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Mind the Gap: Boltzmannian versus
Gibbsian Equilibrium
Charlotte Werndl and Roman Frigg*

There are two main theoretical frameworks in statistical mechanics, one associated with
Boltzmann and the other with Gibbs. Despite their well-known differences, there is a
prevailing view that equilibrium values calculated in both frameworks coincide. We
show that this is wrong. There are important cases in which the Boltzmannian and Gibb-
sian equilibrium concepts yield different outcomes. Furthermore, the conditions under
which equilibriums exists are different for Gibbsian and Boltzmannian statistical me-
chanics. There are, however, special circumstances under which it is true that the equi-
librium values coincide. We prove a new theorem providing sufficient conditions for this
to be the case.
1. Introduction. There are two main theoretical frameworks in statistical
mechanics (SM), one associated with Boltzmann and the other with Gibbs.
One of the crucial differences is the characterization of equilibrium. While
in the Boltzmannian framework equilibrium corresponds to the largest macro-
region, the Gibbsian framework associates equilibrium with the stationary
probability distribution of maximum entropy. The Boltzmannian picture is
usually accepted as correct when it comes to answering foundational ques-
tions, in particular in connection with the approach to equilibrium. At the
same time the Gibbsian framework is dismissed as “thoroughly misguided”
(Goldstein 2001, 39) and stands accused of introducing theoretical instru-
ments that we “neither have nor . . . need” (Lebowitz 1993, 38). Yet, the
Gibbsian framework is the undisputed workhorse of the practitioner.

This would be not be particularly worrisome if the two formalisms were
equivalent or intertranslatable as, for instance, the Schrödinger and the Hei-
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senberg picture in quantum mechanics. But they are not. Not only do they
disagree on how equilibrium is conceptualized; they do not even study the
same entities. While the Boltzmannian framework investigates individual
systems, the object of study in the Gibbs approach are ensembles, and there
is no obvious way to translate results from one framework into the other.
This creates an awkward situation: how can we think that the Boltzmannian
framework gives the right foundational account of SM and at the same time
rely on the Gibbsian framework for calculations if the two accounts are in
fact at odds with each other?

A common response is to play down the severity of the problem with the
argument that the two frameworks lead to the same results. One can, so the
argument goes, use the Gibbs formalism as an effective tool for the calcu-
lation of equilibrium values of a wide spectrum of physical quantities be-
cause these coincide with the values that would come out of the Boltzmann
machinery if one was able to make the calculations. However, the reasoning
behind this assertion remains unclear. Either it is simply asserted as an ob-
vious truism (Davey [2009] and Wallace quoted in Werndl and Frigg [forth-
cominga]), or arguments are given only for special cases (Malament and
Zabell 1980; Lavis 2005). So the claim that Gibbsian and Boltzmannian
equilibrium values generally coincide has the status of an article of faith. Faith
need not be wrong, but it can be. The project for this article is to investigate
whether the purported equivalence of results really holds.

Our answer is negative. If understood as a general proposition, the claim
is provably wrong. After briefly introducing the Boltzmannian and the Gibb-
sian notions of equilibrium (sec. 2), we present two examples in which Boltz-
mannian and Gibbsian equilibrium values come apart: the baker’s gas (sec. 3)
and the Ising model (sec. 4). The differences between the two frameworks
have gone unnoticed partly because Boltzmannian and Gibbsian calculations
are seldom carried out on the same systems. We make a first step toward rec-
tifying this situation by discussing our examples from both theoretical van-
tage points, which makes visible how the two frameworks differ. Things
get worse still. Not only do equilibrium values fail to coincide; equilibriums
do not necessarily exist under the same conditions. There are systems that
have a Boltzmannian equilibrium but fail to have a Gibbsian equilibrium
and vice versa (sec. 5). This raises the question whether there is even a grain
of truth in common wisdom, and the good news is that there is. We prove a
new theorem establishing that under certain special circumstances the re-
sults of the two formalisms indeed coincide (sec. 6). We describe these cir-
cumstances in some detail and give examples. We end by offering some
conclusions (sec. 7).

