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Chaotic advection in three-dimensional
stationary vortex-breakdown bubbles: Šil’nikov’s

chaos and the devil’s staircase
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We study the motion of non-diffusive, passive particles within steady, three-
dimensional vortex breakdown bubbles in a closed cylindrical container with a rotating
bottom. The velocity fields are obtained by solving numerically the three-dimensional
Navier–Stokes equations. We clarify the relationship between the manifold structure
of axisymmetric (ideal) vortex breakdown bubbles and those of the three-dimensional
real-life (laboratory) flow fields, which exhibit chaotic particle paths. We show that the
upstream and downstream fixed hyperbolic points in the former are transformed into
spiral-out and spiral-in saddles, respectively, in the latter. Material elements passing
repeatedly through the two saddle foci undergo intense stretching and folding, leading
to the growth of infinitely many Smale horseshoes and sensitive dependence on initial
conditions via the mechanism discovered by Šil’nikov (1965). Chaotic Šil’nikov orbits
spiral upward (from the spiral-in to the spiral-out saddle) around the axis and then
downward near the surface, wrapping around the toroidal region in the interior of the
bubble. Poincaré maps reveal that the dynamics of this region is rich and consistent
with what we would generically anticipate for a mildly perturbed, volume-preserving,
three-dimensional dynamical system (MacKay 1994; Mezić & Wiggins 1994a). Nested
KAM-tori, cantori, and periodic islands are found embedded within stochastic re-
gions. We calculate residence times of upstream-originating non-diffusive particles and
show that when mapped to initial release locations the resulting maps exhibit fractal
properties. We argue that there exists a Cantor set of initial conditions that leads
to arbitrarily long residence times within the breakdown region. We also show that
the emptying of the bubble does not take place in a continuous manner but rather
in a sequence of discrete bursting events during which clusters of particles exit the
bubble at once. A remarkable finding in this regard is that the rate at which an initial
population of particles exits the breakdown region is described by the devil’s staircase
distribution, a fractal curve that has been already shown to describe a number of
other chaotic physical systems.

1. Introduction
The notion that the vortex breakdown bubbles observed in laboratory visualiza-

tion experiments (e.g. Sarpkaya 1971; Faler & Leibovich 1977) could exhibit chaotic
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(a)

a

b

(b)

Fluid entrained

Figure 1. Bubble-type vortex breakdown. (a) The unperturbed manifolds, and (b) the resulting
manifold splitting as a consequence of perturbing the velocity field as envisaged by Holmes (1984).

particle paths was first put forth by Holmes (1984) some sixteen years ago. Start-
ing from a steady, axisymmetric, vortex breakdown bubble, Holmes described a
scenario via which certain invariant manifolds connecting the upstream and down-
stream fixed hyperbolic points of the axisymmetric flow could break down under the
action of an arbitrarily small, time-periodic, non-axisymmetric mode. As a conse-
quence, the bubble-like streamsurface, which in the axisymmetric flow delineates the
re-circulating vortex breakdown region from the outer flow, is no longer invariant,
allowing fluid to be exchanged between the bubble and the outer flow in a complex,
three-dimensional manner (see figure 1). Holmes (1984) further argued that the result-
ing three-dimensional flow could be fundamentally different from its axisymmetric
counterpart, even though, in an Eulerian sense, the difference between them is an ar-
bitrarily small perturbation – a similar point was also made by Leibovich (1984) while
commenting on the relation between solutions of the axisymmetric Navier–Stokes
equations and the nearly axisymmetric vortex breakdown flows observed in the lab-
oratory. Holmes went on to describe a spatially chaotic, three-dimensional flow in
which upstream originating particles enter the bubble through its downstream end, cir-
culate arbitrarily many times, and finally exit, to continue downstream (Holmes 1984).

Some experimental evidence that supports, at least indirectly, Holmes’s conjectures
was reported by Driscoll and co-workers (Chen & Driscoll 1988; Feikema, Chen &
Driscoll 1990) from a series of laboratory experiments with swirl-stabilized flames.
Driscoll’s work demonstrated that vortex breakdown could greatly enhance the overall
fuel–air mixing efficiency leading to complete combustion and short flame lengths.
Although the possibility of chaotic mixing was not explicitly discussed in these
papers, the description of the structure of the breakdown region and the observed
mixing mechanisms is especially revealing. For instance, while discussing their flow
visualization photographs Chen & Driscoll (1988) comment that ‘. . . both fuel and
air enter the recirculation vortex primarily near the downstream region of the vortex’,
and that the breakdown region acts to ‘. . . entrain and stretch the ligaments of fuel,
and thereby increase the fuel/air contact area’. Furthermore, they remark that mixing
occurs ‘. . . due to larger-scale rather than small-scale motions’. Clearly, therefore,
the mixing processes described by Chen & Driscoll (1988) in conjunction with the
dramatic enhancement of mixing efficiency they reported suggest a chaotic large-scale
flow field in which material elements are stretched exponentially.

In spite of a large and constantly growing body of literature dedicated to the
study of vortex breakdown, the Lagrangian dynamics of the phenomenon, which
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need to be elucidated before the mixing mechanisms observed in the laboratory
can be explained, have been largely unexplored. The only study that emphasized
the Lagrangian characteristics of vortex breakdown flow fields was the work of
Lopez & Perry (1992) who studied numerically the flow in a closed cylindrical
container with a rotating lid. They demonstrated how concepts from dynamical
systems could be employed to study the onset of Lagrangian chaos within oscillatory
vortex breakdown bubbles. Their work, however, assumed axisymmetric flow and,
thus, could neither resolve nor explain the asymmetries observed in all laboratory
visualization experiments of vortex breakdown structures in this flow (see the recent
work of Spohn, Mory & Hopfinger 1998 and subsequent discussion). Furthermore,
the assumption of axisymmetric flow – which, by definition, leads to integrable particle
paths in the steady flow regime – precluded the possibility of steady, spatially chaotic
vortex breakdown flow fields. Although in recent years a number of three-dimensional,
unsteady simulations of vortex breakdown have also been reported in the literature
(e.g. Spall & Gatski 1991; Tromp & Beran 1997; Lucas 1997), they have primarily
emphasized the vorticity dynamics of the phenomenon and have not attempted to
explore its Lagrangian characteristics.

