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Abstract. In this paper we present a theoretical investigation of the growth/
propagation of a ring ripple, superposed on a Gaussian electromagnetic beam
propagating along the direction of magnetic field in a magnetoplasma. The nature
of propagation of the ripple is analysed in a paraxial-like approximation by radial
expansion of the dielectric function, corresponding to the composite (Gaussian and
ripple) electric field profile of the beam around the position of the maximum of the
ripple. The two cases of collisional plasmas (with negligible thermal conduction)
and collisionless plasmas (dominant ponderomotive nonlinearity) are considered.
The effect of the magnetic field on the critical curves and focusing/defocusing of
the ripple are studied and discussed.

1. Introduction
The nonlinear interaction of intense electromagnetic beams with plasmas has been
the subject of many experimental and theoretical studies in recent years due to its
relevance to laser-driven fusion [1–6] (i.e. inertial confinement fusion (ICF)), and
some other exotic phenomena, e.g. ionospheric modification [7–13] and laser-based
charged particle acceleration [14, 15]. Most of these studies are applicable only in
the absence of a magnetic field, while in many situations of interest the magnetic
field is significant enough to play an important role. It is well known that in the
presence of an external static magnetic field the plasma displays an anisotropic
character of the dielectric function [16–18], which leads to two distinct modes
of wave propagation, namely the extraordinary and the ordinary modes. Several
investigations have been devoted to plasmas embedded in an external magnetic
field in the context of nonlinear processes [16–22]. Recently Sodha et al. [23] have
developed a theory for self-focusing, considering both the conduction by the ionic
and electronic species as well as collisions, in a fully ionized collisional magneto-
plasma, while Sharma et al. [24] have analysed the three characteristic regimes
for the propagation of an electromagnetic beam in a magnetized plasma. Further
Sodha and Sharma [25] have applied the theory of self-focusing to the ionosphere,
taking the Earth’s magnetic field into account.
In many situations, laser or electromagnetic beam propagation through a non-

linear medium may be perturbed by a plasma instability, characterized by a small-
scale electron density perturbation resulting from irradiance fluctuations (small
intensity spikes) in the plane, transverse to the direction of propagation. The
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perturbation grows at the cost of themain beam, is relevant to the physics of inertial
confinement fusion. In the experiments on laser–plasma interaction the filamentary
structures created in an underdense plasma undergo self-focusing [26, 27], which
destroys the symmetry of energy deposition and triggers parametric instabilities
that may lead to back and side scattering of the main beam. Thus, such instabilities
are detrimental to ICF and other heating experiments.
There are two complementary approaches to the analysis of the growth/

propagation of the instabilities. The first approach [28–51] considers an instabil-
ity E1 exp[i(k⊥x + k‖z)], superposed onto an intense electromagnetic laser beam
E0 exp[i(ωt + kz)] and gets an expression for the spatial growth rate of the in-
stability, i.e. ik‖ in terms of relevant parameters, and looks for the condition when
k‖ is imaginary. However, this approach is limited to instability in one direction
in the transverse plane and to idealized beams with uniform irradiance along the
wavefront. The other approach is based on the direct [52,53] and indirect [54] evid-
ence, suggesting that the filamentational instability in nonlinear media is caused
by the occurrence of strong irradiance spikes, riding on an incident smooth-looking
irradiance distribution in the plane, transverse to the direction of propagation. On
the basis of the paraxial theory formulated by Akhmanov et al. [55] and developed
by Sodha et al. [39, 56], the growth of a Gaussian ripple on a plane uniform
beam [57–61] and of a ring ripple on a Gaussian electromagnetic beam [62–69] in a
plasma have been investigated to a significant extent. An interesting critique of the
two approaches has been made by Sodha and Sharma [70]. In a recent investigation,
Misra and Mishra [71] have adopted a modified approach based on a paraxial-like
approximation and analytically investigated the nature of the propagation of a ring
ripple, superposed onto a Gaussian electromagnetic beam in a plasma. However,
the behaviour of the ripple in a magnetized plasma has received relatively less
attention [55,60,63] and in this context the present investigation aims at exploring
the propagation of a ring ripple, riding on a Gaussian electromagnetic beam in a
magnetoplasma.
The present work is based on the modified approach followed by Misra and

Mishra [71] and represents the extension of the theory to plasmas, embedded in an
external static magnetic field. The present investigation is inclusive of the following
considerations.

