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Abstract

Widely distributed Mid-Neoproterozoic mafic rocks of the Qilian – Qaidam – East Kunlun
region record the tectonic evolution of the northeastern Tibetan Plateau. This study presents
whole-rock geochemistry, zircon U–Pb geochronology and Hf isotopes for the Xialanuoer gab-
bros of the central SouthQilian Belt (SQB). Zircon laser ablation – inductively coupled plasma –
mass spectrometry (LA-ICP-MS) U–Pb dating indicates that the gabbros were emplaced at ca.
738 Ma, indicating they are contemporaneous with mafic magmatism elsewhere in the
northeastern Tibetan Plateau. The gabbros have low SiO2, Cr and Ni contents and Mg# values,
are relatively enriched in light rare-earth elements (LREEs) and depleted in high-field-strength
elements (HFSEs; e.g. Nb and Ta), have no positive Zr or Hf anomalies and have relatively high
Nb/Ta but lowNb/La ratios. These data indicate that the Xialanuoer gabbros formed from calc-
alkaline basaltic magmas that were originally generated by the partial melting of an enriched
mantle of type-I (EMI-type) enriched region of the lithospheric mantle, underwent little to no
crustal contamination prior to their emplacement, and have within-plate basalt geochemical
affinities. Combining these data with the presence of widespread contemporaneous continental
rift-related magmatism and sedimentation in the North Qilian, Central Qilian, South Qilian,
Quanji, North Qaidam and East Kunlun regions suggests that the northeastern Tibetan Plateau
underwent Mid-Neoproterozoic continental rifting, which also affected other Rodinian blocks
(e.g. Tarim, South China, Australia, North America and Southern Africa).

1. Introduction

The Rodinia supercontinent was assembled between 1.3 and 0.9 Ga, before breaking up between
850 and 740 Ma (Li et al. 2008). Several blocks that were formerly part of Rodinia record multi-
ple episodes of anorogenic magmatism at 850–740 Ma, including South China, Tarim, North
America, India, Southern Africa and Australia (Powell et al. 1994; Park et al. 1995; Preiss, 2000;
Frimmel et al. 2001; Ling et al. 2003; Li et al. 2008; Wang et al. 2011; Xu et al. 2013; Zhang et al.
2013; McClellan & Gazel, 2014; Wan et al. 2019).

The Qilian Orogen in the northeastern Tibetan Plateau is an important part of the Qin–Qi–
Kun Central China Orogenic System. It is bordered by the North China Craton to the northeast,
the South China Craton to the southeast and the Tarim Craton to the northwest (Fig. 1a) (Xiao
et al. 2009; Song et al. 2013). The orogen is subdivided into the South Qilian Belt (SQB), Central
Qilian Block and North Qilian Belt, with the SQB thought to preserve evidence of 786–713 Ma
magmatism (Ma et al. 2017; Bai et al. 2019; Wang et al. 2019; Ji et al. 2020). However, the petro-
genesis and tectonic setting of this magmatism remain unclear, with two contrasting models
proposed to explain these events to date. The first of these suggests that magmatism occurred
in a continental rift setting as a result of mantle plume activity associated with the final break-up
of Rodinia (Bai et al. 2019; Ji et al. 2020). The second model suggests that magmatism occurred
in arc-type tectonic settings (Ma et al. 2017; Wang et al. 2019). Further research is needed to
precisely constrain the geochemical characteristics and affinities of these magmatic events, and
their geodynamic setting.

This study presents new zircon U–Pb–Hf isotopic and whole-rock geochemical data for the
Xialanuoer gabbros of the central SQB. Combining these new data with the results of previous
research allows the Mid-Neoproterozoic tectonic setting of the SQB to be better constrained,
and provides insights into the Mid-Neoproterozoic tectonic evolution of the Qilian –
Qaidam – East Kunlun region of the northeastern Tibetan Plateau.
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Fig. 1. (Colour online) (a) Tectonic framework of China and location of the study area (modified after Song et al. 2013). (b) Tectonic subdivision of the northeastern Tibetan
Plateau, showing the tectonic location of the SQB (modified after Lu et al. 2008). Igneous rocks age data sources: 738–733 Ma (Mao et al. 1997); 751 ± 4 Ma (Su et al. 2004); 776–774
Ma (Tseng et al. 2006); 764–675 Ma (Song et al. 2016); 713 ± 4 Ma (Wang et al. 2019); 786 ± 5 Ma (Ji et al. 2020); 824–713 Ma (Xu et al. 2008); 738 ± 11 Ma (this study); 740–736 Ma (Bai
et al. 2019); 730 ± 3 Ma (Ma et al. 2017); 800 Ma (Li et al. 2003); 744 ± 28 Ma (Lu et al. 2002); 780–768 Ma (Yang et al. 2006); 795–748 Ma (Chen et al. 2009); 796 ± 41 Ma (Ren et al. 2011);
733 ± 6 Ma (Ren et al. 2010). (c) Geological map of the Xialanuoer area (modified after Qin, 2018) showing sample locality.
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2. Geological background

The Qilian Orogen is bounded by the Altyn fault to the northwest,
extends to the east into the Qinling Orogen, and borders the Quanji
and Alxa blocks to the south and north, respectively (Fig. 1b).