We have recently reported three-dimensional numerical simulations of vortex break-
down in a closed cylindrical container with a rotating lid and succeeded, for the first
time, in reproducing with remarkable accuracy the Lagrangian features of the phe-
nomenon observed in the laboratory (Sotiropoulos & Ventikos 2001). Before we
proceed with a summary of these findings, which have motivated the present con-
tribution, it is important to briefly review previous experimental and computational
work on the container flow. Although this flow has been studied extensively in the
past both numerically and experimentally (e.g. Lopez 1990; Brown & Lopez 1990;
Watson & Neitzel 1996; Gelfgat, Bar-Yoseph & Solan 1996; Tsitvertblit & Kit 1998;
Stevens, Lopez & Cantwell 1999; Brons, Voigt & Sorensen 1999), its fundamental
nature (axisymmetric or three-dimensional) has been, at least until recently, the sub-
ject of considerable controversy. As we discuss in Sotiropoulos & Ventikos (2001)
and further elaborate in the remainder of this paper, the key to resolving the various
conflicting points of view that have appeared in the literature is Holmes’s conjec-
ture concerning the potentially dramatic effect an arbitrarily small, non-axisymmetric
mode could have on the Lagrangian dynamics of an axisymmetric flow.

1.1. Previous studies of vortex breakdown in a cylindrical container with a rotating lid

The first comprehensive flow visualization experiments for the container flow were
carried out by Escudier (1984), who concluded that the visualized breakdown bubbles
are axisymmetric, at least within the steady flow regime. Based on this finding, Escudier
(1984, 1988) went on to argue that the fundamental form of vortex breakdown is
the axisymmetric, bubble-type mode and that the emergence of the highly three-
dimensional spiral mode is the result of non-axisymmetric instabilities of the basic
bubble form. There are, however, some interesting features in Escudier’s visualization
photographs that are not entirely consistent with an axisymmetric flow. These include:
(i) the observed asymmetric spiralling of the dye filament just prior to the inception
of the breakdown bubble; (ii) the formation of distinct asymmetric folds at the
downstream end of the bubbles; and (iii) the presence of a considerable amount of
dye in the interior of the bubbles – a feature that cannot be readily explained by
adopting the concept of a closed axisymmetric bubble. Spohn, Mory & Hopfinger
(1993) were the first to raise some questions concerning the symmetry of the flow by
pointing out the persistence of asymmetric spirals prior to the bubble inception in
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their experiment and suggesting that details of the flow surrounding the container axis
need also be examined to clarify this issue. Motivated by these comments, Hourigan,
Graham & Thompson (1995) carried out experiments and axisymmetric numerical
computations and argued that the apparent asymmetries are artifacts of the flow
visualization technique and that the actual flow remains perfectly axisymmetric. In a
more recent study, Stevens, Lopez & Cantwell (1999), who focused on the transition
from the steady to the oscillatory flow regime, observed in their flow visualizations a
spiral-like precession of the upstream fixed hyperbolic point of the breakdown bubble,
which they also attributed to imperfections of the visualization technique. It should
be emphasized that in all these studies the arguments concerning the axial symmetry
of the flow were reinforced by the fact that axisymmetric computations reproduced
the general flow patterns, and the evolution of these patterns with Reynolds number
and container aspect ratio, observed in the laboratory both in the steady and unsteady
flow regimes (Lopez 1990; Gelfgat et al. 1996; Stevens et al. 1999). Of course, these
computations could neither reproduce the asymmetric folds at the downstream end
of the laboratory vortex breakdown bubbles nor explain the process via which
large amounts of dye in these experiments penetrate a stationary, axisymmetric,
recirculating flow region.

The first experiment that attempted to study the origin and nature of the asym-
metries of the container flow in detail was reported by Spohn et al. (1998) who
visualized the vortex breakdown bubbles using a variety of dye and other tracer in-
jection techniques. Their results establish clearly that there exists a range of Reynolds
numbers within which the on-axis vortex breakdown bubbles are stationary, open,
and highly asymmetric at their downstream end. Spohn et al. (1998) traced the origin
of the asymmetries to the emergence of spiral, asymmetric, separation lines inside the
cylindrical sidewall boundary layer.

Our recent numerical computations (Sotiropoulos & Ventikos 2001) clarified the
findings of Spohn et al. (1998), established clearly the three-dimensional structure
of the container flow, and explained the link between the three-dimensional sidewall
boundary layer and the asymmetries of the on-axis breakdown bubbles. More specifi-
cally, we showed that the sidewall boundary layer loses stability to three-dimensional
disturbances in the form of counter-rotating pairs of spiral vortices (see also the exten-
sive discussion in Sotiropoulos & Ventikos 1998). Although coherent spiral vortices
were found for Reynolds numbers well within the unsteady flow regime, traces of the
three-dimensional instability were also present in the steady flow fields. In agreement
with the experimental findings of Spohn et al. (1998), our computations revealed that
in the steady regime the flow leaving the sidewall boundary layer does not enter the
stationary-cover Ekman layer axisymmetrically but rather forms distinct azimuthal
clusterings. We demonstrated the accuracy of our computations by reproducing
numerically Lagrangian images of the breakdown bubbles that are in remarkable
agreement with available flow visualization photographs. Moreover, we showed that
the computed vortex breakdown flow fields exhibit extreme sensitivity to initial con-
ditions, as initially nearby particles diverge exponentially in time. This finding, which
establishes the chaotic nature of the flow, confirms the general scenario described by
Holmes (1984) but further suggests that even a stationary, non-axisymmetric mode
could drastically alter the Lagrangian dynamics of a steady, axisymmetric flow. We
should emphasize that in the vicinity of the breakdown bubbles our computed three-
dimensional flow fields are, in terms of Eulerian comparison measures (for example
contours of velocity and/or vorticity components), very similar to those obtained
when solving the axisymmetric equations for the same set of governing parameters.
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Šil’nikov’s chaos and the devil’s staircase 261

Even though, therefore, the asymmetric mode in the three-dimensional flow fields is
small, it has a profound impact on the Lagrangian characteristics of the flow: it causes
the spiral-like deflection of the on-axis filament just upstream of the front stagnation
point of the bubble and transforms the downstream fixed hyperbolic point of the
axisymmetric flow into a spiral-in saddle through which fluid is exchanged between
the interior of the bubble and the outer flow.

