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Abstract

Whole-rock major and trace elements and Hf isotopes of magmatic zircons of tonalite–trondh-
jemite–granodiorite (TTG) rocks with different ages (2.9, 2.7 and 2.5 Ga) from the three blocks
(the Eastern Block,Western Block and Trans-North China Orogen) of the North China Craton
were compiled to investigate their respective petrogenesis, tectonic setting and implications for
crustal growth and evolution. Geochemical features of the 2.5 Ga TTGs of the Eastern Block
require melting of predominant rutile-bearing eclogite and subordinate garnet-amphibolite at
higher pressure, while the sourcematerial of the 2.7 Ga TTGs is garnet-amphibolite or granulite
at lower pressure. The 2.5 Ga TTGs have highMg#, Cr and Ni, negative Nb–Ta anomalies and a
juvenile basaltic crustal source, indicating derivation from the melting of a subducting slab. In
contrast, features of the 2.7 Ga TTGs suggest generation frommelting of thickened lower crust.
The 2.5 and 2.7 Ga TTGs in the Trans-North China Orogen were formed at garnet-amphibolite
to eclogite facies, and the source material of the 2.5 Ga TTGs in theWestern Block is most likely
garnet-amphibolite or eclogite. The 2.5 Ga TTGs in the Trans-North China Orogen and
Western Block were generated by the melting of a subducting slab, whereas the 2.7 Ga
TTGs in the Trans-North China Orogen derived from melting of thickened lower crust.
The Hf isotopic data suggest both the 2.5 and 2.7 Ga TTG magmas were involved with con-
temporary crustal growth and reworking. The two-stage model age (TDM2) histograms show
major crustal growth between 2.9 and 2.7 Ga for the whole North China Craton.

1. Introduction

Tonalite–trondhjemite–granodiorite (TTG) suites, constituting up to ~80 % of Archaean
terranes worldwide, are critical components of the ancient continental crust (Martin et al.
2005). Moreover, TTG magmatism represents an important transition in a terrane that links
the original mafic crust with the subsequent crust of a potassic granitic composition
(Glikson, 1979), because it is commonly considered that TTG rocks are generated by partial
melting of hydrated basalts and are the parent rocks of many potassic granites. Therefore,
TTGs represent an essential element in the ‘protocontinental’ stage of crustal growth and
evolution (Barker, 1979), and thus can provide vital insights into understanding the crustal
evolution and geodynamic regime.

A series of constraints from experimental petrology, phase equilibrium and geochemical
studies have revealed that Archaean TTGs were generated by melting of hydrous metabasalts,
but it is difficult to distinguish betweenmelting of amphibolitic, garnet-amphibolitic or eclogitic
sources (Arth & Hanson, 1972; Beard & Lofgren, 1991; Rapp et al. 1991, 2003; Foley et al. 2002,
2003; Xiong, 2006; Moyen & Stevens, 2006; Moyen, 2011). In addition, the geodynamic setting
for TTGs is still debated, and no consensus has been reached between various models, which
include: hot subduction (Drummond & Defant, 1990; Peacock et al. 1994; Martin, 1999; Martin
et al. 2005), thickened lower crust (Atherton& Petford, 1993; Smithies, 2000;Whalen et al. 2002;
Condie, 2005; Nair & Chacko, 2008; Nagel et al. 2012), delamination at the base of an oceanic
plateau (Zegers & van Keken, 2001; Bedard, 2006) or the possible involvement of a
mantle plume (Arndt & Goldstein, 1989; Kröner, 1991; Kröner & Layer, 1992; Condie, 2005;
Willbold et al. 2009), and, furthermore, a new model involving the subduction of oceanic
plateaus (Martin et al. 2014).

The North China Craton (NCC), the largest and oldest cratonic block in China (~3.8 Ga;Wu
et al. 2008; Zhai & Santosh, 2011; Zhai, 2014 and references therein), carries a widespread
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Precambrian crystalline basement that predominantly comprises
TTG gneisses. Therefore, the NCC is one of the best natural lab-
oratories to study ancient crustal growth and evolution. In terms
of substantive structural, geological, geochemical, geochrono-
logical and P–T data, the basement of the NCC can be tectoni-
cally divided into the Eastern Block (EB), theWestern Block (WB)
and the Trans-North China Orogen (TNCO) (Zhao et al. 2005).
Previous studies have focused on the TTGs in specific areas of
the NCC (see online Supplementary Material Tables S1–S4) and
have proposed respective models to account for the petrogenesis
and tectonic settings. However, a synthesis of the TTGs with differ-
ent ages in each block is lacking, which hinders understanding
the overall formation mechanism of the TTGs with different ages
in each block and the geodynamic regime of crustal growth and
reworking in the NCC. Therefore, in this study, we compile and
synthesize the published geochemical data available, including
whole-rock major and trace elements and zircon Lu–Hf isotopes
of the TTGs with different ages from the basement rocks of the
three blocks, in order to discuss the respective source and tectonic
setting of these TTGs and then evaluate the crustal growth and
evolution of the NCC. The results can possibly provide important
constraints on the tectonic subdivision of the NCC.

2. Geologic setting

The NCC, the Chinese part of the Sino-Korean Craton, is the
oldest and largest craton in China, with ancient crustal nuclei
as old as 3.8 Ga (Liu et al. 1992; Wu et al. 2008; Zhai &
Santosh, 2011; Zhai, 2014 and references therein). It covers an

