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Abstract
A k-permutation family on n vertices is a set-system consisting of the intervals of k permutations of the
integers 1 to n. The discrepancy of a set-system is the minimum over all red–blue vertex colourings of
the maximum difference between the number of red and blue vertices in any set in the system. In 2011,
Newman and Nikolov disproved a conjecture of Beck that the discrepancy of any 3-permutation family is
at most a constant independent of n. Here we give a simpler proof that Newman and Nikolov’s sequence
of 3-permutation families has discrepancy �( log n). We also exhibit a sequence of 6-permutation families
with root-mean-squared discrepancy �(

√
log n); that is, in any red–blue vertex colouring, the square root

of the expected squared difference between the number of red and blue vertices in an interval of the system
is �(

√
log n).

2020 MSC Codes: Primary: 68R01; Secondary: 05D99

1. Introduction
The discrepancy of a set-system is the extent to which the sets in a set-system can be simultane-
ously split into two equal parts, or two-coloured in a balanced way. LetA be a collection (possibly
with multiplicity) of subsets of a finite set �. The discrepancy of a two-colouring χ : � → {±1} of
the set-system (�,A) is the maximum imbalance in colour over all sets S in A. The discrepancy
of (�,A) is the minimum discrepancy of any two-colouring of �. Formally,

disc∞(�,A) := min
χ : �→{+1,−1} disc∞(χ ,A), (1.1)

where
disc∞(χ ,A)=max

S∈A
|χ(S)| and χ(S)=

∑
x∈S

χ(x).

A central goal of the study of discrepancy is to bound the discrepancy of set-systems with
restrictions or additional structure. Here we will be concerned with set-systems constructed from
permutations. A permutation σ : � → � from a set � with a total ordering� to itself determines
the set-system (�,Aσ ), where
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Aσ = {{i : σ (i)� σ ( j)} : j ∈ �} ∪ {∅}.
For example, if [3] inherits the usual ordering on natural numbers and e : [3]→ [3] is the
identity permutation, then Ae = {∅, {1}, {1, 2}, {1, 2, 3}}. Equivalently, Aσ is a maximal chain
in the poset 2[n] ordered by inclusion. If P = {σ1, . . . , σk} is a set of permutations of �, let
AP =Aσ1 + · · · +Aσk , where + denotes multiset sum (union with multiplicity). Then we say
(�,AP) is a k-permutation family.

By Dilworth’s theorem, the maximal discrepancy of a k-permutation family is the same as the
maximal discrepancy of a set-system of width k, that is, a set-system that contains no antichain of
cardinality more than k.

It is easy to see that a 1-permutation family has discrepancy at most 1, and the same is true
for 2-permutation families [9]. Beck conjectured that the discrepancy of a 3-permutation fam-
ily is O(1). More generally, Spencer, Srinivasan and Tetali [10] conjectured that the discrepancy
of a k-permutation family is O(

√
k). Both conjectures were recently disproved by Newman and

Nikolov [7]. They showed the following.

Theorem 1.1 ([7]). There is a sequence of 3-permutation families on n vertices with discrepancy
�( log n).

The same authors together with Neiman [6] showed that the above lower bound implies that
a natural class of rounding schemes for the Gilmore–Gomory linear programming relaxation of
bin-packing (such as the scheme used in the Kamarkar–Karp algorithm) incur logarithmic error.

Spencer, Srinivasan and Tetali [10] proved an upper bound that matches the lower bound of
Newman and Nikolov for k= 3.

Theorem 1.2 ([10]). The discrepancy of a k-permutation family on n vertices is O(
√
k log n).

For very large k, in particular k� n, Spencer, Srinivasan and Tetali [10] showed that the dis-
crepancy is of the order of min{n,√n log (2k/n)}. For 3< k= o(n), however, the best known
lower bound is the trivial �( max

√
k, log n), leaving open the tightness of Theorem 1.2. Even

the following weaker conjecture is open.

Conjecture 1.3 (Michael Saks). There is a function f ∈ ω(1) such that there is a family Mn,k of
k-permutation families on n vertices satisfying

disc∞ (Mn,k)� f (k) log n

for all k, n ∈N with k� n.

In this paper we present a new analysis of the counterexample due to Newman and Nikolov.
We replace their case analysis with a simple argument using norms of matrices, albeit achieving
a worse constant ((4

√
6)−1 log3 n versus their 3−1 log3 n). Our analysis generalizes well to larger-

permutation families, and can hopefully be extended to handle Conjecture 1.3. Our analysis also
yields a new result for the root-mean-squared discrepancy, defined as

disc2 (�,A)= min
χ : �→{±1} disc2 (A, χ),

where

disc2 (A, χ)=
√

1
|A|

∑
S∈A

|χ(S)|2.
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Define the hereditary root-mean-squared discrepancy by

herdisc2 (�,A)=max
�⊂�

disc2 (�,A|�).

