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Abstract

We show that several machine learning estimators, including square-root least absolute
shrinkage and selection and regularized logistic regression, can be represented as
solutions to distributionally robust optimization problems. The associated uncertainty
regions are based on suitably defined Wasserstein distances. Hence, our representations
allow us to view regularization as a result of introducing an artificial adversary that
perturbs the empirical distribution to account for out-of-sample effects in loss estimation.
In addition, we introduce RWPI (robust Wasserstein profile inference), a novel inference
methodology which extends the use of methods inspired by empirical likelihood to the
setting of optimal transport costs (of which Wasserstein distances are a particular case).
We use RWPI to show how to optimally select the size of uncertainty regions, and as a
consequence we are able to choose regularization parameters for these machine learning
estimators without the use of cross validation. Numerical experiments are also given to
validate our theoretical findings.
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1. Introduction

Regularization has become crucial in machine learning practice and the goal of this paper
is to revisit the idea of regularization from an optimal transport perspective. Specifically, we
show that the role of regularization in machine learning can often be interpreted as the result
of optimally transporting mass from the empirical measure in order to maximize a certain loss
under a budget constraint. Thus, our results connect directly optimal transport phenomena (a
classical concept in probability reviewed in Section 2.1) to regularization (a key tool in machine
learning to be discussed in the following subsection).

Moreover, this connection will show that the so-called regularization parameter (i.e. the
coefficient of the regularization term) coincides with the size of the budget constraint by
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which we permit mass transportation to occur. As we shall see, the budget constraint has
a natural interpretation based on a distributionally robust optimization (DRO) formulation,
which in turn allows us to define a reasonable optimization criterion for the regularization
parameter. Thus, our approach uses optimal mass transportation phenomena to explain the
nature of regularization and how to select the regularization parameter in several machine
learning estimators, including square-root LASSO (least absolute shrinkage and selection) and
regularized logistic regression, among others.

The size of the budget constraint is also referred to as the radius (or size) of the uncertainty
set in the DRO literature. The method that we develop for optimally choosing this budget
constraint can actually be applied to a wide range of inference and decision problems, but
we have focused our discussion on machine learning applications because of the substantial
amount of activity that the area has generated, and also to demonstrate the utility of the tools
that are commonly used in applied probability in this rapidly growing area.

1.1. Regularization in linear regression

In order to introduce the proposed method for optimally choosing the radius of the
uncertainty set, let us walk through a simple application in a familiar context, namely, that
of linear regression. Throughout the paper any vector is understood to be a column vector
and the transpose of x is denoted by x�. We use the notation EP[·] to denote expectation with
respect to a probability distribution P.

Example 1. (Square-root LASSO.) Consider a training data set {(X1, Y1), . . . , (Xn, Yn)},
where the input Xi ∈R

d is a vector of d predictor variables and Yi ∈R is the response variable.
It is postulated that

Yi = β�∗ Xi + ei

for some β∗ ∈R
d and errors {e1, . . . , en}. Under suitable statistical assumptions we may be

interested in estimating β∗. Underlying is a general loss function, l(x, y; β), which we shall
take for simplicity in this discussion to be the quadratic loss, namely, l(x, y; β) = (y − β�x)2.
Let Pn denote the empirical distribution:

Pn(dx, dy) := 1

n

n∑
i=1

δ{(Xi,Yi)}(dx, dy).

Over the last two decades, various regularized estimators have been introduced and studied.
Many of them have gained substantial popularity because of their good empirical performance
and insightful theoretical properties (see, for example, [47] for an early reference and [21]
for a discussion on regularized estimators). One such regularized estimator, implemented, for
example in the ‘flare’ package (see [27]), is the so-called square-root LASSO estimator that is
obtained by solving the following convex optimization problem in β:

min
β∈Rd

{√EPn [l (X, Y; β)] + λ‖β‖1} = min
β∈Rd

⎧⎨
⎩

√√√√1

n

n∑
i=1

l(Xi, Yi; β) + λ‖β‖1

⎫⎬
⎭, (1)

where ‖β‖p denotes the �p-norm. The parameter λ, commonly referred to as the regularization
parameter, is crucial for the performance of the algorithm. It is often chosen using cross
validation, a procedure that iterates over a multitude of choices of λ in order to choose the
best.
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1.1.1. DRO representation of square-root LASSO. One of our contributions in this paper
(see Section 2) is a representation of (1) in terms of a distributionally robust optimization
formulation. We construct a discrepancy measure, Dc(P, Q), corresponding to a Wasserstein-
type distance between two probability measures P and Q which is defined in terms of a suitable
transportation cost function c(·). If c(·) is based on the �q-distance (for q > 1), we show that

min
β∈Rd

{√EPn [l(X, Y; β)] + λ‖β‖p}2 = min
β∈Rd

max
P :Dc(P,Pn)≤δ

EP[l(X, Y; β)], (2)

where 1/p + 1/q = 1 and λ = √
δ. We can gain a great deal of insight from (2). For example,

note that the regularization parameter λ = √
δ is fully determined by the size (or ‘radius’) of

the uncertainty, δ, in the DRO formulation on the right-hand side of (2). In addition, we can
interpret (2) as a game in which an artificial adversary is introduced in order to explore and
quantify out-of-sample effects in our estimates of the expected loss.

1.1.2. Optimal choice of the radius δ. The set Uδ(Pn) = {P : Dc(P, Pn) ≤ δ} is called the
uncertainty set in the language of DRO, and it represents the class of models that are, in some
sense, plausible variations of Pn. Note that Uδ(Pn) is precisely the feasible region over which
the maximization is taken in (2). Then we define the collection

�n(δ) :=
⋃

P ∈Uδ(Pn)

arg min
β∈Rd

EP[l(X, Y; β)] (3)

comprising optimal β for every P ∈ Uδ(Pn) to be the set of plausible selections of the parameter
β∗. For δ chosen sufficiently large, the set �n(δ) is a natural confidence region for β∗.
Moreover, we shall see that any β that solves infβ supP∈Uδ(Pn) E[l(X, Y; β)] is a member of
�n(δ).

Given these interpretations, it is natural to select a confidence level, 1 − α, and then choose
δ = δ∗

n optimally via
δ∗

n = min{δ > 0 : P(β∗ ∈ �n(δ)) ≥ 1 − α}. (4)

In words, the optimization criterion can be stated as finding the smallest δ such that β∗ is itself a
plausible selection with 1 − α confidence. Essentially, given a desired confidence level 1 − α,
we seek to choose a δ just large enough such that �n(δ) is a (1 − α)-confidence region for
the parameter β∗. As we shall see in Section 4, this choice ensures that any β that minimizes
infβ supP∈Uδ(Pn) E[l(X, Y; β)] is indeed in the confidence region �n(δ). We next explain how
to solve the optimization problem in (4) asymptotically as n → ∞.

1.1.3. The associated Wasserstein profile function. In order to asymptotically solve (4) we
introduce a novel statistical inference methodology, which we call RWPI (robust Wasserstein-
distance profile-based inference; pronounced similar to ‘rupee’). This can be understood as
an extension of empirical likelihood (EL) that uses optimal transport cost rather than the
likelihood. The extension is not just a formality, as we shall see, because different phenomena
and scalings arise relative to EL.

We next illustrate how δ∗
n in (4) corresponds to the quantile of a certain object which we call

the robust Wasserstein profile (RWP) function evaluated at β∗. This will motivate a systematic
study of the RWP function as the sample size, n, increases.

Observe that, by convexity of the loss function, β ∈ �δ(Pn) if and only if there exists P ∈
Uδ(Pn) such that β satisfies the first-order optimality condition, namely

DβEP[l(X, Y; β)] = EP[(Y − β�X)X] = 0. (5)
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FIGURE 1: Illustration of RWP function evaluated at β∗.

We then introduce the following object, which is the RWP function associated with the
estimating equation (5):

Rn(β) = inf{Dc(P, Pn) : EP[(Y − β�X)X] = 0}. (6)

It turns out that the infimum is achieved in the previous expression, so we can write min
instead; this is not crucial for our discussion but it is sometimes helpful to keep in mind. Using
this definition of Rn(β), we can see immediately that the events

{Rn(β∗) ≤ δ} = {β∗ ∈ �n(δ)},

which implies that δ∗
n is precisely the 1 − α quantile, χ1−α

, of Rn(β∗); that is,

δ∗
n = χ1−α

= inf {z : P(Rn(β∗) ≤ z) ≥ 1 − α}.

Moreover, note that Rn(β) allows us to provide an explicit characterization of �n(χ1−α
):

�n(χ1−α
) = {β : Rn(β) ≤ χ1−α

}.

So, �n(χ1−α
) = {β : Rn(β) ≤ χ1−α} is a (1 − α)-confidence region for β∗.

1.1.4. Further intuition behind the RWP function. In order to further explain the role of
Rn(β∗), let us define Popt := {P : EP[(Y − β�∗ X)X] = 0}. In words, Popt is the set of probability
measures for which β∗ is an optimal risk minimization parameter. Naturally, the distribution
of (X, Y), from which the samples are generated, is an element of Popt. Since Rn(β∗) =
inf{Dc(P, Pn) : P ∈Popt}, the set {P : Dc(P, Pn) ≤ Rn(β∗)} denotes the smallest uncertainty
region around Pn (in terms of Dc) for which there exists a distribution P satisfying the
optimality condition EP[(Y − β�∗ X)X] = 0. See Figure 1 for a pictorial representation of Popt
and Rn(β∗).