(i) The radial field distribution profile of the electromagnetic beam has been
taken as that of the composite electric field of the Gaussian beam and the
ring ripple, and treated as such throughout the analysis. This assumption
leads to the same dielectric function for both the ring ripple part as well
as a Gaussian part of the electromagnetic beam and hence the same focusing
factors (valid in the vicinity of the maximum of the ripple). This is in contrast
to the earlier analyses [62–69], which separately consider the beam and the
ripple, leading to incorrect results.

(ii) The diffraction term chosen in the present analysis is appropriate for the
vicinity of the maximum of the irradiance of the ring ripple, occurring away
from the beam axis (r = 0).

(iii) The r independent terms in the eikonal of the beam is taken into account,
with the phase difference between the electric field vectors associated with
the Gaussian part and the ring ripple part changing continuously.
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(iv) All of the relevant parameters have been expanded in terms of the radial
distance from the maximum of the ring ripple, which is away from the axis
r = 0.

(v) The external static magnetic field B0 in the homogeneous plasma has been
taken to be along the direction of the propagation of the beam.

(vi) The plasma is electrically neutral everywhere.

(vii) Two cases of plasma nonlinearity have been considered, namely the pon-
deromotive nonlinearity (valid for collisionless plasmas) and the collisional
nonlinearity, neglecting thermal conduction (which is valid, when (δcr2

0/l2)
� 1).

(viii) For computational convenience ν2
e � (ω ∓ ωc)2 has been assumed.

The authors have studied the critical curve for the ring ripple part, the depend-
ence of the beam width parameter associated with the vicinity of the maximum
of the ring ripple part on various factors in the presence of magnetic field for
collisionless (with dominant ponderomotive nonlinearity) and collisional plasmas.
To determine the dependence of the electron density on the irradiance of the
beam (i.e. the electron temperature), the results of the kinetic theory [39] have
been adopted. Furthermore, the effect of varying the magnitude of magnetic field
on critical curves has also been explored. The numerical results and discussion
concludes the paper.

2. Propagation of the ring ripple on a Gaussian
electromagnetic beam

Propagation

Consider the propagation of a Gaussian electromagnetic beam with a small coaxial
perturbation (the ring ripple), in a magnetoplasma along the direction of the mag-
netic field (i.e. z-axis). The complex amplitude of the effective electric field E±
(associated with one of the two modes of the propagation) of the Gaussian electro-
magnetic beam with a coaxial ring ripple can be expressed as

E± = (Ex ± iEy ) = A± exp i

(
ωt −

∫ z

0
k±(z) dz

)
, (1a)

where

A±(z = 0) = E00± exp
(

− r2

2r2
0

)
+ E10±

(
r2

r2
1

− δ

)n/2

exp
(

− r2

2r2
1

)
exp(iφp), (1b)

A refers to the complex amplitude of the electromagnetic beam, E00 and E10
correspond to the initial amplitude of the Gaussian beam (with initial beam width
r0) and the ring ripple (with initial beam width r1), respectively, k(z) is the wave
number defined as k±(z) = (ω/c)

√
ε0±(z), ε0±(z) is the dielectric function, at

r = rmax, the value of r corresponding to the maximum of the electric field of
the ring ripple part of the electromagnetic beam (far from the axis r = 0), n and
δ are positive numbers, characterizing the position of the ring ripple on the wave
front of the electromagnetic beam, φp is the initial phase difference between the
electric field vectors of the Gaussian and the ring ripple parts of the beam, ω is the
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wave frequency and the signs + and − correspond to extraordinary and ordinary
modes of propagation of the electromagnetic beam, respectively. The first term on
the right-hand side of (1b) corresponds to the Gaussian part, while the second term
represents the radial distribution of the coaxial perturbation in the form of the ring
ripple, having its maximum at r = rmax = r1

√
(n + δ).