2. Equilibrium in Gibbs and Boltzmann. In this section we briefly intro-
duce the Boltzmannian and the Gibbsian notions of equilibrium (for details,
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see Uffink 2007; Frigg 2008). Throughout the article we consider systems
with a phase space X. Let mX denote the probability measure on X. Further,
let Tt(x) denote the state of the system after t time units that starts in x. The
dynamics Tt is usually deterministic. Sometimes, for instance, in the Ising
model, dynamics are considered that are stochastic processes {Zt}. For ease
of presentation we state general definitions and results for the determinis-
tic case, but all definitions have stochastic equivalents and the results equally
also hold in the stochastic case (see Werndl and Frigg [2017] for a discussion
of stochastic systems).

In Gibbsian SM the object of study is an ensemble, an infinite collection
of independent systems that are all governed by the same equations but are
in different states. The ensemble is described by a probability density r(x, t),
x ∈ X , reflecting the probability of finding the state of a system chosen at
random from the ensemble in a certain part of X at time t. Physical observ-
ables are associated with real-valued functions f : X � t→R. The phase
average of such a function is

�f tð Þ 5
ð
X

f x, tð Þr x, tð Þ dx: (1)

According to the standard understanding of the formalism, phase averages
are observed in experiments. The Gibbs entropy of a distribution is

SG r½ � 5 2k

ð
X

r x, tð Þ log r x, tð Þ½ � dx, (2)

where k is Boltzmann’s constant. A distribution r(x, t) is stationary if it does
not depend on time: r(x, t) 5 r(x) for all t. In Gibbsian SM equilibrium is
the property of an ensemble. The ensemble is in equilibrium if the distribu-
tion is stationary and has maximum entropy given the constraints imposed
on the system. The most common equilibrium distributions are the micro-
canonical, canonical, and grand-canonical distributions (Uffink 2007).

It is customary to begin a presentation of Boltzmannian SM with the
combinatorial argument. However, it is now recognized that combinatorial
considerations do not provide a good general definition of Boltzmannian
equilibrium (Uffink 2007), and we therefore work with our own alternative
definition (Werndl and Frigg 2015a, 2015b).1 Consider the same dynamical
system as above and assume that the measure mX is stationary. At the macro-
level the system is characterized by a set of macrovariables {v1, ... , vl} (l ∈
N). They are measurable functions vi : X →R, associating a value with
each x ∈ X . We use capital letters Vi to denote the values of vi. A particular
1. Combinatorial considerations are of course still useful to construct macrostates, and
we rely on them below.
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set of values {v1, ... , vl} defines a macrostateMV1
, ::: ,Vl

.2 The region of phase
space corresponding to the macrostateMV1

, ::: ,Vl
, itsmacroregion, is denoted

by XMV1 ,:::,Vl .
The equilibriummacrostate is defined as the state in which a system spends

most of its time. Let LFR be the fraction of time a system spends in region R ∈
X in the long run:

LFR xð Þ 5 lim
t→∞

1

t

ð t

0

1A Tt xð Þð Þdt, (3)

where 1A(x) is the characteristic function of R: 1A(x) 5 1 for x ∈ R and 0 oth-
erwise. The notion of ‘most’ can be read in two different ways, leading to
two different notions of equilibrium. The first introduces a lower bound of
1/2 for the fraction of time spent in equilibrium, leading to the notion of an
a-ε-equilibrium:
2. M
only

3. W

4. Pr
stoch
libriu

8 Publ
Let a be a real number in the interval (1/2, 1], and let ε be a very small
positive real number.3 If there is a macrostateMV*1

, ::: ,V*l satisfying the fol-
lowing condition, then it is the a-ε-equilibrium state of S. There exists a set
Y ⊆ X such that mX (Y ) ≥ 1 2 ε, and all initial states x ∈ Y satisfy
LFXMV *