In summary, Rn(β∗) denotes the smallest size of uncertainty that makes β∗ a plausible
choice. If we were to select a radius of uncertainty smaller than Rn(β∗), then no probability
measure in the neighborhood will satisfy the optimality condition EP[(Y − β�∗ X)X] = 0. On
the other hand, if δ > Rn(β∗) then the set

{P : EP[(Y − β�∗ X)X] = 0,Dc(P, Pn) ≤ δ}

is non-empty.
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1.2. A broader perspective of our contribution

The previous discussion in the context of linear regression highlights two key ideas:
(a) the RWP function as a key object of analysis, and (b) the role of distributionally robust
representation of regularized estimators.

The RWP function can be applied much more broadly than in the context of regularized esti-
mators. We shall study the RWP function for estimating equations generally and systematically,
but we showcase the use of the RWP function only in the context of optimal regularization.

Broadly speaking, RWPI can be seen as a statistical methodology that utilizes a suitably
defined RWP function to estimate a parameter of interest. From a philosophical standpoint,
RWPI borrows heavily from EL, introduced in the seminal work of Owen [30, 31]. There are
important methodological differences, however, as we shall discuss below. In the last three
decades there has been a large number of successful applications of EL for inference [11, 22,
32, 35, 52]. In principle all of those applications can be revisited using the RWP function and
its ramifications.

We now provide a more precise description of our contributions.

(A) We explain how, by judiciously choosing Dc(·), we can define a family of regularized
regression estimators (see Section 2). In particular, we show how square-root LASSO
(see Theorem 1), regularized logistic regression, and support vector machines (see
Theorem 2) arise as particular cases of suitable DRO formulations.

(B) We derive general limit theorems for the asymptotic distribution (as the sample size
increases) of the RWP function defined for general estimating equations. These limit
theorems, derived in Section 3.3, allow us to employ RWPI to perform inference and
choose the radius of uncertainty δ in settings that are more general than linear/logistic
regression.

(C) We use our results from (B) to obtain prescriptions for regularization parameters in
square-root LASSO and regularized logistic regression settings (see Section 4). We also
illustrate how coverage results for the optimal risk that demonstrate an O(n−1/2) rate of
convergence are obtained immediately as a consequence of choosing δ ≥ Rn(β∗).

(D) We analyze our regularization selection in the high-dimensional setting for square-
root LASSO. Under standard regularity conditions, we show (see Theorem 7) that the
regularization parameter λ might be chosen as

λ = π

π − 2


−1(1 − α/2d)√
n

,

where 
(·) is the cumulative distribution of the standard normal random variable and
1 − α is a user-specified confidence level. The behavior of λ as a function of n and d is
consistent with regularization selections studied in the literature motivated by different
considerations (see Section 4.4 for further details).

(E) We analyze the empirical performance of RWPI-based selection of regularization param-
eters in the context of square-root LASSO. In Section 5, we compare the performance
of RWPI-based optimal regularization with that of a cross-validation-based approach
on both simulated and real data. We conclude that the RWPI-based approach yields
similar performance, without having to repeat the algorithm over various choices of
regularization parameters (as done in cross-validation).

We now provide a discussion of topics related to RWPI.
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1.3. On related literature

Connections between robust optimization and regularization procedures such as LASSO
and support vector machines have been studied in the literature [3, 50, 51]. The methods pro-
posed here differ subtly: While [50] and [51] add deterministic perturbations of a certain size
to the predictor vectors X to quantify uncertainty, the distributionally robust representations
that we derive measure perturbations in terms of deviations from the empirical distribution.
While this change may appear cosmetic, it brings a significant advantage: measuring deviations
from the empirical distribution, as we shall see, allows us to derive suitable limit laws (or)
probabilistic inequalities that can be used to give a systematic prescription for the radius of
uncertainty, δ, in the definition of the uncertainty region Uδ(Pn) = {P : Dc(P, Pn) ≤ δ}.

It is well understood that as the number of samples n increases, the expected deviation of the
empirical distribution from the true distribution decays to zero, as a function of n, at a specific
rate. To begin with, as a direct approach towards choosing the size of the uncertainty δ, we
can perhaps use a suitable concentration inequality that measures such rate of convergence in
terms of Wasserstein distances (see, for example, [17] and references therein). Such a simple
specification of the size of the uncertainty, suitably as a function of n, does not arise naturally
in the deterministic robust optimization approaches in [50, 51].

For an application of these concentration inequalities to choosing the size of the uncertainty
set in the context of distributionally robust logistic regression and data-driven DRO, refer
to [28, 40]. The exact representation for regularized logistic regression we derive later, in
Section 2.4, can be can be seen as an extension in which the approximate representation
described in [40, Remark 1] is made to coincide exactly with the regularized logistic regression
estimator that has been widely used in practice. It is important to note that, despite imposing
severe tail assumptions, the concentration inequalities used to choose the radius of the
uncertainty set in [28, 40] dictate that the size of the uncertainty decay at the rate O(n−1/d);
unfortunately, this prescription scales non-gracefully as the number of dimensions d increases,
and the resulting coverage guarantees suffer from a poor rate of convergence (see, for example,
[28, Theorem 3.5], [40, Theorem 2]). Since most of the modern learning and decision problems
have huge numbers of covariates, application of such concentration inequalities with poor rates
of decay with dimensions may not be suitable for applications.

In contrast to directly using concentration inequalities, as we shall see, the prescription ob-
tained via RWPI typically has a rate of convergence of order O(n−1/2) as n → ∞ (for fixed d).
In particular, as we discuss in the case of LASSO, according to our results corresponding to
contribution (E), RWPI-based prescription of the size of uncertainty can actually be shown
(under suitable regularity conditions) to decay at a rate O(

√
log d/n) (uniformly over d and n

such that log2 d � n), which is in agreement with the findings of the high-dimensional statistics
literature (see [2, 12, 29] and references therein). A profile-function-based approach towards
calibrating the radius of uncertainty in the context of empirical-likelihood-based DRO can be
found in [14, 20, 26, 25].

Although we have focused our discussion on the context of regularized estimators, our
results are directly applicable to the area of data-driven DRO whenever the uncertainty sets are
defined in terms of a Wasserstein distance or, more generally, an optimal transport metric. In
particular, consider a distributionally robust formulation of the form

min
θ : G(θ)≤0

max
P : Dc(P,Pn)≤δ

EP[H(W, θ )]

for a random element W and a convex function H(W, ·) defined over a convex region
{θ : G(θ ) ≤ 0} (assuming G : Rd →R convex). Here, Pn is the empirical measure of the sample

https://doi.org/10.1017/jpr.2019.49 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.49


836 J. BLANCHET ET AL.

{W1, . . . , Wn}. One can then follow reasoning parallel to what we advocate throughout our
LASSO discussion. Argue, by applying the corresponding Karush–Kuhn–Tucker conditions,
if possible, that an optimal solution θ∗ to the problem

min
θ : G(θ)≤0

EPtrue [H(W, θ )]

satisfies a system of estimating equations of the form EPtrue [h(W, θ∗)] = 0 for a suitable h(·)
(where Ptrue is the weak limit of the empirical measure Pn as n → ∞). Then, given a confidence
level 1 − α, we should choose δ as the (1 − α) quantile of the RWP function

Rn(θ∗) = inf{Dc(P, Pn) : EP[h(W, θ∗)] = 0}.
The results in Section 2 can then be used directly to approximate the (1 − α) quantile of Rn(θ∗).
Just as we explain in our discussion of the square-root LASSO example, the selection of δ is
the smallest possible choice for which θ∗ is plausible with (1 − α) confidence.

1.4. Connections to related inference literature

We next discuss the connections between RWPI and EL. In EL we build a profile likelihood
for an estimating equation. For instance, in the context of EL applied to estimating β satisfying
(5) we would build a profile likelihood function in which the optimization object is defined
as the likelihood (or the log-likelihood) between a given distribution P with respect to Pn.
Therefore, the analogue of the uncertainty set {P : Dc(P, Pn) ≤ δ} in the context of EL will
typically contain distributions whose support coincides with that of Pn. In contrast, the
definition of the RWP function does not require the likelihood between an alternative plausible
model P and the empirical distribution Pn to exist. Owing to this flexibility, we are able, for
example, to establish the connection between regularization estimators and a suitable profile
function.

There are other potential benefits of using a profile function which does not restrict the
support of alternative plausible models. For example, it has been observed in the literature that
in some settings EL might exhibit low coverage [13, 33, 49]. It is not the goal of this paper to
examine the coverage properties of RWPI systematically, but it is conceivable that relaxing the
support of alternative plausible models, as RWPI does, can translate into desirable coverage
properties.

From a technical standpoint, the definition of the profile function in EL gives rise to a finite-
dimensional optimization problem. Moreover, there is a substantial amount of smoothness in
the optimization problems defining the EL profile function. This smoothness can be leveraged
in order to obtain the asymptotic distribution of the profile function as the sample size
increases. In contrast, the optimization problem underlying the definition of the RWP function
in RWPI is an infinite-dimensional linear program. Therefore, the mathematical techniques
required to analyze the associated RWP function are different (more involved) than the ones
which are commonly used in the EL setting.

A significant advantage of EL, however, is that the limiting distribution of the associated
profile function is typically chi-squared. Moreover, this distribution is self-normalized in the
sense that no parameters need to be estimated from the data. Unfortunately, this is typically
not the case in using RWPI. In many settings, however, the parameters of the distribution can
be easily estimated from the data itself.