The effective electric field vector E± satisfies the wave equation (in cylindrical
coordinate system) [39,56],

∂2E±
∂z2 + δm±

(
∂2E±
∂r2 +

1
r

∂E±
∂r

)
+ ε±(r, z)

ω2

c2 E± = 0, (2)

where ε±(r, z) is the effective dielectric function of the plasma and c is the speed of
light in free space.
On substituting E± from (1a) and neglecting (∂2A±/∂z2) (assuming A±(r, z) to

be a slowly varying function of z) the wave equation for electromagnetic beam
propagation along the direction of the magnetic field, namely along the z-axis,
reduces to

2ik±
∂A±
∂z

+ iA±
∂k±
∂z

= δm±

(
∂2A±
∂r2 +

1
r

∂A±
∂r

)
+

ω2

c2 (ε± − ε0±)A±, (3)

where

δm± =
1
2

(
1 +

ε0±(0)
ε0zz

)
,

ε0zz = 1 −
ω2
pe

ω2

(
1 +

ν2
e

ω2

)−1

is the dielectric tensor component along the z direction, ωpe is the plasma frequency
unaffected by the electromagnetic beam and νe is the collision frequency of electrons
with heavier species.
The complex amplitude A±(r, z) of the electric field E± may be expressed as,

A±(r, z) = A0±(r, z) exp(−ik±(z)S±(r, z)), (4)

where S±(r, z) is termed as the eikonal, associated with the electromagnetic beam.
Substitution for A±(r, z) from (4) in (3) and separation of the real and imaginary

parts, yield

2S±
k±

∂k±
∂z

+ 2
∂S±
∂z

+ δm±

(
∂S±
∂r

)2

=
δm±

k2
±A0±

(
∂2A0±
∂r2 +

1
r

∂A0±
∂r

)
+

ω2

k2
±c2 (ε± − ε0±)

(5a)
and

A2
0±

k±

∂k±
∂z

+
∂A2

0±
∂z

+ δm±A2
0±

(
∂2S±
∂r2 +

1
r

∂S±
∂r

)
+ δm±

∂A2
0±

∂r

∂S±
∂r

= 0. (5b)

In view of the interest of the current study (the ring ripple part, far from the axis
r = 0), one can use a paraxial-like approximation, which is valid around r = rmax,
the position of the maximum irradiance of the ring ripple; this is analogous to the
usual paraxial approach. One can thus express (5a) and (5b) in terms of z and a
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new variable χ± as

2S±
k±

∂k±
∂z

+ 2
∂S±
∂z

+
δm±
r2
1f 2

±

(λ + χ2
±)

χ2
±

(
∂S±
∂χ±

)2

=
δm±

k2
±A0±r2

1f 2
±

[
λ

χ2
±

(
∂2A0±
∂χ2

±
− 1

χ±

∂A0±
∂χ±

)
+

(
∂2A0±
∂χ2

±
+

1
χ±

∂A0±
∂χ±

)]

+
ω2

k2
±c2 (ε± − ε0±) (6a)

and

A2
0±

k±

∂k±
∂z

+
∂A2

0±
∂z

+
δm±A2

0±
r2
1f 2

±

[
λ

χ2
±

(
∂2S±
∂χ2

±
− 1

χ±

∂S±
∂χ±

)
+

(
∂2S±
∂χ2

±
+

1
χ±

∂S±
∂χ±

)]

+
δm±
r2
1f 2

±

(λ + χ2
±)

χ2
±

∂A2
0±

∂χ±

∂S±
∂χ±

= 0, (6b)

where χ2
± = [(r/r1f±)2 − λ] is a parameter introduced for convenience, λ = (n+ δ),

r1f±(z) is the width of the ring ripple and r2
max = λr2

1f 2
± indicates the position of the

maximum irradiance for the ring ripple; it is shown later that (6a) and (6b) lead to
retention of the original profile of the beam during propagation in the paraxial-like
approximation, i.e. when χ2

± � n.
In the paraxial-like approximation the relevant parameters (i.e. the dielectric

function ε±(r, z), eikonal and irradiance) may be expanded around the maximum
of the ring ripple, i.e. around χ± = 0. Thus, the dielectric function ε±(χ±, z) around
χ± = 0 can be expressed as

ε±(χ±, z) = ε0±(z) − χ2
±ε2±(z), (7)

where ε0±(z) and ε2±(z) are the coefficients associated with χ0
± and χ2

± in the
expansion of ε±(χ±, z) around χ± = 0. The expressions for these coefficients are
derived in the following.
Substitution for ε±(χ±, z) from (7) in (6a) and (6b) leads to,

