pointed to by the top of the SL

stack and the value in a global register NUMARGS to determine its next step. At

the outset, a reference to the term to be reduced is placed on the top of the SL

stack and the NUMARGS register is set to 0. The main actions of the procedure are

dependent on the term referenced by the top of the SL stack having a non-suspension

structure. For this reason, if this term is a suspension, the first task becomes that

of exposing such a form for it. This objective is achieved immediately using one of

the reading rules in Figure 2 when the skeleton is itself not a suspension. Otherwise

a non-suspension form must be exposed first for the skeleton and a simple iterative

process that begins by placing a reference to this skeleton on the top of the SL stack

serves to realize this. Eventually, when a non-suspension form is exposed, if the top
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of the SL stack is a reference to an application, this reference is recorded in the

applications stack and is replaced in the SL stack by a sequence of references to its

“operand” and “operator” parts, with the NUMARGS register being incremented

by the number of operands. If the top of the SL stack contains a reference to an

abstraction, the action taken depends on the value in the NUMARGS register. If

this is 0, the SL stack reference is replaced by one to the body of the abstraction.

Otherwise, a leftmost, outermost β-redex has been found and needs to be contracted.

This action is realized by popping the top two items on the SL stack, using them to

construct a suitable suspension a reference to which is pushed onto the SL stack,

destructively updating the application available from the top of the applications

stack and, finally, decrementing the NUMARGS register by 1 to account for the

disappearance of an argument. The final possibility for the top of the SL stack is

that it is a reference to an atomic term, i.e. one that is a constant or a bound or free

variable. This situation signals that a head normal form has been found and hence

terminates the overall process.

To understand the integration of the head normalization procedure into the

larger computational framework, suppose that it is invoked with a term that can be

reduced to the form λx1 . . . λxn (h t1 . . . tm), where h is a constant or variable. When

the procedure is finished, the SL stack will contain, in consecutive locations from the

top, references to the de Bruijn representation of h and the suspension representations

of terms s1, . . . , sm that are β-convertible to t1, . . . , tm. This kind of access to the body

of the term is particularly convenient for the other operations required within

unification. First of all, the heads of terms and their status, whether rigid or flexible,

is easily determined. Further, assume that the simplification operation is to be

applied to two terms t and r whose head normal forms have identical binders. The

head normalization procedure can, in this case, be invoked to lay out the bodies

of these two terms in different segments of the SL stack. Then, if the two terms

are rigid and have identical heads, the terms out of which new disagreement pairs

have to be formed appear at the same displacement from different starting locations,

thereby facilitating an iterative structure to further processing. The availability of

the arguments of the head normalized term in contiguous locations turns out also

to be important to the compilation model that we discuss in section 6.

Our description of the term simplification process above assumes that the lengths

of binders of the two terms to be unified are identical. This situation may actually

not hold automatically but, rather, may have to be achieved at the required

points in computation by using the η-conversion rule. A few simple changes to

our normalization routine suffices for making the requisite adjustments. Thus,

suppose that we are comparing two terms that have as head normal forms

λx1 . . . λxn (c t1 . . . tl) and λx1 . . . λxm (c′ s1 . . . sk). Our procedure can easily record

the values of m and n when producing these forms. Now suppose that n is greater

than m and that c′ is identical to one of x1, . . . , xm. Then the effect of adjusting the

binder length of the second term to n on its head in a suspension representation of

the terms can be captured simply by adding n−m to the index value corresponding

to c′. The changes to the first k arguments of this term under such an adjustment are

also straightforward to capture: if s′
i is the term in suspension notation corresponding
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to si, the desired adjustment is encapsulated in the term [[s′
i, 0, j, nil ]] where j = n−k.

Finally, new arguments need to be added to the term, but this is particularly easy

to do on-the-fly, they being just the de Bruijn indices #(n − m), . . . ,#1.

The normalization process requires the creation of new structures for terms at

various points in its execution. These terms are best allocated on the heap in a

WAM-like model and this is, in fact, what is done within the Teyjus implementation.

5.2 Explicit representation of disagreement sets

Disagreement sets arise in principle even in the context of first-order unification.

However, typical implementations of this operation avoid the explicit treatment of

such sets by utilizing a recursive, depth-first processing of the subparts of the two

terms that are to be unified. Careful attention to the order in which subterms are

processed is known to make a substantial difference to the worst case behaviour

(Martelli and Montanari 1982), but the “pathological” cases seldom seem to arise

in practice. Given this, flexibility in choosing the next pair of (sub)terms is usually

sacrificed for a simpler processing structure.

Two properties of first-order unification are actually critical to adopting the

approach that treats disagreement sets implicitly: its decidability and the existence

of most general unifiers. Neither of these properties carry over to the higher-order

context. While it is still possible to use a recursive process that explores unifiers

for subterms in a depth-first fashion, basing the unification computation entirely on

such an approach appears pragmatically undesirable. In particular, in a situation

where choices have to be made in substitutions, it appears best to bring all available

constraints to bear on making them. Thus, suppose that it is necessary to unify two

terms of the form (f t1 . . . tn) and (f s1 . . . sn), where f is a constant (function)

symbol and, for 1 � i � n, ti and si are arbitrary terms. We may well attempt to

do this by unifying the pairs 〈t1, s1〉, . . . , 〈tn, sn〉 in sequence. Now, in the course of

unifying the pair 〈t1, s1〉, it may be necessary to pick one of several substitutions

for a variable x. This variable may appear in other pairs of subterms as well and

some of the substitution choices for x may render these pairs non-unifiable. Using

this information, at the very least, curtails the search. In particular cases, this may

even make a difference between finding and not finding a unifier: some choices of

substitution for x that are ruled out by their effects on other pairs may lead to a

unending search when the pair 〈t1, s1〉 is considered in isolation.

A better approach to finding unifiers for a disagreement set, then, appears to

be the following. At any point in the computation, we select a pair from the

set and proceed to search for a unifier for only this pair till such time that

more than one possibility needs to be explored. At such a point, we pick a

possible substitution and examine its effect on the rest of the disagreement set

before proceeding further. Implementing this approach clearly requires an explicit

representation and manipulation of disagreement sets within the unification process.

