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Abstract

The Wulanba granite, consisting of biotite monzogranite and syenogranite, is located in the
southern part of the Great Xing’an Range, NE China. Whole-rock major- and trace-element
geochemistry suggests the Wulanba granite is a high-K–shoshonitic, slightly peraluminous
and highly differentiated I-type granite. The Sr–Nd–Hf isotopes indicate that it originated
from partial melting of juvenile crust derived from the depleted mantle with a minor input
of old crust. The relatively young T2DM and tDM2 ages indicate it was most likely derived from
a Late Neoproterozoic to Early Palaeozoic source. We have demonstrated that the biotite
monzogranite is the ore-related intrusion of the Haobugao Zn–Fe mineralization based on
the following geological, geochronological and geochemical evidence: (1) the chalcopyrite/pyrite
in the biotite monzogranite and the continuous mineralization of drill core ZK2508; (2) the
consistence of the emplacement age of the biotite monzogranite (~141–140/138 Ma) with the
skarn mineralization age (~142 Ma); and (3) the presence of rich ore-forming elements
(Fe–Zn–Cu) in the biotite monzogranite, and the similar Pb compositions of the sulfides from
the Haobugao deposit and the biotite monzogranite. Compared to the barren syenogranite, the
fertile biotite monzogranite is more oxidized, while the edges of the apatite grains in the biotite
monzogranite are more oxidized than the centres. The average F/Cl ratio of the fertile biotite
monzogranite (~123.45) is much higher than that of the barren syenogranite (~73.98). We
conclude that these differences reflect unique geochemical signatures, and the geochemical
composition of the apatite can be used to infer the economic potential of granites.

1. Introduction

The Great Xing’an Range (GXR) is located in the eastern part of the Central Asian Orogenic Belt
(CAOB) where the Palaeozoic Palaeo-Asian tectonic domain is superimposed on the Mesozoic
Western Pacific tectonic domain in the east and theMongol-Okhotsk Ocean tectonic domain in
the northwest. This region is believed to have experienced the world’s largest amount of juvenile
crust formation duringNeoproterozoic to Phanerozoic times (Fig. 1) (Nie et al. 2002; Jahn, 2004;
Wu et al. 2011a,b; Zeng et al. 2013; Zhai et al. 2013). Three periods of granite magmatism
occurred in the GXR: Late Palaeozoic calc-alkaline volcanic rocks and later A-type granites,
Triassic to Jurassic highly fractionated I- and A-type granites, and Cretaceous I-type granites
followed by A-type granites (Li & Yu, 1993;Wang & Zhao, 1997;Wu et al. 2000, 2001, 2002; Sun
et al. 2001). However, distinguishing between the A-type granites and the highly differentiated
I-type granites is difficult (Chappell &White, 2001; King et al. 2001). In the southern part of the
Great Xing’an Range (SGXR), the skarn-type, hydrothermal vein-type and porphyry-type
deposits in the Huanggang–Ulanhot polymetallic metallogenic belt are all related to the
Early Cretaceous magmatism (~143–129 Ma), which was caused by magmatic underplating
in an extensional tectonic environment at < 145 Ma (Fig. 2a) (Zhang et al. 2010a; Jia et al.
2011; Jiang et al. 2011a, 2012, 2017; Zhou et al. 2012; Wang, 2015; Liu et al. 2016, 2017). As
a typical skarn deposit, the geological characteristics, mineralization and ore-forming processes
of theHaobugao Zn–Fe deposit have been studied in detail (Fig. 2b, c; Zhang et al. 1994; Sheng &
Fu, 1999;Wang et al. 2004, 2018; Li et al. 2016; Liu et al. 2017). Liu et al. (2018) proposed that the
Haobugao skarn-type mineralization (134–139 Ma) is mainly related to the Wulanba granite
(137–144Ma). However, several periods of magmatism have been identified around the mining
area (Fig. 2b) (Li et al. 2016, 2017). Therefore, apart from geochronological data, direct
geological field evidence is required to assess the potential of using magma mineralogy to
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identify ore-related rocks. In addition, Liu et al. (2018) classified
the Wulanba granite as an A-type granite, whereas we classify it
as a highly differentiated I-type granite.

Apatite (Ca5(PO4)3(F, OH, Cl)) can record important petro-
genetic and metallogenic information concerning the volatile
composition and magmatic properties of ore-related rocks
(Mathez & Webster, 2005; Marks et al. 2012; Scott et al. 2015;
Pan et al. 2016; Chakhmouradian et al. 2017; Mitchell et al.
2017). In addition, the geochemical composition of apatite may
be an effective indicator of potential minerals in porphyry
deposits, which could aid in exploration efforts (Ballard et al.
2002; Qiu et al. 2013; Zhang et al. 2017). Although skarn deposits
are similar to porphyry deposits (Mao et al. 2006; Sillitoe, 2010), the
analysis of apatite in skarn deposits is rare (Ding et al. 2015;

Zhong et al. 2018). Defining the distinct geochemical signatures
of the fertile and barren rocks in the Haobugao skarn deposit
may enhance our understanding of the role that magmas played
in the formation of the deposit. In this study, the major/
trace-element geochemistry and the Sr–Nd isotopic compositions
of apatite grains from the Wulanba granite were analysed using
electronmicroprobe analysis (EMPA) and laser-ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS). Whole-rock
geochemical, geochronological and Sr–Nd–Pb–Hf isotopic data
were also obtained. In this paper, we attempt to (1) constrain the
origin and petrogenesis of the Wulanba granite; (2) identify the
ore-related rock; and (3) examine the different geochemical charac-
teristics of the fertile and barren rocks in the Haobugao deposit
based on apatite geochemistry.

Fig. 1. (Colour online) (a) Simplified geological map showing the location of the Central Asian Orogenic Belt; and (b) geological map of the Great Xing’an Range and its adjacent
areas (modified after Liu et al. 2017).
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2. Regional geology

The GXR is located in the eastern CAOB between the Siberian
Craton to the north and the North China Craton to the south
(Fig. 1a). The SGXR is bounded by the Erlian–Hegenshan Fault
to the north, by the Xar Moron Fault to the south and by the
Nenjiang Fault to the northeast (Fig. 1b). This region has a com-
plex geological history characterized by the evolution of the
Palaeo-Asian Ocean in Palaeozoic to Early–Middle Triassic times,
the closure of the Mongol–Okhotsk Ocean in the northwest and
the subduction of the Palaeo-Pacific oceanic plate in the east since
Late Triassic time (Wang et al. 2006; Li et al. 2007; Windley et al.
2007; Xu et al. 2013). The NE-trending SGXR tectonic domain is
characterized by widespread faulting and magmatism. This
includes the Huanggang–Ganzhu’ermiao Fault, which hosts Late
Mesozoic magmatism and related polymetallic deposits (Fig. 2a)
(Zhao & Zhang, 1997; Sheng & Fu, 1999; Ouyang et al. 2015).
The widespread Mesozoic granites include granodiorites, monzo-
granites, peralkaline granites and syenogranites, which can be sep-
arated into Jurassic and Cretaceous groups (Meng, 2003; Xiao et al.
2004; Xu et al. 2012). The Yanshanian magmatism changed from
felsic to alkaline, and the degree of differentiation of the rocks
increased from the early stage of magmatism to the late stage.
Spatially, the southwestern part of the SGXR contains felsic intru-
sive rocks, while the northeastern part contains intermediate-felsic
intrusive rocks. The Yanshanian magmatic activity is closely
related to the formation of the Cu, Ag, Pb, Zn, W, Mo and Sn
deposits (Zhang et al. 2011).

The study area contains outcrops of Precambrian orthogneiss
and paragneiss unconformably overlain by metamorphosed
Palaeozoic volcanic and sedimentary rocks and Jurassic to
Cretaceous intermediate to felsic volcanic rocks and sedimentary
rocks (Fig. 2a; Rui et al. 1994; Zhou et al. 2012; Zhai et al.
2014b). The Palaeozoic units in the region consist of the felsic vol-
canic rocks of the Middle Ordovician Duobaoshan Formation and
the Early Permian Dashizhai Formation and the Upper Permian
sedimentary rocks of the Linxi Formation. The Dashizhai
Formation is a shallow submarine volcanic succession, which is
composed of felsic and intermediate-mafic rocks in the
Huanggang–Ganzhu’ermiao–Wulanhaote area.