1
, ::: ,V *

l

(x) ≥ a.
The second reading takes ‘most’ to refer to the fact that the system spends
more time in equilibrium than in any other state (this can be less that 50% of
its time). This provides the g-ε-equilibrium:
Let g be a real number in (0,1] and let ε be a small positive real number
(ε < g). If there is a macrostate MV*1

, ::: ,V*l satisfying the following con-
dition, it is the g-ε-equilibrium state of S. There exists a set Y ⊆ X
such that mX (Y ) ≥ 1 2 ε and for all initial conditions x ∈ Y : LFXMV *

1
, ::: ,V *

l

(x) ≥
LFXM

(x) 1 g for all macrostates M ≠ MV*1
, ::: ,V*l .
It is obvious that on both notions of equilibrium the value associated with
the equilibrium macrostate is the observed value in equilibrium. It can be
proven that equilibrium states thus defined are the largest states in the sys-
tem in the following sense: their measure is larger than a(1 2 ε) > 1=2 for
an a-ε-equilibrium, and their measure is g 2 ε larger than the measure of
any other macroregion for a g-ε-equilibrium.4
acrostates can of course also be defined through an interval of values rather then
one value.

e assume that (1 2 a)ε > 1=2.

oofs for the deterministic case are given in Werndl and Frigg (2015a) and for the
astic case in Werndl and Frigg (2017). The problem of the existence of such equi-
m states is discussed in Werndl and Frigg (forthcomingb).
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3. Example 1: The Baker’s Gas. The baker’s gas consists of N identical
particles that evolve independently according to the baker’s transformation
(Lavis 2005). Its microstates are of the form x 5 (b1, c1, ::: , bN , cN ), where
bi ∈ ½0, 1� is the momentum and ci ∈ ½0, 1� is the position coordinate of
the ith particle. The system’s phase space therefore is X 5 ½0, 1�2N , which
is endowed with the uniform probability measure mX (the 2N-dimensional
Lebesgue measure). Time is discrete, and the evolution to the next time
step is given by applying the baker’s transformation to each coordinate: x 5
(:::bi, ci:::) evolves into L(x) 5 (:::v(bi, ci):::), where

v bi, cið Þ 5 2bi,
ci
2
  if  0 ≤ bi ≤

1

2
 and 2bi 2 1,

ci 1 1

2
 otherwise: (4)

Let us begin with the Boltzmannian treatment of the baker’s gas. Here mX is
the stationary measure. We now use combinatorial considerations to con-
struct the system’s macrostate. Consider a partition of the unit square (the
phase space for one particle) into cells of equal size dq whose dividing lines
run parallel to the position and momentum axes. This results in a finite par-
tition Qbg ≔ fqbg

1 , ::: , q
bg
k g, k ∈ N. The coarse-grained microstate of a parti-

cle is the cell in which a particle’s state lies. An arrangement is given by a
specification of the coarse-grained microstates of all the particles. A distri-
bution is a specification of how many particles’ states lie in a given cell.
Consider the distribution Dbg 5 (N1, N2, ::: ,Nk), where Ni is the number
of particles in cell qi. The number G(Dbg) of arrangements that lead to
the same distribution Dbg is G(Dbg) 5 N !=N1 !N2 ! ::: ,Nk !.

One can now define a partition on X by grouping together in one cell all
points that have the same distribution. It is easy to see that the cell Xu cor-
responding to the uniform distribution, that is, where Ni 5 N=k,5 is larger
than any other cell. We now introduce a macrovariable V as follows:
V (x) 5 0 for x ∈ Xu, and for all other cells of the partition V(x) takes values
between 106 and 108 so that no two cells have the same value. The baker’s
gas is ergodic (Lavis 2005) and, hence, spends more time in Xu than in any
other cell. Therefore, the long-run fraction of time for which the value of
V is 0 is larger than the long-run fraction for any other value. Thus, the
macrostate defined by V 5 0 is a g-0-equilibrium, and V 5 0 is the Boltz-
mannian equilibrium value.6

Let us now turn to theGibbsian treatment of the baker’s gas. The station-
ary maximum entropy distribution is the uniform distribution r(x) 5 1. The
phase space average �V for the macrovariable V will be greater than (1 2
5. We assume that N 5 k � r for some r ∈ N.