1.2. Previous studies of chaotic advection

Our finding concerning the chaotic nature of the flow in the interior of vortex
breakdown bubbles places the container problem among a handful of experimentally
realizable, and numerically reproducible, three-dimensional flows that can be used to
study stirring (and mixing if molecular diffusion is taken into account) by chaotic
advection. This phenomenon manifests itself in the trajectories of passive Lagrangian
markers that are advected by a flow field of very simple Eulerian structure (Aref 1984).
Chaotic advection is the only mechanism for enhancing mixing in non-turbulent flows
and is, therefore, important in a number of industrial, physiological, and geophysical
applications (Aref 1999). Over the last fifteen years, a large number of experimental
(e.g. Chaiken et al. 1986; Leong & Ottino 1989; Swanson & Ottino 1990; Rothstein,
Henry & Gollub 1999) and numerical (e.g. Aref 1984; Chien, Rising & Ottino 1986;
Khakhar, Rising & Ottino 1986; Rom-Kedar, Leonard & Wiggins 1990; Ghosh,
Leonard & Wiggins 1998) studies of idealized two-dimensional flows have contributed
considerably to our understanding of chaotic stirring. These studies clarified and
solidified the links between dynamical systems, topological fluid mechanics, and
chaotic advection and led to a rigorous theoretical framework for studying chaotic
mixing in two dimensions (see Beige, Leonard & Wiggins 1994 for a comprehensive
review). However, considerably less progress has been made in the study of three-
dimensional flows exhibiting chaotic advection, even though the very first example
of chaotic advection was for a steady, three-dimensional flow (Arnold 1965; Hénon
1966). A significant obstacle in that regard is the lack of test-bed, three-dimensional
flow fields of engineering relevance that are amenable to both experimental and
numerical investigations (Fountain, Khakhar & Ottino 1998).

Most of the existing three-dimensional studies have employed mathematical flow
models, such the ABC flow (Dombre et al. 1986), Beltrami flow in a sphere (Zheligov-
sky 1993), the Chandrashekar flow (Holm & Kimura 1991), and steady Stokes flow
within a spherical drop (Bajer & Moffatt 1990; Stone, Nadim & Strogatz 1991; Krou-
jiline & Stone 1999). Studies with experimentally realizable, steady, three-dimensional
flow fields have also been reported. Khakhar, Frajione & Ottino (1987) and Kusch &
Ottino (1992) studied chaotic advection in a partitioned-pipe mixer. Jones, Thomas
& Aref (1989) proposed a twisted-pipe configuration, which exhibits chaotic particle
paths. Ashwin & King (1995) studied the Lagrangian dynamics of Taylor vortex flow
between eccentric cylinders, while Ashwin & King (1997), Rudolph, Shinbrot & Luep-
tow (1998), and Rudman (1998) investigated non-axisymmetric Taylor–Couette flows
between concentric cylinders. Hobbs & Muzzio (1997, 1998) studied in detail chaotic
advection in a straight, helical static mixer. Fountain et al. (1998) and Fountain,
Khakhar, Mezić & Ottino (2000) were the first to construct experimental Poincaré
sections for a steady, three-dimensional creeping flow in an idealized mixing tank. Ex-
perimentally realizable, three-dimensional, unsteady flows have been investigated by
Cartwright, Feingold & Piro (1996), Mezić, Leonard & Wiggins (1998), and Anderson
et al. (1999).

Important ideas for developing the theoretical framework for the study of chaotic
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advection in three-dimensional flows have been put forth by Holmes (1984), Feingold,
Kadanoff & Piro (1988), MacKay (1994), and Mezić & Wiggins (1994). Haller &
Mezić (1998) and Yannacopoulos et al. (1998) have taken some of these ideas further
to propose Eulerian diagnostics that link the physics of the flow with the motion of
particles. More recently, Mezić (2001) put forth a theory that links chaotic transport
in three-dimensional wall-bounded flows with the thickness of the wall boundary
layers.

1.3. Outline of the present contribution

In this work we employ Lagrangian particle tracking, tools from dynamical systems,
and concepts from fractal geometry to conduct a comprehensive investigation of
chaotic advection in the interior of the stationary vortex breakdown bubbles that
occur along the axis of the container configuration. The three-dimensional flow fields
are those obtained by Sotiropoulos & Ventikos (2001) who solved numerically the
unsteady, three-dimensional Navier–Stokes equations using a second-order-accurate
finite-volume method. Trajectories of passive, non-diffusive particles are calculated by
employing a fourth-order-accurate Runge–Kutta method along with a tri-linear spatial
interpolation technique. In § 2 we outline the numerical methods we employ to obtain
the velocity fields and calculate the particle paths. In § 3 we compare our numerical
computations with the laboratory visualizations of Spohn et al. (1998) and discuss
some numerical issues we had to overcome in order to reproduce vortex-breakdown
flow fields that exhibit chaotic dynamics. In § 4 we discuss the three-dimensional
topology of the flow and argue that the mechanism discovered by Šil’nikov (1965)
is responsible for destroying the invariance of the bubble-like surface and for the
chaotic stirring of upstream originating particles within the breakdown region. In § 5
we demonstrate the three-dimensional stretching and folding of material elements,
establish rigorously the exponential growth of length of material lines, and illustrate
the chaotic stirring of Lagrangian markers. In § 6 we explore the dynamics of the
flow in the interior of steady vortex breakdown bubbles by constructing Poincaré
sections for a variety of initial conditions. We uncover and discuss in detail very rich
and remarkably complex dynamics characterized by the presence of nested KAM-
tori, cantori, and periodic islands surrounded by regions of chaotic motion. In § 7
we calculate residence times of non-diffusive particles within the breakdown region
and argue that there exists a Cantor set of initial conditions that leads to arbitrarily
long residence times. In § 8 we clarify the emptying process of breakdown bubbles
and show that the rate at which particles exit is described by the devil’s staircase
curve. The fractal nature of this curve is established rigorously by computing the
fractal dimension of the Cantor set associated with its construction. Finally in § 9 we
comment on the implications and significance of our findings and outline areas for
future research.

2. Problem formulation and numerical details
Consider a cylinder of radius R and length H filled with an incompressible Newto-

nian fluid of constant density ρ and kinematic viscosity ν. One endwall of the cylinder
is rotated at a constant angular velocity Ω while the opposite endwall is held station-
ary (see figure 2). The two non-dimensional parameters governing the flow within this
cylinder are the aspect ratio, H/R, and the Reynolds number Re = ΩR2/ν. The flow
generated by the rotating endwall is governed by the unsteady, three-dimensional,
incompressible Navier–Stokes equations.
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Rotating lid

R H

Ω

Figure 2. A schematic of the cylindrical container problem.

A detailed description of the numerical method we employ to solve the Navier–
Stokes equations can be found in Sotiropoulos & Ventikos (1998). Here it suffices
to mention that we solve them in generalized, curvilinear coordinates using a finite-
volume approach that is second-order accurate both in space and time. All results
presented herein were obtained on a mesh with 153 × 97 × 97 grid nodes in the
axial and transverse direction, respectively (see Sotiropoulos & Ventikos 2001 for the
details of the mesh topology). Systematic grid refinement studies showed that this grid
density is sufficient for resolving both the Eulerian and Lagrangian characteristics of
the flow (see discussion in § 3).