Theorem 1.4. There is a sequence of 6-permutation families on n vertices with root-mean-squared
discrepancy �(

√
log n).

For k= 6, Theorem 1.4 matches the upper bound of
√
k log n for the root-mean-squared dis-

crepancy implicitly proved in [10]. Further, in [3] it is shown that a certain efficiently computable
quantity approximates the hereditary root-mean-squared discrepancy up to a factor of

√
log n. As

communicated to the author by Aleksandar Nikolov, this quantity is constant for families of con-
stantly many permutations. Thus Theorem 1.4 shows that the

√
log n gap between herdisc2 (�,A)

and the quantity defined in [3] is best possible.

Remark 1.1 (odd discrepancy). The proofs of our lower bounds, Theorem 1.1 and Theorem 1.4,
only use that the assignment χ : � → {±1} assigns odd integers to �. As such, the lower bounds
still hold for the relaxed notion of discrepancy in which we allow χ : � → 2Z− 1.

2. The set-system of Newman and Nikolov
Our proof of Theorem 1.1 uses the same set-system as Newman and Nikolov. For completeness,
we define and slightly generalize the system here. The vertices of the system will be r-ary strings,
or elements of [r]d. For Newman and Nikolov’s set-system, r = 3. We first set our notation for
referring to strings.

Definition 2.1 (string notation).

• Bold letters, e.g. a, denote strings in [r]d for some d� 0. Here [r]0 denotes the set containing
only the empty string ε.

• If a= a1 . . . ad ∈ [r]d is a string, for 0� k� d let a[k] denote the string a1 . . . ak, with
a[0] := ε.

• If a is a string, |a| denotes the length of a.
• If a and b are strings, their concatenation in [r]|a|+|b| is denoted ab.
• If j ∈ [r], then j̄ denotes the all-j string of length d, for example

3 := 33 . . . 3︸ ︷︷ ︸
d

.

• τ denotes the permutation of [r] given by τ (i)= r − i+ 1, the permutation reversing the
ordering on [r].

We may now define the set-system of Newman and Nikolov.

Definition 2.2 (set-system ([r]d,AP)). Let < be the lexicographical ordering on [r]d. Given a
permutation σ of [r], we define a permutation σ of [r]d by acting digitwise by σ . Namely, σ (a) :=
σ (a1)σ (a2) . . . σ (ad). For any subset P ⊂ Sr of permutations of [r], define the permutation family
AP by

AP =A{σ : σ∈P}.
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Namely, the edges ofAP are ∅ and the sets�σ a defined by

�σ a := {b ∈ [r]|a| : σ (b)� σ (a)}
as σ ranges over P and a over [r]d. Note that for each σ ∈ P and a ∈ [r]d, AP also contains the
edges defined not to include a:

<σ a := {b ∈ [r]|a| : σ (b)< σ (a)}.
Definition 2.3 (set-system of Newman and Nikolov). The system of Newman and Nikolov is
([3]d,AC) with C = {e, (1, 2, 3), (1, 3, 2)}. That is, C is the cyclic permutations of 3.

We first bound the discrepancy of the 6-permutation family ([3]d,AS3 ). In fact, we bound the
smaller odd discrepancy of this family.

Theorem 2.1 (discrepancy lower bound). If r� 3 is odd, then

disc∞ ([r]d,ASr )�
d

2
√
6
.

Theorem 2.1 is proved in the next section, Section 2.1. We bound the discrepancy of AC in
terms of the discrepancy of AS3 . Theorem 1.1 follows immediately from Proposition 2.1 and
Theorem 2.1 for r = 3.

Proposition 2.1 ([7]).

disc∞ ([3]d,AC)�
1
2
disc∞ ([3]d,AS3 ).

Proof. The key observation is that [3]d is in reverse order under the action of σ and τ ◦ σ , so for
each σ , a, the edges�σ a and <τ◦σ a partition [3]d.