Actually, such disagreement sets may even have to be carried across invocations to

unification: repeated applications of the unification step described in section 3 may

reduce a disagreement set to a form in which, while being nonempty, it contains
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only flexible-flexible pairs and, as we have noted already, it is best to suspend

the processing of such a set till further constraints are imposed on it through

backchaining steps.

Given that we need to maintain disagreement sets explicitly, an important question

becomes that of the structure their representation should take. The following

considerations are relevant to this issue:

1. These sets evolve incrementally during computation. In particular, changes

result from adding new pairs to an existing set or by effecting substitutions

that modify only some pairs leaving the others unchanged. Thus, a scheme that

allows the representation of a new disagreement set to reuse that of unchanged

portions of the set from which it arises might be the preferred one in practice.

2. For efficiency in backtracking, it should be possible to rapidly recreate dis-

agreement sets that were in existence earlier. This becomes a pertinent issue if

the kind of sharing described in (1) is realized through destructive changes.

A representation for disagreement sets that suffices for meeting the above re-

quirements is one based on doubly linked lists the elements of which are pairs of

pointers to the terms constituting the pairs in the set. Given that these sets arise in

the course of backchaining or clause invocation and finally disappear in the event

of backtracking, the lists representing them are naturally allocated in the heap in

a WAM-like setting. The need to examine disagreement sets during computation

requires that the beginning of the lists representing them be recorded in machine

states. A special register that we refer to as the live list or LL register and that

contains a reference to the first element in the list at each execution point can serve

this purpose. Now, there are two ways in which a disagreement set might change

during computation. First, term simplification may require some element of the set

to be removed and new pairs corresponding to subterms that need to be unified to

be added to the set. The removal of a pair is realized in this setting by changing

the “after” and “before” pointers of the elements on either side of it in the list

representation. A subsequent re-inclusion of the removed pair into the set can be

effected easily if a reference to it is maintained, something that can be done through

a (properly annotated) entry in the trail stack. The addition of new pairs is also

simple: entries for these can be created on the heap and added to the beginning of

the live list. The second way in which a disagreement set may change is through

a backtracking operation. To support this action, it is necessary also to store the

contents of the LL register in choice points at the time of their creation. The relevant

disagreement set can then be resurrected by utilizing information in the trail stack

to restore deleted pairs and using the old value of the LL register to remove the

pairs added beyond the point being backtracked to.

It is in principle possible to perform all the processing within the term simplifica-

tion phase of unification using only the heap and the live list. However, judiciousness

should be exercised in utilizing the heap since space allocated in it is reclaimed only

through backtracking. With this in mind, we observe that when a rigid-rigid pair is

encountered during term simplification, the processing can be applied recursively to

the subterms and additions to the heap and the live list need not take place till a
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flexible-flexible or a flexible-rigid pair is encountered. As a specific example consider

the following query involving the mapfun predicate from Example 1:

mapfun (a :: b :: nil ) G (g a a) :: (g a b) :: nil )

Using the idea just described, when applying a backchaining step to this query

relative to the second clause for mapfun, the addition to the heap of only the pairs

in the set

{〈X, a〉, 〈L1, b :: nil〉, 〈F,G〉, 〈(F X), (g a a)〉, 〈L2, (g a b) :: nil〉}

need be considered. When one of the terms in a disagreement pair is known

statically, this kind of processing can be realized through special instructions and a

compilation process similar to that used in the first-order case, and we discuss this

matter in greater detail in the next section. However, the two rigid terms in a pair can

sometimes arise dynamically and term simplification has in this case to be carried out

in “interpretive” mode. In the context of a virtual machine based implementation,

a special pushdown list in combination with an iterative code fragment can be used

to realize this computation.

There are certain forms of disagreement pairs for which most general unifiers can

be immediately identified. An example of this kind arises from first-order unification:

given a pair of the form 〈X, t〉 where X is a variable of atomic type and t is a term

in which X does not appear, all unifiers for the pair must be instances of the unifier

that substitutes t for X. Alternatively, if X does occur in t, failure in unification

can be registered immediately. This observation can be generalized to the higher-

order context. Given a pair of the form 〈λx1 . . . λxn X, λx1 . . . λxn t〉, where X has

an arbitrary type, X can be bound to t and this pair can be removed from the

set provided neither X nor the variables in {x1, . . . xn} appear in t; interestingly,

the verification of the proviso is simplified by the use of the de Bruijn notation.

The occurrence of X (or of the other variables) in t on the other hand does not

by itself signal failure in the higher-order case. However, the “occurs-check” from

the first-order case can be generalized to a “rigid path check” that detects the

impossibility of unification in some cases and that simplifies the search for unifiers

in other cases by binding X to a term that represents an initial “section” of t and

by adding pairs to the disagreement set to represent the remaining constraints on

unifiers. Some flexible-flexible pairs, such as 〈F,G〉 in the example above, can also be

solved by this process. Using observations such as these reduces the need to consider

the general imitation and projection substitutions and hence also the attendant

bookkeeping steps. In the case of the mapfun query, the disagreement set can, in

fact, be quickly reduced to {〈(F a), (g a a)〉} by these means. Significantly, first-order

unification can be solved immediately using these observations. Empirical studies

indicate that a large number of the unification problems that arise even in the higher-

order context fall into this category (Michaylov and Pfenning 1992), suggesting the

general importance of incorporating these observations into an implementation.6

6 The applicability of this first-order like processing in the higher-order case is dependent on variables
being preserved in an ‘η-reduced’ form through the compilation process. The procedure described in
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The appropriate time to consider such substitutions is during the term simplific-

ation phase. Doing this and also being conservative in the additions to the heap

now calls for the use of two pushdown lists. The general scheme works as follows.

The simplification of a disagreement set proceeds as before with the use of the first

pushdown list, except that the process may now also involve making bindings to

variables. When the process ‘bottoms out’ with a flexible-flexible or flexible-rigid

pair, this is pushed onto the top of the second pushdown list instead of the heap.

When all the pairs in the original disagreement set have been simplified, it is checked

whether any bindings were made in the course of simplification. If no bindings were

made, the pairs in the second pushdown list are transferred to the heap and included

in the live list. If, on the other hand, any bindings were made, the simplification

process is repeated with the disagreement set being given now by the live list and

the pairs in the second pushdown list and the roles of the two pushdown lists being

reversed.