Given a steady-state Eulerian flow field, calculated with the numerical method
described above, solution of the Lagrangian transport problem requires the temporal
integration of the equations for the passive advection of particles in three dimensions:

dx

dt
= u(x, y, z),

dy

dt
= v(x, y, z),

dz

dt
= w(x, y, z). (2.1)

The above equations comprise a finite-dimensional dynamical system, which for
appropriate velocity fields could exhibit very complex chaotic dynamics (Aref 1984).
In this work, equations (2.1) are integrated in time using a fourth-order-accurate,
Runge–Kutta method (see Buchanan & Turner 1992 for details) along with a tri-
linear scheme for spatial interpolation. To ensure that the chaotic dynamics we
uncover herein are real flow features and not artifacts of the specific numerical
scheme, we carried out extensive numerical sensitivity studies by: (i) varying the
size of the time-increment, ∆t; and (ii) implementing and evaluating the accuracy of
various spatial interpolation algorithms. Time-step-insensitive Lagrangian dynamics
were obtained for ∆t 6 10−3, and thus all subsequently presented results have been
been obtained with ∆t = 10−3. It is important to note that using sufficiently small
time-increment was found to be essential for the accurate resolution of important
features of the Poincaré maps presented in § 6 below – for a volume-preserving system,
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large time-increments typically result in non-physical spiralling of orbits on stable
surfaces and fail to capture leaky barriers to transport, such as cantori. The spatial
interpolation scheme was also found to be of critical importance for resolving the
complex features of the velocity field, especially near critical points in the flow, and
is discussed in some detail in the next paragraph.

Straightforward spatial interpolation procedures, based on simple averaging or
weighted averaging (the so-called inverse distance method), were found inadequate
as they failed to resolve trajectories near the spiral-out and spiral-in saddles at the
upstream and downstream ends of the vortex breakdown bubble. Similar inadequacies
were found when using three consecutive linear interpolation steps, where linear
interpolation takes place sequentially between the three pairs of opposite cell faces
that comprise a computational cell. The scheme that proved adequate for resolving
the complex structure of the velocity field is a tri-linear interpolation scheme in
the physical domain, which is as follows (see Murman & Powell 1989 for the two-
dimensional analogue of this procedure):

u(x, y, z) = A1xyz + A2xy + A3xz + yzA4 + xA5 + yA6 + zA7 + A8. (2.2)

The coefficients Ai are computed by solving an 8× 8 linear system of equations that
is formed when each of the eight nodal points of the cell is used to cast a similar
equation. A higher accuracy scheme of this form based on tri-cubic interpolation was
also tested. In this case, three mesh cells in each spatial direction (instead of a single
cell for the tri-linear case) are involved in the approximation, which leads to a 43-term
equation and requires the inversion of a 64× 64 linear system. Provided that all other
numerical parameters are kept the same, tri-linear and tri-cubic interpolation were
found to yield practically identical trajectories. Since the computational overhead for
the tri-cubic interpolation is significantly higher, the tri-linear approach has been
employed to obtain all subsequently presented results.

As an additional accuracy check of our particle-integration algorithm, we compared
Poincaré maps (see § 6 below) calculated with our scheme with those obtained using
a commercially available graphics and visualization software package – the particle
integration module of Tecplot r© Version 8.0 was used for this purpose. Both codes
yielded identical results.

3. Overview of the computations and comparisons with experiments
We have carried out time-accurate, three-dimensional computations for two con-

tainer aspect ratios (H/R = 1.75 and 2.0) and for various Reynolds numbers in
the steady and unsteady flow regimes. Extensive comparisons of the computed solu-
tions with the experimental findings of Spohn et al. (1998) have been presented in
Sotiropoulos & Ventikos (2001). Our numerical simulations captured every aspect of
the laboratory flow with remarkable accuracy. A small sample of the comparisons
between our calculations and the laboratory observations is shown in figure 3, which
depicts numerically (Sotiropoulos & Ventikos 2001) and experimentally (Spohn et
al. 1998) obtained visualization images of the steady vortex breakdown bubble for
Re = 1850 and H/R = 1.75. Both images reveal that there is a toroidal region in the
interior of the bubble that remains relatively free of visualization markers (see § 6 for
a detailed discussion of this region’s complex dynamics) and that the downstream end
of the bubble is characterized by the presence of distinct asymmetric folds. Notice
in particular the excellent agreement between the computed and observed shapes
of these folds (we clarify their origin in § 4). Furthermore, in the wake of both the
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(a)

(b)

Figure 3. Experimental (a) and calculated (b) images of a steady vortex breakdown bubble for
Re = 1850 and H/R = 1.75. (a) Flow visualization with electrolytic powder particles released from
a solder wire on the cylinder wall. Reproduced with permission from Spohn et al. (1998). (b) The
calculated image was constructed by releasing particles from equally spaced points along concentric
circles located just below the stationary cover. The radius of the outermost circle is 0.004R.

computed and observed breakdown bubbles the markers are organized in a series of
short straight clusterings, which form a non-axisymmetric, staggered about the axis,
arrangement.

The above comparisons establish the accuracy of both the flow solver and the
trajectory- integrator techniques we employ for constructing the Lagrangian images
(for more extensive comparisons see Sotiropoulos & Ventikos 2001). Achieving such a
level of agreement with the laboratory visualizations, allows us to proceed confidently
with the Lagrangian interrogation of the Eulerian flow fields. Before we do so,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

52
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005286


266 F. Sotiropoulos, Y. Ventikos and T. C. Lackey

however, we should comment on some important numerical difficulties we had to
overcome before we could obtain the level of agreement indicated by the comparisons
in figure 3.

As we discuss in Sotiropoulos & Ventikos (2001), we carried out extensive mesh
sensitivity studies using a series of successively finer computational meshes. Flowfields
obtained on grids not sufficiently refined in the vicinity of the bubble – for the purpose
of our discussion we shall refer to such grids as ‘coarse’ grids – were found to exhibit
erroneous Lagrangian dynamics within the breakdown region. Particles that enter the
vortex breakdown bubble, through its downstream end, were found to get trapped
‘indefinitely’ in its interior. To clarify the term ‘indefinitely’, we should point out
that we continued the integration of the particle trajectories for very long times and
with a variety of time increments without the particles ever escaping. The computed
trajectories were found to densely cover almost the entire space in the interior of the
bubble before getting attracted onto a slender torus from which they never escaped.
That is, the experimentally observed tracer-free toroidal region in the interior of
the bubble (see figure 3), which as we will subsequently show exhibits very rich
Lagrangian dynamics, could not be reproduced on such grids. To eliminate this
numerical artifact, we employed computational meshes that were carefully refined
within the inner toroidal region of the breakdown bubble. Even though such grid
refinement did not significantly alter the velocity field (differences between coarse and
fine mesh predictions nowhere exceeded 3% to 5%), it had a profound effect on the
Lagrangian dynamics. As we will subsequently show, the velocity fields obtained on the
refined grids yield particle trajectories that are extremely sensitive to initial conditions.
Particles originating from arbitrarily close initial locations (where ‘arbitrarily close’ is
determined by the precision of the arithmetic we employ in our computer calculations)
diverge exponentially in time as they re-circulate within the vortex breakdown region
(see figure 4 for typical particle trajectories in the interior of the bubble). This very
important feature, which establishes the chaotic dynamics of the flow, cannot be
captured on the coarse meshes in which initially nearby particles were found to
remain close at all times.