area of c. 1 500 000 km2 and is bounded by the early Palaeozoic
Qilianshan Orogen to the west, the late Palaeozoic Tianshan-
Xing’an Mongolian Orogen to the north and the Qinling–
Dabie–Sulu ultrahigh pressure (UHP) metamorphic belt to the
south. Although remarkable advances have been achieved by
recent studies and a broad consensus has been reached in under-
standing the crustal evolution of the NCC, the tectonic subdivision
and timing of amalgamation of the NCC remain disputed issues
(Wu et al. 1998; Zhao et al. 1998, 1999a,b, 2000, 2001, 2005;
Zhai et al. 2000; Kusky & Li, 2003; Kusky et al. 2007; Trap
et al. 2008, 2009; Santosh, 2010; Santosh et al. 2010; Kusky,
2011; Zhai & Santosh, 2011; Zhao & Cawood, 2012; Zhao &
Guo, 2012; Zheng et al. 2013). One of the most common sub-
division methods is to divide the NCC into three major units:
the EB (Eastern Block), WB (Western Block) and TNCO
(Trans-North China Orogen) (Fig. 1; Zhao et al. 2005). The
WB and EB were both formed by amalgamation of two crustal
blocks, of which the WB is subdivided into the Yinshan
Block in the north and the Ordos Block in the south by the
E–W-trending Khondalite Belt (Fig. 1; Xia et al. 2006a,b,
2008; Zhao, 2009; Zhao et al. 2010; Wang et al. 2011).
Similarly, the EB is taken as a collage of the Longgang Block
to the north and the Nangrim Block to the south along the
Jiao–Liao–Ji belt (Li et al. 2004, 2005, 2006, 2011b; Zhao
et al. 2005; Li & Zhao, 2007; Luo et al. 2008).

2.a. Eastern Block

TheEasternBlock is composed of the EasternHebei,Miyun–Chengde,
Eastern Shandong, Western Shandong, Western Liaoning, Southern

Fig. 1. (Colour online) Geological sketch map of the North China Craton (modified after Zhao et al. 2005). Abbreviations: YB – Yinshan Block; KB – Khondalite Belt; OB – Ordos
Block; WB – Western Block; TNCO – Trans-North China Orogen; EB – Eastern Block; SJ – Southern Jilin; WL – Western Liaoning; NL – Northern Liaoning; SL – Southern Liaoning;
CD – Chengde; DF – Dengfeng; MY – Miyun; NH – Northern Hebei; EH – Eastern Hebei; WT – Wutai; HS – Hengshan; FP – Fuping; HA – Huai’an; ZH – Zanhuang; LL – Lvliang;
ES – Eastern Shandong; TH – Taihua; WS – Western Shandong; ZT – Zhongtiao.
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Liaoning, Northern Liaoning and Southern Jilin domains (Fig. 1). The
basement rocks of the EB consist primarily of pre-tectonic felsic
gneisses (mainly TTG gneisses), syntectonic granitoids and minor
supracrustal rocks that include ultramafic to mafic volcanic rocks
and sedimentary rocks (including banded iron formations). Among
the basement rocks are a large per cent of Neoarchaean lithological
assemblages, with minor Eoarchaean to Paleoarchaean (3.8 Ga to
3.3 Ga) rocks (Jahn et al. 1987, 1988; Liu et al. 1992; Song et al.
1996; Nutman et al. 2009, 2011; Wan et al. 2009a). All of them were
metamorphosed at greenschist- to granulite-facies conditions at
2.50–2.48Gawith anticlockwise isobaric cooling (IBC)-typeP–T paths
(Wu et al. 2012). Geochronological data show that the dominant age
ranges of the TTG gneisses and volcanic rocks are from 3.5 to 2.5 Ga
(Zhao et al. 1998, 2001 and references therein), whereas the syntectonic
granitoids were emplaced only at 2.5 Ga. In addition, 3.8 Ga crust has
been identified in the Eastern Hebei and Anshan areas (e.g. Liu et al.
1992; Song et al. 1996), considered to be the oldest crustal remnants
and the most primitive continental crust of the NCC.

2.b. Western Block

TheWestern Block is subdivided into the YinshanBlock in the north
and the Ordos Block in the south by the Palaeoproterozoic
Khondalite Belt that trends E–W and extends from western
Helanshan and Qianlishan, through Daqingshan and Wulanshan,
to the eastern Jining area (Zhao et al. 2005, 2011; Zhao, 2009;
Santosh, 2010; Li et al. 2011a; Santosh et al. 2012). Investigations
from Wu et al. (1986) showed that the Ordos Block is completely
covered by the younger Ordos Basin. Therefore, the basement
rocks of the WB are primarily exposed in the Yinshan Block
and Khondalite Belt, including the Guyang–Wuchuan, Helanshan–
Qianlishan, Daqingshan–Ulashan, Sheerteng and Jining areas (Fig. 1).

Represented by the Guyang and Wuchuan areas, the Yinshan
Block is predominantly composed of late Archaean granitic
(mainly TTG) gneisses and minor supracrustal rocks, all of which
were metamorphosed at greenschist to granulite facies at ~2.5 Ga
(Zhao et al. 1999b and references therein). The Khondalite Belt was
the belt along which the Ordos and Yinshan blocks amalgamated
to form the uniform WB at 1.95–1.92 Ga (Zhao et al. 2005, 2011;
Santosh et al. 2006, 2007, 2009; Wan et al. 2006, 2009a,b; Yin et al.
2009, 2011; Zhao, 2009; Li et al. 2011a), themetamorphic evolution
of which is characterized by clockwise isothermal decompression
(ITD) P–T paths (Zhao et al. 1999b, 2005, 2011). However, the pro-
tolith age of the basement rocks in the Khondalite Belt remains
controversial (Zhang et al. 1994; Lu et al. 1996). Someworkers con-
sider it could be Archaean (Qian & Li, 1999), whereas others take it
to be Palaeoproterozoic (Zhao et al. 1999b; Wan et al. 2009b).