5.3 Recording branch points in unification

A depth-first approach to exploring alternatives in unification requires that inform-

ation be recorded at branch points that is sufficient for recreating state and for

determining the remaining possibilities upon backtracking. The state information

can actually be factored into two conceptual kinds: that which pertains to clause

usage in the backchaining model of computation and that which relates to the

unification problem, such as the disagreement set and the pair of flexible and rigid

terms that are under consideration at a particular juncture. Now, the approach that

we have proposed is one that solves unification problems to the extent possible

before contemplating further backchaining steps. Under this strategy, in situations

where genuine higher-order unification is involved, a sequence of branch points are

likely to be generated for which the state insofar as it pertains to clause usage is

identical. Thus, if this information is represented separately from the rest of the

backtracking data, it becomes possible to share it across more than one branch

point.

In light of the above observations, we propose to record information relevant to

branching in unification in two layers that we refer to, respectively, as the shared

part and the variable part. Assuming a WAM style compilation model, the most

appropriate juncture at which to consider genuine higher-order unification is right

after a compiled form of term simplification akin to first-order unification has been

carried out relative to the head of the clause and before an attempt is made to solve

the clause body. At this stage, if the LL register indicates a nonempty disagreement

Dowek et al. (1998) for unification of what are known as higher-order patterns (Miller 1991) gives up
this property. This is a surprising choice, especially since it is not dictated by the theory: under it, even
the pair 〈F,G〉 gets converted into a form that requires an “inverting” substitution to be computed. The
only possible benefit for this is that variables need never be dynamically “η-expanded”. However, this
is rarely, perhaps never, required in practice. The direct use of explicit substitutions also does not seem
to have the practical benefits in this subcase that it has for full higher-order unification (Dowek et al.
2000), and it possibly has some drawbacks. We are attempting to quantify these remarks in ongoing
research.
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set, the first action would be to create the shared part of the unification branch

point records that stores clause usage information. More specifically, this part would

record at least the following state data:

• The program pointer that determines the instruction to be executed upon

successful completion of this phase of unification.
• A pointer to the most recent environment record.
• The continuation pointer; this is relevant in the case of clauses with an

atomic body for which an environment record does not exist containing this

information.
• Argument registers that need to be preserved for use in the first goal in the

clause body.

Additional information may have to be recorded in this part depending on auxiliary

language features. For example, in a framework that permits the use of the cut control

primitive, the contents of the cut point register that indicates the backtracking point

up to which to eliminate choices needs to be stored as well. Similarly, it has been

found useful to give the programmer dynamic control over whether projection or

imitation substitutions are to be tried first within higher-order unification. In this

situation, the regimen in effect at this instance should also be stored in the shared

part for later restoration.

Once the shared part has been constructed, a global reference to it is maintained

in a special register that we refer to as the BRS register. Computation now proceeds

to simplifying the disagreement set and, eventually, to picking a flexible-rigid pair

whose imitation and projection substitutions have to be examined. After such a pair

has been determined and a substitution for it has been selected, information must

be left behind for examining the remaining alternatives in case of backtracking.

This data is encoded in the variable part of unification branch point records that

comprises the following components:

• The heads of the flexible and rigid terms together with their types.

• Information determining what substitutions remain to be tried. A simple way

to encode this is by remembering the number of projection substitutions

already tried; the additional knowledge of whether imitation or projection

substitutions are being tried first completely determines the alternatives left.

• The contents of the LL register that will be used in consort with the

information in the trail stack to restore the disagreement set on backtracking.7

• Pointers to the top of the heap and the trail stack that determine the status of

these data areas.

• The contents of the BRS register for restoring clause context on backtracking.

• A pointer to a record of the preceding branch point in computation, to be

used when all alternatives at this stage have been exhausted.

Although the heads of the flexible and rigid terms suffice for generating all the

substitutions, certain operations have to be repeated on these in each case. Thus,

7 This component needs also to be added to the usual choice point record of the WAM that stores
information for backtracking over clause choices.
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the binder of every substitution that is constructed is identical. Similarly, the vector

of arguments of the general arguments of the substitution terms are identical both

within a single substitution and across the imitation and projections. Finally, the

target type of the flexible head is used repeatedly in determining the appropriateness

of each projection substitution. Assuming the acceptability of trading off space for

time, these components may be computed once when the variable part is set up and

references to them may be saved for later use. This is, in fact, the course adopted

within the Teyjus implementation.

The successful selection of a substitution within the unification process is followed

by another term simplification phase. If there is another flexible-rigid pair in the

resulting disagreement set, further substitutions must be posited, leading to the

setting up of the variable part of another unification branch point record. Note

that the shared part of this record, pointed to by the BRS register, is the same as

that for the previous such record. This process continues till eventually a failure is

encountered or the disagreement set is reduced to a solved form. In the latter case,

computation continues with an attempt to solve the next (predicate) goal through a

backchaining process.

There is, of course, the possibility of failure along the path currently being

explored. In this case backtracking must take place to the most recent choice point

either in clause selection or in unification. In order to determine the appropriate

such point, the records corresponding to them are chained into one linear sequence

based on their age and a pointer to the most recent one is placed, as in the WAM, in

the B or backtrack register. Now, certain actions, such as the unwinding of the trail

stack, the resetting of the disagreement set and recovery of heap space, are identical

regardless of whether computation returns to trying another clause or another unifier

and can be carried out uniformly with a little coordination in the structures of the

records corresponding to these different kinds of backtrack points. However, other

actions, such as the generation of another substitution or the selection of another

clause, do need a knowledge of the kind of choice being reconsidered. One approach

to providing this information would be to mark each backtrack point record in a

special way at the time of its creation. A more elegant solution is possible in a

virtual machine and compilation based framework and is, in fact, used in Teyjus. In

this system, a special instruction is included in the instruction set whose purpose is

to utilize the information in the variable part of a unification branch point record

to generate a new substitution, to reset the BRS register and the state reflecting

clause usage context and to continue with the unification computation. The right

backtracking action can now be achieved simply by storing a pointer to a program

location containing this instruction in a field of the variable part of a unification

branch point record that is coordinated with the next clause field of the usual choice

point record of the WAM; a uniform transfer of control to the stored program point

and the execution of the corresponding instruction then achieves the appropriate

backtracking action.