Another methodology, strongly related to RWPI, by the name of SOS (sample out-of-
sample) inference has been studied recently [6]. A suitable RWP function is built in this

https://doi.org/10.1017/jpr.2019.49 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.49


RWPI and applications to machine learning 837

setting as well, but the support of alternative plausible models is assumed to be finite (but not
necessarily equal to that of Pn). Instead, the support of alternative plausible models is assumed
to be generated not only by the available data, but additional samples from independent
distributions (defined by the user). The limit results obtained for the RWP function in the
context of SOS are different from those obtained in this paper. For example, in the SOS setting
the rates of convergence are dimension dependent, which is not the case in the RWPI. As
explained in [6, 7], SOS inference is natural in applications such as semi-supervised learning,
in which massive amounts of unlabeled data inform the support of the covariates.

1.5. Organization of the paper

The rest of the paper is organized as follows. Section 2 corresponds to contribution (A): we
first introduce Wasserstein distances and then discuss distributionally robust representations
of popular machine learning algorithms. Section 3 deals with contribution (B): we discuss the
RWP function as an inference tool in a way which is parallel to the profile likelihood in EL,
and derive the asymptotic distribution of the RWP function for general estimating equations.
Section 4 discusses contribution (C), namely the application of the results from (B) for optimal
regularization. Our high-dimensional analysis of the RWP function in the case of square-root
LASSO is also presented in Section 4. Numerical experiments using both simulated and real
data sets are given in Section 5. Proofs of all the results are presented in the supplementary
material [9].

2. Optimal transport definitions and DRO representations of machine learning
estimators

We begin with definitions of optimal transport costs and Wasserstein distances.

2.1. Optimal transport costs and Wasserstein distances

Let c : Rm ×R
m → [0, ∞] be any lower semi-continuous function such that c(u, u) = 0 for

every u ∈R
m. Given two probability distributions P(·) and Q(·) supported on R

m, the optimal
transport cost or discrepancy between P and Q, denoted by Dc(P, Q), is defined as

Dc(P, Q) = inf{Eπ [c(U, W)] : π ∈P(Rm ×R
m), πU = P, πW = Q}. (7)

Here, P(Rm ×R
m) is the set of joint probability distributions π of (U, W) supported on R

m ×
R

m, and πU , πW denote the marginals of U and W, respectively, under the joint distribution π .
Intuitively, the quantity c(u, w) can be interpreted as the cost of transporting unit mass from
u in R

m to another element w in R
m. Then the expectation Eπ [c(U, W)] corresponds to the

expected transport cost associated with the joint distribution π .
In addition to the stated assumptions on the cost function c(·), if c1/ρ satisfies the properties

of a metric for any ρ > 1 then D1/ρ
c (P, Q) defines a metric between probability distributions

(see [48] for a proof and other properties of Dc). For example, if c(u, w) = ‖u − w‖2
2 then

ρ = 2 yields that c(u, w)1/2 = ‖u − w‖2 is symmetric, non-negative, lower semi-continuous,
and it satisfies the triangle inequality. In that case,

D1/2
c (P, Q) = inf

{√
Eπ [‖U − W‖2

2] : π ∈P(Rm ×R
m), πU = P, πW = Q

}
coincides with the Wasserstein distance of order two. More generally, if we choose
c1/ρ(u, w) = ‖u − w‖q for some ρ, q ≥ 1, then D1/ρ

c (·) is known as the Wasserstein distance
of order ρ.
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Wasserstein distances metrize weak convergence of probability measures under suitable
moment assumptions and have received immense attention in probability theory (see [36,
37, 48] for a collection of classical applications). In addition, earth-mover’s distance, a
particular example of a Wasserstein distance, has been of interest in image processing (see
[38, 44]). More recently, optimal transport metrics and Wasserstein distances are being actively
investigated for their use in various machine learning applications (see [18, 34, 39, 45] and
references therein for a growing list of new applications).

Throughout this paper we consider optimal transport costs Dc(·) for a judiciously chosen
cost function c(·) to result in formulations such as (2). As we shall see in Section 2.4, it is
useful to allow c(·) to be lower semi-continuous and potentially be infinite in some region.
Thus our setting requires discrepancy choices which are slightly more general than standard
Wasserstein distances.

2.2. DRO formulation using optimal transport costs

A common theme in machine learning problems is to find the best-fitting parameter in a
family of parameterized models that relate a vector of predictor variables X ∈R

d to a response
Y ∈R. In this section we shall focus on a useful class of such models, namely linear and logistic
regression models. Associated with these models we have a loss function l(Xi, Yi; β) which
evaluates the fit of the regression coefficient β for the given data points {(Xi, Yi) : i = 1, . . . , n}.
Then, just as we explained in the case of square-root LASSO in Section 1.1, our first step will
be to show that regularized linear and logistic regression estimators admit a DRO formulation
of the form

inf
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP[l(X, Y; β)]. (8)

In contrast to empirical risk minimization that performs well only on the training data, the
DRO problem (8) aims to find an optimizer β that performs uniformly well over all probability
measures in the neighborhood that can be perceived as perturbations to the empirical training
data distribution. Hence, the solution to (8) is said to be ‘distributionally robust’, and can be
expected to generalize better. See [40], [50], and [51] for earlier works that relate robustness
and generalization.

Recasting regularized regression as a DRO problem of the form (8) lets us view these
regularized estimators under the lens of distributional robustness. The regularized estimators
that we consider in this paper include the regularized logistic regression estimators in
Example 2, support vector machines (see [21]), and the family of �p-norm penalized linear
regression estimators of the form

min
β∈Rd

{√EPn [l(X, Y; β)] + λ‖β‖p} (9)

for any p ∈ [1, ∞). This collection includes the square-root LASSO estimator described in
Example 1 as a special case where p = 1.

Example 2. (Regularized logistic regression.) Consider the context of binary classification in
which case the training data is of the form {(X1, Y1), . . . , (Xn, Yn)}, with Xi ∈R

d, response
Yi ∈ {−1, 1}, and the model postulates that

log

(
P(Yi = 1 | Xi = x)

1 − P(Yi = 1 | Xi = x)

)
= β�∗ x
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for some β∗ ∈R
d. In this case the log-exponential loss function (or negative log-likelihood for

a binomial distribution) is

l(x, y; β) = log (1 + exp ( − y · β�x)),

and we are interested in estimating β∗ by solving

min
β∈Rd

{EPn [l(X, Y; β)] + λ‖β‖p} (10)

for p ∈ [1, ∞). Refer to [21] for a more detailed discussion on regularized logistic regression.

2.3. Dual form of the DRO formulation (8)

Though the DRO formulation (8) involves optimizing over uncountably many probability
measures, recent strong duality results for Wasserstein DRO (see, for example, Theorem 1 in
[8]) ensures that the inner supremum in (8) admits a reformulation which is a simple, univariate
optimization problem. Before stating the result, we recall that the definition of discrepancy
measure Dc (see (7)) requires the specification of the cost function c((x, y), (x′, y′)) between
any two predictor–response pairs (x, y), (x′, y′) ∈R

d+1.

Proposition 1. Let c : Rd+1 ×R
d+1 → [0, ∞] be a lower semi-continuous cost function

satisfying c((x, y), (x′, y′)) = 0 whenever (x, y) = (x′, y′). For γ ≥ 0 and loss functions l(x, y; β)
that are upper semi-continuous in (x, y) for each β, define

φγ (Xi, Yi; β) := sup
u∈Rd,v∈R

{l(u, v; β) − γ c((u, v), (Xi, Yi))}. (11)

Then

sup
P : Dc(P,Pn)≤δ

EP[l(X, Y; β)] = min
γ≥0

{
γ δ + 1

n

n∑
i=1

φγ (Xi, Yi; β)

}
.

Consequently, the distributionally robust regression problem (8) reduces to

inf
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP[l(X, Y; β)] = inf
β∈Rd

min
γ≥0

{
γ δ + 1

n

n∑
i=1

φγ (Xi, Yi; β)

}
. (12)

Proposition 1 follows as a straightforward application of [8, Theorem 1]. As we shall see in
Section 2.4, the function φγ (·) is explicitly computable for various examples of interest. Of
the reformulations in the literature for Wasserstein-distance-based DRO (see [8, 16, 19]), the
general cost structure assumed in [8, Theorem 1] is essential for the exact recovery of the
machine learning estimators that are presented in Section 2.4.

2.4. Distributionally robust representations

Example 1. (Continued: Recovering regularized estimators for linear regression.) We exam-
ine the right-hand side of (12) for the square loss function for the linear regression model
Y = β�X + e, and obtain the following result without any further distributional assumptions on
X, Y and the error e. For brevity, let β̄ = ( − β, 1), and recall the definition of the discrepancy
measure Dc in (7).
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Proposition 2. (Distributionally robust linear regression with square loss.) Fix q ∈ (1, ∞].
Consider the square loss function and second-order discrepancy measure Dc defined using the
�q-norm. In other words, take l(x, y; β) = (y − β�x)2 and c((x, y), (u, v)) = ‖(x, y) − (u, v)‖2

q.
Then

inf
β∈Rd

sup
P :Dc(P,Pn)≤δ

EP[l(X, Y; β)] = inf
β∈Rd

{√MSEn(β) + √
δ ‖β̄‖p}2, (13)

where MSEn(β) = EPn [(Y − β�X)2] = 1
n

∑n
i=1 (Yi − β�Xi)2 is the mean square error for the

coefficient choice β and p is such that 1/p + 1/q = 1.