The LA-ICP-MS U–Pb zircon ages of the volcanic rocks are
similar to those of the plutonic rocks in the region (Ouyang
et al. 2014). Zhang et al. (2010a) proposed that the mafic to inter-
mediate volcanic rocks (174–124 Ma) were derived from the
continental lithospheric mantle and formed in an extensional
intraplate setting based on their slightly enriched Sr and weakly
depleted to slightly enriched Nd isotopic ratios. In contrast, the
felsic volcanic rocks have been interpreted to have a mixed mantle
and crustal magmatic source based on their wide variations in Ba
and Sr and highly positive εNd(t) and εHf(t) values (Zhang
et al. 2010a).

3. Wulanba granite

Two plutonic rock outcrops occur near the Haobugao Zn–Fe
deposit: the ∼25 km2 Wulanba granite and the ∼30 km2

Fig. 2. (Colour online) Geological map of (a) the Huanggangliang–Ganzhu’ermiao metallogenic belt in the southern part of the Great Xing’an Range; (b) the Wulanba granite and
its adjacent areas; and (c) the Haobugao Zn–Fe deposit (modified after Liu et al. 2017).
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Wulanchulute granite. These granites intrude the Permian and
Jurassic strata (Fig. 2b). The Wulanba granite, which consists of
biotite monzogranites and syenogranites, was emplaced at
137–144 Ma, while the Wulanchulute granite, which is a granitic
porphyry, was emplaced at 140–142 Ma (Li et al. 2016). The
Haobugao Zn–Fe mineralization principally occurs in the skarn
zones, which formed in the contact zone between the Wulanba
granite and marine pyroclastic rocks and marble of the Lower
Permian Dashizhai Formation (Fig. 2b, c) (Sheng & Fu, 1999;
Liu et al. 2017). The biotite monzogranite of the Wulanba
granite is pale red (Fig. 3a) and consists of perthitic K-feldspar
(35–50 vol. %; 1.0–2.5 mm) with carlsbad twinning, plagioclase
(20–30 vol. %, 0.2–2.0 mm) with polysynthetic twinning, quartz
(15–35 vol. %; 0.5–2.0 mm), biotite (5–15 vol. %; 0.25–1.0 mm)
with dark-brown pleochroism, and accessory magnetite, apatite,
titanite and zircon (Fig. 3c). Based on photographs, the samples
are also locally hydrothermally altered, including the partial
alteration of K-feldspar to sericite, variable alteration of biotite
to sericite-chlorite, and alteration of plagioclase to sericite
(Fig. 3b, d). In drill core, the contact between the granite and
the carbonate is difficult to pinpoint since it presents as a transi-
tional zone containing chalcopyrite and pyrite (Fig. 3e, g). The
medium- to coarse-grained syenogranite is rust brown, equigranu-
lar (Fig. 3f) and consists of K-feldspar (65–75 vol. %; 1.0–3.0 mm)
with a perthitic texture and weak sericite alteration, plagioclase
(5–10 vol. %; 1.0–5.0 mm) with polysynthetic twinning and slight
sericitic alteration, quartz (20–30 vol. %; 0.5–1.0 mm), partially
chloritized biotite (2–5 vol. %; 0.3 mm) (Fig. 3h), and accessory
magnetite and apatite. Significant hydrothermal alteration and
mineralization was also observed in the country rock, which
mainly consists of slate. Several porphyritic monzogranite, diorite,
monzonite porphyry and syenite porphyry dykes were observed
in the Haobugao deposit area. These dykes often cut the skarns
and orebodies.

4. Samples and analytical methods

We collected biotite monzogranite samples from drill cores
ZK2505 and ZK2508, syenogranite from the outcrops, dykes
(porphyritic monzogranite and diorite) form tunnels, and sulfides
from the drill cores and tunnels. The sample locations are shown in
Figure 2b, c and are listed in online Supplementary Material
Table S1.

4.a. LA-MC-ICP-MS zircon and apatite U–Pb dating

Six samples were collected from drill cores, outcrops and tunnels
for laser-ablation multi-collector inductively coupled plasma
mass spectrometry (LA-MC-ICP-MS) U–Pb zircon dating. The
samples were crushed and sieved, and the heavy mineral fraction
was separated usingmagnetic and heavy liquid separationmethods
to concentrate the zircon grains. The zircon grains were then
handpicked, mounted in standard GJ-1 epoxy resin mounts and
polished. Binocular microscope and cathodoluminescence (CL)
images were obtained to study the morphology and internal struc-
tures of the zircons. Based on this information, grains were selected
for U–Pb isotope analyses. The CL images were taken using a JEOL
JXA-8900RL microprobe at the Chinese Academy of Geological
Sciences (CAGS) in Beijing. All of the U–Pb isotope data were
collected at the Institute of Mineral Resources at CAGS using an
LA-MC-ICP-MS and a Thermo-Finnigan Neptune MC-ICP-MS
connected to a New Wave 213 Nd–YAG laser-ablation system

(Hou et al. 2009). Concordia plots were created and weighted
means were calculated using the Isoplot/Ex-V3 Microsoft Excel
macro (Ludwig, 2003).

The apatite grains were separated using conventional heavy
liquid and magnetic techniques. Then, they were handpicked
under a binocular microscope, mounted in epoxy resin and
polished down to expose the centres of the grains. CL images of
the apatite grains and apatite U–Pb dating analyses of the biotite
monzogranite (HL14-46) were obtained using LA-MC-ICP-MS at
the Beijing Kehui Testing International Co. Ltd. The operating
conditions for the laser-ablation system and the ICP-MS
and the data reduction methods are described in detail by Hou
et al. (2009). Laser sampling was performed using an ESI
NWR 193 nm laser-ablation system. An Analytik Jena PQMS
Elite ICP-MS was used to acquire ion-signal intensities. The offline
raw data selection, integration of the background and analyte
signals, time-drift correction and quantitative calibration for
the U–Pb dating was performed using ICPMSDataCal. Apatite
NW-1 was used as an external standard for the U–Pb dating
and was analysed twice for every five to ten analyses. The U, Th
and Pb concentrations were calibrated using NIST 610. The
concordia diagrams and weighted mean calculations were
completed using Isoplot/Ex_ver3.

4.b. Major- and trace-element analyses

The whole-rock geochemical analyses were completed at the
Analytical Centre of the Beijing Institute of Geology for Nuclear
Industry (ACBIGNI). The major-element compositions were ana-
lysed using an X-ray fluorescence spectrometer (Philip PW2404)
and the fused disc methods. The trace-element compositions were
analysed using an ICP-MS (Finnigan MAT Element I) after acid
digestion in Teflon bombs. The analytical precision and accuracy
of the analyses were better than 5 % for the major elements and
10 % for the trace elements.

The apatite compositions were determined using EMPA at the
Beijing Kehui Testing International Co. Ltd. The EMPA was
performed with a fully automated JEOL JXA-8230 electron
microprobe equipped with four wavelength dispersive spectrome-
ters with a 15 kV excitation voltage, 10 nA beam current and a
10 μm beam diameter. The peak and background counting times
were 20 s for F, S, Cl and Fe and 10 s for Na, Si, P and Ca. Fluorine
was always measured in the first cycle because of migration during
analysis.

4.c. Sr–Nd and lead isotope analyses

First, the sample powders were spiked with mixed isotopic tracers
for the Sr and Nd isotopic analyses, and then they were placed
in Savillex Teflon screw-cap beakers and dissolved in distilled
HF þ HNO3 at 100 °C for seven days. A conventional cation resin
exchange technique was used for element separation. The isotopic
analyses were carried out on a Finnigan MAT-262 thermal ioniza-
tion mass spectrometer (TIMS) at the Beijing Institute of Nuclear
Geological Research. The whole-rock Sr–Nd isotopic ratios
were determined using an ISOPROBE-T at the ACBIGNI. The
147Sm/144Nd and 87Rb/86Sr ratios were calculated using the
Sm, Nd, Rb and Sr concentrations measured using the ICP-MS.
The measured 143Nd/144Nd and 87Sr/86Sr ratios were normalized
to 146Nd/144Nd = 0.7219 and 86Sr/88Sr = 0.1194, respectively.
The SHINESTU Nd standard and NBS-987 Sr standard were
measured during the analyses, yielding a 143Nd/144Nd ratio of
0.512118 ± 3 (2σ) and a 87Sr/86Sr ratio of 0.710250 ± 7 (2σ).
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Fig. 3. (Colour online) Photographs and photomicrographs of (a) the biotite monzogranite, 877.30 m, drill core ZK2505 (sample HL14-46); (b) biotite monzogranite with sulfides
and chlorite alteration (sample HL14-44); (c) biotite monzogranite containing K-feldspar, plagioclase, quartz and biotite (plane-polarized light); (d) sulfides and chlorite alteration
in the biotite monzogranite (plane-polarized light); (e) pyrite and chalcopyrite mineralization in the biotite monzogranite (sample HL14-3); (f) the medium- to coarse-grained
syenogranite (sample HL13-17); (g) pyrite and chalcopyrite mineralization in the biotite monzogranite (reflected light); and (h) syenogranite containing K-feldspar, plagioclase,
quartz and partly chloritized biotite (cross-polarized light). Abbreviations of minerals: Qtz – quartz; Kfs – K-feldspar; Chl – chlorite; Pl – plagioclase; Bi – biotite; Py – pyrite;
Ccp – chalcopyrite.