6. It is not an a-ε-equilibrium because the equilibrium macroregion takes up less than
half of the phase space for large N (Lavis 2005).
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mX (Xu)) � 106. Lavis (2005) has shown that mX (Xu) ≈ 0:47 (for large N),
and hence 0:53 � 106 5 530, 000 is a lower bound for �V .

So we find Boltzmannian and Gibbsian equilibrium values that are very
different. The macrovariable of this system is admittedly contrived, so one
might argue that the problem does not arise in practice. The grain of truth in
this remark is that much depends on the choice of the macrovariable, and
for sufficiently restrictive classes of macrovariables the problem can indeed
be avoided (see sec. 6 for a characterization of such classes). However, there
are real physical systems that do not fall into these classes. Thus, the relevant
contrast is not between ‘mathematical contrivance’ and ‘sensible physics’.
The example we discuss in the next section is a case in point.

4. Example 2: The Ising Model. The two-dimensional Ising model is an
important system in SM. We here consider a version of the model with
nearest-neighbor interactions in the absence of an external field. Despite be-
ing only two-dimensional, this model provides a realistic description of
crystals such as K2NF4 and RB2MnF4, which have strong horizontal and
weak vertical interactions (Baxter 1982).

Consider a regular two-dimensional lattice with N grid points. The lattice
is assumed to lie on a two-dimensional torus, so that every grid point has
exactly four nearest neighbors (allowing us to neglect border effects). At
every grid point there is a spin pointing either up (j 5 1) or down (j 5
21). The system’s microstate is given by

j 5 j1, ::: , jNf g, (5)

and its Hamiltonian is

H jð Þ 5 2Jo
nn

jijj: (6)

The sum is over all nearest-neighbor pairs, and the constant J ≥ 0 is the en-
ergy associated with the nearest-neighbor interaction (Baxter 1982).

We treat the model stochastically, and hence we first introduce probabil-
ities. The probability distribution has the form of a Gibbsian distribution, but
it is important to emphasise that at this point this is nothing more than a for-
mal definition that is neither Gibbsian nor Boltzmannian. We begin with the
partition function:

Z 5 o
j

e2bH jð Þ: (7)

The sum is taken over all possible configurations j of the model, and b 5
1=kT is a constant, where T is the temperature and k is Boltzmann’s con-
stant. The probability of finding the system in a certain configuration j is
given by the canonical distribution:
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P jð Þ 5 e2bH jð Þ

Z
: (8)

For large values of b (low temperature), the probabilities of the lower en-
ergy states are dominant. For small values of b (high temperature), the prob-
ability distribution is flattened out and all configurations are more or less
equally likely (Baxter 1982; Cipra 1987).

The Boltzmannian treatment is as follows. The probability P(j) is the sta-
tionary measure that defines the dynamics of the stochastic dynamical sys-
tem of section 2. It can be shown that this dynamics is in fact an irreducible
Markov chain, and irreducibility is the stochastic equivalent to ergodicity
(Berger 2001). As the relevant macrovariable we choose the internal energy:

E jð Þ 5 o
nn

2 Jjijj, (9)

where the sum is over all nearest-neighbor interactions. Let �j be the micro-
state for which ji 5 1 for all i, and let ĵ be the microstate for which jj 5
21 for all j. Then, A ≔ f�j, ĵg is the macroregion for which the internal en-
ergy has value E 5 22JN (because there are 2N nearest-neighbor pairs
for a quadratic lattice with N sites for N ≥ 9). As noted above, the larger
the b, the larger the probabilities of the lower energy states. Since the dy-
namics is irreducible, for large enough b the system spends most of its time
in A. Hence, A is a Boltzmannian g-0-equilibrium, and the value of the in-
ternal energy in equilibrium is 22JN.