As an important special case we consider q = ∞ and identify the following equivalence
for distributionally robust regression applying a discrepancy measure based on neighborhoods
defined using the �∞-norm:

arg minβ∈Rd sup
P :Dc(P,Pn)≤δ

EP[l(X, Y; β)] = arg minβ∈Rd {
√

MSEn(β) + √
δ ‖β̄‖1}.

The right-hand side of (13) resembles �p-norm regularized regression (except for the fact
that we have ‖β̄‖p instead of ‖β‖p). In order to obtain exact equivalence, we introduce a slight
modification to the norm ‖ · ‖q to be used as the cost function, c(·), in defining Dc. We define

Nq((x, y), (u, v)) =
{

‖x − u‖q if y = v,

∞ otherwise,
(14)

in order to use c(·) = Nq(·) as the transportation cost instead of the standard �q-norm ‖(x, y) −
(u, v)‖q. Subsequently, we can consider modified cost functions of the form c((x, y), (u, v)) =
(Nq((x, y), (u, v)))ρ . As this modified cost function assigns infinite cost when y = v, the infi-
mum in (6) is effectively over joint distributions that do not alter the marginal distribution of Y .
As a consequence, the resulting neighborhood set {P : Dc(P, Pn) ≤ δ} admits distributional
ambiguities only with respect to the predictor variables X.

The following result is essentially the same as Proposition 2 except for the use of the
modified cost Nq and the resulting norm regularization of the form ‖β‖p (instead of ‖β̄‖p

as in Proposition 2), thus exactly recovering the regularized regression estimators in (9).

Theorem 1. Consider the square loss l(x, y; β) = (y − β�x)2 and discrepancy measure
Dc(P, Pn) defined as in (7) using the cost function c((x, y), (u, v)) = (Nq((x, y), (u, v)))ρ with
ρ = 2. Then

inf
β∈Rd

sup
P :Dc(P,Pn)≤δ

EP[l(X, Y; β)] = inf
β∈Rd

{√MSEn(β) + √
δ ‖β‖p}2,

where MSEn(β) = EPn [(Y − β�X)2] = n−1 ∑n
i=1 (Yi − β�Xi)2 is the mean square error for

the coefficient choice β and p is such that 1/p + 1/q = 1.

Example 2. (Continued: Recovering regularized estimators for classification.) Apart from
exactly recovering norm-regularized estimators for linear regression, the discrepancy measure
Dc based on the modified norm Nq in (14) is natural when our interest is in learning problems
where the responses Yi take values in a finite set, as in the binary classification problem where
the response variable Y takes values in {−1, +1}. The following result allows us to recover the
DRO formulation behind the regularized logistic regression estimators discussed in Example 2
and also for the widely used support vector machines (see [21]).
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Theorem 2. (Regularized regression for classification.) Consider the discrepancy measure
Dc(·) defined using the cost function c((x, y), (u, v)) = Nq((x, y), (u, v))ρ with ρ = 1. Then for
logistic regression with a log-exponential loss function and a support vector machine with the
hinge loss function, we have

inf
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP[log (1 + e−Yβ�X)] = inf
β∈Rd

1

n

n∑
i=1

log (1 + e−Yiβ
�Xi) + δ‖β‖p

and

inf
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP[(1 − Yβ�X)+] = 1

n

n∑
i=1

(1 − Yiβ
�Xi)

+ + δ‖β‖p,

where p is such that 1/p + 1/q = 1.

The proofs of all of the results in this subsection are provided in Appendix A.1 in the
supplementary material [9]. The example of logistic regression with Wasserstein-distance-
based uncertainty sets has been considered in [40]. The representation for regularized logistic
regression in Theorem 2 can be seen as an extension in which the approximate representation
described in [40, Remark 1] is made to coincide exactly with the regularized logistic regression
estimator that has been widely used in practice. The approximate representation for regularized
logistic regression in [40] is based on semi-infinite linear programming duality results due
to [42]. On the other hand, due to the presence of infinite transportation costs in our DRO
formulation that results in the desired exact representation (see Theorem 2), we utilize a
different strong duality result, [8, Theorem 1], that is specifically derived for Wasserstein DRO
with general cost structures. In addition, other equivalences described for square-root LASSO
and support vector machines in terms of Wasserstein DRO, as far as we know, have been
reported for the first time in this paper. See [41] for additional examples.

3. The robust Wasserstein profile function

Given an estimating equation EPn [h(W, θ )] = 0, the objective of this section is to study
the asymptotic behavior of the associated RWP function Rn(θ ). As discussed in Section 1, this
analysis is key in our approach towards constructing the confidence region �n(θ ) and choosing
the radius of the uncertainty set optimally.

3.1. The RWP function for estimating equations and its use in constructing confidence
regions

The robust Wasserstein profile function’s definition is inspired by the notion of the profile
likelihood function introduced in the pioneering work of Art Owen in the context of EL (see
[33]). We provide the definition of the RWP function for estimating θ∗ ∈R

l, which we assume
satisfies

E[h(W, θ∗)] = 0, (15)

for a given random variable W taking values in R
m and an integrable function h : Rm ×R

l →
R

r. The parameter θ∗ is required to be unique to ensure consistency, but uniqueness is not
necessary for the limit theorems that we shall state, unless we explicitly indicate so.

Given a set of samples {W1, . . . , Wn}, which are assumed to be independent and identically
distributed copies of W, we define the Wasserstein profile function for the estimating equation
(15) as

Rn(θ ) := inf{Dc(P, Pn) : EP[h(W, θ )] = 0}. (16)
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Recall here that Pn denotes the empirical distribution associated with the training samples
{W1, . . . , Wn}, and c(·) is a chosen cost function. In this section we are primarily concerned
with cost functions of the form

c(u, w) = ‖w − u‖ρ
q , (17)

where ρ ∈ [1, ∞) and q ∈ (1, ∞]. We remark, however, that the methods presented here can
be easily adapted to more general cost functions. For simplicity we assume that the samples
{W1, . . . , Wn} are distinct.

Since, as we shall see, the asymptotic behavior of the RWP function Rn(θ ) is dependent
on the exponent ρ in (17), we sometimes write Rn(θ ; ρ) to make this dependence explicit;
whenever the context is clear, though, we drop ρ to avoid notational burden. Also, observe that
the profile function defined in (6) for the linear regression example is obtained as a particular
case by selecting W = (X, Y) and β = θ , and defining h(x, y, θ ) = (y − θ�x)x.

Our goal in this section is to develop an asymptotic analysis of the RWP function which
parallels that of the theory of EL. In particular, we shall establish

nρ/2Rn(θ∗; ρ) ⇒ R̄(ρ) (18)

for a suitably defined random variable R̄(ρ). Throughout this paper, the symbol ‘⇒’ is used to
denote convergence in distribution.

As the empirical distribution weakly converges to the underlying probability distribution
from which the samples are obtained, it follows from the definition of the RWP function in
(18) that Rn(θ ; ρ) → 0 as n → ∞ if and only if θ satisfies E[h(W, θ )] = 0; for every other θ we
have that nρ/2Rn(θ ; ρ) → ∞. Therefore, the result in (18) can be used to provide confidence
regions around θ∗ as follows: Given a confidence level 1 − α in (0, 1), if we denote ηα as the
(1 − α) quantile of R̄(ρ), that is, P(R̄(ρ) ≤ ηα) = 1 − α, then the set

�̄n(n−ρ/2ηα) = {θ : Rn(θ ; ρ) ≤ n−ρ/2ηα}
is an approximate (1 − α)-confidence region for θ∗. This is because, by definition of �̄n(·),

P(θ∗ ∈ �̄n(n−ρ/2ηα)) = P(nρ/2Rn(θ∗; ρ) ≤ ηα) ≈ P(R̄(ρ) ≤ ηα) = 1 − α. (19)

Throughout the development in this section, the dimension m of the random vector W is
kept fixed and the sample size n is sent to infinity; the function h(·) can be quite general.

3.2. The dual formulation of the RWP function

The first step in the analysis of the RWP function Rn(θ ) is to use the definition of the
discrepancy measure Dc to rewrite Rn(θ ) as

Rn(θ ) = inf{Eπ [c(U, W)] : π ∈P(Rm ×R
m), Eπ [h(U, θ )] = 0, πW = Pn},

which is a problem of moments of the form

Rn(θ ) = inf
π∈P(Rm×Rm)

{
Eπ [c(U, W)] : Eπ [h(U, θ )] = 0, Eπ [1(W = Wi)] = 1

n
, i ≤ n

}
. (20)

The problem of moments is a classical linear programming problem for which the respective
dual formulation and strong duality have been well studied (see, for example, [23, 43]).
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The linear program problem over the variable π in (20) admits a simple dual semi-infinite
linear program of the form

sup
ai∈R,λ∈Rr

{
a0 + 1

n

n∑
i=1

ai : a0 +
n∑

i=1

ai1{w=Wi}(u, w) + λ�h(u, θ ) ≤ c(u, w) ∀u, w ∈R
m
}

= sup
λ∈Rr

{
1

n

n∑
i=1

inf
u∈Rm

{c(u, Wi) − λ�h(u, θ )}
}

= sup
λ∈Rr

{
− 1

n

n∑
i=1

sup
u∈Rm

{λ�h(u, θ ) − c(u, Wi)}
}

.

Proposition 3 states that strong duality holds under mild assumptions, and the dual formulation
above indeed equals Rn(θ ).