Let χ : [3]d → 2Z− 1 be an assignment of minimal discrepancy K to ([3]d,
AC). Let σ ∈ S3, a ∈ [r]d be arbitrary. It suffices to show |χ(�σ a)|� 2K. If σ ∈ C, then
|χ(�σ a)|�K and so the claim is trivial. If not, then τ ◦ σ ∈ C. By the above reasoning,

|χ(�σ a)| = |χ([3]d)− χ(<τ◦σ a)|� 2K.
We recall a few facts about the set-system of Newman and Nikolov. As observed in [7], the

quantity χ(<σ a) behaves additively under concatenation of strings. That is, if a= bc, then there is
a natural way to define colourings χε and χb of [r]|b| and [r]|c|, respectively, such that χ(<σ a)=
χε(<σ b)+ χb(<σ c). Further, this holds even if χ is a colouring of [r]d with any odd integers
(rather than just ±1).

Definition 2.4 (extension of colourings). We extend each assignment χ : [r]d → 2Z− 1 to

χ : [r]0 ∪ [r]1 ∪ · · · ∪ [r]d → 2Z− 1
by defining

χ(a)=
∑

|b|=d−|a|
χ(ab) for |a|� d.

Crucially, the entries of χ are indeed odd. Observe that

χ(a)=
∑
i∈[r]

χ(ai) (2.1)
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for |a| < d. For |a|� d, define

χa : [r]0 ∪ [r]1 ∪ · · · ∪ [r]d−|a|

by χa(b)= χ(ab) for |b|� d − |a|. In particular, χε and χ are equal as functions on [r]0 ∪ [r]1 ∪
· · · ∪ [r]d.

Proposition 2.2 (additivity of discrepancy). For any assignment χ : [r]d → 2Z− 1 and a= bc
with |a|� d, we have

χ(<σ a)= χε(<σ b)+ χb(<σ c) (2.2)

Proof. If |b′| = |b| and |c| = |c′|, then b′c′ is in �σ bc if and only if σ · b′ < σ · b or b′ = b and
σ · c′ < σ · c. Thus

χ(�σ bc)=
∑

σ ·b′<σ ·b

∑
|c′|=|c|

χ(b′c′)+
∑

σ ·c′<σ ·c
χ(bc′).

The right-hand side is precisely χε(<σ b)+ χb(<σ c).

2.1 Proof of the lower bound
In this section we prove Theorem 2.1, the lower bound on disc∞ ([r]d,ASr ). We now describe the
plan of the proof and use it to motivate several definitions. The proof appears afterwards at the
end of the section.

To show the discrepancy disc∞ ([r]d,ASr ) is at least K, it is enough to show (because, in partic-
ular, ±1 are odd) that given an assignment χ : [r]d → 2Z− 1, we can choose σ ∈ Sr and a ∈ [r]d
so that |χ(<σ a)| is at least K.

We do this in two steps. First, define a vectorMχ (a) depending on χ and the choice of a and an
appropriate norm ‖ · ‖ such that if ‖Mχ (a)‖�K, then there exists σ with |χ(<σ a)|� K. Next,
we choose a to maximize ‖Mχ (a)‖. The correct objectMχ turns out to be an r × r matrix-valued
function of a, and rather than a norm we use a seminorm denoted by ‖ · ‖Sr . We will define the
two such that, for any a ∈ [r]d,

max
σ

|χ(<σ a)| = ‖Mχ (a)‖Sr .

Definition 2.5 (seminorm ‖ · ‖Sr ). ForM ∈Matr×r (R) and σ ∈ Sr , define

σ ·M :=
∑

i,j∈[r], σ (i)>σ ( j)
Mi,j.

Now let ‖M‖Sr =maxσ∈Sr |σ ·M|.

Remark 2.1. This seminorm is well studied; ifM is the 0, 1 adjacency matrix of a directed graph
G, then ‖M‖Sr is the maximum size of an acyclic subgraph of G. In [2] it is shown that, assuming
the unique games conjecture, ‖M‖Sr is NP-hard to approximate even forM antisymmetric.

It remains to define the matrixM. We will defineM such that
χ(<σ a)= σ ·Mχ (a). (2.3)

Recall how we extended χ in Definition 2.4. If we defineMχ to be an additive function on [r]0 ∪
[r]1 ∪ · · · ∪ [r]d, i.e. one satisfying

Mχ (ab)=Mχε (a)+Mχa(b), (2.4)

https://doi.org/10.1017/S0963548320000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000474


Combinatorics, Probability and Computing 403

then by linearity of σ ·M in M we only need to check that (2.3) holds for d = 1. This motivates
our definition ofMχ .