Petrogenesis and metallogenic potential of the Wulanba granite 415

https://doi.org/10.1017/S0016756819000876 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756819000876


The in situ apatite Sr–Nd isotopic analyses were conducted
using an LA-MC-ICP-MS (New Wave 213 nm þ Neptune plus)
at the Beijing Kehui Testing International Co. Ltd. The isotopic
data was obtained in low resolution static mode. During the
experiment, the laser energy was ∼80 mJ and the energy density
∼5.2 J/cm2. A beam diameter of 80 μm and a frequency of 10 Hz
were used for the laser denudation. Using the single point
denudation mode, the denuded substances were extracted from
the sample pool with high-purity He as the carrier gas, mixed with
high-purity Ar and N2, and introduced into the mass spectrometer
for isotopic analysis. The He flow rate was 0.7–0.9 L/min and the
N2 flow rate was 4–7ml/min. A 10 s blank was run prior to the laser
denudation for Sr isotopic samples. The integration time of the
Sr isotopic samples was 20 s and the integration time of the Nd
isotopic samples was 30 s. The Sr isotopic data were corrected
to 85Rb/87Rb = 2.593 to exclude the interference of 87Rb in
the 87Sr values. Using the law of exponential fractionation,
88Sr/86Sr = 8.375209 was used as an internal standard to correct
for the fractionation of 87Sr/86Sr. The Nd isotopic data was
calibrated using 147Sm/149Sm = 1.0868 for the mass fractionation
of Sm. 144Sm/149Sm = 0.22332 was used to account for the inter-
ference of 144Sm with 144Nd.

The sample powders for Pb isotopic analysis were dissolved
in HF and HNO3 in Savillex Teflon screw-cap beakers placed
on a hotplate for seven days at 100 °C. The Pb was separated
and purified using the anion resin exchange technique with HBr
as the eluant. The isotopic ratios were obtained using the
Finnigan MAT-262 TIMS at the Beijing Institute of Nuclear
Geological Research. Repeated analysis of standard NBS 981
yielded 204Pb/206Pb = 0.05897 ± 15, 207Pb/206Pb = 0.91445 ± 80
and 208Pb/206Pb = 2.16170 ± 180.

4.d. In situ zircon Hf isotopic analysis

In situ zircon Hf isotopic analysis was conducted using a Neptune
MC-ICP-MS at the MLR Key Laboratory of Metallogeny and
Mineral Assessment at the Institute of Mineral Resources,
CAGS. The ICP-MS was connected to a New Wave UP213 UV
laser-ablation system with He as the carrier gas and an erosion
diameter of 55 L/m. TheHf isotopic analysis and U–Pb dating were
conducted on the laser-ablation points (cf. Hou et al. 2007). The
weighted average value of 176Hf/177Hf for zircon international
standard GJ1 was 0.282024 ± 0.000023 (2σ, n = 18), which is
consistent with and within the error range of reported values
(Elhlou et al. 2006; Hou et al. 2007).

5. Results

5.a. In situ U–Pb zircon and apatite geochronology

5.a.1. U–Pb zircon dating
The analysed spots and geochronological data for six samples are
presented in online Supplementary Material Table S2. Figure 4
presents the zircon U–Pb concordia diagrams. All of the zircon
grains were subhedral to euhedral and exhibited typical oscillatory
growth zoning, which is consistent with a magmatic origin.

The Th/U ratios of the zircons from biotite monzogranite
samples HL14-45 and HL14-46 were 0.26–0.65 and 0.23–1.11,
respectively. Nineteen zircons from sample HL14-45 yielded a
weighted mean 206Pb–238U age of 141 ± 1 Ma (MSWD = 1.2)
(Fig. 4a, online Supplementary Material Table S2), and 22 zircons
from sample HL14-46 yielded a weighted mean 206Pb–238U age of
140 ± 1 Ma (MSWD = 0.94) (Fig. 4b, online Supplementary

Material Table S2). Within error, these two ages are the same
and are taken to be the crystallization age of the biotite
monzogranite.

Two syenogranite samples (HL13-16 and HL13-17) were
selected for U–Pb zircon dating. The Th/U ratios of the zircons
from samples HL13-16 and HL13-17 were 0.41–0.86 and
0.42–1.30, respectively. Nine zircons from sample HL13-16 yielded
a weighted mean 206Pb–238U age of 142 ± 1 Ma (MSWD = 1.7)
(Fig. 4c, online Supplementary Material Table S2), and 14 zircons
from sample HL13-17 yielded a weighted mean 206Pb–238U age of
146 ± 1 Ma (MSWD = 1.3) (Fig. 4d, online Supplementary
Material Table S2). These results indicate that the crystallization
age of the syenogranite is ∼146–142 Ma.

The Th/U ratios of the zircons from the porphyritic monzog-
ranite (sample HL13-12) were 0.37–0.76. Nineteen zircons yielded
a weighted mean 206Pb–238U age of 129 ± 1 Ma (MSWD = 3.1)
(Fig. 4e, online SupplementaryMaterial Table S2), which was taken
to be the crystallization age of the porphyritic monzogranite.

The Th/U ratios of the zircons from the diorite (sampleHL863-2-6)
were 0.32–0.60. Nineteen zircons yielded a weighted mean
206Pb–238U age of 135 ± 1 Ma (MSWD = 0.6) (Fig. 4f, online
Supplementary Material Table S2), which was taken to be the
crystallization age for the diorite.

5.a.2. U–Pb apatite dating
The apatite grains from the biotite monzogranite (sample
HL14-46) were dated using the U–Pb method. The separated apa-
tite grains were colourless and predominantly long, prismatic,
euhedral crystals or fragments of euhedral crystals (0.02–0.20 mm).
Some of the CL images showed obvious zoning (Fig. 6). The
LA-ICP-MS U–Pb analytical data for the apatites are
presented in online Supplementary Material Table S3, and the
concordia and weighted average 207Pb corrected age plots are
shown in Figure 4g. All of the U–Pb ages were calculated at a 95%
confidence level. These apatite grains yielded a weighted average
207Pb-corrected age of 138.2 ± 7.3 Ma (MSWD = 3.1, n = 17).
Within error, this is the same age as that determined from the
zircons and is taken to be the crystallization age of the biotite
monzogranite.

5.b. Major- and trace-element compositions

5.b.1. Whole-rock major- and trace-element compositions
The major- and trace-element compositions of seven whole-rock
samples are presented in Table 1. The results were normalized
to 100 % after accounting for loss on ignition (LOI). The biotite
monzogranite and the syenogranite had similar geochemical com-
positions (Table 1). They are characterized by high SiO2 contents
(71.37–75.47 wt %), low Al2O3 contents (11.55–14.89 wt %) and
significantly lower MgO contents (0.03–0.67 wt %). Their Na2O
contents ranged from 2.92 to 3.95 wt %, and their K2O contents
ranged from 4.46 to 6.15 wt %. The SiO2 content of sample
HL14-45 (67.36 wt %) was lower than those of the other
Wulanba granite samples, but it had higher Al2O3 (14.89 wt %),
MgO (0.67 wt %), Na2O (3.95 wt %) and K2O (5.81 wt %) contents,
indicating that it may have been slightly hydrothermally altered.
These granite samples are slightly peraluminous high-K–shoshonites
with A/CNK values of 0.87–1.06 (<1.1). The chemical index of
alteration (CIA = (Al2O3/(Al2O3 þ CaO* þ Na2O þ K2O))*100)
estimates the extent of weathering and alteration (Nesbitt &
Young, 1982). Fresh basalt has a CIA value of 30–45, whereas fresh
monzogranite and granodiorite have higher values ranging from
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Table 1. Major- and trace-element compositions of the Wulanba granite