The North Qilian Belt represents a subduction-related accretion-
ary complex formed by the Palaeozoic closure of the Proto-Tethys
NorthQilianOcean between theAlxa andCentralQilian blocks (Xia
et al. 2016; Wang et al. 2017; Peng et al. 2019). It comprises
Neoproterozoic to Early Palaeozoic ophiolite sequences, high-pres-
sure (HP) metamorphic belts, island arc volcanic rocks and granit-
oid plutons, Silurian flysch and Devonian molasse deposits, and
Carboniferous to Triassic sedimentary cover sequences (Yang
et al. 2009; Xu et al. 2010; Yu et al. 2015; Qin et al. 2021).

The Central Qilian Block is a Precambrian microcontinent
comprising Meso–Neoproterozoic greenschist- to amphibolite-
facies metasedimentary rocks, metamorphosed plutons and dolo-
mitic marbles, all of which are covered by Palaeozoic sedimentary
sequences (Hou et al. 2005; Xu et al. 2007; Tung et al. 2013).

The SQB is dominated by the Neoproterozoic–early Paleozoic
tectonic melange (Balonggonggaer Formation), which comprises
mainly schists and greywackes (Ji et al. 2018; Qin, 2018; Li et al.
2019). Although the maximum depositional age of the schists in
the Balonggonggaer Formation is constrained by the youngest detri-
tal zircon U–Pb age peaks at 824–720Ma (Li et al. 2019; Qin, 2018),
the existence of older rocks can't be ruled out. Moreover, the belt
contains small volumes of locally exposed Mid-Neoproterozoic
magmatic rocks that are dominated by 786–713Ma basalts and gab-
bros (Ma et al. 2017; Bai et al. 2019; Wang et al. 2019; Ji et al. 2020).
The SQB also contains voluminous Palaeozoic (457–418 Ma) gran-
itoids associated with minor volcanic rocks (Liao et al. 2014; Niu
et al. 2016; Zhang et al. 2016; DL Li et al. 2018a) that formed as
a result of the early Palaeozoic closure of the Proto-Tethys South
Qilian Ocean (Fu et al. 2018; Yan et al. 2019).

3. Sample descriptions

This study focuses on a gabbroic pluton that crops out ~80 km
northwest of Delingha in the central SQB in the Xialanuoer area.
The pluton is relatively small (1 km × 0.5 km) and elliptical and
preserved in the Balonggonggaer Formation (Fig. 1c). A total of
seven samples (DLH-1 to 7) were collected from the gabbroic plu-
ton; details of sampling locations andmineral assemblages are pro-
vided in Table 1. All of the samples are metagabbro with medium-
to fine-grained granular textures and massive structures. They are
composed of olivine (10–20 %), clinopyroxene (40–50 %), plagio-
clase (35–45 %) and minor minerals of sphene and chlorite.
Granular olivine and subhedral plagioclase are included in subhe-
dral clinopyroxene (Fig. 2), suggesting the earlier crystallization of
olivine and plagioclase. Clinopyroxene edges are often fragmented
and, although the gabbros have undergone greenschist-facies
metamorphism, they retain clear primary magmatic textures.

4. Analytical methods

All of the analyses were undertaken at the State Key Laboratory of
Continental Dynamics of Northwest University, Xi’an, China.
Zircon grains were extracted from gabbro samples using standard
separation methods before hand-picking under a binocular micro-
scope. These zircon grains were mounted in epoxy resin before pol-
ishing to expose zircon interiors. The zircon grains were then
imaged using reflected and transmitted light optical microscopy

and cathodoluminescence (CL) using a Gatan MonoCL3 CL instru-
ment coupled with a scanning electron microscope.

In situU–Pb dating was performed using laser ablation – induc-
tively coupled plasma –mass spectrometry (LA-ICP-MS) employ-
ing a MicroLasTM Beam Delivery Systems Analyte Excite 193 nm
ArF excimer LA system coupled to a Perkin Elmer/SCIEX Elan
6100 ICP-MS instrument. The ablated materials were delivered
to the torch in the ICP-MS by high-purity helium gas to ensure
efficient aerosol transport. A NIST 610 silicate glass standard
was used to tune the ICP-MS to ensure maximum signal sensitivity
for high masses (Pb, Th, U; better than 2000 cps μg−1 g−1). The
analysis used a beam diameter of 32 μm and a laser frequency
of 6 Hz, and the NIST 610 Uþ and Thþ ion-signal intensity ratio
(using 238U and 232Th ≈ 1) was used as an indicator of complete
vaporization (Günther & Hattendorf, 2005), with oxide formation
monitored using ThOþ/Thþ (<0.5 %). Laser ablation employed
time-resolved analysis using single laser spots, with the analysed
elements acquired using a peak jumping mode. Dwell times were
10 ms for Th, 15 ms for U, Pb and Ti, and 6 ms for all other ele-
ments. Dual-pulse and analogue counting detector modes were
automatically converted according to intensity during analysis
with pulse/analogue (P/A) factors for each element auto-tuned
to ensure best accuracy and efficiency prior to routine analysis.
207Pb/206Pb, 206Pb/238U, 207Pb/235U and 208Pb/232Th ratios were cal-
culated using the GEMOC-developed GLITTER 4.0 software pack-
age from Macquarie University, with integrated ratio drift during
individual runs corrected to remove both instrumental mass bias
and depth-dependent elemental and isotopic fractionations by cal-
ibration against a matrix-matched Harvard zircon 91500 standard
analysed using the same operating conditions (Wiedenbeck et al.
1995). GJ-1 is also a standard sample with a recommended 206Pb/
238U isotopic age of 603.2 ± 2.4 Ma (XM Liu et al. 2007). The con-
centrations of U, Th, Pb and other trace elements were calibrated
using 29Si as an internal standard and the NIST 610 standard as an
external standard. The ages were calculated using ISOPLOT/Excel
version 4.15 (Ludwig, 2003). The common Pb correction was car-
ried out using the Excel program ComPbCorr#3 (Andersen, 2002).
Age uncertainties are quoted at the 95 % confidence level.