Definition 2.6 (matrixMχ (a)). Let χ : [r]d → 2Z− 1. For d = 0, defineMχ (ε)= 0. For a ∈ [r],
i.e. d = 1, define Mχ (a) to be the r × r matrix with only the ath row non-zero, and the entries of
this row given by χ(1), χ(2) . . . , χ(r). Equivalently,

Mχ (a)i,j = δi,aχ(j) for a, i, j ∈ [r]. (2.5)

For d > 1, define

Mχ (a)=
|a|∑
k=1

Mχa[k−1] (ak). (2.6)

For example, suppose d = 2 and χ(11)= χ1(1)= 1, χ(12)= χ1(2)= −1, χ(13)= χ1(3)=
1 so that χ(1)= χε(1)= 1− 1+ 1= 1, and suppose also that χ(2)= χε(2)= 3 and χ(3)=
χε(3)= −3. Then

Mχ (12)=Mχε (1)+Mχ1 (2)=

⎡
⎢⎢⎣
1 3 −3
0 0 0
0 0 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0 0
1 −1 1
0 0 0

⎤
⎥⎥⎦.

We now prove that the matrix and seminorm we have defined have the promised property.

Proposition 2.3. For all χ : [r]d → 2Z− 1, (2.3) holds, and hence

max
σ

|χ(<σ a)| = ‖Mχ (a)‖Sr .

Proof of Proposition 2.3. First, we claim thatMχ is additive, that is, (2.4) holds. Indeed,

Mχ (ab)=
|a|∑
k=1

Mχa[k−1] (ak)+
|b|∑
k=1

Mχa(b[k−1]) (bk)=
|a|∑
k=1

Mχa[k−1] (ak)+
|b|∑
k=1

M(χa)b[k−1] (bk),

which is exactly Mχε (a)+Mχa(b). By additivity, it is enough to prove that (2.3) holds for d = 1.
This is a straightforward calculation. By (2.5), for a ∈ [r],

σ ·Mχ (a)=
∑

i,j∈[r], σ (i)>σ ( j)
δi,aχ(j)=

∑
j∈[r] : σ ( j)<σ (a)

χ( j).

The right-hand side is exactly χ(<σ a).

Now that we have Proposition 2.3, it remains to bound minχ maxa ‖Mχ (a)‖Sr below. This
quantity is at least the value of the following d-round game played between a ‘minimizer’ and a
‘maximizer’.

Definition 2.7 (seminorm unbalancing game). The states of the seminorm balancing game are
r × r integer matricesM. The matrixM is updated in each round as follows.

(1) The minimizer chooses a row vector v in (2Z− 1)r, i.e. a list of r odd numbers.
(2) The maximizer chooses a number i ∈ [r] and adds v to the ith row ofM.

The value for the maximizer is the value of ‖M‖Sr at the end of the game.
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We now discuss why the value of this game is a lower bound on minχ maxa ‖Mχ (a)‖Sr . The
sequence of moves made by the maximizer can be viewed as a string a ∈ [r]d, and we claim that
the assignment χ : [r]d → 2Z− 1 determines a strategy such that the value for the maximizer is
exactly ‖Mχ (a)‖Sr .

Here is how a colouring χ : [r]d → 2Z− 1 determines a strategy for the minimizer. If the
maximizer chose rows a= a1, . . . , ak−1 in rounds 1, . . . , k− 1, the minimizer chooses the vector
v= χ(a1), . . . , χ(ar) in round k, whereχ on [r]k+1 is determined by χ on [r]d as inDefinition 2.4.
If the minimizer plays this strategy and the maximizer plays a ∈ [r]d, the matrix after the kth
round will be Mχ (a[k]), because Mχa[k−1] (ak) has v in the akth row and zeros elsewhere. If the
minimizer is constrained to choose w, v in the (k− 1)th and kth rounds, respectively, such that∑r

i=1 vi =wak−1 , then by (2.2) the strategy of the minimizer is determined by some colouring χ

as above. However, we show that the value of the game is�(d) even without this constraint on the
minimizer.

To compute a lower bound on the value of the game, we first bound the seminorm below by
a simpler quantity. Recall that ‖M‖F denotes the Frobenius norm of the matrix M, i.e. it is the
square root of the sum of squares of its entries.

Lemma 2.4. For σ ∈ Sr chosen uniformly at random,

‖M‖Sr �
√
Eσ (σ ·M)2 � 1

2
√
6
‖M −MT‖F .