2S±
k±

∂k±
∂z

+ 2
∂S±
∂z

+
δm±
r2
1f 2

±

(λ + χ2
±)

χ2
±

(
∂S±
∂χ±

)2

=
δm±

k2
±A0±r2

1f 2
±

[
λ

χ2
±

(
∂2A0±
∂χ2

±
− 1

χ±

∂A0±
∂χ±

)
+

(
∂2A0±
∂χ2

±
+

1
χ±

∂A0±
∂χ±

)]

− χ2
±

ω2

k2
±c2 ε2± (8a)

and

A2
0±

k±

∂k±
∂z

+
∂A2

0±
∂z

+
δm±A2

0±
r2
1f 2

±

[
λ

χ2
±

(
∂2S±
∂χ2

±
− 1

χ±

∂S±
∂χ±

)
+

(
∂2S±
∂χ2

±
+

1
χ±

∂S±
∂χ±

)]

+
δm±
r2
1f 2

±

(λ + χ2
±)

χ2
±

∂A2
0±

∂χ±

∂S±
∂χ±

= 0. (8b)
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In the paraxial-like approximation (χ2
± � n), the solution of (8b) may be written as

A2
0± =

E2
0±

f 2
±

exp[−μ(λ + χ2
±)] +

E2
1±

f 2
±

(n + χ2
±)n exp[−(λ + χ2

±)]

+
E0±E1±

f 2
±

(n + χ2
±)n/2 exp

[
−1

2
(1 + μ)(λ + χ2

±)
]

cos φp, (9a)

where

S±(χ±, z) =
χ2

±
2

β±(z) + ϕ±(z), (9b)

β±(z) =
r2
1f±
δm±

df±
dz

,

E2
0± = E2

00±

(
k±(0)
k±(z)

)
= E2

00±

(
ε0±(0)
ε0±(z)

)1/2

,

E2
1± = E2

10±

(
k±(0)
k±(z)

)
= E2

10±

(
ε0±(0)
ε0±(z)

)1/2

,

μ = (r2
1/r2

0 ), ϕ±(z) is a function of z and f±(z) is the beam width parameter.
For further algebraic analysis, it is convenient to expand the A2

0± as a polynomial
in χ2

±; thus,

A2
0± = g0± + g2±χ2

± + g4±χ4
± + g6±χ6

±, (10)

where

g0± =
E2

0±
f 2

±
(e−μλ + p2

±nne−λ + 2p±nn/2e−(μ+1)λ/2 cos φp), (11a)

g2± = −
E2

0±
f 2

±
(μe−μλ + p±μnn/2e−(μ+1)λ/2 cos φp), (11b)

g4± =
E2

0±
f 2

±

(
μ2

2
e−μλ − 1

2n
p2

±nne−λ + p±nn/2e−(μ+1)λ/2 cos φp

(
μ2

4
− 1

2n

))
,

(11c)

g6± =
E2

0±
f 2

±

(
−μ3

6
e−μλ +

1
3n2 p2

±nne−λ

+ p±nn/2e−(μ+1)λ/2 cos φp

(
μ

4n
+

1
3n2 − μ3

24

))
(11d)

and p± = (E1±/E0±).
On substituting A2

0± and S± from (10) and (9b) into (8a), and equating the
coefficients of χ0

± and χ2
± on both sides of the resulting equation, one obtains

g2
0±f±

δm±

(
ε0±

d2f±
dξ2 +

1
2

dε0±
dξ

df±
dξ

)

+ 2g2±g0±ε0±

[
Φ±
ε0±

dε0±
dξ

+
(

2
dΦ±
dξ

− λ

δm±

(
df±
dξ

)2)]

=
δm±
f 2

±
(4g0±(2g4± + 3λg6±) + g2

2±) − ρ2
0g

2
0±ε2± (12a)
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and

ε0±g2
0±

[
Φ±
ε0±

dε0±
dξ

+
(

2
dΦ±
dξ

− λ

δm±

(
df±
dξ

)2)]