Zircon Lu–Hf isotopic compositions were obtained by laser
ablation –multicollector – ICP-MS (LA-MC-ICP-MS) employing

Table 1. Summary of the sample locality, lithology and mineral assemblage for
the Mid-Neoproterozoic gabbros in the Xialanuoer area

Sample
no.

Latitude
(° N)

Longitude
(° E) Lithology

Mineral
assemblages

DLH-1 37° 53 0

49″
97°27 008″ Gabbro ol 15 %, cpx 45 %, pl

40 %

DLH-2 37° 54 0

07″
97° 26 0

55″
Gabbro ol 12 %, cpx 43 %, pl

45 %

DLH-3 37° 53 0

44″
97° 27 0

07″
Gabbro ol 10 %, cpx 45 %, pl

45 %

DLH-4 37° 53 0

47″
97° 27 0

02″
Gabbro ol 16 %, cpx 44 %, pl

40 %

DLH-5 37° 53 0

41″
97° 26 0

52″
Gabbro ol 20 %, cpx 40 %, pl

40 %

DLH-6 37° 54 0

03″
97° 26 0

50″
Gabbro ol 18 %, cpx 47 %, pl

35 %

DLH-7 37° 53 0

55″
97° 26 0

50″
Gabbro ol 15 %, cpx 40 %, pl

45 %
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a Nu PlasmaHR instrument coupled to a GeoLas 2005 193 nmArF
excimer LA system. This analysis used an applied energy density of
15–20 J cm−2, a laser pulse repetition rate of 8 Hz, and a beam
diameter of 44 μm. High-purity helium gas was used as carrier
gas to transport ablated particles from the sample chamber to
the MC-ICP-MS instrument. Masses of 172Yb, 173Yb, 175Lu,
176(Hf þ Yb þ Lu), 177Hf, 178Hf, 179Hf and 180Hf were collected
simultaneously by Faraday cups with the isobaric interference of
176Lu on 176Hf corrected by measuring the intensity of the interfer-
ence-free 175Lu isotope and using the recommended 176Lu/175Lu
ratio of 0.02669 to calculate 176Lu/177Hf values. The interference
of 176Yb on 176Hf was similarly corrected by measuring an interfer-
ence-free 172Yb isotope and using a 176Yb/172Yb ratio of 0.5886 to
calculate corrected 176Hf/177Hf ratios (Chu et al. 2002). Measured
176Hf/177Hf ratios were normalized to 179Hf/177Hf = 0.7325. Data
quality was assessed by the alternating analysis of 91500 and GJ-1
standard zircon grains as unknowns yielding 176Hf/177Hf ratios of
0.282304 ± 0.000026 (n= 14, 2σ) for 91500 and 0.282013 ±
0.000016 (n= 16, 2σ) for GJ-1, both of which are consistent and
within the uncertainties of the recommended 176Hf/177Hf ratios
for these standards (Wu et al. 2006). The resulting data were
reduced using a 176Lu decay constant of 1.867 × 10−11 yr−1

(Albarède et al. 2006). Present-day 176Hf/177Hf= 0.282785 and
176Lu/177Hf= 0.0336 chondritic values (Bouvier et al. 2008) were
used to calculate ϵHf(t) values with single-stage Hf model ages
(TDM) calculated relative to the depleted mantle using present-
day 176Hf/177Hf and 176Lu/177Hf values of 0.28325 and 0.0384,
respectively (Griffin et al. 2000). Two-stage model ages (TC

DM)
were calculated by projecting initial zircon 176Hf/177Hf ratios back
to the depleted mantle growth curve using a value of 176Lu/
177Hf= 0.015 for the average continental crust (Griffin et al. 2002).