Branching in computation is obviously costly both in time and in space and every

effort should be expended to exploit deterministic execution patterns whenever

possible. One approach to doing this within the unification computation is, as we
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have already mentioned, to build a treatment of more special cases in which most

general unifiers exist into the term simplification process. Another useful idea is

to employ quick dynamic tests to determine that no further substitutions exist in

certain cases and to discard unification backtrack points eagerly on this basis. Some

heuristics of this kind are embedded in the Teyjus system but this is a matter that

deserves further attention.

A final point to mention concerns the allocation of space for the terms generated

for projection and imitation substitutions. This is best done on the heap since

backtracking permits the space to be reclaimed when the substitution itself becomes

redundant.

6 An abstract machine and compilation model

The abstract machine for Prolog is designed to support a compiled treatment of the

four main components of the underlying model of computation: the processing of

the structure of complex, usually conjunctive, goals, the setting up of the arguments

of atomic goals, the sequencing through clause choices for such goals and the

unification of the arguments of these goals with the statically known arguments of

a clause head. A further aspect that receives special attention is the detection of

determinism. Nondeterminism is costly to deal with and the need to do so can often

be eliminated by utilizing the structure of the actual arguments of atomic goals to

prune choices early during execution. This observation is exploited in practice by

including a special set of instructions that allow clause choices to be indexed by

the arguments and by building the use of these instructions into the compilation

process.

The basic issues in a first-order context persist also in our higher-order language.

Much of the machinery and even the instruction set that are embedded in a WAM-

like architecture for treating these aspects can, in fact, be carried over to the

implementation task at hand. However, some new devices are needed, primarily for

dealing with a richer structure for terms and a more complex unification operation.

Moreover, there must be differences in the interpretation of some instructions.

Instructions that examine the structure of terms must, for instance, have the ability

to head normalize these terms if this is needed during execution. Further, the

instructions that realize unification completely in a first-order setting suffice only

to implement the initial term simplification phase of higher-order unification. The

capability to leave unification problems that cannot be solved in this manner to

a later, interpretive phase should therefore be built into these instructions. Such

a ‘deferring’ action should, of course, be complemented by an invocation of the

remaining higher-order unification process at a suitably chosen point.

We present, in this section, an extended version of the WAM that develops on

these ideas. We summarize first the modifications to the machine structure that

were implicit in our discussion of the treatment of higher-order unification. We then

describe changes to the instruction set. The last part of this section illustrates the

compilation model by presenting the code generated for some simple higher-order
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programs. A familiarity with the original abstract machine of Warren, such as might

be obtained from Aı̈t-Kaci (1991) or Warren (1983), is assumed in this exposition.

6.1 The structure of the extended machine

Figure 4 depicts the various data areas and registers present in the extended abstract

machine and provides a snapshot of a machine state during computation. The code

area, the heap, the local stack and the trail of the WAM persist in this machine. The

new data areas are the SL stack, the applications stack and the two pushdown lists.

The first two components are utilized by the head normalization code as described in

section 5. The pushdown lists are used in simplifying disagreement sets and help, as

we have seen, in conserving heap space. We observe that only one of these pushdown

lists is really new: one pushdown list is usually employed by WAM implementations

for realizing the part of first-order unification that must be performed in interpretive

mode.

While several data areas are carried over from the WAM, their usage in our

machine differs in certain respects. In addition to storing compound terms that are

created in a structure copying implementation, the heap is used in our context also

to store disagreement pairs, the new terms that are generated during term reduction

and the projection and imitation substitutions generated by higher-order unification.

Similarly, the trail records not only the substitutions made for variables, but also the

destructive changes made to terms during normalization and pointers to the pairs

of terms removed from disagreement sets in the course of term simplification. Of

particular note in this context are the facts that the trailing of terms requires also

that old values be stored and that different kind of entries entail different unwinding

actions and must be annotated appropriately for determining this. Finally, in addition

to the usual choice point and environment records, the local stack must also store

information about branch points in unification. These are distinguished by being

labelled as branch points in Figure 4 that also depicts their split representation

between a shared and a variable part. Only the variable parts of these records

participate directly in the chain of backtracking records; the shared parts gain

currency by being used by the variable parts. In the figure, we have used solid

arrows to depict the shared part and the variable part of a branch point record and

dashed arrows to depict the chain of branch points and choice points that determine

backtracking behaviour.

The extended machine also includes a few new registers: the LL register indicating

the currently active disagreement set, the SL register indicating the current top of the

SL stack, the BRS register indicating the currently relevant shared part of branch

point records and the NUMARGS register that holds the (current) arity of an

application encountered during head normalization. One slightly intriguing aspect

of our depiction of the machine state is the fact that the S register that indicates

the argument vector of a compound term during unification is shown pointing into

the SL stack rather than the heap. The reason for this is that the top-level, head

normalized structure of a higher-order term may become apparent only after a

reduction process and, in this case, is available as a vector only in the SL stack.
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Fig. 4. Abstract machine data areas and snapshot of state.
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In special cases, such as when dealing with first-order terms, no reduction steps are

necessary and our representation of such terms stores the arguments as a vector.

Such situations can be recognized and, as an optimization, the S register can be

made to point to the vector that is already available in the heap instead.

6.2 Modifications to the instruction set

A compilation model for our language must account for certain new aspects in

comparison with the one for Prolog. These aspects include a representation of terms

that differs even over the first-order fragment, the possibility for function variables

and abstractions to appear in terms, the need to realize higher-order unification

and the necessity to treat mixed intensional and extensional uses of predicate terms.

We discuss these aspects in more detail below and we also indicate changes to the

instruction set of the WAM that are geared towards treating them.

Creating Typed, Higher-Order Terms. The usual compilation model requires that the

arguments of atomic goals appearing in the bodies of clauses be set up in registers

prior to the invocation of code for the relevant procedures. In the case that such

an argument is a compound term, its representation must be created in the heap

with a reference to it being placed in the relevant register. These effects are actually

realized through the put and unify classes of instructions present in the WAM, the

latter being executed in write mode in these particular situations.