Let us now turn to theGibbsian treatment. Here P(j) is the stationary mea-
sure of maximum entropy. As above the value of E is lowest for �j and ĵ,
namely,22JN. Since all other microstates have higher energy, the Gibbsian
phase average of E over all microstates is higher than 22JN (Baxter 1982;
Cipra 1987; Secular 2015).

It follows that the equilibrium value of the internal energy in a Boltz-
mann equilibrium (22JN ) is lower than in Gibbsian equilibrium. This dif-
ference arises because the macrovariable takes the lowest value in the larg-
est macroregion and a higher value in all other macroregions.

The difference between the equilibrium values is not negligible. By way
of illustration consider the case of a two-dimensional lattice with four grid
points: j 5 (j1, j2, j3, j4), where (j1, j2) constitute the first row and (j3, j4)
constitute the second row. Let b 5 1=2 and J 5 1. There are four nearest-
neighbor pairs. The Boltzmannian equilibrium macrostate is {(1, 1, 1, 1),
(21,21,21,21)}, and the equilibrium value is24. The value from phase
space averaging can be obtained as follows. There are two states that have
energy 24 and whose probability is e4=2=Z ≈ 7:389=Z: (1, 1, 1, 1), (21,
21,21,21). There are 12 states that have energy 0 and whose probability
is e0=2=Z 5 1=Z: (21, 1, 1, 1), (1, 21, 1, 1), (1, 1, 21, 1), (1, 1, 1, 21),
86/694088 Published online by Cambridge University Press
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(21,21,21, 1), (21,21, 1,21), (21, 1,21,21), (1,21,21,21), (1, 1,
21, 21), (21, 21, 1, 1), (1, 21, 1, 21), (21, 1, 21, 1). Finally, there are
two states that have energy 4 and whose probability is e24=2=Z ≈ 0:1353=Z:
(21, 1, 21, 1), (1, 21, 1, 21). Hence, the phase average is

24 � 2 � 7:389 1 0 � 12 � 1 1 4 � 2 � 0:1353

2 � 7:389 1 12 � 1 1 2 � 0:1353
5 22:1454: (10)

So the Gibbsian equilibrium value (22.1454) is almost half of the Boltz-
mannian equilibrium value (24).

Nothing depends on the choice N 5 4. It remains the case for large N
that Gibbsian phase averages will be different from the Boltzmannian equi-
librium values. Indeed this situation remains unchanged even in the limit
N →∞, where one also finds that the Boltzmannian and Gibbsian values
differ.7

5. Existence under Different Conditions. We have shown that Gibbsian
and Boltzmannian equilibrium values can fail to coincide. And things get
worse: there are systems that have a Boltzmannian equilibrium but fail to
have a Gibbsian equilibrium and vice versa.

5.1. GibbsDoesNot ImplyBoltzmann. Consider the baker’s gas (sec. 3)
with an even number of particles with one macrovariable V indicating
whether there are more particles on the left side of the container than on
the right side: V assumes value 1 if this is not the case, and it assumes value
0 if there are more particles on the right. The corresponding macrostates are
M1 and M0. Both macroregions have the same measure, namely, 1/2. The
dynamics is ergodic, and therefore the system spends half of the time in
M0 and half of the time in M1. For this reason the system has no Boltz-
mannian equilibrium (neither of the a-ε nor of the g-ε kind). However, there
exists a Gibbs equilibrium: the uniform measure mB is the stationary distri-
bution of maximum entropy.

The Ising model (sec. 4) provides another example. Consider again the
above case with four sites and assume b 5 0.8 Suppose that there are two
macrostates: (i) one in which all the molecules point upward, all the mole-
cules point downward, or there are an equal number of molecules that point
upward and downward (eight microstates in total) and (ii) one in which this
7. More specifically, one finds that for arbitrarily large N the macrovalue closest to the
value obtained by Gibbs phase space averaging will always be different from the macro-
value representing the Boltzmannian equilibrium.