=
δm±
f 2

±
(2g0±(g2± + 2λg4±) − λg2

2±), (12b)

where ξ = (c/r2
1ω)z is the dimensionless distance of propagation, ρ0 = (r1ω/c) is the

dimensionless initial width of the ring ripple and Φ± = (ω/c)ϕ± is the dimensionless
phase function associated with the eikonal.
The parameter Φ± can be eliminated between (12a) and (12b); thus,

g2
0±f±

δm±

(
1
2

dε0±
dξ

df±
dξ

+ ε0±
d2f±
dξ2

)
+

2δm±
f 2

±

g2±
g0±

(2g0±(g2± + 2λg4±) − λg2
2±)

=
δm±
f 2

±
(4g0±(2g4± + 3λg6±) + g2

2±) − ρ2
0g

2
0±ε2±. (13)

The dependence of the beam width parameter f± on the dimensionless distance of
propagation ξ can be obtained by the numerical integration of (13) after substitut-
ing suitable expressions for ε0±(z) and ε2±(z), with the initial boundary conditions
f± = 1 and df±/dξ = 0 at ξ = 0; furthermore, the variation of Φ± with distance of
propagation ξ may be obtained by integrating (12a) and (12b) simultaneously with
an additional boundary condition Φ± = 0 at ξ = 0.

Dielectric function

Following Sodha et al. [39, 56], the effective dielectric function of the plasma can
be expressed as

ε±(r, z) = 1 − Ω2
[

(1 ∓ ωc/ω)
(νe/ω)2 + (1 ∓ ωc/ω)2

](
N0e±
N0

)
, (14)

whereΩ = (ωpe/ω), ωpe = (4πN0e
2/m)1/2 is the electron plasma frequency, ωc is the

electron cyclotron frequency, N0 is the undisturbed electron density of the plasma,
N0e is the electron density of the plasma in the presence of the electromagnetic
field, m is the mass of the electron and e is the electronic charge.
Following a paraxial like approximation (i.e. χ2

± � 1) one can expand the dielectric
function ε±(χ±, z) in axial and radial parts around the maximum of the ring ripple
(χ± = 0). Thus, one obtains from (7),

ε0±(z) = ε±(χ±, z)χ±=0 , (15a)

and

ε2±(z) = −
(

∂ε±(χ±, z)
∂χ2

±

)
χ±=0

. (15b)

Ponderomotive nonlinearity

In a collisionless magnetoplasma the redistribution of the electron density takes
place on account of the ponderomotive force on the electrons and modifies the
dielectric function of the plasma. The magnitude of the ponderomotive force is
proportional to the gradient of the irradiance. Such a nonlinearity sets in a period
of the order (r0/cs), where r0 is the width of the beam and cs is the ion sound

https://doi.org/10.1017/S002237780900782X Published online by Cambridge University Press

https://doi.org/10.1017/S002237780900782X


552 S. Misra and S. K. Mishra

speed. Hence, for a collisionless plasma (with νe ≈ 0) at moderate fields (when the
quiver speed of the electron is much smaller than the speed of light in vacuum), the
modified electron density function N0e± is given by [39,56],

N0e± = N0 exp [−γ1±βE±E∗
±], (16)

where

γ1± =
(1 ∓ ωc/2ω)
(1 ∓ ωc/ω)2 ,

β = (e2/16kBT0ω
2m),

kB is the Boltzmann constant and T0 is the temperature of the atoms/ions.
SubstitutingN0e± from (16) in (14) and using (15a), (15b) and (10), one can easily

obtain ε0±(z) and ε2±(z) as

ε0±(z) = 1 − Ω2

(1 ∓ ωc/ω)
exp(−γ1±βg0±) (17a)

and

ε2±(z) = − Ω2

(1 ∓ ωc/ω)
γ1±βg2± exp(−γ1±βg0±). (17b)

Collisional nonlinearity

In collisional plasmas, the radial distribution of the temperature of constituent
particles (electrons and ions) takes place in the transverse plane on account of the
non-uniform radial dependence of irradiance of the beam; this non-uniformity in
temperature creates the pressure gradients of the electron and ion gases. In the
steady state with plasma neutrality these pressure gradients are balanced by the
space charge field, and lead to a redistribution of the electron density and, hence,
the modified dielectric function. The collisional non-linearity sets in a period 1/δcνe,
where δc is the fractional loss of excess energy by an electron in a collision with
heavier species (ions and neutral) and νe is the electron collision frequency. For a
collisional magnetoplasma the modified electron density functionN0e± is thus given
by [39,56],