2.c. Trans-North China Orogen

The Trans-North China Orogen, including the Dengfeng, Fuping,
Hengshan, Huai’an, Lvliang, Northern Hebei, Wutai, Zanhuang
and Zhongtiao domains (Fig. 1), is separated from the EB and
WB by major faults. It has been considered to be the collisional
zone between the Eastern and Western blocks at ~1.8 Ga (Zhao
et al. 2001). It is composed predominantly of Neoarchaean to
Palaeoproterozoic basement rocks metamorphosed at greenschist
to granulite facies. According to the lithology and metamorphic
grade, the basement rocks of the TNCO have been divided
into high-grade gneisses containing the Fuping, Hengshan and
Huai’an areas and low-grade granite–greenstone belts including
the Dengfeng, Lvliang, Wutai, Zhongtiao and Zanhuang domains
(Zhao et al. 2000). The available geochronological data suggest that

emplacement of the TTG and granitic plutons and eruption of
mafic to felsic volcanic rocks mainly took place at 2.5–1.9 Ga with
a major peak at ~2.5 Ga and a minor peak at ~2.1 Ga (e.g. Zhao
et al. 2000, 2001, 2008; Guo et al. 2005; Kröner et al. 2005,
2006). Interestingly, all the basement rocks in the TNCO, regard-
less of their composition, protolith age andmetamorphic grade, are
characterized by clockwise ITD-type P–T paths, possibly related to
the collision between the EB and WB (Zhao et al. 2000, 2010; Xiao
et al. 2010). Extensive zircon SHRIMP U–Pb, monazite U–Pb, and
mineral Ar–Ar and Sm–Nd dating indicate that the metamor-
phism in the TNCO happened at ~1.85 Ga (Guo & Zhai, 2001;
Guo et al. 2005; Liu et al. 2006; Wan et al. 2006; Zhao et al.
2010, 2011 and references therein).

3. Data sources, filtering and illustration

Previous studies demonstrated that the magmatic ages of the TTGs
in the EB and TNCO are predominantly ~2.5 Ga and ~2.7 Ga,
whereas those in the WB are mostly concentrated around
2.5 Ga (online Supplementary Material Fig. S1; Zhai & Santosh,
2011). Therefore, the comparative studies conducted here are
between the two phases of TTGs in the three blocks.

To accurately depict the TTGs in the three blocks of the NCC,
we compiled geochemical analyses from a wide range of literature.
A large database of Archaean gneissic and plutonic TTGs, includ-
ing grey gneisses, TTG orthogneisses and TTG plutons was
compiled for analysis. To make sure all the data used for the
calculations and discussions agreed with the definition of TTGs,
we filtered the database based on the TTG definition from
Barker (1979). The filtered data for each block are listed in online
Supplementary Material Tables S1–S3.

For consistency, the compiled zircon Hf isotopic data for mag-
matic zircons from the TTGs (online Supplementary Material
Table S4; summarized in online Supplementary Material
Fig. S1) were recalculated by adopting the same reference values:
176Hf/177HfDM,0= 0.28325, 176Lu/177HfDM,0= 0.0384 (Griffin
et al. 2000), 176Lu/177HfCHUR,0= 0.0332, 176Hf/177HfCHUR,0 =
0.282772 (Blichert-Toft & Albarède, 1997) and λ = 1.867 × 10–11

(Söderlund et al. 2004). Moreover, a 176Lu/177Hf value of 0.015
was adopted for the average continental crust (Griffin et al.
2002) to recalculate two-stage model ages (TDM2). The recalculated
values are listed in online Supplementary Material Table S4.

4. Results

4.a. Major and trace elements

In the An–Ab–Or geochemical classification diagram proposed by
Barker & Arth (1976), the rocks classify as tonalitic, trondhjemitic
and granodioritic (online Supplementary Material Fig. S2), clearly
showing their affinity with the TTG suite of rocks. All of the
samples plot in the metaluminous–peraluminous domains on
the A/NK–A/CNK diagram (online Supplementary Material
Fig. S3) and display a trondhjemitic trend in the K–Na–Ca plot
(online Supplementary Material Fig. S2). In the three blocks, the
2.5 Ga TTGs exhibit similar A/NK and A/CNK values to those
of the 2.7 Ga TTGs (online Supplementary Material Fig. S3),
indicating that they are all Al-rich. In summary, major-element
compositions of the TTG gneisses in the three blocks of the
NCC share a number of similarities with Archaean TTG suites
around the world (Martin et al. 2005, 2009). Generally speaking,
the 2.5 Ga TTGs in the EB show higher Sr and Sr/Y than those
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of the TNCO andWB, while the 2.7 Ga TTGs in the EB show lower
Sr, Sr/Y and ΔSr than those of the TNCO (Figs 2–5). Moreover, the
two phases of TTGs in the EB show distinct Nb/Ta ratios while those
TTGs in the TNCO possess similar Nb/Ta values (Figs 2, 3, 6).
Detailed similarities and distinctions between the TTGs of differ-
ent ages from the different blocks are described in the online
Supplementary Material.

4.b. Hf isotopes of magmatic zircons

The Hf isotopes of magmatic zircons from the 2.5 and 2.7 Ga
TTGs from the TNCO and EB are depicted in Figures 7 and 8,
respectively. The TDM2 histogram for the 2.5 Ga TTGs in the
TNCO is consistent with a Gaussian normal distribution, with
the TDM2 ages varying between 2348 Ma and 3022 Ma and a single
major peak at 2.69 Ga (Fig. 7a). The εHf(t) values show relatively
large ranges (þ0.33 to þ10.70, þ5.28 on average; online
Supplementary Material Table S4), mostly plotting between the
crustal evolution curves of 2.5–3.0 Ga (Fig. 9a). In contrast, the
2.7 Ga TTGs from the TNCO showmore complex Hf patterns than
the 2.5 Ga TTGs in the TDM2 histogram. The TDM2 ages vary from
2680 Ma to 3424 Ma, with a predominant peak at 2.81 Ga
and a subordinate peak at 3.06 Ga (Fig. 7b). The εHf(t) values

(−3.85 to þ7.87; online Supplementary Material Table S4) are
relatively more negative than those of the 2.5 Ga TTGs.

The TDM2 model ages of the 2.5 Ga TTGs from the EB are
mainly concentrated between 2.5 Ga and 3.1 Ga, with a single peak
at 2.74 Ga, and the εHf(t) values range between −2.56 and þ12.60
(averageþ4.59) (Fig. 8a; online SupplementaryMaterial Table S4).
However, the magmatic zircons of the 2.7 Ga TTGs from the EB
show εHf(t) values of −13.89 to þ8.61 (average þ3.76) and TDM2

model agesmainly concentrating between 2.7 Ga and 3.2 Ga, with a
major peak at 2.83 Ga and a subordinate peak at 2.94 Ga (Fig. 8b).