Proposition 3. Let h(·, θ ) be Borel measurable, and � = {(u, w) ∈R
m ×R

m : c(u, w) < ∞} be
Borel measurable and non-empty. Further, suppose that 0 lies in the interior of the convex hull
of {h(u, θ ) : u ∈R

m}. Then

Rn(θ ) = sup
λ∈Rr

{
− 1

n

n∑
i=1

sup
u∈Rm

{λ�h(u, θ ) − c(u, Wi)}
}

.

A proof of Proposition 3, along with an introduction to the problem of moments, is provided
in Appendix B in the supplementary material [9].

3.3. Asymptotic distribution of the RWP function

In order to gain intuition for (18), let us first consider the simple example of estimating the
expectation θ∗ = E[W] of a real-valued random variable W using h(w, θ ) = w − θ .

Example 3. Let h(w, θ ) = w − θ with m = 1 = l = r. First, suppose that the choice of cost
function is c(u, w) = |u − w|ρ for some ρ > 1. As long as θ lies in the interior of the convex
hull of support of W, Proposition (3) implies that

Rn(θ ; ρ) = sup
λ∈R

{
− 1

n

n∑
i=1

sup
u∈R

{λ(u − θ ) − |Wi − u|ρ}
}

= sup
λ∈R

{
− λ

n

n∑
i=1

(Wi − θ ) − 1

n

n∑
i=1

sup
u∈R

{λ(u − Wi) − |Wi − u|ρ}
}

.

As max�{λ� − |�|ρ} = (ρ − 1)|λ/ρ|ρ/(ρ−1), we obtain

Rn(θ ; ρ) = sup
λ

{
− λ

n

n∑
i=1

(Wi − θ ) − (ρ − 1)

∣∣∣∣λρ
∣∣∣∣

ρ
ρ−1

}

=
∣∣∣∣1

n

n∑
i=1

(Wi − θ )

∣∣∣∣
ρ

.

Then, under the hypothesis that E[W] = θ∗, and assuming Var[W] = σ 2
W

< ∞, we obtain

nρ/2Rn(θ∗; ρ) ⇒ R̄(ρ) ∼ σρ
W
|N(0, 1)|ρ,
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where N(0, 1) denotes a standard Gaussian random variable. The limiting distribution for the
case ρ = 1 can be formally obtained by setting ρ = 1 in the above expression for R̄(ρ), but the
analysis is slightly different. When ρ = 1,

Rn(θ ) = sup
λ∈R

{
− λ

n

n∑
i=1

(Wi − θ ) − 1

n

n∑
i=1

sup
u∈R

{λ(u − Wi) − |u − Wi|}
}

= sup
λ

{
− λ

n

n∑
i=1

(Wi − θ ) − sup
�∈R

{λ� − |�|}
}

.

Following the notion that ∞ × 0 = 0,

Rn(θ ) = sup
λ

{
λ

n

n∑
i=1

(Wi − θ ) − ∞1(|λ| > 1)

}

= max|λ|≤1

λ

n

n∑
i=1

(Wi − θ ) =
∣∣∣∣1

n

n∑
i=1

(Wi − θ )

∣∣∣∣.
So, if indeed E[W] = θ∗ and Var[W] = σ 2

W
< ∞, we obtain

n1/2Rn(θ∗) ⇒ σW |N(0, 1)|.
We now discuss far-reaching extensions to the developments in Example 3 by considering

estimating equations that are more general. First, we state a general asymptotic stochastic upper
bound, which we believe is the most important result from an applied standpoint as it captures
the speed of convergence of Rn(θ∗) to zero. Following this, we obtain an asymptotic stochastic
lower bound that matches the upper bound (and therefore the weak limit) under mild additional
regularity conditions. We discuss the nature of these additional regularity conditions, and also
why the lower bound in the case ρ = 1 can be obtained basically without additional regularity.

For the asymptotic upper bound we shall impose the following assumptions:

(A1) Assume that c(u, w) = ‖u − w‖ρ
q for q ≥ 1 and ρ ≥ 1. For a chosen q ≥ 1, let p be such

that 1/p + 1/q = 1.

(A2) Suppose that θ∗ ∈R
l satisfies E[h(W, θ∗)] = 0 and E‖h(W, θ∗)‖2

2 < ∞. (While we
do not assume that θ∗ is unique, the results are stated for a fixed θ∗ satisfying
E[h(W, θ∗)] = 0.)

(A3) Suppose that the function h(·, θ∗) is continuously differentiable with derivative
Dwh(·, θ∗).

(A4) Suppose that, for each ζ = 0,

P(‖ζ�Dwh(W, θ∗)‖p > 0) > 0. (21)

Assumptions (A1)–(A3) make precise the setting considered. Assumption (A4) is the only
assumption which is technical in nature; it can be stated equivalently as

E[Dwh(W, θ∗)Dwh(W, θ∗)�] � 0,

where A � 0 is used to denote that the matrix A is positive definite. Verification of this positive
definiteness condition for linear and logistic regression problems is presented in Sections 4.2
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and 4.3, respectively. In order to state the theorem, let us introduce the notation for the
asymptotic stochastic upper bound,

nρ/2Rn(θ∗; ρ) �D R̄(ρ),

which expresses that for every continuous and bounded non-decreasing function f (·) we have

limn→∞ E[ f (nρ/2Rn(θ∗; ρ))] ≤ E[ f (R̄(ρ))].

Similarly, we write �D for an asymptotic stochastic lower bound:

limn→∞ E[ f (nρ/2Rn(θ∗; ρ))] ≥ E[ f (R̄(ρ))].

Therefore, if both stochastic upper and lower bounds hold then nρ/2Rn(θ∗; ρ) ⇒ R̄(ρ) as
n → ∞ (see, for example, [5]). Now we are ready to state our asymptotic upper bound.

Theorem 3. Under Assumptions (A1) to (A4) we have, as n → ∞,

nρ/2Rn(θ∗; ρ) �D R̄(ρ),

where, for ρ > 1,

R̄(ρ) := max
ζ∈Rr

{ρζ�H − (ρ − 1)E‖ζ�Dwh(W, θ∗)‖ρ/(ρ−1)
p };

if ρ = 1,
R̄(1) := max

ζ : P(‖ζ�Dwh(W,θ∗)‖p>1)=0
{ζ�H}.

In both cases, H ∼N (0, Cov[h(W, θ∗)]) and Cov[h(W, θ∗)] = E[h(W, θ∗)h(W, θ∗)�].

We remark that as ρ → 1 we can verify that R̄(ρ) ⇒ R̄(1), so formally we can simply
keep in mind the expression R̄(ρ) with ρ > 1. It is interesting to note that R̄(ρ) resembles the
Fenchel transform when viewed as a function of H. Indeed, in the case where p = q = ρ = 2
and E[Dwh(W, θ∗)] is invertible, the expression for R̄(ρ) simplifies as follows:

R̄(ρ) = max
ζ∈Rr

{2ζ�H − ζ�E[Dwh(W, θ∗)]ζ } = H�(E[Dwh(W, θ∗)])−1H. (22)

We now study some sufficient conditions which guarantee that R̄(ρ) is also an asymptotic
lower bound for nρ/2Rn(θ∗; ρ). We consider the case ρ = 1 first, which will be used in
applications to logistic regression discussed later in the paper.

Proposition 4. In addition to assuming (A1) to (A4), suppose that W has a positive density
(almost everywhere) with respect to the Lebesgue measure. Then

n1/2Rn(θ∗; 1) ⇒ R̄(1).

The following set of assumptions can be used to obtain tight asymptotic stochastic lower
bounds when ρ > 1; the corresponding result will be applied to the context of square-root
LASSO.

(A5) (Growth condition) Assume that there exists κ ∈ (0, ∞) such that, for ‖w‖q ≥ 1,

‖Dwh(w, θ∗)‖p ≤ κ‖w‖ρ−1
q , (23)

and that E‖Wi‖ρ < ∞.
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(A6) (Local Lipschitz continuity) Assume that there exists exists κ̄ : Rm → [0, ∞) such that

‖Dwh(w + �, θ∗) − Dwh(w, θ∗)‖p ≤ κ̄(Wi)‖�‖q

for ‖�‖q ≤ 1, and E[κ̄(w)c] < ∞ for c ≤ max{2,
ρ

ρ−1 }.
We now summarize our last weak convergence result of this section.

Proposition 5. If Assumptions (A1) to (A6) hold and ρ > 1 then

nρ/2Rn(θ∗; ρ) ⇒ R̄(ρ).

Before we move on with the applications of the previous results, it is worth discussing the
nature of the additional assumptions introduced to ensure that an asymptotic lower bound can
be obtained which matches the upper bound in Theorem 3.

As we shall see in the technical development in Appendix A.3 (see supplementary material
[9]) where the proofs of the above results are furnished, the dual formulation of the RWP
function in Proposition 3 can be reexpressed, assuming only (A1) to (A4), as

nρ/2Rn(θ∗; ρ) = sup
ζ

{
ζ�Hn − 1

n

n∑
k=1

sup
�

{ ∫ 1

0
ζ�Dh(Wi + �u/n1/2, θ∗)�du − ‖�‖ρ

q

}}
.

(24)
In order to make sure that the lower bound asymptotically matches the upper bound obtained

in Theorem 3 we need to make sure that we rule out cases in which the inner supremum is
infinite in (24) with positive probability in the prelimit.

In Proposition 4 we assume that W has a positive density with respect to the Lebesgue
measure because in that case the condition

P(‖ζ�Dh(W, θ∗)‖p ≤ 1) = 1

(which appears in the upper bound obtained in Theorem 3) implies that ‖ζ�Dh(w, θ∗)‖p ≤ 1
almost everywhere with respect to the Lebesgue measure. Due to the appearance of the integral
in the inner supremum in (24), an upper bound can be obtained for the inner supremum, which
translates into a tight lower bound for nρ/2Rn(θ∗).