N0e± = N0(1 + γ2±αE±E∗
±)(s/2)−1 , (18)

where

α = (e2/3kBT0ω
2mδc),

γ2± =
[

ω2

ν2
e + (ω ∓ ωc)2 +

ω2

ν2
e + (ω ± ωc)2

]

and the collision frequency νe is proportional to the sth power of the random
electron speed. For electron–ion collision dominant plasma s = −3 and for electron–
neutral collision dominant plasma s = 1. Equation (18) is based on the fact that
in the magnetoplasma the heating of the electrons takes place on account of both
the modes of propagation and thermal conduction does not play a significant part
in the energy balance of electrons (which is justified [39] when (δcr2

0/l2) � 1). It is
also assumed that the heavier particles are abundant enough to provide a heat sink
at almost constant temperature for energy loss by the electrons.
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SubstitutingN0e± from (18) in (14) and using (15a), (15b) and (10), one can obtain
ε0±(z) and ε2±(z) as

ε0±(z) = 1 − Ω2
[

(1 ∓ ωc/ω)
(νe/ω)2 + (1 ∓ ωc/ω)2

]
(1 + γ2±αg0±)(s−2)/2 (19a)

and

ε2(z) = −Ω2γ2±[(2 − s)/2]αg2±

[
(1 ∓ ωc/ω)

(νe/ω)2 + (1 ∓ ωc/ω)2

]
(1 + γ2±αg0±)(s−4)/2 .

(19b)

Critical condition for focusing: critical curves

Using the expression for ε2±(z) for any specific non-linearity, (13) ensures vanishing
of d2f±/dξ2 for a value of p±, for a given E2

0±, corresponding to the dimensionless
ripple beam width ρ0f±, when

ρ2
0g

2
0±ε2± =

1
f 2

±
(4g0±(2g4± + 3λg6±) + g2

2±), (20a)

which at ξ = 0 reduces to

ρ2
0ε2±(0) =

[
1

g2
0±

(4g0±(2g4± + 3λg6±) + g2
2±)

]
ξ=0

. (20b)

On substitution for the coefficients g0±, g2±, g4± and g6± from (12a), one obtains
(20b), which represents the critical power curve plotted as ρ0 versus p± and separ-
ates the self-focusing region from the rest. For the points lying above the critical
power curve the beam undergoes oscillatory convergence (self-focusing) while for
the points below this curve the beam executes oscillatory divergence or steady
divergence. The points on the curve lead to self-trapped mode propagation of the
ring ripple. Thus, by using (20a), one can obtain the critical power curve for any
specific mode for both kinds of nonlinearities.

3. Scheme of computation
For a numerical appreciation of the results, the critical curves and the dependence
of the beam width parameter f± (in the vicinity of the maximum of the ring
ripple) on ξ for a chosen set of parameters and different kinds of nonlinearities
have been computed by considering the propagation of the extraordinary mode of
the electromagnetic beam in a magnetoplasma.
The critical curves for the propagation of the ring ripple, between p0±(= E10±/

E00±) that is, p±(ξ = 0) and the initial dimensionless width of the ring ripple ρ0 ,
have been plotted with the help of (20b), by using appropriate expressions for ε0±
and ε2±, corresponding to the different modes for both kinds of nonlinearities and
chosen sets of parameters E2

0±, δ, φp, μ, n, ωc, s and Ω. The critical curve for
the collisional magnetoplasma corresponds to the approximation ν2

e � (ω ∓ ωc)2 .
Furthermore, computations have been performed to investigate the variation of the
beam width parameter f± associated with the propagation of the ring ripple on the
dimensionless distance of propagation ξ in the plasma. Starting with a combination
of parameters βE2

00± (or αE2
00±), p0±, ρ0 and Ω, one can obtain the solution for the

beam width parameter f± and Φ± by simultaneous numerical integration of (12a)
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and (12b) using the parameters ε0± and ε2± under appropriate boundary conditions,
namely f± = 1, df±/dξ = 0 and Φ± = 0 at ξ = 0.