This basic structure carries over well to our higher-order language and many

specific instructions from the WAM can even be retained for processing first-order

like structure. There are, however, two exceptions. First, in our context, types are

retained with variables and the instructions that create them must, for this reason,

take an extra type argument. In particular, these instructions might take on the

forms

put variable Vi,Aj,type, and

unify variable Vi,type

where Vi is either a permanent or temporary variable and type is a reference

to the representation of a type. The second difference arises from the modified

representation of a structure. We encode this as an application whose argument part

is a pointer to a vector with a size matching the arity of the application. Moreover,

in the general case, the ‘function’ part of the application could be different from

a constant. In light of this, the put structure instruction might be generalized to a

put app instruction that fashions an application on the heap. The abstract machine

underlying the Teyjus system, in fact, includes two instructions of the form

put capp Ai,Xj,n, and

put fapp Ai,Xj,n

for this purpose. Each of these instructions creates an application whose function

part is obtained from the register Xj and leaves a reference to this application in

the register Ai. Moreover, the application that is created has arity n, a fact that is

realized by allocating a vector of this size in the heap for the argument part and by
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preparing to fill in these arguments by setting the S register to the beginning of this

vector and turning the write mode on. The difference between the two instructions

is that the first annotates the application as closed whereas the second annotates it

as (possibly) open.

The higher-order nature of our terms can manifest itself in three ways in the

syntax: the function part may be a variable, abstraction may be explicitly present

and there may be occurrences of abstracted variables. The instruction for creating

applications already accounts for the special case of a variable “functor”. To support

the creation of abstractions, new instructions may be added to the put and unify

classes. The abstract machine for Teyjus includes the following instructions for this

purpose:

put clambda Ai,Xj unify clambda Xj

put flambda Ai,Xj unify flambda Xj

The put versions create abstractions whose bodies are given by the contents of

register Xj on the heap and put references to these abstractions in the register Ai.8

The difference between the two instructions provided for this purpose is that one

creates closed abstractions and the other open ones. The unify versions, that are only

ever executed in write mode, create similar abstractions but eventually put references

to these in the heap location pointed to by the S register and also increment this

register at the end. Finally, to support the creation of bound variables, represented

using indices in the de Bruijn scheme, the following instructions in which n is a

positive number, are included in our abstract machine:

put index Ai,n unify index n

The first instruction writes a bound variable with index n on the heap and makes

the register Ai a reference to this location. The unify index instruction, which, also

is only executed in write mode, stores this bound variable in the location pointed to

by the S register and then increments this register.

In the instructions that create applications and abstractions, the function part and

the abstraction body are both obtained from registers. However, these components

may in particular situations correspond to permanent variables. Furthermore, they

may actually dereference to stack cells that must be globalized prior to use. In light

of these possibilities, our abstract machine includes the instructions globalize Yi,Xj

and globalize Xj. The first instruction dereferences the permanent (environment)

variable Yi. If this turns out to be a reference to the stack, then the value is copied

to the heap and the stack cell and the register Xj are both converted into references

to the newly created heap cell. Otherwise the reference that we get to a heap cell

is also stored in the register Xj. The second instruction simply dereferences the Xj

register, globalizes this as before if necessary and leaves a reference to a suitable

heap cell in Xj.

8 The register Xj may contain a constant, in which case the first action of these instructions is to convert
Xj into a reference to a location on heap containing this constant.
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Compilation of Higher-Order Unification. In any given use of a clause, the terms

that appear as arguments of the head of a clause must be unified with the terms

that arrive in the relevant argument registers. The compilation model for Prolog

translates each of these statically known terms into a sequence of instructions that

either creates a relevant term that the incoming argument is bound to if this argument

is an uninstantiated variable and that carries out an analysis of the structure of

the argument if it is not a variable. This model requires the same instructions to

function in two different dynamically determined ways, an ability that is realized

through the use of the read and write modes.

Lifting this treatment of unification to cover the operation in its entirety in the

higher-order situation is difficult. In particular, statically available structure is not

directly usable once a function variable with arguments is reached in it and is also

difficult to exploit when a flexible, nonvariable part is exposed in the incoming term

relative to which a set of matching substitutions have to be tried. However, at least

the first phase of term simplification can be compiled and, if augmented with the

simple forms of variable bindings discussed in section 5.2, most of the unification

computation that arises in practice can be treated completely within this phase.

The get and unify class of WAM instructions that treat head unification can, in

fact, be adapted to realize this idea when the term to be compiled has a first-order

structure at the top level, i.e. when it is a variable, a constant or an application in

which the head is a constant.9 However, a few changes in interpretation are necessary

for the instructions get structure, get constant and unify constant that are used in

compiling rigid structure. First, these instructions must take responsibility for head

normalizing the input term at the outset. In practice, many of these terms have a

first-order structure, a fact that can be recognized through a check of their heads

(that constitutes an overhead only when the terms are not first-order ones) built

into the relevant instructions so that an explicit invocation of head normalization

can be avoided. Notice that the get structure instruction must set the S register to

point to the vector of arguments in case the incoming term is itself an application

with the right head and, under the considered optimization, this would become a

pointer either into the SL stack or into the heap. The second change is that when the

incoming term is a variable, the get structure instruction must create an application

of a specified arity on the heap and so should get this arity as an additional

argument. In the Teyjus abstract machine, the instruction actually has the format

get structure Ai,f,n

where n is a positive number; when executed in a mode in which a term has to

be created, this instruction pushes an application with arity n and function part

f onto the heap, followed by a vector of size n constituting the argument part of

this application and sets the S register to the beginning of this vector. The final

change arises from the fact that these instructions must also cater to the possibility

that the incoming term is an application with a flexible head. One possible strategy

9 Since this term will be normalized prior to compilation, the only remaining possibilities are that it is
an abstraction or an application with a variable at the head.
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in such a case is to add a suitable pair to the existing disagreement set and to

leave its further processing to a later interpretive treatment of genuine higher-order

unification. In the situation where the instruction is get structure, we note that the

added disagreement pair will actually involve a term that is created by subsequent

actions carried out by this and following instructions executed in write mode.