Limited Hf isotopic data from the WB are available, so the
description of them is omitted here.

5. Discussion

5.a. Source material

It is commonly considered that TTG magmas were formed by
partial melting of meta-basaltic rocks under a variety of conditions
(e.g. Rapp &Watson, 1995;Martin et al. 2005). As different sources
influence the compositions of TTG melts differently, the trace-
element concentrations of juvenile TTGs can be employed to
constrain their actual source compositions (Hoffman et al. 2011).

Fig. 2. (Colour online) (a) Sr/Y–Y, (b) (La/Yb)N–YbN, (c) Sr–SiO2 and (d) Nb/Ta–Zr/Sm diagrams for the TTG gneisses from the TNCO of the NCC (melting curves are from Drummond
& Defant, 1990; HP, MP and LP TTGs are from Moyen, 2011). Note that the sample (10HXL-01) with remarkably high Sr/Y and two samples (12ZHF-02 and 12ZHF-04) with extremely
high Nb/Ta ratios are not shown in (a) and (d), respectively.
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For TTGmagma, experimental studies show that the heavy rare
earth elements (HREEs) are buffered mainly by garnet and/or
amphibole, thus the HREE concentrations and patterns of the
TTG melt can be used to speculate the stability of garnet/amphibole
in the residue phase (Beard & Lofgren, 1991; Rapp et al. 1991, 1999,
2003; Foley et al. 2002, 2003; Moyen & Stevens, 2006). Generally,
HREEs are strongly compatible within garnet, while medium
rare earth elements (MREEs) are strongly enriched within amp-
hibole (Rollinson, 1993). Therefore, the melting products
derived from the melting of basaltic rocks in equilibrium with
garnet residue should show very high fractionations between light
rare earth elements (LREEs) and HREEs, while the counterpart
equilibrated with amphibole residue would have a concave-upward
normalized REE pattern (Rollinson, 1993). In addition, plagioclase
is the main phase controlling Sr concentrations and Eu anomalies
(Martin, 1987; Springer & Seck, 1997). Therefore, it is not hard to
imagine that the melt would have high Sr contents and positive Eu
anomalies if plagioclase breaks down during the melting process.
Moreover, YbN–(La/Yb)N and Sr/Y–Y diagrams are generally used
to discriminate the possible source of TTGs (Martin, 1986, 1987;
Defant & Drummond, 1990; Moyen, 2009). The trace-element
modelling results from Martin (1986) showed that low Yb and
Y concentrations would result in high (La/Yb)N and Sr/Y ratios,
which require garnet in the residue phase. Experimental studies

show that high field strength elements (HFSEs) and their ratios
can reflect the partition behaviour of elements into different min-
eral phases (e.g. amphibole, rutile, ilmenite and titanite); therefore,
they can be employed as good tracers for distinguishing different
sources. It is commonly considered that rutile and amphibole play
significant roles in buffering Nb and Ta, in which they possess
opposite partition behaviour for Nb and Ta (Foley et al. 2002;
Rapp et al. 2003). However, no consensus has been reached over
which is the main mineral phase in the residue (Foley et al.
2002; Rapp et al. 2003; Xiong et al. 2005, 2006, 2009).

Based on a series of geochemical distinctions, Moyen (2011)
divided the compiled TTG data from previously published litera-
ture into three subgroups: high-pressure (HP) TTG (20 %),
medium-pressure (MP) TTG (60 %) and low-pressure (LP) TTG
(20 %). The HP TTGs are characterized by high Al2O3, Na2O
and Sr but low Y, Yb, Ta and Nb; LP TTGs are enriched in
HREEs and show low Sr, Sr/Y and La/Yb values, consistent with
low-Al TTGs proposed by Barker (1979), and MP TTGs fall in
between. On the basis of geochemical modelling results, Moyen
(2011) proposed that these three subgroups of TTG magmas were
generated at different melting depths and thus with different res-
idue phases: HP TTGs were formed at pressures ≥ 20 kbar, with
residues of garnet and rutile but without amphibole and plagio-
clase; MP TTGs were generated at pressures of ~15 kbar, with

Fig. 3. (Colour online) (a) Sr/Y–Y, (b) (La/Yb)–Yb, (c) Nb/Ta–Zr/Sm and (d) Sr–SiO2 diagrams for the TTG gneisses from the EB of the NCC (melting curves are from Drummond &
Defant, 1990; HP, MP and LP TTGs are from Moyen, 2011).
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amphibole and a significant amount of garnet but without rutile
and plagioclase; and at ~10–12 kbar, LP TTGs were in equilibrium
with residues of plagioclase–pyroxene–amphibole, with little gar-
net and no rutile.

5.a.1. TTGs from the EB
The 2.5 Ga TTGs in the EB are enriched in LREEs and depleted in
HREEs, with very high Sr/Y and (La/Yb)N values (Fig. 3; online
Supplementary Material Fig. S7; online Supplementary Material
Table S1), indicating residues of garnet and/or amphibole
(Beard & Lofgren, 1991; Rapp et al. 1991, 1999, 2003; Foley
et al. 2002, 2003; Moyen & Stevens, 2006). The Y/Yb (mostly
around 10.0, average 12.39) and (Ho/Yb)N ratios (0.40–2.47, aver-
age 1.23) for the 2.5 Ga TTGs in the EB indicate relatively flat
HREE patterns and the residues of both garnet and amphibole.
In addition, these rocks show high Sr contents (141–1431 ppm,
598 ppm on average) and nearly negligible Eu anomalies
(Eu/Eu* = 1.44 on average), indicating that plagioclase does not
exist in the residue phase. Their Nb/Ta ratios and the Nb/Ta–
Zr/Sm diagram collectively indicate rutile is one of the residue
phases for most of the samples. Additionally, the negative Nb,
Ta and Ti anomalies (online Supplementary Material Fig. S7b)
for the 2.5 Ga TTGs in EB can also be explained by rutile and
amphibole residues (Xiong et al. 2005, 2006, 2009; Xiong, 2006).