4. Three-dimensional flow topology and the Šil’nikov mechanism
To facilitate our discussion in this section, we begin by illustrating typical par-

ticle paths within the vortex breakdown region. Subsequently we discuss the three-
dimensional structure of the invariant manifolds of vortex breakdown bubbles. We
consider the topology of both ideal (axisymmetric) and real-life (observed in the labo-
ratory and calculated herein on curvilinear meshes) flow fields. Since the latter can be
interpreted as the result of superimposing stationary, non-axisymmetric disturbances
on the former, the juxtaposition of these two cases will help us clarify the manner in
which three-dimensional modes alter the dynamics of the ideal flow field. We analyse
the topological features of vortex breakdown flows in tandem with those of a rather
simple autonomous, three-dimensional dynamical system, which has been previously
studied by Broer & Vegter (1984) (see also Wiggins 1990). We find the phase-space
dynamics of this system to be essentially identical to the physical-space dynamics of
stationary vortex breakdown bubbles. The similarities between the two systems point
to a specific chaos-inducing mechanism in real-life vortex breakdown flow fields.

Figure 4 shows calculated trajectories of three particles, each selected to illustrate
various aspects of the three-dimensional flow field. The ‘thick’ orbit, which is represen-
tative of upstream originating orbits that never visit the breakdown region, is deflected
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Figure 4. Calculated typical three-dimensional particle trajectories in and around the breakdown
bubble (Re = 1850, H/R = 1.75). The ‘thick’ orbit is released from the axis upstream of the
breakdown bubble. The ‘thin’ orbit is released just off the axis also upstream of the bubble. The
toroidal orbit is released within the interior region that remains free of markers in figure 3.

off the axis and begins to spiral around it, spanning the outer portion of a bubble-like
structure. At the downstream end of the bubble, the orbit converges radially inward,
spirals around the downstream stagnation point (the precise topological nature of
both the upstream and downstream stagnation points will be clarified below) and
continues its downstream spiralling motion confined in the immediate vicinity of the
axis. The ‘thin’ orbit in figure 4 is representative of upstream originating orbits that
enter the vortex breakdown bubble. Its initial path is similar to that of the ‘thick’
orbit until the downstream stagnation point is approached, where it reverses direction,
enters the bubble, and begins to spiral toward the upstream stagnation point. When it
reaches there, it begins to diverge away from the axis, spiralling along the interior of
the bubble-like surface. Subsequently, the orbit passes again through the downstream
stagnation point where it may either exit to continue downstream or (as shown in
figure 4) repeat the same cycle of motion for arbitrarily many times (see § 7 and § 8)
before it finally exits. The toroidal orbit in figure 4 is representative of orbits confined
in the interior of the bubble, that is the region that remains clear of particles in
figure 3. Such orbits appear to move along two-tori (see § 6). We should caution that
we imply no general connection between the particle release location in figure 4 and
its subsequent fate. The relation between initial conditions and residence time within
the breakdown bubble is very complex and is discussed in detail in § 7.

Let us now consider the manifold structure of an axisymmetric, or ideal, stationary
vortex breakdown bubble (see Holmes 1984; Wiggins 1990; MacKay 1994). Figure 5(a)
shows a sketch of the diametral cross-section and the three-dimensional structure of
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z
y

x
θ

(a)

(b)

P2

P1

W U(P2)

W S(P1)

W U(P2)

W S(P2)

W U(P1)

W S(P1)

Figure 5. (a) Cross-section and three-dimensional structure of the heteroclinic cycle for the truncated
normal form, equation (4.1); and (b) cross-section of the perturbed manifolds and homoclinic orbits
for the full normal form (including the effect of higher order terms). Taken from Wiggins (1990).

the heteroclinic cycle for the three-dimensional, axisymmetric flow field. There are two
saddle-type fixed hyperbolic points (or stagnation points) along the container axis,
which we denote as P1 and P2, respectively. The two-dimensional unstable manifold
WU(P2) and one-dimensional stable manifold WS (P2) of P2 coincide with the two-
dimensional stable manifold WS (P1) and one-dimensional unstable manifold WU(P1)
of P1. Consequently, the resulting heteroclinic cycle creates an invariant bubble-like
surface, which delineates the interior recirculating flow from the outer flow as shown
in figure 5(a). Outside fluid cannot penetrate the interior of the bubble, which is
occupied by trapped fluid that moves along invariant two-tori, the streamsurfaces of
the axisymmetric flow – see Mezić & Wiggins (1994) and Haller & Mezić (1998) for a
detailed discussion on the existence of a streamfunction in axisymmetric flows.

The previously described axisymmetric topology is identical to the phase-space
dynamics of the following autonomous three-dimensional normal form (Wiggins
1990):

dr

dt
= µ1r + arz + · · · , dz

dt
= µ+ 2 + br2 − z2 + · · · , dθ

dt
= ω + · · · , (4.1)

where µ1, µ2, a, b, f, and ω are constants, and the dots imply higher-order terms. As
shown in Wiggins (1990), for a > 0 and b = −1 the stable and unstable manifolds
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W U(P1)

P1

W U(P2)

W S(P1)

W U(P1)

W S(P2)

W S(P2)

P2

Figure 6. Three-dimensional orbits representative of the stable and unstable manifolds of the fixed
hyperbolic points for a calculated vortex breakdown bubble (Re = 1850, H/R = 1.75).

of the hyperbolic fixed points of this system create an invariant sphere, similar to
that shown in figure 5(a), and the periodic orbits become invariant two-tori. The
axisymmetric dynamics of this system can be radically altered by the addition of
higher-order terms in the right-hand side of (4.1). Including such terms, no matter
how small they may be, destroys the symmetry of the basic form and breaks the
invariant structure of the sphere shown in figure 5(a) (Broer & Vegter 1984; Wiggins
1990). More specifically, the one-dimensional unstable manifold of P1 and the one-
dimensional stable manifold of P2 will no longer intersect in three-dimensional space.
Moreover, we would also anticipate the two-dimensional manifolds of P1 and P2,
WS (P1) and WU(P2) to intersect transversely along heteroclinic orbits (see sketch
in figure 5b) – this is a consequence of a version of the Kupka–Smale theorem for
volume preserving systems (see Broer & Vegter 1984). It is, therefore, possible for
the portion of WU(P1) (WS (P2)) inside the bubble to fall into WS (P1) (WU(P2))
forming homoclinic orbits in three-dimensional space (Broer & Vegter 1984; Wiggins
1990) – that is, infinite period orbits which are doubly asymptotic to a fixed point of
saddle type as t→ ±∞.