It is in principle possible to extend the compilation of first-order like structure to

include the case of terms that have abstractions at their head. However, it is not

clear if enough situations where this is needed will occur in practice so as to make

such a treatment pragmatically useful. We therefore describe a simpler approach

that works uniformly for this case as well as for the last remaining case which is that

of an application whose head is a variable. In essence, the term in both situations

may be translated into a sequence of instructions that constructs its representation

and leaves a reference to it in a register, followed by an instruction that invokes

term simplification in interpretive mode. We have already discussed instructions

for creating higher-order terms. To realize the last effect, we may use the get value

instruction from the WAM that, in any case, has to be adapted to deal with higher-

order terms. In particular, in the new form, the instruction invokes an interpretive

phase of term simplification that may make simple bindings for variables and that

may add new flexible-rigid pairs to the existing disagreement set. A similar kind of

generalization must be made to the unify value instruction. Actually, another change

to these instructions is also necessary. Although usual implementations of Prolog

omit occurs-checks, the place to carry these out if they are included would be within

the process invoked by the get value and the unify value instructions. The situation

in the higher-order case is similar, except that rigid path checks would replace occurs

checks. These checks turn out to be indispensable to the envisaged applications of

the language whose implementation we are considering, and so they are included in

the “higher-order” versions of the get value and unify value instructions.10 Now, as

discussed in section 5.2, a rigid path check may permit only a partial instantiation of

a variable, the rest of the instantiation being subject to the resolution of constraints

represented by new flexible terms and relevant subparts of the incoming terms. When

creating these terms, the type of the new (logic) variables at their heads must be

written to the heap. These types can be generated from a knowledge of the type of

the variable whose compilation yields the unify value instruction and, conversely, the

type of this variable is needed at least in the case when the constraint involves the

entire incoming term. In keeping with this observation, the unify value instruction

acquires a type as an additional argument.

After simplification has been carried out relative to all the terms appearing

in the head of a clause, it may be necessary to invoke an interpretive phase of

higher-order unification. Our abstract machine includes three instructions for this

purpose. One of these, the proceed finish unify instruction, is used in place of the

10 These rigid path checks need the complete normalization of incoming terms, bringing up an interesting
question: is there still an advantage to laziness in substitution and reduction? This issue is examined in
detail in Liang et al. (2003). The conclusion from this study is, briefly, that a demand driven approach
to reduction that exploits explicit substitutions has significant advantages even if the particular style
chosen in this paper is not uniquely the best.
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proceed instruction of the WAM in the situation when the clause body is empty

and when an unresolved higher-order unification problem may exist. The effect of

this instruction is to set the program pointer to the continuation point, to set up

the shared part of a branch point record and, finally, to invoke code that tries

to complete the unification process. The code that is invoked tries to generate a

matching substitution. If one is found, then this is applied to the state, the variable

part of a branch point record representing the remaining matching substitutions is

created and the simplification and substitution generation processes are iterated. A

point to note about the situation in which proceed finish unify is used is that no

argument registers need to be stored in the shared part of the branch point record.

The second instruction, execute finish unify, is used when the body of the clause

consists of a single atomic goal. This instruction differs from proceed finish unify

in that it must update the program pointer to the next instruction in sequence

and also save the continuation point and relevant argument registers in the shared

part of the branch point record for use on backtracking. The number of argument

registers that must be remembered becomes a parameter to this instruction. The

final instruction, call finish unify, is used when the body of the clause has multiple

goals in it, and therefore requires an environment record to be created for its

invocation. This instruction behaves differently from execute finish unify in only

two respects. First, it does not need to save the continuation point since this is

available from the environment record. Second, before it allocates space for the

shared part of the branch point record, the instruction must ensure that sufficient

space has been left for the permanent variables in the clause. On account of the

latter requirement, call finish unify acquires the count of the permanent variables as

an argument, in addition to the count of the register arguments that need to be

saved.

The interpretive phase of unification is, of course, not always needed. In particular,

it need only be considered if the compiled form of term simplification leads to

additions to the original disagreement set or to bindings for variables that have

the potential of modifying the status of existing pairs. Compile-time analysis can

sometimes determine this cannot happen and, consequently, that the new instructions

need not be used. Even when the instructions are included in the compiled code,

they can incorporate a checking of flags set during the compiled term simplification

phase to determine if further processing is necessary. The Teyjus implementation

utilizes such ideas to avoid unnecessary examination of disagreement sets and setting

up of the shared parts of branch point records.

Treating Mixed Uses of Predicates. The crux of this treatment is the compilation

of flexible atomic goals: mixed uses of predicate terms arises essentially from

the fact that flexible goals may be instantiated by terms with complex logical

structure, thereby reflecting intensional occurrences of quantifiers and connectives

into positions where they function as search directives.

The problem in the treatment of flexible atomic goals is, of course, that their top-

level structure is determined dynamically, and so the specific action to be performed

is not known at compilation time. Nevertheless, some part of the action can be
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compiled by using the knowledge of the possible cases that can arise. In particular,

flexible goals can be compiled into calls to a special procedure named solve to which

(the instantiated version of) the goal is provided as an argument. In the case that

(the normalized form of) the instantiated goal has a complex structure, the behavior

of solve can be envisaged as if it were based on a compilation of the following clauses

in which we use semicolon to represent disjunction in an extensional position:

solve (G1 ∧ G2 ) :- (solve G1 ), (solve G2 ).

solve (G1 ∨ G2 ) :- (solve G1 ); (solve G2 ).

solve (Σ G) :- solve (G X ).

To complete the description of solve, it only remains to specify its behaviour in the

situation when its argument is an atomic goal. In the case that this goal is a flexible

one, solve succeeds after instantiating the head of the goal to a term of the form

λ . . . λ�, the binder being chosen based on type considerations. If this goal is a rigid

one, then its arguments are loaded into appropriate argument registers and the head

is used to determine the code to be invoked next.

In the Teyjus implementation, the solve predicate is treated as a builtin one whose

realization is “hard-wired” into that of the abstract machine.