Lithology Biotite monzogranite Syenogranite

Sample No. HL14-2 HL14-3 HL14-44 HL14-45 HL14-46 HL13-16 HL13-17

SiO2 73.98 74.98 71.37 67.36 74.77 75.47 74.71

TiO2 0.25 0.22 0.08 0.45 0.33 0.07 0.07

Al2O3 12.86 12.53 11.55 14.89 12.07 13.22 13.33

TFe2O3 1.79 1.87 2.13 3.99 2.55 0.82 0.92

MnO 0.02 0.04 0.25 0.08 0.06 0.01 0.01

MgO 0.34 0.35 0.28 0.67 0.49 0.07 0.03

CaO 0.61 0.90 1.39 1.47 0.96 0.37 0.58

Na2O 2.92 3.60 3.10 3.95 3.13 3.85 3.89

K2O 6.15 4.46 5.24 5.81 4.61 5.06 5.29

P2O5 0.07 0.04 0.02 0.11 0.08 0.01 0.01

LOI 0.91 0.93 0.27 1.19 0.84 0.72 0.84

Total 99.72 99.74 99.47 99.62 99.64 99.67 99.68

DI 93.55 92.09 86.83 86.79 90.47 96.20 95.70

A/CNK 1.02 1.01 0.87 0.96 1.02 1.06 1.01

A/NK 1.12 1.17 1.07 1.16 1.19 1.12 1.10

AR 2.53 3.31 2.84 2.87 2.85 3.61 3.54

σ43 2.64 2.02 2.44 3.87 1.88 2.44 2.65

Na2O þ K2O 9.07 8.06 8.34 9.76 7.74 8.91 9.18

Na2O/K2O 0.47 0.81 0.59 0.68 0.68 0.76 0.74

(Na2O þ K2O)CaO 7.79 9.01 6.00 6.64 8.04 24.08 15.83

CIA 57.06 58.32 54.28 57.01 58.10 58.76 57.73

La 19.9 29.90 27.60 48.40 60.00 15.57 13.29

Ce 36 70.60 82.80 107.00 116.00 43.30 41.08

Pr 4.79 9.41 14.60 14.00 14.00 4.35 4.28

Nd 18.9 37.30 70.80 51.10 46.60 16.02 17.58

Sm 4.57 8.51 22.40 10.60 7.42 3.85 4.60

Eu 0.427 0.16 0.14 0.29 0.45 0.23 0.13

Gd 3.54 8.09 21.60 8.28 6.52 3.70 4.91

Tb 0.727 1.63 4.07 1.45 1.07 0.71 1.03

Dy 4.27 10.30 25.30 10.60 5.58 5.08 7.64

Ho 0.759 2.13 4.71 2.06 1.12 1.05 1.66

Er 2.45 6.58 14.50 7.46 3.31 3.36 5.26

Tm 0.40 1.28 2.51 1.38 0.61 0.56 0.89

Yb 2.7 8.07 15.80 10.50 3.49 3.74 5.68

Lu 0.405 0.99 2.22 1.37 0.55 0.57 0.87

Y 29.3 62.70 134.00 71.20 38.80 33.07 51.52

REE 99.84 194.95 309.05 274.49 266.72 102.10 108.91

LREE 84.59 155.88 218.34 231.39 244.47 83.34 80.96

HREE 15.25 39.07 90.71 43.10 22.25 18.77 27.95

LREE/HREE 5.55 3.99 2.41 5.37 10.99 4.44 2.90

LaN/YbN 5.29 2.66 1.25 3.31 12.33 2.98 1.68

LaN/SmN 2.74 2.21 0.78 2.87 5.09 2.54 1.82

(Continued)
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45 to 55 (Nesbitt & Young, 1982). The CIA values of all of our
samples ranged from 54 to 61 (Table 1), indicating that the majority
of the samples are only slightly altered. Therefore, alteration has not
affected the geochemical data.

The total rare earth element (ΣREE) values ranged from 99.84 ppm
to 309.05 ppm, and the chondrite-normalized REE patterns
of all of the samples are slightly right-inclined with moderately
fractionated light REEs (LREEs) and heavy REEs (HREEs)
(Fig. 5a; Table 1) and Eu/Eu* values of 0.02–0.31. The Wulanba
granite has LREE/HREE values ranging from 2.41 to 5.55 (except
for a value of 10.99 for sample HL14-46), and LaN/YbN values
ranging from 1.25 to 5.29 (except for a value of 12.33 for sample
HL14-46). All of the samples have similar primitive mantle-
normalized trace-element patterns with depletions in the high field
strength elements (HFSEs), i.e. Ba, Nb, Sr, P and Ti, and

enrichments in the large ion lithophile elements (LILEs), i.e. Rb,
K, Th, U, La, Ce and Nd (Fig. 5b; Table 1). The Rb content
(174–335 ppm) was higher than the continental crustal value of
32 ppm (Taylor &McLennan, 1985), indicating that these samples
are highly differentiated. In addition, the calculated zircon satura-
tion temperatures (TZr) of the biotite monzogranites and syenog-
ranites ranged from 711 °C to 851 °C and from 756 °C to 763 °C,
respectively (Watson & Harrison, 1983).

5.b.2. Major- and trace-element compositions of apatite
The CL images of the apatite revealed oscillatory zoning, indicating
that these grains have not experienced significant alteration
(Fig. 6). The apatite in the biotitemonzogranite and the syenogran-
ite occurred as euhedral–subhedral crystals. Table 2 lists themajor-
element compositions of the apatite grains from the Wulanba

Table 1. (Continued )

Lithology Biotite monzogranite Syenogranite

Sample No. HL14-2 HL14-3 HL14-44 HL14-45 HL14-46 HL13-16 HL13-17

δEu 0.31 0.06 0.02 0.09 0.19 0.18 0.09

δCe 0.88 1.02 1.00 0.99 0.95 1.27 1.33

Li 17.3 13.30 5.18 22.80 20.30 10.88 9.50

Be 2.13 6.36 4.18 7.34 3.84 4.34 4.48

Sc 1.85 1.84 3.67 2.89 2.59 1.53 1.35

V 12.7 8.93 3.37 27.10 18.30 2.27 1.16

Cr 5.18 2.41 2.23 3.68 6.67 0.44 0.36

Co 2.3 2.10 3.77 4.10 3.37 0.38 0.36

Ni 1.51 1.12 1.49 2.09 1.91 0.78 0.82

Cu 5.97 31.60 185.00 37.20 12.90 2.63 2.41

Zn 75.4 366.00 122.00 181.00 314.00 37.86 36.38

Ga 19.3 24.10 23.30 29.30 19.70 22.19 25.69

Rb 208 193 174 335 199 281 232

Sr 101 37 30 81 93 38 20

Ba 907 94 85 193 529 238 77

Nb 12.8 36.30 17.90 32.40 15.60 12.21 15.03

Ta 1.05 4.78 2.18 4.75 1.51 1.39 1.63

Zr 199 188 76 365 249 99 115

Hf 7.02 8.72 4.33 18.00 8.74 4.08 6.22

Cs 4.44 4.81 3.78 9.03 5.47 5.42 4.36

Tl 1.51 1.10 0.77 1.99 1.50 2.26 1.41

Pb 26.4 46.40 17.90 36.60 38.60 25.17 27.82

Th 15.9 47.50 39.60 90.80 24.30 18.47 36.99

U 6.96 18.00 11.90 31.70 7.55 2.63 3.99

10000*Ga/Al 2.84 3.63 3.81 3.72 3.08 2.86 2.78

Rb/Sr 2.06 5.22 5.76 4.16 2.14 7.40 11.83

Sr/Ba 0.11 0.39 0.36 0.42 0.18 0.16 0.25

Nb/Ta 12.19 7.59 8.21 6.82 10.33 8.78 9.21

Zr/Y 6.79 3.00 0.56 5.13 6.47 2.99 2.23

TZr (°C) 811 806 711 851 833 756 763
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granite. The P2O5 content of the apatite showed little variation with
increasing whole-rock SiO2 content (Fig. 7a), whereas the Na2O
and MnO contents of the apatite from the biotite monzogranite
were higher than those of the apatite from the syenogranite
(Fig. 7b, c). The apatite samples had CaO contents ranging from
53.24 to 56.06 wt %, FeO contents ranging from 0 to 0.14 wt %,
and SO3 contents ranging from 0 to 0.04 wt %. The Al2O3,
MgO, K2O, TiO2, Cr2O3, NiO and chlorine contents were
extremely low. However, all of the apatite grains analysed had high
fluorine contents (2.79–3.76 wt %; Table 2), classifying them as flu-
orapatite. On a plot of MnO versus SiO2, all of the apatite grains
plotted in the magmatic field (Fig. 7d), indicating that the compo-
sition of these apatite grains reflects the characteristics of the
parent magma.