Whole-rock geochemical analysis used fresh whole-rock samples
that were trimmed to remove weathered surfaces, cleaned with deion-
ized water, crushed, and finally milled using a tungsten carbide ball
mill to pass a ~200 mesh. Major and trace element concentrations
were determined by X-ray fluorescence spectrometry (XRF) employ-
ing a Rikagu RIX 2100 instrument and ICP-MS employing anAgilent
7500a instrument, respectively. Analyses of United States Geological
Survey BHVO-1, AGV-1 and BCR-2 standards yielded analytical pre-
cision and accuracy values that are better than 5% and 10% formajor
and trace elements, respectively (Y Liu et al. 2007).

5. Results

5.a. Zircon LA-ICP-MS U–Pb dating

A total of 27 zircon grains from gabbro sample DLH-1 were ana-
lysed, 13 of which were concordant (90–110 %) and are reported in

Table 2. The zircon grains are prismatic with aspect ratios of ~2:1
(Fig. 3). The majority have slight to dark CL luminescence along
with internal textures dominated by grown zoning and high
Th/U ratios (0.44–2.7) (Table 2; Fig. 3), all of which are indicative
of a magmatic origin (Rubatto, 2002; Corfu et al. 2003). Nine
analyses with concordant 206Pb/238U ages of 757 to 720 Ma yield
a weighted average 206Pb/238U age of 738 ± 11 Ma
(MSWD = 2.6, n= 9) that represents the timing of crystallization
of the gabbros. A further four captured zircon grains yield older
ages of 2397 to 1295 Ma (Table 2; Fig. 3).

5.b. Whole-rock major and trace element compositions

The major and trace element concentrations of the six representative
gabbro samples analysed in this study (DLH-2 to 7) are given in
Table 3. These samples have slightly high loss-on-ignition (LOI) val-
ues (0.86–1.13 wt %), so major element concentrations were recalcu-
lated to 100 % volatile-free totals. The Xialanuoer gabbros contain
45.50–50.18 wt % SiO2 and heterogeneous Al2O3 (14.46–16.85
wt %), Fe2O3t (11.14–15.83 wt %), MgO (7.37–10.47 wt %), CaO
(7.71–9.09 wt %), TiO2 (1.68–2.00 wt %), Na2O (2.43–4.12 wt %)
and K2O (0.75–0.93 wt %) contents. They are metaluminous with
A/CNK ratios of 0.71–0.75. They also have a rather restricted range
of Mg# values (56–58). Owing to the potential mobility of large-ion
lithophile elements (LILEs; e.g. K, Na, Rb, Sr, Ba and Cs), the samples
were classified with respect to immobile elements such as high-field-
strength elements (HFSEs) and rare-earth elements (REEs). The
majority of the gabbros are classified as subalkaline basalt (barring
two samples classified as andesite or basalt) in aNb/Y vs Zr/TiO2 clas-
sification diagram, consistent with the compositions of contempora-
neous mafic rocks in the SQB (Fig. 4a). The Xialanuoer gabbros and
contemporaneous mafic rocks are both classified as calc-alkaline and
basaltic in a Ta/Yb vs Ce/Yb diagram (Fig. 4b).

The Xialanuoer gabbros have relatively low total REE contents
(ΣREE= 61.94–111.19 ppm), have chondrite-normalized REE
patterns that are enriched in light REEs (LREEs; 51.34–93.13
ppm) relative to heavy REEs (LREE/HREE = 4.49–5.16, LaN/
YbN= 4.56–5.27) and have no significant Eu anomalies (Eu/
Eu* = 0.97–1.03) (Fig. 5a). The Xialanuoer gabbros are also
slightly depleted in REEs relative to contemporaneous mafic rocks
in the SQB. They also have primitive-mantle-normalized multi-
element variation diagram patterns that are enriched in LILEs
(i.e. Rb, Ba and K) and depleted in HFSEs (i.e. Nb and Ta) (Fig. 5b).

5.c. Zircon Hf isotope compositions

The results of zircon Hf isotope analysis are given in Table 4 and
shown in Figure 6. The 757–720 Ma zircon grains from sample
DLH-1 have very negative ϵHf(t) values (−13.8 to −6.2), and old

Fig. 2. (Colour online) Photographs and photomicrographs of the Mid-Neoproterozoic gabbros from the Xialanuoer area. ol = olivine; pl = plagioclase; cpx = clinopyroxene.
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Hf model ages (TDM= 1854–1574 Ma; TC
DM= 2498–2046 Ma).

The 2078–1295 Ma zircon grains have restricted ϵHf(t) values
(−14.7 to −0.7), with older Hf model ages (TDM= 2557–2362
Ma; TC

DM= 2985–2620 Ma). However, a 2397 Ma zircon yields
a relatively positive ϵHf(t) value ofþ3.8 and ancient Hf model ages
(TDM= 2578 Ma; TC

DM= 2690 Ma).