4. Numerical results and discussion
The present analysis investigates the propagation characteristics of a coaxial ring
ripple superimposed onto a Gaussian electromagnetic beam, propagating through a
homogeneous plasma, along the direction of the static magnetic fieldB0 (z-axis); the
electric field profile of the propagating beam is assumed to be composed of the radial
electric field distributions of the Gaussian beam as well as that of the ring ripple.
A paraxial-like approach has been adopted to analyse the characteristics of the
propagation. The nature of the propagation of the ring ripple is characterized by the
dielectric function (tensor in the presence of a magnetic field) which becomes modi-
fied by the effective electric field of the electromagnetic beam (i.e. the composite field
of both the Gaussian and ring ripple parts). In view of the interest of the present
study (the ring ripple), all of the characteristic parameters (i.e. dielectric function
ε±(r, z), eikonal S± and irradiance) have been expanded around the maximum of
the electric field of the ring ripple part (i.e. at r2 = λr2

1f 2
±) and evaluated on the

basis of a paraxial-like approach. Such a modification is a significant departure
from earlier studies [62–69] in which the Gaussian beam and the ring ripple have
been treated as separate entities having a separate dielectric function for each part.
This approach was based on the assumption that the dielectric function of the main
beam is modified only by its own field, while that for the ripple is modified by the
resultant electric field on account of the ring ripple as well as that of the main
beam. This simplification leads to erroneous conditions for the growth or decay of
the ring ripple. In the current study the modified diffraction term is appropriate for
the region around the maximum of the ring ripple, far from the axis r = 0; it also
depends on other parameters such as irradiance, δ, φp, μ, n and p0±, in contrast to
the earlier investigations [62–69].
The parameter Φ± does not occur in (13) for f± and hence at first look it seems

that the parameter Φ± is not relevant to self-focusing of the ring ripple. However,
a more careful look reveals that the second term on the left-hand side of (13) is a
consequence of the inclusion ofΦ± in the analysis; this was ignored in earlier studies.
It may be emphasized that (13) is valid only in the vicinity of the maximum of the
irradiance of the ring ripple and is not applicable in the vicinity of r = 0, where
the maximum irradiance of the Gaussian part of the beam occurs.
The results of the present analysis can be appreciated through numerical compu-

tation of the critical power curves and the dependence of the beam width parameter
f± on the dimensionless distance of propagation ξ for a chosen set of parameters
E2

0±, δ, φp, μ, n, ωc and p0±, for collisionless (dominant ponderomotive nonlinearity)
and collisional magnetoplasmas. The figures herein correspond to the extraordinary
mode (+) of the propagation of the electromagnetic beam; however, the correspond-
ing curves for ordinary mode (−) may be obtained in the same fashion by replacing
ωc with (−ωc).
The critical curve for the ring ripple characterizes its propagation characteristics

and defines a specific region for self-focusing in the ρ0 (dimensionless initial width)
−p0± (ratio of the initial amplitude of the ripple and the Gaussian beam) space.
A beam corresponding to a point (ρ0 , p±) in the ρ0 − p0± space above the critical
curve executes oscillatory (or self-)focusing, while for points lying below the critical
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Figure 1. Critical curves for the ring ripple (the dependence of the initial beam width
ρ0 (= r1ω/c) on p0+ (= E10+ /E00+ )), corresponding to ponderomotive nonlinearity for the
extraordinary mode of propagation of the beam in a magnetoplasma, for the standard set
of parameters Ω2 = 0.8, (ωc/ω) = 0.2, μ = 0.001, δ = 1, n = 1, φp = π/3 and βE2

00+ = 1;
(a)–(e) refer to the effect on the critical width by varying the parameter n, δ, μ, φp and
βE2

00+ , respectively, keeping the rest of the constants the same (the magnitude of the varying
parameter is indicated above the curve).
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Figure 1. Continued.

curve it displays oscillatory divergence or steady divergence. The set of Fig. 1
illustrates the dependence of the initial dimensionless amplitude of the electric
field p0+ (associated with the ring ripple) on the dimensionless initial ring ripple
width ρ0(= r1ω/c) for self-trapping corresponding to the collisionless plasma with
dominant ponderomotive nonlinearity for the extraordinary mode of propagation
of the electromagnetic beam. The figures correspond to a standard set of parameters
βE2