Proof of Lemma 2.4. The first inequality is immediate. Let T be the matrix with ones strictly
below the main diagonal and zeros elsewhere. For the second inequality, we use the identity

Eσ (σ ·M)2 = 1
4
( Tr T(M +MT))2 + 1

4
Eσ (σ · (M −MT))2. (2.7)

Equation (2.7) follows because the expectation of the square of a random variable is its mean
squared plus its variance, and Eσ σ ·M = 1

2 Tr T(M +MT). The second term is the variance
becauseM = 1

2 (M +MT)+ 1
2 (M −MT), and for any τ ∈ Sr we have τ · 1

2 (M +MT)=Eσ σ ·M.
Set A=M −MT . In particular, A is antisymmetric. Write

Eσ (σ ·A)2 =
∑

i�=j,k�=


Ai,jAk,lE[1σ (i)>σ ( j)1σ (k)>σ (
)]

= 1
4

∑
|{i,j,k,
}|=4

Ai,jAk,l + 1
3

∑
|{i,j,
}|=3

2Ai,jAi,


+ 1
6

∑
|{i,j,
}|=3

2Ai,jAj,
 + 1
2

∑
|{i,j}|=2

Ai,jAi,j.

This expression is obtained by computing E[1σ (i)>σ ( j)1σ (k)>σ (
)] in each of the cases and using
antisymmetry of A.

• If |{i, j, k, 
}| = 4, then E[1σ (i)>σ ( j)1σ (k)>σ (
)]= 1/4. This gives us the first term.
• If |{i, j, k, 
}| = 3, then either k ∈ {i, j} or 
 ∈ {i, j}. These two cases contribute the same
by antisymmetry, so we calculate for k ∈ {i, j}. In that case either k= i, in which case
E[1σ (i)>σ ( j)1σ (i)>σ (
)]= 1/3, or k= j, in which case E[1σ (i)>σ ( j)1σ ( j)>σ (
)]= 1/6. This
yields the second and third terms.

• If |{i, j, k, l}| = 2, then we have either (i, j)= (k, l), for which E[1σ (i)>σ ( j)1σ (i)>σ ( j)]= 1/2, or
(i, j)= (l, k), for which E[1σ (i)>σ ( j)1σ ( j)>σ (i)]= 0. This yields the last term.
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Because A is antisymmetric, the sum over |{i, j, k, l}| = 4 is zero. Dropping this term, using anti-
symmetry to combine the two terms with |{i, j, 
}| = 3, and observing that

∑
|{i,j}|=2 Ai,jAi,j =

‖A‖2F , we have

Eσ (σ ·A)2 = 1
3

(∑
i

(∑
j�=i

Ai,j

)2
− ‖A‖2F

)
+ 1

2
‖A‖2F �

1
6
‖A‖2F (2.8)

for any antisymmetric matrix A. Combining (2.8) and (2.7) completes the proof.

Proof of Theorem 2.1. By Lemma 2.4 it suffices to exhibit a strategy for the maximizer in the
seminorm unbalancing game of Definition 2.7 that enforces ‖M −MT‖F � d after d rounds. This
is rather easy. We may accomplish it by focusing only on two entries of M: the maximizer only
tries to control the 1, r and 2, r entries. If in the kth round the minimizer chooses vwith vr > 0, the
maximizer sets ak = 1; else, the maximizer sets ak = 2. Crucially, the entries of v are odd numbers;
in particular, they are greater than 1 in absolute value. Further, all but the first and second rows
of M are zero throughout the game. Thus, in the dth round, |(M −MT)2,r| + |(M −MT)1,r|� d
and, by antisymmetry, |(M −MT)r,2| + |(M −MT)r,1|� d so ‖M −MT‖F � d.

Remark 2.2 (improving the lower bound for higher values of r). To prove Conjecture 1.3, it
suffices to show that the maximizer can achieve ‖M‖Sr = f (r)d, where f (r)= ω( log r). A promis-
ing strategy is to replace ‖ · ‖Sr with another seminorm ‖ · ‖∗ and show that the maximizer
can enforce ‖ · ‖∗ � f (r)‖Id‖Sr→∗, where Id is the identity map on Matr×r (R). Obvious candi-
dates such as ‖M −MT‖F and ‖M −MT‖1 do not suffice. Here ‖B‖1 is the sum of the absolute
values of entries of B. For instance, the minimizer can enforce ‖M −MT‖F =O(d

√
log r) or

‖M −MT‖1 =O(
√
rd), and even antisymmetric matrices A can achieve

‖A‖Sr � ‖A‖F and ‖A‖Sr �
√
log r√
r

‖A‖1.

The first inequality is very easy to achieve, and a result of Erdős and Moon [1] shows that the
second is achieved by random ±1 antisymmetric matrices. By the inapproximability result men-
tioned in Remark 2.1, it is not likely that any of the easy-to-compute norms ‖ · ‖∗ have both
‖Id‖Sr→∗ and ‖Id‖∗→Sr bounded by constants independent of r. A candidate seminorm is the
cut-norm of the top-right (r/3)× (2r/3) submatrix of the r × rmatrixM: it is not hard to see that
this seminorm is a lower bound for ‖M‖Sr .