We now argue that similar topological features also mark the differences between
ideal and real-life vortex breakdown flow fields. Figure 6 depicts calculated three-
dimensional trajectories representative of the stable and unstable manifolds of the
fixed hyperbolic points for a stationary vortex breakdown bubble. The destruction
of the one-dimensional on-axis saddle-to-saddle connection is clearly evident in this
figure. Moreover, figures 4 and 6 demonstrate that both the upstream and downstream
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fixed hyperbolic points of a real-life vortex breakdown bubble are of saddle-focus
type – that is, fixed points at which the velocity gradient tensor has one real and
two complex eigenvalues. Adopting the terminology introduced in Jackson (1991), we
shall refer to the P1 and P2 points as spiral-in and spiral-out saddles, respectively –
the three-dimensional structure of orbits near these two points is further clarified in
figure 7. The trajectories shown in figure 6 approximate the general structure of orbits
homoclinic to the two saddles. It is, of course, very difficult to compute an exact
homoclinic orbit as an arbitrarily large number of time steps may be required to
complete the homoclinic connection (see discussion in § 5). Nevertheless, the calculated
trajectories in figure 6 are remarkably similar to the homoclinic orbits resulting when
higher-order terms are included in the right-hand side of (4.1), as these have been
envisaged and sketched by Wiggins (1990) (see figure 5b). We should also point
out that the above topological features of a real-life vortex breakdown bubble are
identical to those of a perturbed spheromak, or spherical vortex (MacKay 1994). The
spheromak is an axisymmetric magnetic field configuration (proposed as a means
for confining plasma in nuclear fusion reactors) whose manifold structure is identical
to that depicted in figure 5 – MacKay (1994) also points out the relevance of the
spherical vortex to the bubble-type mode of vortex breakdown. In discussing the
effects of mild perturbations on the integrable axisymmetric form, MacKay (1994)
describes essentially the manifold structure shown in figures 4 and 6. MacKay (1994)
puts forth a number of important ideas concerning the dynamics of a perturbed
spheromak, many of which are confirmed by our findings, and for that reason we
shall revisit this very insightful contribution in subsequent sections of this paper.

It is well established from the theory of dynamical systems that homoclinic orbits
are structurally unstable and their occurrence signals the onset of chaotic dynamics
(Arneodo, Coullet & Tresser 1982; Gaspard & Nicolis 1983). The importance of such
orbits was first recognized by Šil’nikov (1965) who proved that homoclinic orbits,
mapping a saddle-focus fixed point to itself, possess a countable infinity of Smale
horseshoes. Since our computations (see figures 4, 6, and 7) have established that the
two fixed hyperbolic points defining a vortex breakdown bubble are indeed of saddle-
focus type, we argue that the so-called Šil’nikov mechanism is responsible for: (i) the
destruction of the invariant axisymmetric bubble surface; and (ii) the chaotic stirring
of particles that enter the bubble and pass repeatedly through the two saddle foci
before they exit. The pivotal role of the spiral-in and spiral-out saddles in stretching
and folding material elements (thus, causing the formation of a countable infinity of
horseshoes) will be illustrated in § 5. Notice, however, that even a simple inspection of
the very complex structure of the stable and unstable manifolds of P1 and P2 shown
in figure 7 strongly suggests that such chaos-inducing phenomena will occur.

Our conjecture concerning the role of Šil’nikov’s mechanism is further supported by
the work of Broer & Vegter (1984). As we have discussed above, they studied the effects
of higher-order terms in (4.1) and proved that for the perturbed system a sequence
of Šil’nikov’s bifurcations will occur, leading to the formation of a countable infinity
of Smale horseshoes and non-integrable dynamics. Figure 8, from Broer & Vegter
(1984), shows their interpretation of the three-dimensional structure of the stable
and unstable manifolds of the two saddle foci for a perturbed, volume-preserving
system of the type described by (4.1). Notice the striking similarity between the
asymmetric folds in the vicinity of the ‘north pole’ in this sketch and those observed
in the laboratory and calculated herein (figures 3 and 7) near the spiral-in saddle
of stationary vortex breakdown bubbles. As pointed out by Wiggins (1990), the
three-dimensional perturbations that need to be superimposed on equations (4.1) to
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(a)

(c)(b)

Figure 7. Three-dimensional topology of orbits in the vicinity of the spiral-in and spiral-out
saddles. (a) Orbits near the spiral-out saddle (P2) are visualized by releasing particles from two
circles (centered about the axis) located above (outside the bubble) and below (inside the bubble)
P2. The initial conditions are axisymmetric. The one-sided, spiral-like deflection of the two sets of
orbits, as they ‘collide’ at P2, is indicative of the spiral-out nature of the upstream fixed hyperbolic
point of the bubble. (b) Orbits near P2. A material circle (centred about the axis) is introduced just
above P2 and a sequence of instantaneous snapshots, as it spirals toward P1 and gets stretched by
the flow, are superimposed. Notice how the material circle is captured by the two-dimensional stable
manifold of P1 and the particles that comprise it split between the upward (entering the bubble)
and downward directed unstable manifolds of P1. (c) Magnified view of (b) near P1, illustrating the
spiral-in saddle nature of the downstream fixed hyperbolic point.

alter the topology from that shown in figure 5(a) to that depicted in figure 8 are
exponentially small. This is a very important point as it suggests that it may be very
difficult to produce in the laboratory axisymmetric vortex breakdown bubbles, as that
would require eliminating from the experimental rig practically every disturbance no
matter how small it is.
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Heteroclinic orbit

Homoclinic orbit

South
pole

z

Figure 8. Cut-open perturbed globe showing a Šil’nikov homoclinic orbit for a volume-preserving
system. Taken from Broer & Vegter (1984).