Online Supplementary Material Table S4 lists the trace-element
compositions of the apatite from the Wulanba granite. Similar to
theWulanba granite, the apatite REE patterns exhibit a slight LREE
enrichment with LREE/HREE values ranging from 0.65 to 9.68 and
distinctly negative Eu anomalies (δEu = 0.01–0.79) and positive
cerium anomalies δCe (0.36–1.69). However, they have signifi-
cantly higher REE concentrations (2527–17667 ppm) than the
Wulanba granite (online Supplementary Material Table S4;
Fig. 5a). However, nine apatite grains from sample HL13-16
had ∑REE (34–413 ppm) values similar to those of the granite
(Fig. 5a). The relatively low thorium and uranium contents of these
nine apatite grains may have been influenced by interaction with
later hydrothermal fluids (Fig. 7e). The zirconium and hafnium
contents of the apatite from the biotite monzogranite were lower

Fig. 5. (Colour online) Trace-element plots for the Wulanba
granite and apatite. (a) Chondrite-normalized REE patterns
(after Taylor & McLennan, 1985); and (b) primitive mantle-
normalized spider diagrams (after Sun & McDonough, 1989).
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than those of the syenogranite, which also suggests magmatic
differentiation (Fig. 7f).

5.c. Sr–Nd–Pb–Hf isotopes

5.c.1. Sr–Nd–Hf isotopes of the whole rock and apatite
The Sr–Nd isotopic compositions of the Wulanba granite and the
apatite from it are summarized in online Supplementary Material
Table S5. The initial Sr isotope ratios (ISr) and ϵNd(t) values of the
apatite were calculated using the U–Pb apatite age of the biotite
monzogranite (138Ma) and the U–Pb zircon age of the syenogran-
ite (142 Ma). The 87Rb/86Sr and 87Sr/86Sr ratios of the apatite were
very low because of their low Sr contents, so only two usable results
were obtained. However, the 147Sm/144Nd and 143Nd/144Nd ratios
obtained were quite good owing to the highNd contents of the apa-
tite (9–4254 ppm). The calculated ISr values ranged from 0.70184
to 0.70703 (except for one anomalous value of 0.69888 obtained for
sample HL13-17). The εNd(t) values ranged from −0.2 to 4.8, and
the two-stage depleted mantle Nd model ages (T2DM) ranged from
540 to 950 Ma (online Supplementary Material Table S5).

Four samples were chosen for in situ zircon Hf isotopic analysis
(online Supplementary Material Table S6). Most of the 176Lu/177Hf
values of the zircon grains were less than 0.002, indicating little
radiogenic Hf accumulation after zircon formation. All of the
samples had similar Hf isotopic compositions. The 176Lu/177Hf
values reflect the Hf isotope compositions of the system during
zircon formation (Amelin et al. 1999). The 176Hf/177Hf ratios of
the biotite monzogranite (t = 141 Ma for sample HL14-45 and
t = 140 Ma for sample HL14-46) ranged from 0.282848 to
0.282998, with εHf(t) values of 5.6–10.7. The single-stage Hfmodel
ages (TDM1) ranged from 583 to 394 Ma, and the two-stage Hf
model ages (tDM2) ranged from 834 to 509 Ma (Fig. 8a, b). The
176Hf/177Hf ratios of the syenogranite ranged from 0.282857 to
0.283095 (t = 142 Ma for sample HL13-16, and t = 146 Ma for
sample HL13-17), the εHf(t) values from 5.9 to 14.3 (Fig. 8c),
the TDM1 from 576 to 238 Ma, and the tDM2 from 814 to
494 Ma (Fig. 8d).

5.c.2. Lead isotopes
The Wulanba granite and the sulfides from the Haobugao Zn–Fe
deposit had relatively similar whole-rock Pb isotope compositions
with (206Pb/204Pb)i values of 18.179–18.739 and 18.026–18.408,
(207Pb/204Pb)i values of 15.509–15.547 and 15.499–15.687, and
(208Pb/204Pb)i values of 38.021–38.119 and 37.986–38.615, respec-
tively (online Supplementary Material Table S7).

6. Discussion

6.a. Petrogenesis

6.a.1. Source of the Wulanba granite
Most Phanerozoic granites in the CAOB are characterized by low
initial Sr isotope ratios (<0.707), positive εNd(t) values and young
Sm–Nd model ages (TDM) of 1200–300 Ma, indicating their ‘juve-
nile’ character and suggesting derivation from source rocks or
magma from the upper mantle (Kovalenko et al. 1996; Hong
et al. 2000; Jahn et al. 2000b, 2001; Wu et al. 2003; Liu et al.
2005, 2007; Shao et al. 2010). These characteristics are shared by
theWulanba granite. The syenogranite and the biotite monzogran-
ite were emplaced at 146–142 Ma and 141–140 Ma, respectively,
and the cross-cutting diorite and porphyritic monzogranite dykes
were emplaced at 134 Ma and 129 Ma, respectively. A high Rb/Sr
ratio and low Sr content (<20 ppm) due to fractional crystallization
can lead to a significant analytical uncertainty in the initial Sr iso-
topic composition. This is supported by the low value of 0.69888
for sample HL13-17, which should be >0.7 (Chappell et al. 1998;
Wu et al. 2000; Jahn et al. 2001). The other (87Sr/86Sr)i values of the
Wulanba granite and the apatite from it vary from 0.70184 to
0.70703. The Wulanba granite and the apatite from it have
εNd(t) values (−0.2 to 4.8) similar to those of the Early
Cretaceous granitic rocks related to the mineralization in the
SGXR ((87Sr/86Sr)i = 0.70211–0.70945, (εNd(t) = −2.00–2.88),
which have a juvenile crustal source (Han et al. 1997; Chen
et al. 2000; Heinhost et al. 2000; Wu et al. 2000, 2002).
Generally, granitic rocks with positive εHf(t) values are interpreted
to represent partial melting of either the depleted mantle or a

Fig. 6. (Colour online) Cathodoluminescence images of representative apatite grains from the Wulanba granite. Red numbers represent logfO2 values.
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Table 2. EMPA major-element compositions of apatite grains from the Wulanba granite

Sample P2O5 CaO SiO2 Al2O3 MnO MgO Na2O K2O TiO2 FeO Cr2O3 NiO SO3 F Cl Total F/Cl F in magma Cl in magma F/Cl in magma logfO2