Moreover, the 2.5 Ga TTGs in the EB resemble the
HP–MP TTGs proposed by Moyen (2011) (Fig. 3), corroborating
the residues inferred.

The 2.7 Ga TTGs in the EB are characterized by LREE enrich-
ment and HREE depletion (online Supplementary Material
Fig. S7c, d; online Supplementary Material Table S1), suggesting
that garnet and/or amphibole exist in the residue (Beard &
Lofgren, 1991; Rapp et al. 1991, 1999, 2003; Foley et al. 2002,
2003; Moyen & Stevens, 2006). The Y/Yb (7.30-14.87, average
10.63) and (Ho/Yb)N ratios (0.89–1.82, average 1.28) for the 2.7
Ga TTGs indicate relatively flat HREE patterns and the residues
of both garnet and amphibole. These samples show negative to
positive Eu anomalies, indicating that plagioclase exists in
some samples but not in others. This can also provide an inter-
pretation for the generally low Sr/Y ratios of the 2.7 Ga TTGs
(Fig. 3; online Supplementary Material Table S1). Their Nb/Ta
ratios (3.60–24.64) indicate, except for minor samples, that most
samples do not contain rutile in the residue phase (Fig. 3c).
Moreover, they are broadly similar to the LP TTGs of Moyen
(2011), providing a further line of evidence for the above inference.
Therefore, the 2.7 Ga TTGs in the EB are considered to have been
formed at lower pressures than those of the 2.5 Ga TTGs, which
is also demonstrated by the pressure-controlled ΔX parameters
(Fig. 5).

Fig. 4. (Colour online) (a) (La/Yb)–Yb, (b) (La/Yb)N–YbN, (c) Sr–SiO2 and (d) Sr/Y–Y diagrams for the TTG gneisses from the WB of the NCC (melting curves are from Drummond &
Defant, 1990; HP, MP and LP TTGs are from Moyen, 2011).
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Fig. 5. (Colour online) Diagrams showing both source composition/enrichment andmelting depth/pressure for the 2.5 and 2.7 Ga TTG gneisses from the (a–c) EB and (d–f) TNCO.
(a) and (d)ΔSr versusΔRb; (b)ΔSr versus K2O/Na2O; (c) and (e)ΔSr versusΔTh; (f)ΔNb versus K2O/Na2O. For element X,ΔX= X− (aSiO2þ b); constants of a and b and vectors to
show the trends of higher pressures and richer sources are from Moyen et al. (2009).
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Fig. 6. (Colour online) Geochemical modelling ((a) Nb/Ta versus Zr/Sm and (b) Nb/Ta versus Gd/Yb) for the 2.5 and 2.7 Ga TTGs in the TNCO (melting curves are based on Shan
et al. (2016)). Symbols are the same as those in Fig. 2. Note that two samples (12ZHF-02 and 12ZHF-04) with extremely high Nb/Ta ratios are not shown.

Fig. 7. (Colour online) Histograms showing zircon TDM2 model ages for the magmatic
zircons from the (a) 2.5 Ga and (b) 2.7 Ga TTG gneisses in the TNCO of the NCC.

Fig. 8. (Colour online) Histograms showing zircon TDM2 model ages for the magmatic
zircons from the (a) 2.5 Ga and (b) 2.7 Ga TTG gneisses in the EB of the NCC.
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In summary, the 2.5 Ga TTGs in the EB are mainly formed by
partial melting of rutile-bearing eclogite or garnet-amphibolite at
higher pressure, while the 2.7 Ga TTGs were generated by partial
melting of garnet-amphibolite or granulites at lower pressure.

5.a.2. TTGs from the TNCO
Similarly, the 2.5 and 2.7 Ga TTGs in the TNCO are also enriched
in LREEs and depleted in HREEs (online Supplementary Material
Fig. S5; online SupplementaryMaterial Table S2), indicating garnet
and/or amphibole residues (Beard & Lofgren, 1991; Rapp et al.
1991, 1999, 2003; Foley et al. 2002, 2003; Moyen & Stevens,
2006). The 2.5 and 2.7 Ga TTGs in the TNCO have Y/Yb ratios
of 6.47–20.43 and 7.82–21.74, and (Ho/Yb)N ratios of 0.90–1.93
(average 1.27) and 0.60–1.88 (average 1.29), indicating relatively
flat HREE patterns and the residues of both garnet and amphibole.
Both the two phases of TTGs display high Sr contents and positive
or negligible Eu anomalies, suggesting plagioclase breakdown dur-
ing the process. Their Nb/Ta ratios range from 0.40–113 (average
13.49) and 2.04 to 37.00 (average 12.14), suggesting rutile existed in
the residue phase of some, but not all, samples. This is also
evidenced by the Nb/Ta–Zr/Sm diagram (Fig. 2d) that shows
part of these two phases of the TTG samples plot in the garnet-
amphibolite field and others in the eclogite domain, indicating
that the 2.5 and 2.7 Ga TTGs in the TNCO were formed under
conditions of garnet-amphibolite facies to eclogite facies. In the
comparison diagram with the HP–MP–LP TTGs of Moyen
(2011), such as Sr–SiO2, (La/Yb)N–YbN and Sr/Y–Y plots
(Fig. 2a, b, c), the 2.5 and 2.7 Ga TTGs in the TNCO both plot
in the HP–MP TTG domain and are strikingly distinct from LP
TTGs, indicating formation conditions of garnet-amphibolite
facies to eclogite facies. In addition, their Nb, Ta and Ti anoma-
lies (online Supplementary Material Fig. S5b, d) can possibly be
explained by residues of rutile and amphibole (Xiong et al. 2005,
2006, 2009; Xiong, 2006). Therefore, the source material of the
2.5 and 2.7 Ga TTGs in the TNCO is garnet-amphibolite or eclo-
gite. This assertion can be further certified by the modelling
results (Fig. 6), in which, except for two samples ZHF12-02
and ZHF12-04 with very high Nb/Ta ratios that are not shown
in the modelling results, other samples of the 2.5 and 2.7 Ga
TTGs in the TNCO can be well explained by polybaric melting
of garnet-amphibolite or eclogite (Hoffman et al. 2011). But it is
noteworthy that garnet-amphibolite predominates over eclogite
in the source of the 2.7 Ga TTGs, while the two are nearly equal
for the 2.5 Ga TTGs, suggesting generally deeper sources for the
2.5 Ga TTGs than those of the 2.7 Ga TTGs. Additionally, the
source composition-controlled parameters (ΔRb, ΔTh and
K2O/Na2O) shown on the horizontal axes of the diagrams
(Fig. 5) indicate a more enriched source for the 2.5 Ga TTGs
compared with that of the 2.7 Ga TTGs in the TNCO.