3. Root-mean-squared discrepancy of permutation families
This section is concerned with upper and lower bounds for hereditary root-mean-squared dis-
crepancy. The lower bound is Theorem 1.4, proved in Section 3.1. Afterwards, in Section 3.2, we
discuss two upper bounds for which Theorem 1.4 is a tight example.

3.1 Root-mean-squared discrepancy lower bound
We now proceed with the proof of Theorem 1.4, which follows immediately from the next
theorem.

Theorem 3.1 (root-mean-squared discrepancy of a 6-permutation family).

disc2 ([3]d,AS3 )= �(
√
d).
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We now give a proof strategy which motivates the rephrasing of Theorem 3.1 as a
lemma about a martingale (Lemma 3.1). Fix a colouring χ : [3]d → 2Z− 1. We must show
disc2 (AS3 , χ)2 = �(d). By Lemma 2.4 and (2.3),

disc2 (AS3 , χ)
2 =Ea,σ [|χ(<σ a)|2]� 1

2
√
6
Ea‖Mχ (a)−Mχ (a)T‖2F . (3.1)

Consider again the seminorm unbalancing game of Definition 2.7. We construct a martingale by
allowing the maximizer to choose rows randomly.

Definition 3.1 (martingaleYi). Let (Mi : i ∈ [d]) be a joint matrix-valued random variable deter-
mined by the minimizer playing strategy χ against the maximizer choosing the sequence of rows
a uniformly at random, or equivalentlyMi =Mχ (a[i]). Thus

Ea‖Mχ (a)−Mχ (a)T‖2F =Ea‖Md −MT
d ‖2F .

It is enough to show Ea‖Md −MT
d ‖2F = �(d). Consider the sequence of random variables

Yi = (Mi −MT
i )1,2 + (Mi −MT

i )2,3 − (Mi −MT
i )1,3.

By the Cauchy–Schwarz inequality, ‖Md −MT
d ‖2F � |Yd|2/3, so it is enough to show that

Ea[Y2
d]= �(d). We will instead show the following, which implies Theorem 3.1 by the same

reasoning.

Lemma 3.1. Let χ : [3]d → 2Z− 1. If disc2 (AS3 , χ)� 0.2(1.9/
√
3)d then Ea[Y2

d]� 10−5d.

We now make a few observations from which Lemma 3.1 will follow immediately. The
sequence Yi is indeed a martingale with respect toMi, because Yi − Yi−1 |Mi−1 is equally likely to
be v2 − v3, v3 − v1, or v1 − v2 if the minimizer chooses v in round i. Because Yi is a martingale,

EaY2
d =

d∑
i=1

Ea[i−1]

[
(v2 − v3)2 + (v1 − v3)2 + (v1 − v2)2

3

∣∣∣ a[i− 1]
]
. (3.2)

There are strategies for the minimizer that make the above quantity small, but we claim they are
bad strategies if they come from a colouring χ . If (v2 − v3)2 + (v1 − v3)2 + (v1 − v2)2 is small,
then v1, v2, v3 are typically equal. However, strategies induced by χ satisfy that vk1 + vk2 + vk3 =
vk−1
ak−1

if the minimizer chose vk−1, vk in round k− 1, k, respectively, and the maximizer chose
ak−1 in round k− 1. Further, vk typically having equal entries should lead to the entries of vk
exponentially decreasing with k, which means that for k small they must be very large. This leads
to a high discrepancy.

We now make this intuition precise.

Observation 3.2. Let χ : [3]d → 2Z− 1. If disc2 (AS3 , χ)2 � 1.92d/(24 · 3d), then |χ(ε)|� 1.9d.

Proof. First, because |AS3 |� 6 · 3d, if disc2 (AS3 , χ)2 � 0.25 · 1.92d/(6 · 3d), then |χ(E)|� 0.5 ·
1.9d for every E ∈AS3 . To finish, we need only express |χ(ε)| in terms of the discrepancy of edges.
Let id denote the identity permutation. By definition, χ(ε)= χ(�id 3̄), but�id 3̄ �∈AS3 . However,
�id 3̄ is the disjoint union of<id 3̄ and 3̄. In turn, because the vertices are ordered oppositely under
id and τ = (1, 3), we have 3̄=<τ 32. It follows that |χ(ε)| = |χ(<id 3̄)+ χ(<τ 32)|� 1.9d.