Apatite from biotite monzogranite

HL14-46-01 40.23 55.67 0.27 – 0.09 – – – 0.01 0.03 0.03 – 0.03 3.53 – 99.88 – 1.04 – – −11.32

HL14-46-02 40.79 55.52 0.22 – – – 0.05 – – – 0.02 – – 3.06 – 99.66 – 0.90 – – –

HL14-46-03 39.08 55.50 2.44 – 0.10 0.02 0.04 – – 0.06 – – – 3.27 0.00600 100.52 544.50 0.96 0.00750 128.12 −11.52

HL14-46-04 40.78 55.28 0.50 – 0.02 – – – 0.07 0.05 – – – 3.76 – 100.45 – 1.10 – – −10.07

HL14-46-05 40.86 55.09 0.59 – 0.11 0.01 0.02 – – 0.07 0.02 – – 3.16 – 99.93 – 0.93 – – −11.66

HL14-46-06 40.76 54.76 0.79 – 0.02 – 0.06 – 0.04 0.03 – – 0.02 2.92 0.00500 99.40 584.60 0.86 0.00625 137.55 −10.14

HL14-46-07 39.64 54.46 0.66 – 0.04 0.01 0.03 – – – – 0.05 – 3.21 0.00700 98.10 457.86 0.94 0.00875 107.73 −10.35

HL14-46-08 39.24 54.62 1.31 – 0.12 0.03 0.04 – 0.07 – – – 0.02 2.83 – 98.28 – 0.83 – – −11.73

HL14-46-09 41.45 55.73 0.34 – 0.13 0.01 0.05 – – 0.04 – – 0.01 3.11 – 100.87 – 0.92 – – −11.91

HL14-46-10 40.80 54.90 0.52 – 0.02 0.02 0.09 0.01 0.04 0.09 – – – 3.14 – 99.61 – 0.92 – – −10.07

HL14-46-11 38.64 55.06 1.44 – 0.06 0.01 0.05 – – 0.03 – – – 3.05 – 98.34 – 0.90 – – −10.81

HL14-46-12 40.11 55.20 0.65 0.02 0.11 – 0.11 – – 0.07 – – 0.01 2.85 – 99.13 - 0.84 – – −11.59

HL14-46-13 39.97 54.50 0.54 0.01 0.08 – 0.09 – 0.04 0.03 – – 0.01 3.08 0.00600 98.35 513.00 0.91 0.00750 120.71 −11.06

HL14-46-14 41.08 55.12 0.47 – – – 0.01 – 0.04 0.05 – 0.03 – 3.03 0.00800 99.84 378.25 0.89 0.01000 89.00 –

HL14-46-15 40.79 55.34 0.38 – 0.01 – 0.01 – – – 0.01 – – 3.19 0.00500 99.72 638.00 0.94 0.00625 150.12 −9.89

HL14-46-16 40.40 55.28 0.29 – 0.04 – 0.06 0.01 – 0.02 – – 0.01 3.04 0.00500 99.15 608.40 0.89 0.00625 143.15 −10.35

HL14-46-17 41.06 55.48 0.47 – – – 0.02 – – 0.01 – – 0.03 3.45 – 100.52 – 1.01 – – –

HL14-46-18 41.23 56.06 0.28 – 0.05 – 0.01 – 0.12 0.06 – 0.02 – 3.31 0.00700 101.14 472.86 0.97 0.00875 111.26 −10.53

HL14-46-19 39.32 54.68 1.46 – 0.13 – 0.08 – 0.05 0.06 – – – 3.48 – 99.27 – 1.02 – – −11.98

HL14-46-20 39.74 54.05 1.15 – 0.05 0.01 0.09 – – 0.06 – – – 3.55 – 98.71 – 1.04 – – −10.60

Apatite from syenogranite

HL13-16-01 40.72 54.95 0.23 – 0.16 – 0.10 0.01 0.04 0.05 – 0.01 0.03 3.01 – 99.28 – 0.89 – – −12.44

HL13-16-02 39.37 53.24 0.62 – 0.16 – 0.19 – 0.04 0.03 – – – 2.95 0.00700 96.61 422.00 0.87 0.00875 99.29 −12.51

HL13-16-03 39.98 54.21 0.54 – 0.25 – 0.10 – – 0.07 – – 0.01 3.13 0.01500 98.30 208.40 0.92 0.01875 49.04 −14.03

HL13-16-04 41.30 55.36 0.15 – 0.11 0.01 0.08 0.01 – 0.03 – – – 2.86 – 99.91 – 0.84 – – −11.66

HL13-16-05 40.77 54.49 0.13 0.01 0.17 – 0.22 – – 0.03 – – 0.01 2.99 0.01000 98.83 298.60 0.88 0.01250 70.26 −12.65

HL13-16-06 41.23 54.31 0.13 – 0.16 – 0.20 0.02 – 0.03 – – – 3.22 – 99.30 – 0.95 – – −12.51

HL13-16-07 39.91 54.49 0.42 0.01 0.16 0.03 0.07 – 0.08 0.03 – – 0.01 3.43 0.00900 98.65 381.22 1.01 0.01125 89.70 −12.51

HL13-16-08 40.47 54.90 0.42 0.02 0.10 – 0.10 – 0.05 0.04 – – – 2.86 0.00500 98.95 572.40 0.84 0.00625 134.68 −11.39

HL13-16-09 39.90 55.15 0.38 – 0.27 0.03 0.18 – 0.02 0.06 – – 0.03 2.99 – 99.00 – 0.88 – – −14.42

HL13-16-10 40.91 54.55 0.14 – 0.14 – 0.15 0.01 0.01 0.12 0.04 – 0.03 3.21 0.01600 99.33 200.81 0.95 0.02000 47.25 −12.19
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juvenile crustal source derived from the depleted mantle (Zhou
et al. 2012). On the plot of εHf(t) versus T, all of the samples from
the study area with high zircon εHf(t) values of 5.6–14.3 plot
between the DM (depleted mantle) and CHUR (chondritic uni-
form reservoir) fields, similar to the Early Cretaceous granites
in the SGXR (−0.80 to 14.20), which have been interpreted to have
a juvenile crustal source derived from the depleted mantle (Fig. 9)
(Guo et al. 2009; J. F. Liu, unpub. Ph.D. thesis, Univ. Jilin, 2009;
Zhang et al. 2010b; Wu et al. 2011b; Zhou et al. 2011, 2012; Shu
et al. 2013b; Ouyang et al. 2015). The depleted mantle model age
represents the time at which the parental magma was derived
from a source that had been separated from the depleted mantle;
while the depleted mantle Nd (T2DM) and Hf (tDM2) model ages
are used to estimate the ages of their protoliths. The Wulanba
granite has young Nd model ages (T2DM) of 950–540 Ma and
Hf model (tDM2) ages of 834 and 494 Ma. Most of the Nd model
ages (T2DM) overlap with the range of the Hf model ages, indicat-
ing that they were derived from the Late Neoproterozoic to Early
Palaeozoic juvenile crust (Wu et al. 1999; Li et al. 2014b). The
young T2DM and tDM2 ages suggest that the SGXR experienced
crustal growth during Neoproterozoic to Early Palaeozoic times
(Hong et al. 2000; Cai et al. 2004).

The large range in εHf(t) values along with the T2DM and tDM2

ages suggests that the protolith of theWulanba granite is complex.
The lower εNd(t) values of the Cretaceous igneous rocks in this
region are due to the involvement of crustal rocks (Jahn et al.
2004). The proportion of mantle material involved in the petro-
genesis of the Early Cretaceous igneous rocks was estimated by
Jahn et al. (2000a) to be 62–92 %. According to the method
proposed by Wu et al. (2002), the proportion of juvenile lower
crust involved in the petrogenesis of the Wulanba granite is
∼60–80 %. We speculate that the source rocks may have origi-
nated from partial melting of juvenile crust (∼60–80 %) derived
from the depleted mantle with a minor input of older crust
(Cai et al. 2004; Shao et al. 2010).

6.a.2. Petrogenesis of the Wulanba granite
Intermediate-acidmagmas cannot be derived directly from partial
melting of the mantle (Green, 1980; Defant & Drummond, 1990;
Martin, 1999). Theoretically, granitoids can form from magma
mixing, assimilation–fractional crystallization (AFC) or melting
of the lower crust (Liu et al. 2007). The Wulanba granite did
not experience significant magma mixing based on the absence
of microgranular mafic enclaves (MMEs) (Poli & Tommasini,
1991; Tepley et al. 2000). The presence of oscillatory zoned mag-
matic zircon grains and the Th/U zircon values (>0.1) (Zhou et al.
2010) indicate that the zircon grains were not inherited as a result
of contamination by the surrounding host rocks. Lin et al. (2004)
argued that the source of the low-Sr Mesozoic granites in the GXR
was composed of young crustal material that originated in the
mantle during Phanerozoic crustal growth. Moreover, the chemi-
cal compositions of the Late Mesozoic granitic rocks in the SGXR
are similar to those of experimental melts derived from basaltic
rocks (Ellis & Thompson, 1986; Sisson et al. 2005). Chen & Fu
(1992) and Chen et al. (2005) summarized the three models for
the formation of granitic magmas from partial melting of a thick-
ened lower crust. (1) During the main period of continental orog-
eny, lower crustal thickening caused by the collision of continental
plates and the heat generated by tectonic shearing could induce
partial melting of the lower crust. (2) After the main orogenic
event, tectonic decompression results in dehydration reactions
involving hydrous minerals and induced partial melting of theTa
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crust. (3) After the main orogenic period, lithospheric delamina-
tion leads to mantle upwelling and underplating, causing partial
melting of the lower crust. The Mesozoic mafic–ultramafic cumu-
late xenoliths and mafic granulite xenoliths in the GXR have been
concluded to be the product of upwelling and asthenospheric
underplating (Shao et al. 1999, 2001).