8. This corresponds to an infinite temperature, which is often considered as an approx-
imation to very high temperatures (e.g., Baxter 1982). We work with b 5 0 for reasons
of simplicity; similar examples could be given for low but nonzero values of b.
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is not the case (again eight microstates in total). The usual dynamics con-
sidered for the Ising models are irreducible Markov chains. Recall that ir-
reducibility is the stochastic equivalent to ergodicity, and hence, as in the
previous example, there is no Boltzmannian equilibrium because both macro-
regions have the same measure 1/2. However, a Gibbsian equilibrium exists.
The probability P is the canonical distribution, which is the stationary distri-
bution of maximum entropy.

5.2. Boltzmann Does Not Imply Gibbs. Boltzmannian equilibrium is
defined for systems with a stationary measure mX, and so there always exists
at least one stationary distribution. Nevertheless, a stationary distribution of
maximum entropy need not exist, as the following example shows.

Consider a system with phase space ½0, 2� � ½0, 1�. The dynamics Tt of
the system consists of two ‘copies’ of the baker’s gas in the following sense:
the restriction of Tt to ½0, 1� � ½0, 1� is the standard baker’s transformation
(see sec. 3) and the restriction of Tt to (1, 2� � ½0, 1� is the baker’s transfor-
mation with the position coordinate shifted by one unit to the right. The
measure of the system is 1=3 � 1½0,1��½0,1� 1 2=3 � 1(1,2��½0,1�, where 1A is
the characteristic function of A. Since the baker’s system is ergodic, clearly,
the phase space consists of two components (½0, 1� � ½0, 1� and (1, 2� �
½0, 1�), restricted to each of which the dynamics is ergodic. Suppose that
the macrovariable takes the value 0 if the position coordinate is in [1/4,
7/4], 100 if the position coordinate is in [0, 1/4), 2100 if the position co-
ordinate is in (7/4, 2]. Clearly, there exists a Boltzmannian equilibrium.
The value 0 corresponds to a 0.75-0-equilibrium: since the system is ergo-
dic on each component and the 0 macrostate takes up three-quarters on each
component, three-quarters of the time the system takes the value 0.

Yet suppose that the class of distributions of interest are all densities over
½0, 2� � ½0, 1� of the form a1½0,1��½0,1� 1 b1(1,2��½0,1�, where a, b ≥ 0, a 1 b5 1,
and the uniform distribution (the case a 5 b 5 1=2) is excluded. Then
there is no Gibbsian equilibrium. It is clear that all distributions are station-
ary (because mB of the baker’s gas is stationary), but by construction, there
is no distribution of maximum entropy: the closer a and b are to 1/2, the
higher the entropy (2). Yet there is no maximum since the uniform distri-
bution (a 5 b 5 1=2) is not among the class of distributions under consid-
eration.

6. When Boltzmann and Gibbs Agree. This section focuses on special
cases in which the Boltzmannian and Gibbsian calculations agree. We first
consider the main case discussed in the literature. Then we present a new
theorem specifying a set of conditions under which Boltzmannian and Gibb-
sian values coincide. We show that many standard examples satisfy these
conditions and that they fail in the cases discussed in previous sections.
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Suppose that the relevant observable is such that it takes the value of the
phase average nearly everywhere on phase space. Furthermore, assume that
a Boltzmannian equilibrium exists. In such a situation it will be the case that
the value of the observable in the Boltzmannian equilibrium macrostate is
equal to the phase average. The question is under what circumstances some-
thing like this is the case. One such situation is described by Khinchin (1949).
He argued that phase functions have to satisfy strong symmetry require-
ments and therefore ought to have small dispersion for systems with a large
number of constituents (we refer to this as the ‘Khinchin condition’). This,
or something like it, is often taken to be an explanation of why calculations
in both frameworks coincide (Malament and Zabell 1980; Davey 2009;
Wallace quoted in Werndl and Frigg [forthcominga]).