Next we show that the assumption |χ(ε)|� 1.9d implies many cancellations, and that this
implies (3.2) is large. For a ∈ [r]0 ∪ [r]1 ∪ · · · ∪ [r]d, define the cancellation of χ at a by

Cχ (a)=
∑
i∈[3]

|χ(ai)| − |χ(a)|. (3.3)
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For i ∈ {0, . . . , d − 1}, define the average cancellation Ci
χ =Ea∈[r]iCχ (a). The following two

propositions, along with Observation 3.2, imply Lemma 3.1.

Proposition 3.2. Let χ : [3]d → 2Z− 1. Then

EY2
d �

1
9d

(d−1∑
i=0

Ci
χ

)2
.

Proposition 3.3. Let χ : [3]d → 2Z− 1. If |χ(ε)|� 1.9d and d� 400, then
d−1∑
i=0

Ci
χ � 0.01d.

Proof of Proposition 3.2. In response to a= a1 . . . ak−1, the maximizer plays the vector
v= (χ(a1), χ(a2), χ(a3)). Then

Cχ (a)2 = (|v1| + |v2| + |v3| − |v1 + v2 + v3|)2 (3.4)
� (|v1 − v2| + |v2 − v3| + |v3 − v1|)2 (3.5)
� 3(|v1 − v2|2 + |v2 − v3|2 + |v3 − v1|2). (3.6)

Here (3.5) is the inequality |a| + |b| + |c| − |a+ b+ c|� |a− b| + |b− c| + |c− a|, which can be
proved by cases: without loss of generality, a� b� c, if all are positive, then both sides vanish; else,
without loss of generality a� 0� b. In this case the left-hand side is 2|a| but the right-hand side
is 2|a| + 2|c|. Thus, if the strategy of the minimizer is induced by χ , using (3.6) and (3.2) we have

EaY2
d =

d∑
i=1

Ea[i−1]

[
(v2 − v3)2 + (v1 − v3)2 + (v1 − v2)2

3

∣∣∣ a[i− 1]
]

� 1
9

d∑
i=1

Ea∈[r]i−1 [Cχ (a)2]

� 1
9

d−1∑
i=0

Ci
χ

2

� 1
9d

(d−1∑
i=0

Ci
χ

)2
.

Proof of Proposition 3.3. Define the average absolute value

|χi| =Ea∈[r]i |χ(a)|.
Note that |χi|� 1. Thus there exists j ∈ {1, . . . , �0.99d�} such that |χj−1|� 2|χj|, else

|χ(ε)| = |χ0|� 20.99d > 1.9d.

Taking the expectation of both sides of the definition (3.3) of cancellation yields the identity

Ci
χ = 3|χi+1| − |χi|,
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so
d−1∑
i=j−1

Ci
χ = 3|χd| − |χj−1| + 2

d−1∑
i=j

|χi|� 2
d−1∑
i=j+1

|χi|� 2(�0.01d� − 2).

The right-hand side is at least 0.01d provided d is at least 400.

3.2 Root-mean-squared discrepancy upper bounds
In this section we prove two upper bounds, Theorem 3.4 and Theorem 3.5, for the hereditary
root-mean-squared discrepancy. The bounds are analogous to the following bound for hereditary

∞-discrepancy from [5].

Theorem 3.3 ([5]). Let m= |A|. Then

herdisc∞ (�,A1 + · · · +Ak)=O
(√

k log (mn)
√
log n max

i∈[k]
herdisc∞ (�,Ai)

)
,

where + denotes the multiset sum (union with multiplicity).

The first is a bound for the hereditary root-mean-squared discrepancy of a union of families
with bounded hereditary discrepancy, and follows relatively straightforwardly from the results of
[5], [8] and [3].

Theorem 3.4 (communicated by Aleksandar Nikolov). We have

herdisc2 (�,A1 + · · · +Ak)=O
(√

k log n max
i∈[k]

herdisc∞ (�,Ai)
)
.

The next result bounds the same quantity, but for unions of families with bounded root-mean-
squared discrepancy. The proof mainly relies on a result appearing in [3] and [8], but requires one
technical lemma.

Theorem 3.5. We have

herdisc2 (�,A1 + · · · +Ak)=O
(
k
√
log n max

i∈[k]
herdisc2 (�,Ai)

)
.

If (�,A) is a 1-permutation family, then herdisc∞ (�,A)= 1. Combined with Theorem 3.4,
we immediately recover the bound which was proved directly in [9].

Corollary 3.4 ([9]). If (�,A) is a k-permutation family, then herdisc2 (�,A)�
√
k log n.