Liu et al. (2018) classified the Wulanba granite as an A-type
granite based on enrichments in Zr, Y and Ga and the plot of
Zr versus 1000 Ga/Al. However, it is difficult to distinguish highly
differentiated granites from A-type granites. Aluminous A-type
granites contain mafic minerals such as annite and/or amphibole,
whereas peralkaline A-type granites contain alkali mafic minerals

Fig. 7. (Colour online) (a–c) Correlation between themajor-element compositions of the apatite and the whole-rock SiO2 contents; (d) plot of MnO versus SiO2, themagmatic and
hydrothermal apatite fields are from Chen et al. (2017); (e) plot of U versus Th for apatite; and (f) plot of Hf versus Zr for apatite.
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such as arfvedsonite, riebeckite and sodium pyroxene (Wu et al.
2002). A-type granites have unique geochemical characteristics,
including significant enrichments in alkalis and Ga, Zr, Nb, Y
and REEs and high Ga/Al ratios (Whalen et al. 1987; Bonin,
2007). However, alkaline Fe–Mg minerals have not been observed
in the Wulanba granite. In addition, the geochemical characteris-
tics of the Wulanba granite differ from those of A-type granites.
First, the average FeOT/MgO ratio of the Wulanba granite ranges
from 5.28 to 6.98 (except for a value of 27.87 obtained for sample
HL14-44 due to its ultra-low MgO content), which is lower than
that of A-type granites (FeOT/MgO >10) (Whalen et al. 1987).
Second, its average Zr þ Ce þ Nb þ Y content is 335 ppm, which
is lower than that of A-type granites (350 ppm). Its average Zr con-
tent is 184 ppm (except for a value of 365 ppm obtained for sample
HL14-45), which is lower than that of A-type granites (250 ppm).
Third, the Ga content is very low (average 23.1 ppm), and the
104*Ga/Al ratio varies from 2.84 to 3.81 with an average of 3.42,
which is lower than the average value of A-type granites (3.75) sug-
gested by Whalen et al. (1987). Most of the samples plot in the
highly differentiated granite field (Fig. 10a, b). However, when their
FeOT/MgO ratios are greater than 16, the Zr þ Ce þ Nb þ Y
contents and the Ga/Al ratios of differentiated A-type granites
can be lower (Bonin, 2007). The low K/Rb and Zr/Hf ratios of these
granites indicate magmatic differentiation (Halliday et. al. 1991;
Claiborne et al. 2006; Ballouard et al. 2016). The Wulanba granite
has significant negative Eu anomalies (δEu = 0.02 – 0.31), high

K/Ba ratios (56–567), low Zr/Hf ratios (17–29) and Nb/Ta ratios
(7–12) (common range for granitic rocks is 15–40 for K/Ba,
35–40 for Zr/Hf and 17–18 for Nb/Ta; Irber, 1999), and depletions
in Ba, Sr, P and Ti on the spider diagram, indicating that they
are the products of high amounts of differentiation (Miller &
Mittlefehldt, 1982, 1984; Jahn et al. 2001; Gelman et al. 2014). In
addition, their high differentiation index (DI) values of 86.79−96.20
are indicative of highly differentiated granites. The Wulanba gran-
ite is weakly peraluminous (A/CNK = 0.87–1.06 <1.1) and there
is no dolomite, cordierite or garnet in the granite, which is not
characteristic of S-type granites with strong peraluminous charac-
teristics. The P2O5 content of the Wulanba granite is less than
0.1 wt %, which differs from that of S-type granites (>0.2 wt %)
(Chappell, 1999). In addition, the samples also fall into the I-type
granite field on the plot of TiO2 versus Zr (Fig. 10c). In fact, the
Wulanba granite has high SiO2 and Na2O þ K2O contents,
low Ti, Mn and P contents, and high Rb/Sr and Nb/Ta ratios. In
addition, it is significantly enriched in Rb, Th and U and depleted
in Ba, Sr and Eu. These characteristics are also consistent with those
of highly differentiated I-type granites (Chappell, 1999; Wu et al.
2003; Li et al. 2007; Zhu et al. 2015). Therefore, we conclude that
the Wulanba granite is a highly differentiated I-type granite.

The degree of magmatic differentiation of the apatite is exhib-
ited by the (La/Sm)N and (Eu/Eu*)N values. The apatite grains
exhibit very slight LREE enrichment. Previous experiments have
shown that the apatite/melt partition coefficients of the middle

Fig. 8. Histograms of the εHf(t) and tDM2 values of (a, b) the biotite monzogranite; and (c, d) the syenogranite.
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REEs are higher than those of the LREEs and HREEs (Watson &
Green, 1981; Fujimaki, 1986), which causes the (La/Sm)N values of
the apatite grains (0.54–2.81) to be lower than those of the melt
(0.78–5.09). Crystallization of plagioclase depletes the Eu value
of the magma, resulting in the low Eu content of the apatite, which
crystallizes later. Therefore, the significantly negative Eu anomalies
of the apatite were most likely caused by the crystallization of
plagioclase before the apatite crystallized.

6.b. Constraints on Zn–Fe mineralization

6.b.1. Ore-related rocks
The evolution of northeastern China was controlled by the closure
of the Palaeo-Asian Ocean at ∼250 Ma, which was characterized
by crustal accretion and the amalgamation of micro-blocks
and terranes in Palaeozoic time and possibly extension until
Early–Middle Triassic times (Jahn, 2004; Windley et al. 2007;
Xiao et al. 2009; Jiang et al. 2011b; Wu et al. 2011b; Han et al.
2012; Li et al. 2014a,b). In Late Jurassic to Early Cretaceous times,

the subduction of the Palaeo-Pacific Plate and the closure of the
Mongol–Okhotsk Ocean caused lithosphere delamination and
asthenosphere upwelling (Ouyang et al. 2015; Jiang et al. 2018).
As a result, strong crust–mantle interaction occurred and
N–S-striking sinistral shear zones developed, e.g. the NE-striking
Huanggang–Ganzhu’ermiao Fault, which played a significant
role in controlling the magmatism and mineralization in the
SGXR. Therefore, a series of mineralization, granite emplacement,
exhumation of metamorphic core complexes and large-scale
lithosphere destruction occurred during Early Cretaceous time,
indicating an extensional setting (140–120 Ma) (Gao et al. 2002;
Wu et al. 2002, 2005; Mao et al. 2005, 2008, 2010; Wang et al.
2006; Zhang et al. 2010a; Zhu et al. 2011; Li et al. 2012). As a skarn
deposit, the typical lithological succession observed in drill
core ZK2508 near the Haobugao deposit (Fig. 11) includes biotite
monzogranite, followed by amineralized garnet skarn, mineralized
tuff and mineralized slate from bottom to top. Silicification, chlor-
inification and carbonation of the various units was also observed.
In addition, sulfides such as chalcopyrite and pyrite were observed

Fig. 9. (Colour online) Initial ϵHf isotopic values versus the U–Pb
ages of the zircon grains from the Wulanba granite. Data for the
Early Cretaceous igneous rocks and Middle to Late Jurassic
granites are from Ouyang et al. (2015 and references therein).
Abbreviations: DM – depleted mantle; CHUR – chondritic uniform
reservoir.

Fig. 10. (Colour online) (a) 104*Ga/Al versus (Zr þ Nb þ Ce þ Y) discrimination diagram; (b) (Na2O þ K2O)/CaO versus (Zr þ Nb þ Ce þ Y) discrimination diagram; and (c) TiO2

versus Zr discrimination diagram. A – A-type granite; FG – fractionated I-, S- and M-type granites; OGT – unfractionated I-, S- and M-type granites. The base diagrams for figures
(a) and (b) are from Whalen et al. (1987).
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Fig. 11. (Colour online) Samples from drill core ZK2508 (∼1000 m) containing biotite monzogranite → mineralized garnet skarn → mineralized tuffaceous slate → mineralized
slate from deep to shallow, demonstrating that the biotite granite is the ore-related intrusion.
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Fig. 12. (Colour online) Lead isotope compositions of the
Wulanba granite and sulfides (base map modified after Ouyang
et al. 2015). Data for the mantle, orogen, and lower and upper
crust evolution curves are from Zartman & Doe (1981), data for
the Mesozoic intrusive rocks in the SGXR are from Zhao &
Zhang (1997), Chu et al. (2001), Xiao et al. (2004), Zhu et al.
(2006), Guo et al. (2010) and Jiang et al. (2010), and data for
the sulfide minerals in the SGXR are from Ouyang et al. (2015
and references therein).