6.3 Examples of compiled code

Based on the compilation scheme described in this section, code of the following

form might be generated from the definition of the mapfun predicate presented in

section 2:

mapfun: switch on term L2, L3, L5, fail %

L2: try me else L4, 3 % mapfun

L3: get nil A1 % nil

get nil A3 % F nil

proceed finish unify %

L4: trust me 3 % mapfun

L5: get list A1 % (::

unify variable A4, ty1 % X

unify variable A1, ty2 % L1)

get list A3 % F (::

unify variable A5, ty1 % S1

unify variable A3, ty2 % L2)

globalize A2 %

put capp A6, A2, 1 % S2 = (F

unify value A4, ty1 % X)

get value A6, A5 % S1 = S2

execute finish unify 3 % :-

execute mapfun % mapfun L1 F L2

This code uses the instructions get nil and get list that realize, as in the WAM,

special cases of the get constant and get structure instructions. Also used is the
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instruction switch on term that adapts an indexing instruction with the same name

from the WAM. In our context, this instruction takes the form

switch on term V,C,L,BV

where V, C, L and BV are addresses to which control must be transferred in case

the head normalized and dereferenced version of the value stored in register A1 is,

respectively, a flexible term, a rigid term that has a constant different from :: as its

head, a nonempty list or a term with a bound variable as its head. In the use that

is made of this instruction above, fail is assumed to be the location of code that

causes backtracking. The instructions try me else and trust me that are used here

function as they do in the WAM to create, utilize and discard choice points; an extra

numeric argument has been included with each of them that indicates the number

of argument registers that are to be saved or retrieved as relevant. The unify variable

and unify value instructions that are used take type parameters for reasons that we

have already explained. In this particular instance, ty1 and ty2 are to be understood

as references to the representation of the types i and (list i), respectively. We note

that in the only place where the unify value instruction appears in this code, there

is no utility for the type argument and, observing that this instruction will never

be executed in read mode, we may replace it with a special set value instruction

as suggested in Aı̈t-Kaci (19991).11 As a final comment, we observe that both the

proceed finish unify and the execute finish unify instructions that appear in this code

are essential: depending on the form of the first and third incoming arguments,

execution of the term simplification code for either clause may lead to bindings that

affect the state of the existing disagreement set.

The definition of mappred presented in section 2 illustrates a mixed use of a

predicate variable. Compilation of that definition might produce the following code:

mappred: switch on term L2, L3, L5, fail %

L2: try me else L4, 3 % mappred

L3: get nil A1 % nil

get nil A3 % P nil

proceed finish unify %

L4: trust me 3 % mappred

L5: allocate %

get list A1 % (::

unify variable A4, ty1 % X

unify variable Y2, ty2 % L1)

get variable Y1, A2 % P

get list A3 % (::

unify variable A2, ty1 % Y

unify variable Y3, ty2 % L2)

call finish unify 3, 3 % :-

11 This is, in fact, what is done in the abstract machine and compilation model actually underlying the
Teyjus implementation.
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globalize Y1, A3 %

put capp A1, A3, 2 % S1 = (P

unify value A4, ty1 % X

unify value A2, ty1 % Y)

call solve, 3 % S1,

put value Y2, A1 % (mappred L1

put value Y1, A2 % P

put value Y3, A3 % L2

deallocate %

execute mappred % )

We assume here that ty1 and ty2 are references to the representation of the types i

and (list i), respectively. The flexible goal (P X Y) is translated in this code by a

call to the predicate solve as discussed earlier in this section. Towards understanding

the nature of this translation, we might consider the execution of the query

mappred (bob :: sue :: nil ) (λx λy ∃z (parent x z) ∧ (parent z y)) L.

discussed in section 2. Clause indexing will lead to the selection of the code for the

second clause for mappred in this case. The term simplification part of this code will

execute successfully, the term ∃z (parent bob z) ∧ (parent z y)) will be formed and

stored in register A1 and the code for solve will be invoked. Using the definition

of solve, this goal will be simplified, leading eventually to the invocation of the

atomic goals (parent bob Z) and (parent Z Y). The recursive call to mappred will

lead, in a similar fashion, to the invocation of the atomic goals (parent sue Z’) and

(parent Z’ Y’). The query variable L will be bound at the end to a list containing

the values determined for Z and Z’ by these goals. Another point to note is that all

the unification problems that arise relative to the query of interest are ones that can

be solved without the invocation of the interpretive, higher-order phase.

7 Conclusion

We have considered in this paper the implementation of an extension to logic

programming that is based on permitting a quantification over predicate and function

symbols and on using lambda terms as data structures in place of first-order terms. In

addition to a careful exposition of the issues that need to be dealt with in a low-level

realization of such an extension, our contributions are threefold: we have discussed

representations for lambda terms that facilitate their intensional treatment, we have

presented mechanisms for realizing term reduction and for supporting higher-order

unification within a logic programming machine model and we have sketched an

approach to compilation. The ideas that we have presented here have been used in

amalgamation with other devices that we have developed for the treatment of new

scoping mechanisms and of polymorphic typing in an actual implementation of the

λProlog language.

A question often of interest in the context of language enrichments is the

performance degradation that is to be incurred on account of them. There are

two factors that lead to a different treatment of first-order programs within our
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Table 1. Timing comparisons with Prolog implementations over naive reverse

System Special list Functor based

employed representation representation

Teyjus (v 1.0-b32) 11.99 secs 18.67 secs 21.18 secs

(Polymorphic) (Monomorphic) (Polymorphic)

SWI-Prolog (v 4.0.0) 8.1 secs 8.8 secs

SICStus (v 3.9.1) 0.23 secs 0.35 secs

framework from that in traditional Prolog implementations. First, as discussed in

section 4.5, a representation must be used for compound terms that permits changes

to be made to internal nodes in their tree-like structure. Second, the occurs-check

that is usually omitted in logic programming languages is not really a luxury in

the important higher-order applications. A third factor, not discussed here but

that is relevant to the full λProlog language, is a runtime overhead arising from

polymorphic typing. The impact of the occurs-check is obviously non-uniform and

therefore impossible to quantify in a general manner. A careful assessment of the

first and third factors requires experiments with controlled auxiliary implementations,

something beyond the scope of this paper. However, a rough assessment is possible.