6. Discussion

6.a. Age of the Xialanuoer gabbros and contemporaneous
regional magmatism

Due to intense Caledonian tectonism, a large volume of
Neoproterozoic igneous rocks that were originally present in this
area have been tectonically disrupted and can hardly be recognized.
A few Neoproterozoic igneous rocks crop out in the western and

eastern SQB, including small volumes of 786–713 Ma basalts (Bai
et al. 2019; Wang et al. 2019; Ji et al. 2020) and minor ca. 730 Ma
gabbros (Ma et al. 2017). The Xialanuoer gabbroic pluton is located
in the central SQB and preserved in the Balonggonggaer
Formation. Previous research has suggested that the pluton was
formed during the early Palaeozoic (BGMRQH, 1997), but our
new zircon U–Pb dating indicates that the gabbros were actually
emplaced at 738 ± 11 Ma. This is contemporaneous with 824–
675 Ma magmatism in the North Qilian, Central Qilian, Quanji,
North Qaidam and East Kunlun regions of the northeastern
Tibetan Plateau, as summarized in Table 5. Although the majority
of this mafic magmatism occurred at 796–713 Ma, basalts in the
Central Qilian Block suggest that this Mid-Neoproterozoic mafic
magmatism began at ca. 824 Ma (Xu et al. 2008).

6.b. Petrogenesis

The Xialanuoer gabbros have variable but low Ni (108–159 ppm)
and Cr (56.5–99 ppm) contents and lower Mg# values (56–58)
(Table 3) than those expected for primary basaltic magmas
(Ni > 400 ppm, Cr> 1000 ppm and Mg#> 73) (Wilson, 1989),
suggesting the magmas that formed these gabbros underwent frac-
tional crystallization prior to their emplacement. Moreover, no sig-
nificant Eu anomalies (Eu/Eu* = 0.97–1.03) are observed,
reflecting that the gabbros underwent insignificant fractionation
and/or accumulation of plagioclase.

The negative zircon ϵHf(t) values of the ca. 738 Ma gabbros
(Fig. 6) reflect formation from either melts derived from astheno-
spheric mantle that underwent crustal contamination prior to
emplacement or from an enriched region of the lithospheric man-
tle. Crustal contamination can significantly affect the geochemical
compositions of mafic magmas, causing enrichments in LILEs, Zr
and Hf, and depletions in Nb and Ta (Jenner et al. 1993). The
Xialanuoer gabbros have negative Nb–Ta anomalies but no posi-
tive Zr–Hf anomalies (Fig. 5b). Titanium is generally immobile
during a variety of geological processes, with negative Ti anomalies
often used as evidence of crustal contamination (Bienvenu et al.
1990; Rudnick &Gao, 2003). The studied samples have no negative
Ti anomalies (Fig. 5b), suggesting that these gabbros recordminimal

Table 2. LA-ICP-MS zircon U–Pb dating results for zircon grains from the Xialanuoer gabbros

Spot Th/U

Isotopic ratios Age (Ma)

207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ

DLH-1-1 1.09 0.06389 0.00297 1.06823 0.04539 0.12126 0.00196 738 62 738 22 738 11

DLH-1-2 1.58 0.06381 0.00220 1.05489 0.03115 0.11990 0.00162 735 40 731 15 730 9

DLH-1-3 0.98 0.06362 0.00237 1.04508 0.03411 0.11911 0.00169 729 45 726 17 725 10

DLH-1-4 0.65 0.11950 0.00251 5.82433 0.07358 0.35340 0.00403 1949 10 1950 11 1951 19

DLH-1-5 0.99 0.06424 0.00155 1.10140 0.01881 0.12431 0.00145 750 18 754 9 755 8

DLH-1-6 1.90 0.06456 0.00165 1.10985 0.02132 0.12465 0.00148 760 22 758 10 757 8

DLH-1-7 1.79 0.06430 0.00169 1.08684 0.02185 0.12257 0.00147 752 23 747 11 745 8

DLH-1-8 1.57 0.06361 0.00153 1.03690 0.01786 0.11820 0.00138 729 18 722 9 720 8

DLH-1-9 0.44 0.08410 0.00215 2.56778 0.04843 0.22143 0.00271 1295 19 1292 14 1289 14

DLH-1-10 0.57 0.12852 0.00284 6.74799 0.09571 0.38075 0.00447 2078 11 2079 13 2080 21

DLH-1-11 0.48 0.15455 0.00329 9.60399 0.12611 0.45054 0.00520 2397 10 2398 12 2398 23

DLH-1-12 1.92 0.06380 0.00391 1.05617 0.06128 0.12001 0.00239 735 89 732 30 731 14

DLH-1-13 2.70 0.06347 0.00216 1.04098 0.03034 0.11889 0.00159 724 39 724 15 724 9

Fig. 3. (Colour online) Representative CL images andU–Pb concordia diagramof zircon
grains fromtheXialanuoergabbros.Thesmall yellowandlargebluecirclesare locations for
U–PbdatingandHf-isotopeanalyses, respectively.Errorellipsesrepresent1σuncertainties.
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Table 3. Major- (wt %) and trace-element (ppm) compositions of the Xialanuoer gabbros