Moving to the case ρ > 1 studied in Proposition 5, condition (23) in (A5) guarantees that
(for fixed Wi and n)

‖Dh(Wi + �u/n1/2, θ∗)�‖ = O(‖�‖ρ
q/n(ρ−1)/2)

as ‖�‖q → ∞. Therefore, the cost term −‖�‖ρ
q in (24) will ensure a finite optimum in the

prelimit for large n. The condition that E‖W‖ρ
q < ∞ is natural because we are using an optimal

transport cost c(u, w) = ‖u − w‖ρ
q . If this condition is not satisfied, then the underlying nominal

distribution is at infinite transport distance from the empirical distribution.
The local Lipschitz assumption (A6) is just imposed to simplify the analysis, and can be

relaxed; we have opted to keep (A6) because we consider it mild in view of the applications
that we will study below.

4. Using RWPI for optimal regularization

In this section we aim to utilize the limit theorems for the RWP function derived in
Section 3.3 to select the radius of uncertainty, δ, in the DRO formulation (8). Then, from
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the DRO representations derived in Section 2.4, this would imply an automatic choice of
regularization parameter λ = √

δ in the square-root LASSO example (following Theorem 1), or
λ = δ in the regularized logistic regression (following Theorem 2). In the development below,
we follow the logic described in Section 1 for the square-root LASSO setting.

4.1. Selection of δ and coverage properties

Throughout this section, let β∗ denote the underlying linear or logistic regression model
parameter from which the training samples {(Xi, Yi) : i = 1, . . . , n} are obtained. Lemma 1
establishes that the infimum and the supremum in the DRO formulation (8) can be exchanged.
See Appendix C [9] for a proof of Lemma 1.

Lemma 1. In the settings of Theorems 1 and 2, if E‖X‖2
2 < ∞, we have that

inf
β∈Rd

sup
P∈Uδ(Pn)

EP[l(X, Y; β)] = sup
P∈Uδ(Pn)

inf
β∈Rd

EP[l(X, Y; β)]. (25)

Recall the definition of �n(δ) in (3). As a consequence of Lemma 1, the set �n(δ) contains
the optimal solution obtained by solving the problem on the left-hand side of (25). Indeed, if
this was not the case, the left-hand side of (25) would be strictly smaller than the right-hand
side of (25). Recall from Section 1.1.2 that our primary criterion for choosing δ is to choose
δ large enough so that β∗ ∈ �n(δ) with the desired confidence. The property that the estimator
obtained by solving the DRO formulation (8) lies in �n(δ), we believe, makes our selection
of δ logically consistent with the ultimate goal of the overall estimation procedure, namely,
estimating β∗.

Due to the optimality of β∗, the convexity of the loss �(x, y; · ) in Examples 1 and 2, and
the finiteness of E‖X‖2

2, we have that E[Dβ l(X, Y; β∗)] = 0. Consider the RWP function with
estimating equation Dβ l(x, y; β) = 0 given by

Rn(β) = inf{Dc(P, Pn) : DβEP[l(X, Y; β)] = 0}.
Then, as explained in Section 1.1.3, the events {Rn(β∗) ≤ δ} and {β∗ ∈ �n(δ)} coincide. If δ is
selected so that δ ≥ Rn(β∗), then the worst-case loss estimated by the DRO formulation (8) can
be shown to form an upper bound to the empirical risk evaluated at β∗, thus controlling the
bias portion of the generalization error. This is the content of Proposition 6.

Proposition 6. In the settings of Theorems 1 and 2, if δ ≥ Rn(β∗) we have∣∣∣EPn [l(X, Y; β∗)] − inf
β

sup
P ∈Uδ(Pn)

EP[l(X, Y; β)]
∣∣∣ ≤ C1δ + C2(n)1{ρ=2}

√
δ,

where C1 := (2ρ − 1)‖β∗‖ρ and C2(n) := 2‖β∗‖p
√

EPn [l(X, Y; β∗)].

Now, in order to guarantee that δ ≥ Rn(β∗) (or, equivalently, β∗ ∈ �n(δ)) with the desired
confidence 1 − α, it is sufficient to proceed as in Section 3.1: Let ηα be the (1 − α) quantile
of the weak limit, R̄, resulting from nρ/2Rn(β∗) ⇒ R̄ as derived in Section 3.3. In light of
Theorems 1 and 2 we have ρ = 2 for Example 1 and ρ = 1 for Example 2. If we take η ≥ ηα ,

δ = n−ρ/2η, and �n(δ) = {β : Rn(β) ≤ n−ρ/2η}, (26)

then limn→∞ P(Rn(β∗) > n−ρ/2η) ≤ α. Then, as demonstrated in (19), we have limn→∞
P(β∗ ∈ �n(δ)) ≥ 1 − α. In Sections 4.2 and 4.3 we illustrate the application of this prescription
by deriving upper bounds for R̄ that are not dependent on the knowledge of β∗.
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Theorem 4. In the settings of Theorems 1 and 2, suppose that the samples {(Xi, Yi) : i ≤ n} are
obtained from the distribution P∗ and EP∗‖X‖2

2 < ∞. For any 1 − α ∈ ( 1
2 , 1), if δ is chosen to

be n−ρ/2η for some η ≥ ηα then we have that

lim
n→∞ P

(∣∣∣∣ inf
β∈Rd

EP∗ [l(X, Y; β)] − inf
β∈Rd

sup
P ∈Uδ(Pn)

EP[l(X, Y; β)]

∣∣∣∣ <
C√

n

)
≥ 1 − 2α

for some positive constant C depending on ρ, EP∗[�(X, Y; β∗)], and VarP∗ [�(X, Y; β∗)].

Proofs of Propositon 6 and Theorem 4 are furnished in Appendix A.2 in the supplementary
material. Explicit prescriptions for the selection of δ satisfying the conditions of Theorem 4
for the case of linear and logistic regression examples are provided in Sections 4.2 and 4.3.

In contrast to the O(n−1/d) rate of convergence for the prescription of δ resulting
from concentration inequalities for Dc(Pn, P∗) (see, for example, [40, Theorem 2] and [28,
Theorem 3.5]), Theorem 4 asserts that the DRO formulation with RWPI-based prescription
for δ enjoys the optimal O(n−1/2) rate of convergence for the optimal risk. Roughly speaking,
this is because the objective of RWPI is to choose the radius δ resulting in good coverage
properties for the optimal parameter β∗, which has d degrees of freedom; on the other hand,
the objective behind concentration inequalities is to choose δ with good coverage properties
for the data-generating probability distribution itself, which is an infinite-dimensional object.
It is well known that the distance between a probability distribution and an empirical version
of itself constituting n independent samples is �(n−1/d) as n → ∞ (see, for example, [46]).

Coverage for the optimal risk, for the particular example of the LASSO estimator, can also
be derived, for example, from the limit theorems in [24]. Once δ is chosen using the RWP
function, as can be seen from the proofs of Proposition 6 and Theorem 4, the deduction of
the rate of convergence and coverage turns out to be fairly intuitive and simple. This serves
to illustrate the fundamental role played by the RWP function in determining the radius of
the uncertainty set. A unified profile-function-based method to deduce the coverage of optimal
risk for regularized estimators is entirely novel. We believe that the approach described here
could serve as a template for deducing similar coverage guarantees for more general DRO
formulations that are not necessarily amenable to be recast as regularized estimators.

4.2. Linear regression models with squared loss function

In this section we derive the asymptotic limiting distribution of a suitably scaled profile
function corresponding to the estimating equation E[(Y − β�X)X] = 0. The chosen estimating
equation describes the optimality condition for the expected loss E[(Y − β�X)2], and therefore
the corresponding Rn(β∗) is suitable for choosing δ as in (26) and the regularization parameter
λ = √

δ in Example 1.

4.2.1. A stochastic upper bound for the RWP limit. Let H0 denote the null hypothesis that the
training samples {(X1, Y1), . . . , (Xn, Yn)} are obtained independently from the linear model
Y = β�∗ X + e, where the error term e has zero mean, variance σ 2, and is independent of X. Let
� = E[XX�].

Theorem 5. Consider the discrepancy measure Dc(·) defined as in (7) using the cost function
c((x, y), (u, v)) = (Nq((x, y), (u, v)))2 (the function Nq is defined in (14)). For β ∈R

d, let

Rn(β) = inf{Dc(P, Pn) : EP[(Y − β�X)X] = 0}.
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Then, under the null hypothesis H0,

nRn(β∗) ⇒ L1 := max
ξ∈Rd

{2σξ�Z − E‖eξ − (ξ�X)β∗‖2
p}

as n → ∞. In the above limiting relationship, Z ∼N (0, �). Further,

L1
D≤ L2 := E[e2]

E[e2] − (E|e|)2
‖Z‖2

q.

Specifically, if the additive error term e follows a centered normal distribution, then

L1
D≤ L2 := π

π − 2
‖Z‖2

q.

In the above theorem, the relationship L1
D≤ L2 denotes that L1 is stochastically dominated

by L2 in the sense that P(L1 ≥ x) ≤ P(L2 ≥ x) for all x ∈R. Note that this notation for a
stochastic upper bound is different from the notation �D introduced in Section 3.3 to denote
asymptotic stochastic upper bound. A proof of Theorem 5 as an application of Theorem 3 and
Proposition 5 is presented in Appendix A.4 (see supplementary material [9]).