5.a.3. TTGs from the WB
The 2.5 Ga TTGs in the WB have high Sr contents and positive or
negligible negative Eu anomalies, suggesting no plagioclase in the
residue phase. The Y/Yb (7.09–31.00, average 13.01) and (Ho/Yb)N
ratios (0.63–2.08, average 1.41) for the 2.5 Ga TTGs inWB indicate
relatively flat HREE patterns (online Supplementary Material
Fig. S9) and the residues of both garnet and amphibole. These
TTGs show similarities to HP–MP TTGs in comparison diagrams,
such as Sr–SiO2, (La/Yb)N–YbN and Sr/Y–Y (Fig. 4). As the num-
ber of Nb/Ta ratios is too small, it is not discernible whether there is
rutile or not. Based on the above information, it can be inferred that

the source material of the 2.5 Ga TTGs in the WB was possibly
garnet-amphibolite or eclogite, but this requires corroboration.

5.b. Tectonic setting

As to the tectonic setting of the TTGs, there is an ongoing contro-
versy over whether they were formed by subduction, lower crustal
thickening or delamination of an oceanic plateau (Smithies, 2000;
Zegers & van Keken, 2001; Whalen et al. 2002; Condie, 2005;
Martin et al. 2005; Bedard, 2006). Delamination of an oceanic
plateau is not likely, because up to now there is no evidence of
Archaean delamination in the NCC. According to experimental
studies, partial melting of purely hydrous basalts would yield
low Mg# values (< 45) and Ni contents (< 10 ppm), regardless
of melting pressure (Rapp & Watson, 1995; Rapp et al. 1999;
Wang et al. 2006). Melting of mafic rocks under a thickened lower
crust will also have low Mg# values (< 45) and Cr (< 20–30 ppm)
and Ni (< 20 ppm) contents (Atherton & Petford, 1993; Petford &
Atherton, 1996; Wang et al. 2006). In contrast, melts from the par-
tial melting of a subducting slab will generally have higherMg# and
Cr and Ni concentrations (Martin, 1999; Smithies, 2000; Martin &
Moyen, 2002; Martin et al. 2005; Moyen, 2009), resulting from
interaction of slab melts with the overlying mantle wedge
(Rapp et al. 1999, 2010). In addition, TTG melts from slab melt-
ing and thickened lower crust are characterized by distinct iso-
topic features. For example, TTG melts from slab melting will be
equivalent to modern adakites in most aspects. If formed in an
oceanic arc, TTG melts will have juvenile initial Nd and Hf
isotopes; if generated in a continental arc, they will possess a
large range of initial Nd and Hf isotope values from juvenile
to evolved. In contrast with slab melts, the melts from thickened
lower crust will have evolved features of initial Nd and Hf iso-
topes. Based on the above distinctions, the tectonic settings of
the two phases of TTGs from the three blocks will be discussed
in detail as follows.

5.b.1. TTGs from the EB
Compared with those magmas that originated from pure partial
melting of thickened lower crust, the 2.5 Ga TTG gneisses in the
EB show relatively high MgO contents, Mg# and Cr and Ni con-
centrations (online Supplementary Material Table S1), similar to
TTG melts produced by slab melting (online Supplementary
Material Fig. S6; Martin, 1999; Smithies, 2000; Martin & Moyen,
2002; Martin et al. 2005; Moyen, 2009) and show distinct
differences from pure partial melting of hydrous basalts (Rapp
&Watson, 1995; Rapp et al. 1999) and melts from thickened lower
crust (Atherton & Petford, 1993; Petford & Atherton, 1996; Wang
et al. 2006). Therefore, they are identical to many ~2.5 Ga TTGs
worldwide (e.g. Martin & Moyen, 2002; Martin et al. 2005).
Given these observations, the 2.5 Ga TTG gneisses in the EB are
more likely to have formed by partial melting of subducted oceanic
crust, followed by interaction with the overlyingmantle wedge dur-
ing ascent. The above inferences are also confirmed by the Hf iso-
topic data for magmatic zircons in Figure 8a, in which the initial Hf
isotopes of the 2.5 Ga TTGs are characterized by juvenile to
evolved signatures.

Comparedwith the 2.5 Ga TTGs in the EB, the 2.7GaTTGs show
lower MgO contents (average 1.39 wt %), Mg# (average 43.71), Cr
(average 14.93 ppm) and Ni (average 12.60 ppm) concentrations
(online Supplementary Material Table S1), identical to adakites gen-
erated by thickened lower crust (online Supplementary Material Fig.
S6; e.g. Martin &Moyen, 2002; Martin et al. 2005; Wang et al. 2006)

Archaean TTG magmas from the North China Craton 467

https://doi.org/10.1017/S0016756820000618 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756820000618
https://doi.org/10.1017/S0016756820000618
https://doi.org/10.1017/S0016756820000618
https://doi.org/10.1017/S0016756820000618
https://doi.org/10.1017/S0016756820000618
https://doi.org/10.1017/S0016756820000618
https://doi.org/10.1017/S0016756820000618
https://doi.org/10.1017/S0016756820000618
https://doi.org/10.1017/S0016756820000618


but distinct from TTGs formed by slab melting (Martin, 1999;
Smithies, 2000; Martin & Moyen, 2002; Martin et al. 2005;
Moyen, 2009). Their TDM2 model ages are concentrated between
2.9 Ga and 3.2 Ga withminor ages between 2.7 Ga and 2.8 Ga, which
are diagnostic of initial Hf isotopes of thickened lower crust (Fig. 8b).
Given these observations, the 2.7GaTTGgneisses in the EB aremore
likely to have formed by partial melting of thickened lower crust,
without interaction with the overlying mantle wedge during ascent.