Sample DLH-2 DLH-3 DLH-4 DLH-5 DLH-6 DLH-7

Lithology Gabbro Gabbro Gabbro Gabbro Gabbro Gabbro

SiO2 44.97 45.25 49.42 49.40 48.51 47.68

TiO2 1.94 1.98 1.65 1.66 1.73 1.83

Al2O3 14.30 14.50 16.06 16.05 16.40 16.62

Fe2O3T 15.65 14.90 10.98 10.97 11.22 11.23

MnO 0.22 0.21 0.17 0.17 0.15 0.15

MgO 10.35 9.78 7.66 7.67 7.27 7.28

CaO 7.92 8.21 7.59 7.59 8.43 8.97

Na2O 2.40 2.50 4.05 4.06 3.80 3.75

K2O 0.74 0.92 0.74 0.73 0.90 0.92

P2O5 0.35 0.38 0.16 0.16 0.19 0.19

LOI 0.86 1.04 1.11 1.13 1.11 1.12

SUM 99.69 99.66 99.60 99.60 99.73 99.74

Li 52.5 50.8 38.2 39.4 33.9 36.1

Be 0.86 0.88 0.64 0.65 0.75 0.77

Sc 26.3 27.2 22.6 22.6 25.6 27.7

V 208 216 197 200 224 243

Cr 99.0 56.5 69.7 70.3 69.7 69.7

Co 78.5 71.6 58.0 58.9 55.4 58.6

Ni 159 125 127 129 108 119

Cu 64.5 41.9 54.4 55.4 52.4 60.4

Zn 113 109 85.5 86.4 86.9 86.0

Ga 17.2 17.6 17.8 17.8 17.7 18.8

Ge 1.42 1.47 1.31 1.34 1.62 1.61

Rb 10.2 13.1 12.4 12.3 15.7 17.8

Sr 263 299 397 396 362 335

Y 25.3 26.9 16.0 16.2 20.2 21.4

Zr 127 144 85.5 86.2 108 112

Nb 4.69 4.93 8.62 8.82 10.8 11.2

Cs 0.40 0.48 0.75 0.75 0.75 0.56

Ba 468 578 1519 1502 657 659

La 15.4 17.7 9.40 9.70 11.3 11.9

Ce 37.0 39.9 22.0 22.2 26.0 28.3

Pr 4.81 5.12 2.78 2.86 3.39 3.66

Nd 21.9 23.5 13.0 13.3 15.8 17.1

Sm 4.89 5.18 3.08 3.18 3.83 4.03

Eu 1.61 1.72 1.08 1.12 1.28 1.34

Gd 4.91 5.16 3.42 3.50 4.14 4.40

Tb 0.76 0.81 0.49 0.53 0.65 0.68

Dy 4.67 4.94 3.03 3.20 3.87 4.05

Ho 0.95 1.00 0.59 0.62 0.75 0.79

Er 2.67 2.80 1.42 1.67 2.05 2.12

Tm 0.38 0.40 0.20 0.23 0.28 0.29

(Continued)
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Table 3. (Continued )

Sample DLH-2 DLH-3 DLH-4 DLH-5 DLH-6 DLH-7

Lithology Gabbro Gabbro Gabbro Gabbro Gabbro Gabbro

Yb 2.42 2.57 1.28 1.39 1.71 1.78

Lu 0.36 0.39 0.17 0.20 0.24 0.26

Hf 3.10 3.46 2.18 2.17 2.68 2.83

Ta 0.28 0.30 0.57 0.57 0.70 0.73

Pb 4.01 3.89 4.10 4.07 1.69 1.56

Th 0.74 0.82 0.95 0.95 1.19 1.25

U 0.17 0.19 0.23 0.23 0.30 0.31

Fig. 4. (Colour online) Rock classification diagrams for the mafic rock samples. (a) Nb/Y vs Zr/TiO2 diagram (Winchester & Floyd, 1977). (b) Ta/Yb vs Ce/Yb diagram (Pearce, 1982).
Mid-Neoproterozoic mafic igneous rocks from the SQB (Ma et al. 2017; Bai et al. 2019; Wang et al. 2019; Ji et al. 2020).

Fig. 5. (Colour online) (a) Chondrite-normalized REE patterns. (b) Primitive-mantle-normalized incompatible-element abundances. Chondrite and primitive-mantle values are
from Sun & McDonough (1989).
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Table 4. Hf-isotope compositions of zircon grains from the Xialanuoer gabbros

Spot Age (Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ ϵHf (t) 2σ TDM (Ma) TDMC (Ma) fLu/Hf

DLH-1-2 730 0.036769 0.001260 0.282069 0.000050 –9.4 1.8 1679 2230 –0.96

DLH-1-3 725 0.050632 0.001627 0.282131 0.000031 –7.5 1.1 1607 2106 –0.95

DLH-1-4 1949 0.021780 0.000645 0.281546 0.000017 –0.7 0.6 2367 2620 –0.98

DLH-1-5 755 0.041887 0.001339 0.282146 0.000026 –6.2 0.9 1574 2046 –0.96

DLH-1-6 757 0.085620 0.002765 0.282037 0.000023 –10.7 0.8 1795 2331 –0.92

DLH-1-7 745 0.052945 0.001795 0.282025 0.000022 –10.9 0.8 1765 2335 –0.95

DLH-1-8 720 0.045595 0.001569 0.281954 0.000023 –13.8 0.8 1854 2498 –0.95

DLH-1-9 1295 0.039248 0.001187 0.281574 0.000018 –14.7 0.6 2362 2985 –0.96

DLH-1-10 2078 0.021172 0.000751 0.281411 0.000033 –2.8 1.2 2557 2845 –0.98

DLH-1-11 2397 0.011253 0.000439 0.281380 0.000037 3.8 1.3 2578 2690 –0.99

Table 5. Summary of published zircon U–Pb ages for the ca. 824–675 Ma magmatic rocks in the northeastern Tibetan Plateau