4.2.2. Using Theorem 5 to obtain the regularization parameter for (9). Let η1−α
denote the

(1 − α) quantile of the limiting random variable L1 in Theorem 5, or its stochastic upper
bound L2. Then, following the prescription in (26) and the DRO equivalence in Theorem 1,
the regularization parameter for the �p-penalized linear regression in (9) can be chosen as
follows:

1. Draw samples Z from N (0, �) to estimate the 1 − α quantile of one of the random
variables L1 or L2 in Theorem 5. Let us use η̂1−α

to denote the estimated quantile. While
L2 is simply the norm of Z, obtaining realizations of the limit law L1 involves solving
an optimization problem for each realization of Z. If � = E[XX�] is not known, one can
use a simple plug-in estimator for E[XX�] in place of �.

2. Choose the regularization parameter λ to be

λ = √
δ =

√
η̂1−α

/n.

It is interesting to note that the prescription for the regularization parameter obtained by
using L2 does not depend on the variance of e, thus removing the need for estimating the
variance of e. This property is a key advantage of using the square-root LASSO estimator over
the traditional LASSO (see [2]).

4.2.3. On the approximation ratio L2/L1 when p = q = 2. In the case where q is taken to be
q = p = 2 in Theorem 1 (corresponding to �2 penalization as in ridge regression), it is possible
to obtain an explicit expression for the limit law L1 as follows: Under the assumptions stated
in Theorem 5, we have E[(e1d − Xβ�∗ )(e1d − Xβ�∗ )�] = σ 21d + ‖β∗‖2�. Then, as in (22), we
obtain L1 = σ 2Z�(σ 21d + ‖β∗‖2�)−1Z. Suppose that X is centered so that E[X] = 0 and � is
invertible. Then, if � = U�U� is the eigendecomposition of � we have that N = �−1/2U�Z
has a normal distribution with mean 0 and covariance 1d. As a result,

L1 = σ 2Z�(σ 21d + ‖β∗‖2�)−1Z =
d∑

i=1

�ii

1 + �ii‖β∗‖2/σ 2
N2

i
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and

E[e2] − (E|e|)2

E[e2]
L2 = ‖Z‖2

2 =
d∑

i=1

�iiN
2
i .

If we let c1 = 1 + σ−2‖β∗‖2 maxi=1,...,d �ii and c2 = Var[e]/Var|e|, we arrive at the relation-
ship that L1 ≤ L2 ≤ c1c2L1.

One could aim to achieve lower bias in estimation by working with the (1 − α) quantile of
the limit law L1 (see Proposition 6) instead of that of the stochastic upper bound L2. In order
to do so, we propose to use any consistent estimator for β∗ to be plugged into the expression
for L1 to result in an asymptotically optimal prescription for δ. The argument goes as follows:
Let us write the limit law L1 as L1(β∗) in order to make the dependence of the limit law L1 on
β∗ explicit. As L1(·) is a continuous function, if βn → β∗ in probability then we have

nRn(β∗) − L1(βn) = (nRn(β∗) − L1(β∗)) + (L1(β∗) − L1(βn)) ⇒ 0.

One could use, for example, sample average approximations (without regularization) to com-
pute βn. We seek to verify in future research that the estimator obtained via this plug-in
approach indeed enjoys better generalization guarantees.

4.3. Logistic regression with a log-exponential loss function

In this section we apply the results in Section 3.3 to prescribe the regularization parameter
for the �p-penalized logistic regression in Example 2.

4.3.1. A stochastic upper bound for the RWP function. Let H0 denote the null hypothesis
that the training samples (X1, Y1), . . . , (Xn, Yn) are obtained independently from a logistic
regression model satisfying

log

(
P(Y = 1 | X = x)

1 − P(Y = 1 | X = x)

)
= β�∗ x

for predictors X ∈R
d and corresponding responses Y ∈ {−1, 1}; further, under the null

hypothesis H0 the predictor X has positive density almost everywhere with respect to the
Lebesgue measure on R

d. The log-exponential loss (or negative log-likelihood) that evaluates
the fit of a logistic regression model with coefficient β is given by

l(x, y; β) = − log p(y | x; β) = log (1 + exp ( − yβ�x)).

If we let

h(x, y; β) = Dβ l(x, y; β) = −yx

1 + exp (yβ�x)
, (27)

then the optimal β∗ satisfies the first-order condition that E[h(x, y; β∗)] = 0.

Theorem 6. Consider the discrepancy measure Dc(·) defined as in (7) using the cost function
c((x, y), (u, v)) = Nq((x, y), (u, v)) (the function Nq is defined in (14)). For β ∈R

d, let

Rn(β) = inf{Dc(P, Pn) : EP[h(x, y; β)] = 0},
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where h(·) is defined in (27). Then, under the null hypothesis H0,

√
nRn(β∗) ⇒ L3 := sup

ξ∈A
ξ�Z

as n → ∞. In the above limiting relationship,

Z ∼N
(

0, E

[
XX�

(1 + exp (Yβ�∗ X))2

])
and

A = {ξ ∈R
d : ess supx,y‖ξ�Dxh(x, y; β∗)‖p ≤ 1}.

Moreover, the limit law L3 admits the following simpler stochastic bound:

L3
D≤ L4 := ‖Z̃‖q,

where Z̃ ∼N (0, E[XX�]).

A proof of Theorem 5 as an application of Theorem 3 and Proposition 4 is presented in
Appendix A.4 (see supplementary material [9]).

4.3.2. Using Theorem 6 to obtain the regularization parameter for (10). Similar to linear
regression, the regularization parameter for regularized logistic regression discussed in
Example 2 can be chosen by the following procedure:

1. Estimate the (1 − α) quantile of L4 := ‖Z̃‖q, where Z̃ ∼N (0, E[XX�]). Let us use η̂1−α

to denote the estimate of the quantile.

2. Choose the regularization parameter λ in the norm-regularized logistic regression
estimator (10) in Example 2 to be

λ = δ = η̂1−α
/
√

n.

4.4. Optimal regularization in high-dimensional square-root LASSO

In this section, let us restrict our attention to the square-loss function l(x, y; β) = (y − β�x)2

for the linear regression model and the discrepancy measure Dc defined using the cost function
c = Nq with q = ∞ in (14). Then, due to Theorem 1, this corresponds to the interesting case
of square-root LASSO or �2 LASSO that was a particular example in the class of �p-norm-
penalized linear regression estimators considered in Section 4.2.

As an interesting byproduct of the RWP function analysis, the following theorem presents
a prescription for the regularization parameter even in high-dimensional settings where the
ambient dimension d is larger than the number of samples n. Given observations {(Xi, Yi) : i =
1, . . . , n} from the linear model Y = β�∗ X + e, let ẽi := (Yi − β�∗ Xi)/σ for i = 1, . . . , n. We
have that the variance of the normalized error terms ẽi does not depend on σ .

Theorem 7. Suppose that the assumptions imposed in Theorem 5 hold. Then

nRn(β∗)
D≤ ‖Zn‖2∞

Varn|ẽ| ,

where Zn := 1√
n

∑n
i=1 ẽiXi and Varn|ẽ| := ∑n

i=1 (|ẽi| − n−1 ∑n
k=1 |ẽi|)2.

https://doi.org/10.1017/jpr.2019.49 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.49


852 J. BLANCHET ET AL.

Remark 1. Suppose that the additive error e is normally distributed and the observations Xi =
(Xi1, . . . , Xid) are normalized so that n−1 ∑n

i=1 X2
ij = 1 for j = 1, . . . , d. Then, for any α < 1/8,

C > 0, and ε > 0, due to Lemma 1(iii) of [2], the stochastic bound in Theorem 7 simplifies as
follows: Conditional on the observations {Xi : i = 1, . . . , n}, we have

√
Rn(β∗) ≤ π

π − 2


−1(1 − α/2d)√
n

with probability asymptotically larger than 1 − α as n → ∞ uniformly in d such that log d ≤
Cn1/2−ε. Here, 
−1(1 − α) denotes the quantile x satisfying 
(x) = 1 − α, and 
(·) is the
cumulative distribution function of the standard normal distribution defined on R. Moreover,
if the additive error e is not normally distributed, then under the additional assumption that
supn≥1 sup1≤j≤d EPn |Xj|a < ∞ for some a > 2, we obtain from Lemma 2(iii) of [2] that

√
Rn(β∗) ≤ E[e2]

E[e2] − (E|e|)2


−1(1 − α/2d)√
n

with probability asymptotically larger than 1 − α as n → ∞ uniformly in d such that d ≤
0.5αn(a−2−ε)/2.

A proof of Theorem 7 is presented in Appendix A.4 (see supplementary material [9]).
A commonly adopted approach in the high-dimensional regression literature (see, for example,
[1, 2, 4, 29] and references therein) is to start with any choice λ > ‖S̃‖q, where S̃ is
the score function DβEn[l(X, Y; β∗)]. This choice, in the context of square-root LASSO,
results in the regularization parameter being chosen larger than the (1 − α) quantile of
n−1/2‖Z‖∞/

√
Varn[ẽ] (see (10) in [2]). As observed in Theorem 7, working with an upper

bound of the RWP function results in choosing the (1 − α) quantile of n−1/2‖Z‖∞/
√

Varn|ẽ|.
Indeed, this agreement of the regularization parameter with the high-dimensional linear regres-
sion literature strengthens the RWPI-based approach for selecting the radius of uncertainty.
Since the RWPI-based approach results in a prescription for the regularization parameter that
is larger (by a factor Varn[ẽ]/Varn|ẽ|), the generalization error bounds derived in the literature
for high-dimensional regularized regression (see, for example, [2, Corollary 1]) hold.