5.b.2. TTGs from the TNCO
Similar to the 2.5 Ga TTGs in the EB, the 2.5 Ga TTGs in the
TNCO have high Mg# and Cr and Ni concentrations (online
Supplementary Material Table S2), identical to many worldwide
TTGs at ~2.5 Ga and TTGs generated by slab melting (online
Supplementary Material Fig. S4; e.g. Martin, 1999; Smithies,
2000; Martin & Moyen, 2002; Martin et al. 2005; Moyen,
2009). Furthermore, the TDM2 histogram shows that nearly half
of the TDM2 ages are concentrated between 2.5 Ga and 2.7 Ga and
another half between 2.7 Ga and 2.9 Ga, representative of juve-
nile to evolved characteristics (Fig. 7a). Therefore, given these
observations, the 2.5 Ga TTG gneisses in the TNCO are more
likely to have formed by partial melting of subducted oceanic
crust, followed by interaction with the overlying mantle wedge
during ascent.

In contrast, the 2.7 Ga TTGs in the TNCO have relatively
high Mg# but low Cr and Ni contents (online Supplementary
Material Table S2), which seems to contradict each other, as high
Mg# values indicate possible slab melting while relatively low Cr
and Ni might be attributed to a lower crust origin. However,
Getsinger et al. (2009) proposed that felsic melts would not be
emplaced and condensed right away following their formation.
Therefore, during their stay in the magma chamber, interaction
would possibly occur between them and the melt residue in the
lower crust, which would increase the Mg# of the melts, but it is
hard to increase the Cr and Ni contents. Therefore, the most fea-
sible explanation is a lower crust origin. Moreover, the isotopic
evidence also supports this interpretation. The TDM2 model ages
mostly range from 2.9 Ga to 3.2 Ga with minor ages lying
between 2.7 Ga and 2.9 Ga, indicating evolved characteristics.
Therefore, it is proposed that the 2.7 Ga TTGs in the TNCOwere
formed by lower crustal genesis.

5.b.3. TTGs from the WB
Different from both the EB and the TNCO, theWB has yet to yield
any exposed 2.7 Ga TTGs. The 2.5 Ga TTGs in the WB have high
Mg# and Cr and Ni concentrations (online Supplementary
Material Table S3), identical to adakites generated by slab melting
(online Supplementary Material Fig. S8; e.g. Martin & Moyen,
2002; Martin et al. 2005; Wang et al. 2006). Given these observa-
tions, the 2.5 Ga TTG gneisses in the WB are more likely to have
formed by partial melting of subducted oceanic crust, followed by
interaction with the overlying mantle wedge during ascent.
Nonetheless, this interpretation requires more data (e.g. isotopes)
for confirmation.

5.c. Constraints on the crustal growth and evolution in the NCC

5.c.1. Magma nature of the ~2.5 Ga and ~2.7 Ga TTGs
Regarding the definition of crustal growth, there are several
viewpoints. Some researchers consider that if the εHf(t) of
zircons is ≥ 0.75 times the Hf of the depleted mantle (DM)
curve, they can be identified as recording ‘crustal growth’

(Belousova et al. 2010). In addition, the difference between the
Hf model ages of magmatic zircons and U–Pb ages is referred
to as the crustal residence time (CRT; Griffin et al. 2006;
Belousova et al. 2009). Therefore, a short CRT (< 200 Myr)
means these rocks were derived from the DM or remelting of
newly formed crust, which is called crustal growth by other
scholars (Belousova et al. 2010; Hawkesworth et al. 2010). The
CRT of some zircons is > 200 Myr, leaving the rest < 200 Myr,
suggesting that the 2.5 Ga TTG magmas of the whole NCC
derived from both older crustal reworking and juvenile crustal
growth (Fig. 9c). On the εHf(t) versus age diagram (Fig. 9a), some
εHf(t) values of the 2.5 Ga TTGs from the three blocks plot near
the DM evolution curve and above the 0.75 * εHf of DM curve,
with most data points below this curve, demonstrating that
the 2.5 Ga TTG magmas were mainly formed by remelting of
older crust with a subordinate amount from juvenile crust. On
the whole, most of these εHf(t) values plot between the crustal
evolution curves of 2.5–3.0 Ga (Fig. 9a); therefore, it can be
inferred that these crustal materials were extracted from the
mantle during 3.0–2.5 Ga, or even older. A TDM2 model age
histogram for all the 2.5 Ga data shows a major peak concen-
trated at 2.7–2.8 Ga (Fig. 9b), implying the 2.5 Ga TTG magmas
in the NCC were related mainly with reworking of 2.8–2.7 Ga
crust and relatively less with juvenile crustal growth during
2.6–2.5 Ga.

Generally, the 2.5 Ga TTGs from the EB and the TNCO show
similar εHf(t) ranges, whereas those from the WB commonly have
lower values on the whole (Fig. 9a), resulting in older TDM2 ages
and a longer CRT for the 2.5 Ga TTGs in the WB (Fig. 9b, c, d).
On one hand, this suggests that some of the 2.5 Ga TTGs from
the WB were derived from reworking of relatively much older
continental crust. More significantly, on the other hand, it implies
that old continental crust as old as 3.5 Ga might exist in the WB,
which has significant implications for the crustal evolution of the
WB in early times.