No. Location Rock type Dating method* Age (Ma) Reference

1 North Qilian Gneissic granites LA-ICP-MS U–Pb 751 ± 14 Su et al. 2004

2 North Qilian Gneissic granites SHRIMP U–Pb 774 ± 23 Tseng et al. 2006

3 North Qilian Gneissic granites SHRIMP U–Pb 776 ± 10 Tseng et al. 2006

4 North Qilian Gabbros LA-ICP-MS U–Pb 675 ± 31 Song et al. 2016

5 North Qilian Basalts LA-ICP-MS U–Pb 764 ± 3 Song et al. 2016

6 North Qilian Basalts TIMS U–Pb 733 ± 7 Mao et al. 1997

7 North Qilian Basalts TIMS U–Pb 738 ± 4 Mao et al. 1997

8 South Qilian Basalts LA-ICP-MS U–Pb 786 ± 5 Ji et al. 2020

9 South Qilian Basalts LA-ICP-MS U–Pb 713 ± 4 Wang et al. 2019

10 South Qilian Basalts LA-ICP-MS U–Pb 736 ± 6 Bai et al. 2019

11 South Qilian Trachytes LA-ICP-MS U–Pb 740 ± 14 Bai et al. 2019

12 South Qilian Gabbros LA-ICP-MS U–Pb 730 ± 3 Ma et al. 2017

13 South Qilian Gabbros LA-ICP-MS U–Pb 738 ± 11 This study

14 North Qaidam Gneissic granites LA-ICP-MS U–Pb 744 ± 28 Lu et al. 2002

15 North Qaidam Basalts LA-ICP-MS U–Pb 768 ± 39 Yang et al. 2006

16 North Qaidam Gabbros LA-ICP-MS U–Pb 780 ± 22 Yang et al. 2006

17 North Qaidam Basalts LA-ICP-MS U–Pb 748 ± 6 Chen et al. 2009

18 North Qaidam Basalts LA-ICP-MS U–Pb 795 ± 7 Chen et al. 2009

19 East Kunlun Diabases LA-ICP-MS U–Pb 733 ± 6 Ren et al. 2010

20 East Kunlun Gabbros LA-ICP-MS U–Pb 796 ± 41 Ren et al. 2011

21 Central Qilian Block Basalts LA-ICP-MS U–Pb 713 ± 53 Xu et al. 2008

22 Central Qilian Block Basalts LA-ICP-MS U–Pb 824 ± 49 Xu et al. 2008

23 Quanji Block Basaltic andesites TIMS U–Pb 800 Li et al. 2003

* SHRIMP: sensitive high-resolution ion microprobe; TIMS: thermal ionization mass spectrometry.
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crustal contamination. In addition, their Lu/Yb ratios (0.14–0.15)
are lower than those expected for continental crust (0.16–0.18)
(Rudnick & Gao, 2003). Their Nb/Ta ratios (average of 15.85) are
higher than crustal average values (12–13) (Barth et al. 2000) but
closer to the values expected for the mantle (15.9 ± 0.6) (Pfänder
et al. 2007), suggesting derivation from a parental magma generated
by partial melting of mantle material that underwent insignificant
crustal contamination prior to emplacement.

Asthenosphere–lithosphere interaction plays a key role in the
genesis of continental basalts (Turner & Hawkesworth, 1995),
and Nb/La ratios can be used to discriminate between magmas
derived from the asthenospheric mantle and the sub-continental
lithospheric mantle (SCLM). Asthenospheric mantle-derived
melts are generally characterized by high Nb/La ratios (0.9–1.3)
(Sun & McDonough, 1989), whereas SCLM-derived melts have
lower Nb/La ratios that are similar to those expected for
continental crust (Wang et al. 2014). The Xialanuoer gabbros have
lowNb/La ratios (average of 0.72) that are similar to those expected
for SCLM-derived melts (Wang et al. 2014), and their low Th/Nb
and Th/La ratios (averages of 0.12 and 0.08, respectively) are con-
sistent with derivation from enriched mantle of type-I (EMI-type)
mantle (Saunders et al. 1987; Weaver, 1991; Ernst & Buchan,
2003). Combining the very negative zircon ϵHf(t) values (−13.8
to −6.2) with the trace element geochemical characteristics of
the Xialanuoer gabbros suggests that they probably formed from
melts derived from an EMI-type enriched region of the litho-
spheric mantle.

6.c. Tectonic setting

The tectonic setting of the Mid-Neoproterozoic magmatic activity
in the SQB remains controversial, with some studies suggesting
this magmatism occurred in a continental rift setting (Bai et al.
2019; Ji et al. 2020) and others inferring that it occurred in an active
continental arc setting (Ma et al. 2017; Wang et al. 2019).