This is correct, but the question is how far it goes. The point to note is
that the conditions rule out not only artificial examples but also realistic
physical models. Examples of systems with macrovariables that do not sat-
isfy the Khinchin condition include the Ising model with the internal energy
or the magnetization as macrovariables, the six-vertex model with the inter-
nal energy or the polarization as macrovariables (cf. Baxter 1982), and the
Kac ring with the standard macrostate structure of the number of black and
white balls.

So we need other conditions next to the Khinchin condition. Let us look
at a situation in which a system has both a Boltzmann and a Gibbs equilib-
rium. In this case the following theorem provides sufficient conditions for
the equilibrium values of both equilibriums to coincide:
9. He

8 Publ
Equilibrium Equivalence Theorem (EET). Suppose that the system (X,
Tt, mX) is composed of N ≥ 1 constituents. That is, the state x ∈ X is given
by the N coordinates x 5 (x1, ::: , xN ); X 5 X1 � X2::: � XN , where Xi 5
Xoc for all 1 ≤ i ≤ N (Xoc is the one-constituent space). Let mX be the prod-
uct measure mX1

� mX2
::: � mXN

, where mXi
5 mXoc

is the measure on Xoc.
Suppose that an observable k is defined on the one-particle space Xoc

and takes the values k1, ... , kk with equal probability 1/k, k ≤ N .9 Suppose
that the macrovariable K is the sum of the one-component observable; that
is, K(x) 5 oN

i51k(xi). Then the value corresponding to the largest macro-
region as well as the value obtained by phase space averaging is

N

k
k1 1 k2 1 :::kkð Þ:
The proof is stated in full in the appendix; an intuitive sketch is as follows.
Since the observable on the one-constituent space takes the values {k1, ..., kk}
with equal probability, combinatorial considerations show that the Boltz-
re, N is assumed to be a multiple of k, i.e., N 5 k � s for some s ∈ N.
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mannian equilibrium macroregion (i.e., the macroregion of largest size) is
the one where there are N/k constituents taking the value k1, N/k constituents
taking the value k2, ... , N/k constituents taking the value kk. That is, the
Boltzmannian equilibrium value is (k1 1 ::: 1 kk)N=k. The Gibbsian equi-
librium value obtained by phase averaging is also (k1 1 ::: 1 kk)N=k be-
cause one simply takes the average over all sequences of the {k1, ... , kk}
and the ki are equally probable.

The proof does not make any assumptions about the dynamics of the sys-
tem; in particular, it does not assume that the system is ergodic. The crucial
assumptions of the theorem are (i) that the macrovariable is a sum of the ob-
servable on the constituent space and that the system’s measure is the prod-
uct measure of its constituents and (ii) that the macrovariable on the con-
stituent space corresponds to a partition with cells of equal probability. This
theorem is important because it applies to many examples in SM. Con-
sider, for instance, the baker’s gas discussed in section 3. The gas involves a
partition of the unit square (the phase space for one particle) into cells
fqbg

1 , ::: , q
bg
k g, k ∈ N, of equal size dq. Suppose that a particle in q

bg
i takes

value ki for all i 5 1, ::: , k. Now the macrovariables often considered for
the baker’s gas are of the form K(x) 5 oN

i51k(xi) (e.g., Lavis 2005).10 Then
the assumptions of EET are satisfied. Thus, the Boltzmannian equilibrium
value is the same as the value obtained by Gibbsian phase space averaging,
namely, (k1 1 ::: 1 kk)N=k.

The Kac ring with the standard macrostate structure given by the mag-
netization and the ideal gas with the standard macrostates afford further ex-
amples of systems satisfying the conditions of the theorem (these examples
are discussed in Werndl and Frigg [2015b]). In the Boltzmannian frame-
work, one often considers macrovariables of the type assumed in the theo-
rem (Frigg 2008, 110). In these cases the Gibbsian and Boltzmannian equi-
librium calculations lead to the same results.