Similar to the 2.5 Ga TTG magmas, a portion of the CRT val-
ues of the 2.7 Ga TTGs are < 200 Myr while the remaining are
> 200 Myr, indicating that both crustal reworking and juvenile
crustal growth were involved in the generation of the 2.7 Ga
TTGs (Fig. 9g, h). Moreover, some data are distributed on or near
the DM evolution curve and above the 0.75 * εHf of DM, with
TDM2 ages nearly equal or very close to the magmatic crystalli-
zation ages (Fig. 9e, f), thus representing juvenile crustal growth.
However, most εHf(t) values plot far away from the DM evolu-
tion curve and below the 0.75 * εHf of DM, with TDM2 model ages
(2.9–3.4/3.5 Ga) much older than their magmatic crystallization
ages (Fig. 9e, f), indicating that they were derived from the
remelting of 3.4/3.5–2.9 Ga crust. In addition, their εHf(t) values
plot between the crustal evolution curves of 2.7–3.5 Ga (Fig. 9e),
representative of the time of mantle extraction of crustal material
in the NCC. As a whole, the 2.7 Ga TTGs in the EB and TNCO
show similar Hf isotopic features, implying a consistent or sim-
ilar magmatic evolution for the EB and TNCO at 2.7 Ga, which is
also the case with the 2.5 Ga EB and TNCO.

In summary, both the c. 2.5 Ga and c. 2.7 Ga TTG magmas can
be interpreted as dual events involved with both crustal growth and
crustal reworking, and both of them are dominated by crustal
reworking over juvenile crustal growth. Additionally, the EB and
TNCO might have witnessed a consistent or similar magmatic
evolution at 2.7 Ga and 2.5 Ga, and some of the 2.5 Ga TTGs from
the WB were derived from reworking of relatively much older
continental crust.
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5.c.2. Neoarchaean crustal evolution of the three blocks and
the whole NCC
As there are only limited data from the WB, the discussions here
focus on the TNCO and EB. Zircon Hf isotopes from the TNCO

show that the TDM2model ages mainly range from 2.5 Ga to 3.1 Ga
with a peak at 2.7–2.8 Ga (Fig. 10a), and εHf(t) values mostly plot
between the crustal evolution curves of 2.5–3.1 Ga (Fig. 10b). All
these data suggest that crustal growth in the TNCO mainly took

Fig. 9. (Colour online) (a, e) εHf(t) versus
207Pb/206Pb age (Ma), (b, f) histograms
showing zircon TDM2 model ages, (c, g)
crustal residence time (Myr) versus
207Pb/206Pb age (Ma) and (d, h) histograms
showing crustal residence time (Myr) for
the magmatic zircons from the (a–d) 2.5 Ga
and (e–h) 2.7 Ga TTG gneisses of the NCC.
DM – depleted mantle; CHUR – chondritic
uniform reservoir.
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place during 3.1–2.5 Ga, with the dominant growth period at
2.8–2.7 Ga. Similarly, the Hf isotopic data for the EB display amain
range of TDM2 model ages of 2.5 Ga to 3.2 Ga with a peak at 2.7–2.9
Ga (Fig. 10c). Most of the εHf(t) data points lie between the crustal
evolution curves of 2.5–3.2 Ga (Fig. 10d). These data suggest that a

crustal growth event existed during 3.2–2.5 Ga and was concen-
trated between 2.9 Ga and 2.7 Ga. Finally, all the data were plotted
on a εHf(t) versus age diagram and TDM2 model age histogram
(Fig. 11). The plots show that the TDM2model ages are mainly con-
centrated between 2.7 and 2.9 Ga and subordinately concentrated

Fig. 10. (Colour online) (a, c) Histograms showing zircon TDM2model ages and (b, d) εHf(t) versus 207Pb/206Pb age (Ma) for the magmatic zircons from the TTG gneisses in the (a, b)
TNCO and (c, d) EB of the NCC. Symbols are the same as those in Figure 9. DM – depleted mantle; CHUR – chondritic uniform reservoir.

Fig. 11. (Colour online) (a) εHf(t) versus 207Pb/206Pb age (Ma) and (b) histograms showing zircon TDM2 model ages for the magmatic zircons from the TTG gneisses of the NCC.
Symbols are the same as those in Figure 9. DM – depleted mantle; CHUR – chondritic uniform reservoir.
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at ~2.5 Ga and 3.0/3.1 Ga (Fig. 11b), indicating that the whole NCC
witnessed a major crustal growth event at 2.9–2.7 Ga and a minor
growth at ~3.0/3.1 Ga and ~2.5 Ga. The εHf(t) values display a rel-
atively large range that mainly plot between the crustal evolution
curves of 2.5–3.2 Ga, also indicating a mantle extraction event
occurred at 3.1–2.5 Ga (Fig. 11a).

6. Conclusions

(1) The source material of the 2.5 Ga TTGs in the EB is rutile-
bearing eclogite or garnet-amphibolite at higher pressure,
possibly formed by partial melting of a subducting slab, while
the 2.7 Ga TTGs from the EB were derived from melting of
garnet-amphibolite or granulite at lower pressure, perhaps
at the base of thickened lower crust.

(2) The 2.5 and 2.7 Ga TTGs from the TNCO were formed under
garnet-amphibolite- to eclogite-facies conditions by partial
melting of a subducting slab and thickened lower crust, respec-
tively, with a deeper and more enriched source for the former
compared with that of the latter; the 2.5 Ga TTGs from theWB
were generated by melting of a subducting slab with source
materials of garnet-amphibolite or eclogite.

(3) Both the c. 2.5 Ga and c. 2.7 Ga TTG magmas can be inter-
preted as dual events involved with both crustal growth and
crustal reworking, and both of them are predominated by
crustal reworking over juvenile crustal growth. Additionally,
the EB and TNCO might have witnessed consistent or similar
magmatic evolution at 2.7 Ga and 2.5 Ga; some of the 2.5 Ga
TTGs from the WB were derived from reworking of relatively
much older continental crust.

(4) The major crustal growth in the TNCO was concentrated
between 2.8 Ga and 2.7 Ga, while that for the EB occurred
during 2.9–2.7 Ga. The whole NCC witnessed a major crustal
growth event at 2.9–2.7 Ga and a minor growth at 3.0/3.1 Ga
and ~2.5 Ga.
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