The approach in Theorem 7 is to identify an upper bound that does not depend on β∗.
Instead, one could choose δ ≥ Rn(β̂n) by plugging in any consistent estimator β̂n. We identify
investigating the possibility of obtaining tighter error bounds via this plugin approach as a
subject of future research.

5. Numerical examples

In this section we consider two examples that compare the numerical performance of the
square-root LASSO algorithm (see Example 1) when the regularization parameter λ is selected
in the following two ways: (1) as described in Section 4.2 using a suitable quantile of the
RWPI limiting distribution, and (2) using cross-validation. For comparison purposes we also
list the performance of the respective ordinary least squares estimator. In both the examples the
cross-validation-based approach iterates over a multitude of choices of λ, whereas the optimal
regularization via RWPI utilizes the respective square-root LASSO algorithm only once for
the prescribed value of λ. This naturally suggests potentially huge savings in computation that
could be valuable in large-scale settings.

Example 4. Consider the linear model Y = 3X1 + 2X2 + 1.5X4 + e where the vector of predic-
tor variables X = (X1, . . . , Xd) is distributed according to the multivariate normal distribution
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TABLE 1: Sparse linear regression for d = 300 predictor variables in Example 4. The training and test
mean square errors of RWPI-based square-root LASSO regularization parameter selection are compared
with the ordinary least squares estimator (OLS) and cross-validation-based square-root LASSO estimator

(SQ-LASSO CV) for different values of the training data set size n.

�1 loss �2 loss

n Method Training error Test error ‖β − β∗‖1 ‖β − β∗‖2

RWPI 101.16(±8.11) 122.59(±6.64) 4.08(±0.69) 5.23(±0.76)
350 SQ-LASSO CV 92.23(±7.91) 117.25(±6.07) 3.91(±0.42) 5.02(±1.28)

OLS 13.95(±2.63) 702.73(±188.05) 31.59(±3.64) 436.19(±50.55)

RWPI 101.81(±3.01) 117.96(±4.80) 3.31(±0.40) 4.38(±0.48)
700 SQ-LASSO CV 99.66(±4.64) 115.46(±4.36) 2.96(±0.37) 3.98(±0.66)

OLS 56.82(±3.94) 178.44(±21.74) 10.99(±0.57) 152.04(±8.25)

RWPI 102.55(±2.39) 108.44(±2.54) 2.18(±0.16) 3.28(±1.66)
3500 SQ-LASSO CV 100.74(±2.35) 113.83(±2.33) 2.66(±0.14) 3.91(±2.18)

OLS 90.37(±2.17) 114.78(±5.50) 3.96(±0.20) 54.67(±3.09)

RWPI 102.12(±8.11) 105.97(±0.88) 1.13(±0.08) 1.63(±0.11)
10 000 SQ-LASSO CV 100.69(±7.91) 112.82(±0.71) 1.15(±0.07) 1.94(±0.12)

OLS 95.91(±1.11) 107.74(±2.96) 2.23(±0.10) 30.91(±1.43)

N (0, �) with �k,j = 0.5|k−j| and the additive error e is normally distributed with mean 0 and
standard deviation σ = 10. Letting n denote the number of training samples, we illustrate
the effectiveness of the RWPI-based square-root LASSO procedure for various values of
d and n by computing the mean square loss/error (MSE) over a simulated test data set of
size N = 10 000. Specifically, we take the number of predictors to be d = 300 and 600, the
number of standardized independent and identically distributed training samples to range over
n = 350, 700, 3500, 10 000, and the desired confidence level to be 95%, that is, 1 − α = 0.95.
In each instance we run the square-root LASSO algorithm using the ‘flare’ package proposed
in [27] (available as a library in R) with the regularization parameter λ chosen as prescribed in
Section 4.2.

Repeating each experiment 100 times, we report the average training and test MSE in
Tables 1 and 2, along with the respective results for ordinary least squares regression (OLS) and
the square-root LASSO algorithm with regularization parameter chosen as prescribed by cross-
validation (denoted as SQ-LASSO CV in the tables). We also report the average �1 and �2 error
of the regression coefficients in Tables 1 and 2. In addition, we report the empirical coverage
probability that the optimal error E[(Y − β�∗ X)2] = σ 2 = 100 is smaller than the worst-case
expected loss computed by the DRO formulation (8). As this empirical coverage probability
reported in Table 3 is closer to the desired confidence 1 − α = 0.95, the worst-case expected
loss computed by (8) can be seen as a tight upper bound on the optimal loss E[l(X, Y; β∗)]
(thus controlling generalization) with probability at least 1 − α = 0.95.

Example 5. Consider the diabetes data set from the ‘lars’ package in R (see [15]), where there
are 64 predictors (including 10 baseline variables and another 54 possible interactions) and
1 response. After standardizing the variables, we split the entire data set of 442 observations
into n = 142 training samples (chosen uniformly at random) and the remaining N = 300
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TABLE 2: Sparse linear regression for d = 600 predictor variables in Example 4. The training and test
mean square errors of RWPI-based square-root LASSO regularization parameter selection are compared
with the ordinary least squares estimator (OLS) and cross-validation-based square-root LASSO estimator

(SQ-LASSO CV). As n < d when n = 350, OLS estimation is not applicable in that case.

�1 loss �2 loss

n Method Training error Test error ‖β − β∗‖1 ‖β − β∗‖2

RWPI 108.05(±8.38) 109.46(±4.68) 4.02(±0.71) 4.08(±0.70)
350 SQ-LASSO CV 93.17(±10.83) 104.51(±4.76) 2.23(±0.38) 6.89(±2.35)

OLS — — — —

RWPI 104.33(±5.03) 103.18(±2.14) 2.91(±0.42) 2.99(±0.43)
700 SQ-LASSO CV 100.50(±4.70) 99.92(±2.18) 1.45(±0.28) 2.82(±0.64)

OLS 14.27(±2.02) 699.06(±137.45) 31.66(±2.21) 518.02(±44.87)

RWPI 101.52(±2.52) 96.38(±0.80) 1.23(±0.24) 1.32(±0.24)
3500 SQ-LASSO CV 102.58(±2.49) 98.55(±0.94) 1.18(±0.15) 1.94(±0.24)

OLS 82.22(±2.31) 102.01(±6.14) 6.76(±0.23) 114.05(±5.73)

RWPI 101.36(±1.11) 94.86(±0.36) 0.75(±0.13) 0.81(±0.14)
10000 SQ-LASSO CV 103.00(±1.11) 98.55(±0.49) 1.16(±0.08) 1.94(±0.13)

OLS 95.11(±1.10) 99.53(±4.83) 3.26(±0.11) 63.67(±2.16)

TABLE 3: Coverage probability of empirical worst-case expected loss in Example 4.

Training sample size

d 350 700 3500 10000

300 0.974 0.977 0.975 0.969
600 0.963 0.966 0.970 0.968

TABLE 4: Linear regression for diabetes data in Example 5 with 142 training samples and 300 test
samples. The training and test mean square errors of RWPI-based square-root LASSO regularization
parameter selection are compared with the ordinary least squares estimator (OLS) and the cross-

validation-based square-root LASSO estimator (SQ-LASSO CV).

Training error Testing error

RWPI 0.58(±0.05) 0.60(±0.04)
SQ-LASSO CV 0.44(±0.06) 0.57(±0.03)
OLS 0.26(±0.05) 1.38(±0.68)

samples as test data for each experiment, in order to compute training and test mean square
errors using the square-root LASSO algorithm with the regularization parameter picked as
in Section 4.2. After repeating the experiment 100 times, we report the average training and
test errors in Table 4, and compare the performance of RWPI-based regularization parameter
selection with other standard procedures such as OLS and the square-root LASSO algorithm
with regularization parameter chosen according to cross-validation.
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6. Conclusions

We have shown that popular machine learning estimators such as square-root LASSO,
regularized logistic regression, support vector machines, etc. can be recast as particular
examples of the optimal-transport-based DRO formulation in (8). We introduced a robust
Wasserstein profile function and utilized its behavior at the optimal parameter β∗ to present
a criterion for choosing the radius, δ, in the DRO formulation (8). We illustrated how this
translates to choosing regularization parameters and coverage guarantees for optimal risk in
the settings of �p-norm-regularized linear and logistic regression. We observe that the proposed
prescriptions for the radius δ for the DRO formulation (8) result in similar prescriptions
that arise from independent considerations in the statistics literature. This indeed strengthens
the Wasserstein-profile-function-based approach towards choosing the radius, δ, for the DRO
formulation (8).

Following the results presented in this paper, we investigate the behavior of the profile
function Rn(θ ) in the vicinity of the optimal parameter θ∗ in [10] and establish a limiting
relationship of the form nρ/2Rn(θ∗ + �/

√
n) ⇒ L(�) for a continuous L(·). Such a relationship

can be used to accomplish the following tasks: (i) construct confidence intervals for the optimal
parameter θ∗, (ii) establish error bounds for the solution to the DRO formulation (8), and
(iii) systematically establish the validity of plugging in any consistent estimator for θ∗ in order
to obtain an asymptotically optimal prescription for the radius δ. Such a plugin approach would
obviate the need to derive stochastic upper bounds on a case-by-case basis, as is presently
required in Section 4.

Supplementary material

Proofs of all the results in this article are furnished in the supplementary material [9].
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