Theorem 1.4 implies that, for constant k, Theorem 3.4, Theorem 3.5 and hence Corollary 3.4
are tight. It would be interesting to improve k to

√
k in Theorem 3.5, thereby providing a common

strengthening of Theorem 3.4 and Theorem 3.5.
To prove Theorem 3.4 and Theorem 3.5 we introduce three quantities. The first is an

approximation for hereditary discrepancy, and the latter two are approximations for hereditary
root-mean-squared discrepancy.

Definition 3.2 (lower bounds). Let A denote the |�| × |A| incidence matrix of (�,A).
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(1) Define

detlb (�,A)=max
k

max
B

| det (B)|1/k,
where B runs over all k× k submatrices of A.

(2) Define

detlb2 (�,A)=max
�⊂�

√
m|�|
8πe

det (A|T�A|�)1/(2|�|).

(3) Let λl be the lth largest eigenvalue of ATA. Define

kgl (�,A)= max
1�l�min{|�|,|A|}

l
e

√
λl

8π |�||A| and herkgl (�,A)=max
�⊂�

kgl (�,A|�).

We now state the bounds obtained from each of the three quantities, beginning with the first.
The lower bound in the next theorem is from [4], and the upper bound (which we will not need
here) is from [5].

Theorem 3.6 ([4, 5]). Let n= |�| and m= |A|. Then
1
2
detlb (�,A)� herdisc∞ (�,A)=O( log (mn)

√
log n · detlb (�,A))

The next theorem shows how the second two quantities in Definition 3.2 approximate discrep-
ancy. The upper bound follows from Corollary 2 and the proof of Theorem 7 in [3]. The lower
bounds are from Theorem 6 in [3], but up to a constant the middle inequality is a corollary of
Theorem 11 in the earlier work [8].

Theorem 3.7 ([3, 8]). We have
herkgl (�,A)� detlb2 (�,A)� herdisc2 (�,A)=O(

√
log n · herkgl (�,A)).

Finally we will need to relate detlb and detlb2. Applying the Cauchy–Binet identity to det (ATA)
implies

detlb2 (�,A)=O( detlb (�,A)). (3.7)

Both of the quantities detlb and herkgl behave well under unions; the former was shown in [5],
and the latter we show here.

Theorem 3.8 ([5]). We have

detlb (�,A1 + · · · +Ak)=O
(√

k max
i∈[k]

detlb (�,Ai)
)
.

Theorem 3.9. We have
herkgl (�,A1 + · · · +Ak)� kmax

i∈[k]
herkgl (�,Ai).

Proof. Let C =maxi∈[k] herkgl (�,Ai). It is enough to show kgl (�, (A1 + · · · +Ak)|�)� kC for
any � ⊂ �. Let |�| = n,mi = |Ai|, and ∑

mi =m. If Ai is the incidence matrix of (�,Ai|�) and A
that of (�, (A1 + · · · +Ak)|�), then

ATA=AT
i Ai + · · · +AT

i Ai.
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Weyl’s inequality on the eigenvalues of Hermitian matrices asserts that if H1 and H2 are
n× n Hermitian matrices then λi+j−1(H1 +H2)� λ(H1)i + λ(H2)j for all 1� i, j� i+ j− 1� n.
Applying this inequality inductively,

λl(ATA)�
k∑

i=1
λ�l/k�(AT

i Ai).

Thus

kgl (�, (A1 + · · · +Ak)|�)= max
1�l�min{n,m}

l
e

√
λl(ATA)
8πmn

� max
1�l�min{n,mk}

l
e

√∑k
i=1 λ�l/k�(AT

i Ai)
8πmn

� kC,

where in the last line we used
∑

mi =m and λ�l/k�(AT
i Ai)� 8πmin(Cek/l)2 from our assumption

that kgl (�,Ai|�)� herkgl (�,Ai)� C.

Theorem 3.5 is immediate from Theorem 3.9 and Theorem 3.7. We now prove Theorem 3.4.

Proof of Theorem 3.4. By Theorem 3.7, (3.7), Theorem 3.8 and Theorem 3.6,

herdisc2 (�,A1 + · · · +Ak)=O(
√
log n detlb2 (�,A1 + · · · +Ak))

=O(
√
log n detlb (�,A1 + · · · +Ak))

=O
(√

k log n max
i∈[k]

detlb (�,Ai)
)

=O
(√

k log n max
i∈[k]

herdisc∞ (�,Ai)
)
.

Theorem 1.4 also shows tightness for Theorem 3.7. By (3.7) and Theorem 3.8 we have that
detlb2 (�,A) is constant for k-permutation families (�,A) with constant k. Thus Theorem 1.4
shows that Theorem 3.7 is best possible in the sense that there can be a �(

√
log n) gap between

detlb2 (�,A) and herdisc2 (�,A).
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