Fig. 13. (Colour online) (a) Plot of logfO2 versus T (°C) for the Wulanba granite. In this study, the logfO2 values were calculated using the method of Miles et al. (2014) and the
temperature is the TZr. The oxygen fugacity buffer data are from Eugster &Wones (1962). MH –magnetite–haematite buffer; NNO –NiNiO; FMQ – fayalite–magnetite–quartz buffer;
WM –wustite–magnetite; IW – iron–wustite buffer; IQF – iron–quartz–fayalite. (b) Plot of whole-rock SiO2 (wt %) versus logfO2; (c) F/Cl of themagma versus whole-rock SiO2 (wt %);
and (d) plot of F (wt %) versus Cl (wt %) for the apatite. The data for the skarn Cu–Zn–Pb deposits and porphyry Cu deposits are from Zhong et al. (2018).
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in the biotite monzogranite (Fig. 3e, g). These geological charac-
teristics undoubtedly prove that the biotite monzogranite
contributed to mineralization. The U–Pb zircon ages of the biotite
monzogranite (141–140 Ma) are consistent with the timing
of the Haobugao Zn–Fe mineralization (142 Ma) (Liu et al.
2017), suggesting a genetic relationship between the Zn–Fe miner-
alization and the emplacement of the biotite monzogranite.
Spatially, along the Huanggang–Ganzhu’ermiao Fault (HGF;
Fig. 2a), the ages of the granites in the area around the Haobugao
Zn–Fe deposit (in the northeastern HGF area), the Hashitu molyb-
denum deposit (in the central HGF area) and the Huanggangliang
Sn–Fe deposit (in the southwestern HGF area) are 146–140 Ma,
147–143 Ma (Zhai et al. 2014a) and 139 Ma (Zhou et al. 2012),
respectively. The magmatism in the SGXR (Wang et al. 2006;
Zhang et al. 2008a,b, 2010b) and the associated porphyry- and
skarn-type deposits (132–139 Ma) (Zeng et al. 2010, 2011; Shu
et al. 2013a; W. Mei, unpub. Ph.D. thesis, China Univ.
Geosciences, 2014; Zhai et al. 2014b) and hydrothermal vein-type
deposits (135–143 Ma) (Liu et al. 2010; Ouyang et al. 2013; Ruan
et al. 2015) defined a widespread magmatic-metallogenic event
created in Early Cretaceous time (∼140 Ma).

The lead isotope compositions of the samples from the study
area vary within a narrow range. The majority of the sulfides plot
between the mantle evolution line and the orogenic evolution line,
while only a small number of samples plot between the mantle and
upper crust evolution lines (Fig. 12) (Zartman &Doe, 1981; Canals
& Cardellach, 1997; Hou et al. 2004; Jiang et al. 2006). The similar
Pb isotope compositions of the sulfides from the Haobugao deposit
and those of other deposits in the SGXR indicate that they have
similar lead sources (Ouyang et al. 2015). Furthermore, most of
the samples plot within the field of the Mesozoic granitic rocks
in the SGXR. The sulfides from the Haobugao deposit are more
similar to those from the biotite monzogranite than those from
the syenogranites (Fig. 12). In addition, the FeOT (wt %),
Cu (ppm) and Zn (ppm) contents of the sulfides in the biotite
monzogranite (1.79–3.99, 5.97–185 and 75.4–366, respectively)
are much higher than those in syenogranite (0.82–0.92,
2.41–2.63 and 36.38–37.86, respectively), suggesting that the
biotite monzogranite can supply more ore-forming elements
(Fe–Zn–Pb–Cu) than the syenogranite.

6.b.2. Apatite compositional constraints on the fertile and
barren rocks in the Wulanba granite
The presence of redox-sensitive elements such as Mn, As, Fe, S, Eu
and Ce in various oxidation states in the apatite may be related to
the redox conditions of the host magma (Sha & Chappell, 1999;
Prowatke & Klemme, 2006; Konecke et al. 2017). As the available
As, Fe, Ce and Eu data were limited, the Mn content of the apatite
was used to evaluate the oxygen fugacity of the magma. Because
apatite crystallizes prior to other Mn-bearing minerals, the crystal-
lization of other Mn-bearing minerals would not significantly
influence Mn partitioning between the apatite and the melt (Xie
et al. 2018). Apatite has an elevated Mn content at low oxygen
fugacities at which manganese primarily exists as Mn2þ (Zhong
et al. 2018). Miles et al. (2014) explored the use of the Mn concen-
tration of apatite, which varies linearly and negatively with
log fO2 (log fO2 = −0.0022(±0.0003)Mn (ppm) − 9.75(±0.46)),
as an oxybarometer in intermediate and felsic igneous rocks. On
the plot of logfO2 versus T (Fig. 13a), the apatite grains from
the biotite monzogranite and syenogranite plot between the mag-
netite–haematite (MH) and NiNiO (NNO) buffers, indicating the
apatite crystallized from a melt with a high oxygen fugacity. This is

also supported by the negative Ce anomalies of the magnetite,
which indicates an oxidized ore-fluid (Liu et al. 2017). The calcu-
lated logfO2 values of the syenogranite range from −10.9 to −14.4,
while those of the biotite monzogranite range from −9.8 to −11.9
(Figs 6, 13b) (Miles et al. 2014). This indicates that compared to the
barren syenogranite, the fertile biotite monzogranite is more
oxidized. From the centre to the edge of the apatite grains
from the biotite monzogranite (Fig. 6), the logfO2 values increase,
indicating that the oxygen fugacity of the magma increased during
apatite crystallization. It is generally agreed that compared to
reduced magmas, oxidized magmas facilitate skarn mineralization
(Li et al. 2017), because at higher oxygen fugacities, magmatic
sulfur exists mainly as sulfate (SO4

2−), which is more soluble in
silicate melts than sulfide and tends to delay or even prevent the
saturation of magmatic sulfide phases (Ballard et al. 2002;
Richards, 2003). Zhong et al. (2018) also concluded that in the
Weibao Cu–Pb–Zn skarn deposit, the ore-bearing intrusions are
significantly more oxidized than the barren diorite porphyry.
These results suggest that oxygen fugacity can potentially be used
to differentiate between fertile and barren rocks.

Another key factor that may affect the production of magmas is
the abundance of halogens (F and Cl), which can effectively com-
plex and transport metals (Piccoli & Candela, 1994; Coulson et al.
2001; Webster et al. 2004, 2009). Apatite is a sensitive indicator of
volatile composition (Boudreau et al. 1986; Mathez & Webster,
2005; Doherty et al. 2014). The calculated F concentrations
of the source magmas (Mathez & Webster, 2005) of fertile
(0.83–1.10 wt %) and barren rocks (0.82–1.01 wt %) are high but
indistinguishable. In contrast, the calculated Cl concentrations
of the source magmas (Mathez & Webster, 2005) of fertile
(0.00625–0.01000 wt %) and barren rocks (0.00625–0.02125 wt %)
are lower and differ significantly. Thus, the average F/Cl ratio of
the source magma that produces fertile rocks (∼123.45) is much
higher than that of barren rocks (∼73.98; Fig. 13c). The F/Cl
ratio of fresh apatite reflects the ratio of the system it crystallized
from because apatite is not vulnerable to subsolidus halogen
exchange (Tacker & Stormer, 1989). Thus, our results provide
indirect evidence that the F/Cl ratios of the parental magmas of fer-
tile and barren rocks differ. The apatite grains from the Wulanba
granite plot in the Cu–Zn–Pb skarn deposit field in Figure 13d. It
can be seen that the Cl contents of the apatite in Cu–Pb–Zn skarn
deposits aremuch lower than those of the apatite in typical porphyry
Cu deposits (mostly >0.9 wt %), but their F contents are slightly
higher, indicating that the high Cl content of the magma may have
a greater influence on porphyry Cu deposits than on Cu–Pb–Zn
skarn deposits. These results indicate that the logfO2 and F/Cl ratios
(or Cl contents) of apatite may be used to distinguish between fertile
and barren rocks, i.e. apatite can be used as an indicator of the
mineralization potential.

7. Conclusions

In Early Cretaceous time, the Wulanba granite was produced by
partial melting of juvenile crust derived from the depleted mantle
withminor inputs of older crust in an extensional setting as a result
of lithosphere delamination and asthenosphere upwelling, after
which the magma was highly differentiated to produce an I-type
granite. The Wulanba granite was most likely derived from
a Late Neoproterozoic to Early Palaeozoic source during an impor-
tant stage of crustal growth in the area.

Based on geological evidence from drill cores, the geochronology
of the mineralization and the abundance of ore-forming elements
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(Fe–Zn–Pb–Cu) in the biotite monzogranite, the biotite
monzogranite contributed to the mineralization. Based on the
geochemical characteristics of the apatite, the fertile biotite
monzogranite has higher logfO2 values and F/Cl ratios than
the barren syenogranite, indicating that it can be regarded as
an indicator of mineralization potential.
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