The examples discussed earlier in the article, showing that equilibrium
calculations in Boltzmannian and Gibbsian SM do not lead to the same re-
sults, violate the relevant assumptions. In the baker’s system with the macro-
variables as discussed in section 3 and in the Ising model with the internal
energy as an observable significant chunks of the phase space are taken up
by nonequilibrium states, which results in the Khinchin condition not being
satisfied. These two examples do not satisfy the assumptions of EET either
because the macrovariables of both the baker’s gas and the Ising model are
not the sum of a one-component macrovariable whose outcomes have equal
probability. What does the work in these two examples is that significant
parts of the phase space are taken up by nonequilibrium states and that the
Boltzmannian equilibrium state has the lowest value of the macrovariable.
10. Note that this macrovariable is very different from the one in sec. 3.
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This results in the phase average being different from the lowest value of the
macrovariable (the Boltzmannian equilibrium value).

These examples show that Gibbsian and Boltzmannian calculations can
but need not provide the same results.11 An important task of the founda-
tions of SM is to classify under which conditions the two frameworks lead
to the same results and under which conditions they do not. The Khinchin
condition and EET provide partial answers to this question. The answers are
partial because both offer only sufficient but not necessary conditions for
Gibbsian and Boltzmannian results being the same.

7. Conclusion. There is widespread belief that Gibbsian and Boltzman-
nian SM provide the same equilibrium values. We argued that this is false.
There are important cases in which the Boltzmannian and Gibbsian equilib-
rium calculations will lead to different results. Furthermore, the conditions
under which an equilibrium exists are different for Gibbsian and Boltzman-
nian SM. It is, however, true that the equilibrium values coincide under
special circumstances. We proved a new theorem giving conditions under
which this is the case.

This raises the question of what happens in cases in which the two do not
coincide. Is the Gibbsian or the Boltzmannian equilibrium the correct one?
For the Ising model the correct empirical conclusions follow from the Boltz-
mannian and not the Gibbsian calculations, and we suspect that this will be
the same for other cases. Which framework provides the correct values and
under which circumstances is a question for future research.
Appendix

Proof of the Equilibrium Equivalence Theorem

First, we determine the value of the largest macroregion. Recall that N is a
multiple of k and that the observable on the one-constituent space takes the
values {k1, ... , kk} with equal probability. Hence, for the macroregion of
largest size there are N/k particles taking the value k1, N/k particles taking
the value k2, ... , N/k particles taking the value kk. Therefore, the value of
the largest macroregion is (k1 1 ::: 1 kk)N=k.

Let us now determine the phase average. The proof is by mathematical
induction. We will show that the sum over all sequences of length N whose
11. This discrepancy is not an artifact of the use of our own definition of the Boltz-
mannian equilibrium. The same results would follow if one adopted the standard defi-
nition of the equilibrium as the largest macroregion.
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elements are in {k1, ... , kk} is kN21N (k1 1 ::: 1 kk). Because each sequence
has equal probability 1/kN, the desired result follows that the phase average
is

1

kN k
N21N k1 1 ::: 1 kkð Þ 5 N

k
k1 1 ::: 1 kkð Þ : (A1)

For N 5 1, because k ≤ N , k 5 1, and the sum over all sequences of
length N is k1 5 11211k1 5 k1.

For N →N 1 1, we need to determine the sum over all sequences of
length N 1 1. One obtains sequences of length N 1 1 by adding to se-
quences of length N one element at the end of the sequences. One can
add k possible elements at the end, and so a contribution to the sum over
all sequences of length N1 1 is k times the sum of the sequences of length
N; that is,

k � kN21N k1 1 ::: 1 kkð Þ: (A2)

What is still missing is the contribution from the element at the end. There
are kN sequences of length N to which a ki can be added, and hence this con-
tribution is

kN k1 1 ::: 1 kkð Þ: (A3)

Adding these two contributions leads to

k � kN21N k1 1 ::: 1 kkð Þ 1 kN k1 1 ::: 1 kkð Þ
5 kN N 1 1ð Þ k1 1 ::: 1 kkð Þ : (A4)
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