An important parameter in theoretical studies of Šil’nikov-type bifurcations
(Šil’nikov 1965; Glendinning & Sparrow 1986; Broomhead & King 1986; Mullin
1993) is the ratio of eigenvalues of the saddle foci. As we discussed above, at a saddle
focus the velocity gradient tensor has one real and two complex eigenvalues λ and
ρ± iω, respectively, with λ, ρ, ω > 0 and real. The relevant eigenvalue ratio is defined
as δ = ρ/λ and can be interpreted as the ratio of the speed of rotation along the
spiralling two-dimensional manifold of the saddle focus to the ejection speed along
its corresponding one-dimensional manifold (Mullin 1993). Glendinning & Sparrow
(1986) showed that the dynamics near a saddle focus, and in particular the emergence
of infinite-period homoclinic orbits as a control parameter is varied, depend critically
on δ (see also Mullin 1993), with very complex Šil’nikov-type dynamics expected
to occur when δ < 1. Experimental verification of this theory has been reported
by Healey et al. (1991) who studied the phase-space dynamics of a modified Van
der Pol oscillator (see also Mullin 1993). It should be pointed out, however, that
these results have been obtained for dissipative dynamical systems. For the present
volume-preserving case the incompressibility of the velocity field along with the fact
that the sum of the eigenvalues of the velocity gradient tensor is equal to its trace,
i.e. the divergence of the velocity field, imply that δ is always equal to 0.5 at a saddle
focus. Interestingly, therefore, and even though the condition for Šil’nikov dynamics
to occur is always satisfied at a saddle focus in an incompressible flow, the dynamical
bifurcations of three-dimensional, volume-preserving systems are insensitive to the
ratio of eigenvalues.
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Finally, we should mention that phase-space Šil’nikov dynamics in fluid flow
problems have been previously uncovered experimentally (by reconstructing phase
portraits from time-series measurements) in Taylor–Couette flows (Mullin & Price
1989) and more recently in nematic liquid crystal flows (Peacock, Mullin & Binks
1999). To the best of our knowledge, however, the vortex breakdown flow fields
studied herein are the first experimentally realizable and numerically reproducible
flows in which the onset of chaotic dynamics in physical space can be interpreted
in terms of Šil’nikov’s theorem. In an earlier study, Holm & Kimura (1991) studied
the Lagrangian kinematics of the Chandrashekar flow, an analytical flow derived
from the linearized Rayleigh–Bénard convection equations, which exhibits a spatially
periodic heteroclinic network of saddle-focus connections. They argued that small
perturbations induced by their numerical integration scheme, amplified when passing
repeatedly through the network of spiral foci, could eventually lead to the onset of
Šil’nikov chaos. Their conjecture, however, could not be rigorously established by their
computations as the numerical integrator they employed did not produce sensitive
dependence on initial conditions (Holm & Kimura 1991). In the following sections
we establish numerically the onset of chaotic dynamics within stationary vortex
breakdown bubbles, thus documenting the first application of Šil’nikov’s theorem to
the physical space of a real-life flow field.

5. Stretching, folding, and chaotic stirring

Our conjecture in the previous section, concerning the role of Šil’nikov’s mechanism
in inducing chaotic dynamics, is based on the assumption that homoclinic orbits,
mapping the saddle foci to themselves, do exist. It is important to emphasize, however,
that a rigorous proof of this critical prerequisite for Šil’nikov’s theorem to be valid is
very difficult, if not impossible, for a general nonlinear dynamical system (see related
discussion in Broomhead & King 1986). In fact, even for analytically prescribed
velocity fields the existence of homoclinic orbits can be rigorously established only
on a case-specific basis by selecting simple analytical functions (Arneodo et al. 1982).
Rather than attempting, therefore, to prove that homoclinic orbits exist in vortex
breakdown velocity fields, we demonstrate herein the consequences of their existence:
the formation of infinitely many Smale horseshoes in the vicinity of the saddle foci
and the resulting efficient stirring of Lagrangian markers.

To demonstrate the formation of horseshoes and the resulting sensitive dependence
on initial conditions, we plot in figure 9 the evolution of a material line as it
recirculates within the breakdown bubble. The element consists of 1000 particles
initially arranged to form a straight line. Each particle is identified by a number,
based on its initial ordering along the line element, so that the deformation of the
element can be monitored at subsequent times. The initial length of the element is
10−5R and, thus, the initial distance between neighbouring particles is 10−8R. The
element originates just upstream of the breakdown bubble in the vicinity of the axis.
It enters the breakdown region through the spiral-in saddle and recirculates within
the bubble several times before all particles that comprise it exit. The shapes of the
element at six successive instants in time are shown in figure 9 while the temporal
growth of its total length is plotted in figure 10. The element position at each of
the time instants we monitor is marked with numbers in figure 9. Position 1 is the
initial release location while position 2 is just prior to the element passing through
the spiral-in saddle for the first time. Positions 3, 4, and 5 are snapshots during the
second approach of the element toward the spiral-in saddle (the element has already
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Figure 9. Evolution of the shape of an initially straight material line as it recirculates within
a stationary vortex breakdown bubble (Re = 1850, H/R = 1.75). The material filament consists
of 1000 particles spaced uniformly 10−8R apart (the initial length of the filament is 10−5R). The
various positions of the filament during its motion within the breakdown region are marked with
numbers along the trajectory of its midpoint. The element shape at every location is shown at an
appropriately enlarged scale for clarity.

recirculated once within the bubble). Finally, position 6 is just before the element
enters the breakdown region for the third time.

As the element begins to spiral initially away from the axis and subsequently
inward, toward the spiral-in saddle (location 1 to 2), its length (see figure 10) starts
growing but without any visible increase in its curvature. The first passage through
the spiral-in and spiral-out saddles, however, has a dramatic effect on both length
and curvature. As seen in figure 10, the growth rate of element length undergoes a
steep increase as soon as it passes through the spiral-in saddle for the first time (i.e.
from location 2 to 3). Furthermore, at position 3 the initially straight element has
already become wavy and its curvature continues to grow rapidly as it spirals inward
toward the spiral-in saddle for the second time (from 3 to 5). In fact the intense and
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Figure 10. Temporal evolution of the length of the filament shown in figure 9. The numbers in
this figure indicate the various positions of the element defined in figure 9. The length (L) has been
scaled by the initial length (Lo). The rotating lid completes one revolution in π time units.

very rapid folding of the element between positions 3 to 5 is a clear indication that
Šil’nikov’s mechanism, the formation of infinitely many Smale horseshoes, is indeed
at work in the vicinity of the saddle focus. At location 6, as the element approaches
the spiral-in saddle for the third time, fine-scale striations have formed that can be
made visible only by zooming into smaller spatial scales. Moreover, the element’s
length has increased by approximately four orders of magnitude from its initial
length. The exponential growth of length and curvature within the breakdown region
demonstrates the extreme sensitivity to initial conditions, establishes the existence of
at least one positive Liapunov exponent and proves conclusively the chaotic dynamics
of the calculated vortex breakdown flow fields.