Lists receive a specialized treatment in the Teyjus system that comes close to the

usual representation of first-order structures. By contrasting performance under such

a treatment with that when a vanilla functor-based representation is used, a sense

of the additional cost can be obtained.

Table 1 presents the results of the kind of experiment described above, performed

with Teyjus version 1.0-b32 modified to omit the occurs-check. The numbers in the

table represent the time taken by 10,000 invocations of naive reverse on a 30 element

list. All trials, here and below, were carried out on a 440 MHz UltraSPARC-IIi

processor. A functor-based representation for lists in Teyjus can be chosen to be

either monomorphic or polymorphic in nature and execution times are provided for

both. In contrast, the specialized list representation is available only in polymorphic

form. From the timing measurements for the polymorphic versions, we conclude

that there is about a 75% overhead to not using the specialized representation. This

is appropriately viewed as an upper bound on the additional cost for a higher-order

representation, at least some of the improved performance being attributable to

specialized compilation for lists. Polymorphism adds about a 13.5% overhead in

the functor-based representation and we estimate a similar cost under the special

treatment of lists. For comparison, we also present performance measurements for

two Prolog implementations; from the perspective of running time, these figures are

best thought of as applying to monomorphic list representations. The contrast with

SICStus is humbling, indicating the distance to go in building a well-engineered and

highly optimized implementation, even if revealing little by way of the difference

between treatments of the first-order and the higher-order language.
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Another important aspect of comparison is that of contrasting our ideas and

system with those of other implementations of λProlog. There have been four

previous implementations of this language. Three of these are interpreter based,

built using Prolog (Miller and Nadathur 1988), Lisp (Elliott and Pfenning 1989)

and Standard ML (Elliott and Pfenning 1991; Wickline and Miller 1997). None

of these systems considered in any detail the special issues that arise in a low-

level treatment of the higher-order aspects of λProlog and a comparison with them

therefore appears not to be very meaningful.12 The only remaining realization of

λProlog, called Prolog/Mali (Brisset and Ridoux 1992), is one that translates λProlog

programs into C code that can then be compiled. The translation process utilizes

a memory management system called Mali that has been developed especially for

logic programming languages: in particular, translation is realized in the form of

calls to functions supported by this system. Using this approach has the distinct

benefit that a memory management scheme is automatically available but it also

forces some awkward choices, such as the full copying of clause bodies, to be in

consonance with the framework provided by Mali.

Despite the difference in overall structure, there is a scheme to the treatment of

the higher-order aspects in Prolog/Mali that can be compared with the ideas we

have presented in this paper. At the level of term representation, there seem to

be three differences. First, the de Bruijn scheme for rendering bound variables is

rejected in Prolog/Mali on the grounds that “it forces to renumber the rightmost

term.” While this observation is correct in principle, it appears not to be relevant

in practice as we have pointed out in section 4.1. To support the comparison of

terms in a situation where a name-based encoding is used for bound variables,

an approach based on using new constants is suggested. Unfortunately, the details

of this approach are not explained completely making a satisfactory assessment

of it impossible.13 A second difference is that an explicit substitution mechanism

is not considered in Prolog/Mali and reduction substitutions seem to be effected

eagerly. Finally, first-order terms seem to obtain the usual Prolog-like treatment in

Prolog/Mali, higher-order facets being handled via special attributes attached to

terms. The treatment of higher-order unification and the integration of reduction

into the overall computational model receives little discussion in Brisset and Ridoux

(1992) and, in light of this, we believe that a detailed consideration of these aspects

is unique to our work; an interesting exception, however, is the idea of indexing

flexible-flexible pairs by their flexible heads, to be awakened by bindings for these

heads, a possibility whose integration into our processing model bears investigation.

The last relevant aspect is the compilation of unification. Clearly, the underlying

machine model is explicitly manifest only in our work although many ideas relating

to the compilation of the first phase of simplification of disagreement sets receive

a similar treatment in both contexts and share also with an early presentation of

some of our ideas (Nadathur and Jayaraman 1989).

12 The performance comparisons made in Brisset and Ridoux (1992) with the Lisp version substantiate
this viewpoint.

13 There are also vestiges of this approach in answer presentations that remain unclear to us and, quite
possibly, to other λProlog users.
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Table 2. Timing comparisons between Teyjus and Prolog/Mali

System Naive reverse Type inference

Teyjus (v 1.0-b32) 11.99 secs 2.95 secs

Prolog/Mali 12.00 secs 9.59 secs

Table 2 complements our qualitative comparisons by presenting execution times

for Prolog/Mali and Teyjus on two different kinds of tasks. The naive reverse program

is the one used in the earlier tests and, as such, provides a measure of behaviour over

first-order programs. The type inference program assigns type schemes to ML-like

programs and is a good example for testing performance over higher-order terms,

reduction and (a specialized form of) higher-order unification.14 The indications from

these tests is that the Teyjus system matches performance of Prolog/Mali over first-

order programs and does significantly better on genuine higher-order ones. A larger

set of tests is needed to draw more substantive conclusions. Unfortunately, there

are practical difficulties to providing a suitable collection that highlights genuine

performance differences. Prolog/Mali omits the occurs-check that is significant to

higher-order applications, uses a non-standard syntax for λProlog programs leading

to a substantial overhead in adapting available user programs to run under it and,

finally, appears to yield incorrect results in a few of the examples we tried.

Our focus in this paper has been on describing a broad framework for the

treatment of higher-order features in logic programming. There are obviously

tradeoffs in the actual deployment of these ideas. Although beyond the scope

of the present study, a quantification of these tradeoffs is important and is, in fact,

the object of other work (Liang and Nadathur 2002; Liang et al. 2003; Nadathur

and Qi 2003). A particularly exciting direction that we are now exploring is that of

fine-tuning our abstract machine and compilation model to the important subclass

of higher-order programs referred to as Lλ programs (Miller 1991), possibly even

with some loss of completeness over the full collection. In a different vein, many

of our implementation ideas are applicable in related contexts, such as that of

logic programming within a dependently typed lambda calculus (Pfenning and

Schürmann 1999). The extension of this work in these directions is also a matter

under investigation.
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