Arc-type and within-plate basalts can be distinguished using
Zr/Sm and Ti/V ratios (Zhou et al. 2007). In general, within-plate
basalts have high Zr/Sm (>25) and Ti/V ratios (>20). Themajority
of the Xialanuoer gabbros and contemporaneousmafic rocks in the

SQB have high Zr/Sm (25–38) and Ti/V (24–56) ratios (Ma et al.
2017; Bai et al. 2019; Wang et al. 2019; Ji et al. 2020) that are con-
sistent with the values expected for within-plate basalts.
Continental rift basalts have Th/Ta and Ta/Hf values of 1.6–4.0
and 0.1–0.3, respectively (Wang et al. 2001). The Xialanuoer gab-
bros and contemporaneous mafic rocks have Th/Ta and Ta/Hf
ratios of 1.66–to 3.65 and 0.09–0.28, respectively (Ma et al.
2017; Bai et al. 2019; Wang et al. 2019; Ji et al. 2020), indicative
of formation in a continental rift setting. Plotting the Xialanuoer
gabbros and mafic rocks on Zr vs Zr/Y, Zr vs TiO2, Ti/100 –
Zr – Y * 3, and Nb * 2 – Zr/4 – Y diagrams yields similar results
(Fig. 7a–d).

The 796–675 Ma mafic rocks in the northeastern Tibetan
Plateau formed in a within-plate setting (Fig. 7a–d), again consis-
tent with a continental rift setting (Xu et al. 2008; Chen et al. 2009;
Ren et al. 2010, 2011; Song et al. 2016; Xia et al. 2016; Ma et al.
2017; Bai et al. 2019; Ji et al. 2020). The Mid-Neoproterozoic mag-
matism in the SQB therefore represents an extension of the mag-
matism identified in the Quanji and Central Qilian blocks. This
~600 km long igneous belt extends from the northwestern and cen-
tral parts of the SQB to the southeastern SQB, through the western
Danghenanshan and on to eastern Tianjun (Fig. 1b).

6.d. Tectonic implication

The Xialanuoer gabbros provide further constraints on the compo-
sition of Precambrian basement rocks in the SQB and the crustal
evolution of this region. The captured ca. 2397 and 2078–1295 Ma
zircon grains in the gabbro have one positive ϵHf(t) (þ3.8) and
multiple negative (−14.7 to −0.7) ϵHf(t) values, respectively
(Table 4; Fig. 6), indicating the probable existence of Early
Precambrian basement rocks in the SQB and providing evidence
of Palaeoproterozoic crustal growth and Mesoproterozoic
reworking.

Previous studies have indicated that the Central Qilian Block
and surrounding terranes were involved in the Neoproterozoic
amalgamation and break-up of Rodinia (Song et al. 2013; Tung
et al. 2013; Xu et al. 2015; Yan et al. 2015; Wang et al. 2017;
Zhang et al. 2017; S Li et al. 2018; Qin et al. 2018), an event asso-
ciated with magmatism (Table 5). These continental rift-related
magmatic rocks are widespread in the Qilian – Qaidam – East
Kunlun region of the northeastern Tibetan Plateau and record
the lithospheric extension and thinning. The Duoruonuoer
Group in the Central Qilian Block, the schists of the
Balonggonggaer Formation in the SQB, and the Heitupo-
Hongtiegou-Zhoujieshan Formations of the Quanji Group in
the Quanji Block provide the sedimentary record of Mid-
Neoproterozoic continental rifting within the northeastern
Tibetan Plateau (Li et al. 2003; Ji et al. 2018; Qin, 2018; Li
et al. 2019).

Widespread Mid-Neoproterozoic continental rift-type sedi-
mentation and anorogenic magmatism is also recorded in other
Rodinia blocks, including the Tarim (Xu et al. 2013; Zhang
et al. 2013), South China (Ling et al. 2003; Wang et al. 2011;
Wan et al. 2019), Australia (Powell et al. 1994; Wingate et al.
1998; Preiss, 2000), North America (Park et al. 1995; McClellan
& Gazel, 2014) and Southern Africa blocks (Frimmel et al.
2001). These major global rifting events triggered Rodinian
disintegration.

Fig. 6. (Colour online) Zircon Hf-isotope compositions of the Xialanuoer gabbros.
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7. Conclusions

(1) The Xialanuoer gabbros in the SQB formed at ca. 738 Ma, and
was contemporaneous with the widespread mafic magmatism
in the northeastern Tibetan Plateau.

(2) The Xialanuoer gabbros underwent little to no crustal con-
tamination and show geochemical characteristics of within-
plate basalts. Their parental magma was probably sourced
from an EMI-type enriched region of the lithospheric mantle.
They formed in a continental rift setting, rather than an arc-
related setting.

(3) In the SQB, crustal growth and reworking likely occurred in
the Palaeoproterozoic and Mesoproterozoic.

(4) The Central Qilian, Quanji, Qaidam and East Kunlun blocks
that make up the present northeastern Tibetan Plateau played
a significant role during the break-up of Rodinia.
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