00+ = 1.0, δ = 1.0, φp = π/3, μ = 0.001, n = 1.0, Ω2 = 0.8, (ωc/ω) = 0.2 and
the effect of the variation of each individual parameter (keeping the rest of them
the same) on the critical curves of the ring ripple, has been shown in different
figures; the nature of the curves is justified by the saturating character of the
nonlinearities.
Figure 1(a) illustrates the effect of variation of the parameter n on the critical

curve of the ring ripple and predicts that the self-focusing region increases with
the increasing value of n. This can be understood in terms of the nonlinearity
containing term ε2+(z) which falls sharply with increasing p0+ for lower values of
n. The ring ripple exhibits weaker interaction with the field of the Gaussian part
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Figure 2. The effect of the variation of the static magnetic field (i.e. ωc/ω) on the critical
curves for the extraordinary mode of propagation of the beam in a magnetoplasma, for the
parameters Ω2 = 0.8, μ = 0.001, δ = 1, n = 1, φp = π/3 and βE2

00+ (or αE2
00+ ) = 1;

(a) refers to collisionless magnetoplasma (with dominant ponderomotive nonlinearity) while
(b) and (c) correspond to collisional nonlinearity with s = −3 and s = 1, respectively (the
magnitude of the varying parameter is indicated above the curve).
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Figure 3. Variation of the dimensionless extraordinary beam width parameter f+ on the
dimensionless distance of propagation ξ, in a collisionless magnetoplasma with dominant
ponderomotive nonlinearity, for the parameters Ω2 = 0.8, (ωc/ω) = 0.2, μ = 0.001, δ = 1,
n = 1, φp = π/3 and βE2

00+ = 2.0; the curves refer to a chosen set of parameters (ρ0 , p+ )
as indicated over the curves.

of the electromagnetic beam as the position of the ring ripple moves away from
the axis r = 0 (i.e. δ increases); thus, the region of self-focusing also decreases (this
nature has been displayed in Fig. 1(b)). The larger the parameter μ, the ratio of the
initial width of the ring ripple part to that of the Gaussian part, i.e. (r1/r0)2 , the
larger is the region for self-focusing as expressed in Fig. 1(c). Furthermore, Fig. 1(d)
suggests that the focusing occurs at lower initial ring ripple width ρ0 with increase
in the initial phase difference φp between the electric fields of the Gaussian beam and
that of the ring ripple; this behaviour is characteristic of saturating nonlinearity
and high values of axial irradiance (for the ring ripple). Similarly one can explain
the nature of the curves of Fig. 1(e) which indicates larger critical width of the ring
ripple for higher irradiance of the Gaussian part of the electromagnetic beam. The
computations (not given here) have also been made for collisional magnetoplasma
and the critical curves were found to follow similar trends.
The set of Fig. 2 describes the effect of the variation of the applied external

magnetic field on the critical power curve of the ring ripple for both kinds of
nonlinearities. From Fig. 2(a) it is seen that for a collisionless plasma the lower
critical curves (ρ0 versus p0+ ) correspond to lower values of (ωc/ω) with consequent
enhancement of the region for self-focusing; this can be understood in terms of
saturating nonlinearity, which implies that the main parameter responsible for self-
focusing is not ε(EE∗) but [dε±/d(EE∗)]. Furthermore, Figs 2(b) and (c) corres-
pond to the critical curves for collisional nonlinearity with electron–ion collision
dominant plasma (s = −3) and for electron–neutral collision dominant plasma
(s = 1), respectively; the critical curves display opposite trends of the dependence
on (ωc/ω). This is because, as a result of electron heating, larger redistribution of
electrons takes place for s = −3 than that for the case s = 1.
Figure 3 expresses the dependence of the beam width parameter f+ on the dimen-

sionless distance of propagation ξ for a collisionless magnetoplasma with dominant
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ponderomotive nonlinearity. Figure 3 describes the characteristic propagation of
the ring ripple on a Gaussian beam in the three regions for chosen points (ρ0 , p0+)
corresponding to the self-focusing, oscillatory divergence and steady divergence;
the relevant parameters are βE2

00+ = 2.0, δ = 1.0, φp = π/3, μ = 0.001, n = 1.0,
Ω2 = 0.8 and (ωc/ω) = 0.2. The curves are in conformance with the above discussion
regarding critical curves.
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