To explore the chaotic stirring of passive Lagrangian markers by a stationary
vortex breakdown flow field, we show in figure 11 the calculated temporal evolution
of a series of initially circular material elements. The elements are arranged along
a hemispherical surface at the upstream face of the bubble and individual particles
are coloured according to their axial position (figure 11a). The stretching and folding
of material lines near the two saddles are clearly evident in figures 11(c) to 11(f),
which span a time interval during which the material lines have passed through
the spiral-in saddle. As the markers continue to re-circulate, the initial structure of
the circular filaments disappears rather rapidly and eventually well-stirred, chaotic
regions are evident almost everywhere within the bubble. As seen in figure 11(i),
however, even after several iterates of the chaotic map – the elapsed time since the
start of this numerical experiment corresponds to approximately 150 revolutions of
the rotating lid – there are coherent single-colour filaments still visible throughout the
bubble. The presence of such filaments appears to indicate the existence of regions of
inefficient stirring within the breakdown region and suggests an important area that
deserves further study, namely the rigorous quantification of the intensity of chaotic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

52
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005286


276 F. Sotiropoulos, Y. Ventikos and T. C. Lackey

Bursting event

(g) t = 101

Initiation of a burst

(h) t = 178 (i) t = 484

(d ) t = 44 (e) t = 66 ( f ) t = 87

(a) t = 0 (b) t = 12 (c) t = 25

Figure 11. Temporal evolution of series of circular material lines, initially placed to span the
upstream face of the vortex breakdown bubble (Re = 1850, H/R = 1.75). Individual particles are
coloured based on their axial coordinate at t = 0. A total of 10 000 particles have been used in this
simulation. The rotating lid completes one revolution in π time units.

stirring for varying Reynolds numbers and container aspect ratios. We are currently
conducting such studies, by calculating Liapunov exponents and stirring efficiencies,
and will report their results in a future communication.

An animation video we have created using the complete sequence of images such as
those shown in figure 11 sheds new light on the emptying process of the breakdown
bubble. More specifically, we find that the markers do not exit the bubble in a
continuous fashion, but rather in a sequence of distinct bursting events during which
clusters of markers exit the bubble simultaneously. Typical bursting events are clearly
evident in figures 11(f) to 11(i). Figures 11(f) and 11(g), for instance, depict bursting
events well under way while figure 11(h) shows such an event during its early stages.
The number of particles that exit during a given burst is not always the same but
appears to vary in a random manner – compare, for instance, figures 11(g) and 11(i).
Similar seemingly random variations appear to characterize the distribution of the
waiting times between successive bursts. The reason for this complex behaviour is
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Figure 12. Poincaré section of the steady vortex breakdown bubble for (Re = 1850, H/R = 1.75).
Same-colour blobs of markers (5 markers per colour) were released along short straight segments,
selectively placed within various regions in the interior of the breakdown bubble to elucidate the
richness of the dynamics. The large dots mark the initial locations of the various blobs (dots are
shown only for those blobs that were not placed within unmixed islands). Each orbit has been
iterated for 106 time steps. The surface of section is a diametral slice of thickness 0.01R.

explained in § 7 and § 8 where we explore the fractal properties of particle residence-
time maps.

Finally, we should caution that figure 11(i) may convey the false impression that
markers have spread throughout the entire breakdown region. The toroidal region in
the interior of the bubble, however, remains relatively free of upstream originating
markers. In the following section we construct three-dimensional maps and Poincaré
sections for a variety of initial conditions to clarify the dynamics of this toroidal
region.

6. Poincaré sections
In this section we analyse the Lagrangian dynamics in the interior of stationary

vortex breakdown bubbles. We construct three-dimensional maps by calculating the
trajectories of several initial conditions over long time intervals. To visualize such
a map, we define a diametral slice of given thickness and mark all intersections of
the three-dimensional orbits with this slice. The resulting two-dimensional map is
a Poincaré section. To facilitate the interpretation of the results, all markers that
originated from the same set of initial conditions are the same colour.

Figure 12 depicts the Poincaré section for the steady vortex breakdown bubble
shown in figure 3. The previously discussed Šil’nikov mechanism is responsible for
the formation of the stochastic, columnar filament (black orbits) in the vicinity of the
axis. Recall that within this filament, chaotic orbits spiral upward around the axis,
from the spiral-in to the spiral out saddle, and then downward again along the inside
of the outer surface of the bubble – we shall refer to such orbits as Šil’nikov orbits.
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Therefore, the outer surface of the bubble is also occupied by Šil’nikov orbits but
due to its very small thickness it is difficult to visualize in a Poincaré section – the
chaotic motion of particles along the outer surface of the bubble has already been
demonstrated in figure 11.

Šil’nikov orbits recirculate repeatedly within the bubble, wrapping around the
toroidal region that remains free of upstream originating markers in figure 3. The
Poincaré section in figure 12, however, reveals that this internal region exhibits very
rich Lagrangian dynamics. The elliptic point at its centre is surrounded (blue and
magenta markers in figure 11) by regular KAM-tori (after Kolmogorov, Arnol’d,
and Moser). By definition, a KAM-torus is the invariant locus of quasi-periodic
orbits about an elliptic fixed point. Since an orbit starting on an invariant torus
remains confined on it, KAM-tori act as impermeable barriers to transport – notice
that both the blue- and magenta-coloured markers in figure 12 never escape through
their respective KAM-torus. In general, KAM-tori are characteristic of the type of
dynamics we would anticipate in the interior of axisymmetric (integrable) stationary
vortex breakdown bubbles (see previous discussion in § 4) – for a steady axisymmetric
flow KAM-tori coincide with the flow streamlines. In other words, the invariant tori
in the core region of three-dimensional vortex breakdown bubbles are the remnants
of the integrable axisymmetric dynamics. Their existence is a consequence of the
KAM theorem, which shows that many of the simple quasi-periodic solutions of
an integrable system will, in general, still be present, virtually unchanged, in a non-
integrable system.

It is clearly evident from figure 12, that the similarities between the dynamics of
axisymmetric and real-life vortex breakdown bubbles are confined only within the
previously discussed core region. The quasi-periodic core is embedded within nested
cantori, which, unlike KAM-tori, are only partial barriers to transport. Cantori have
a Cantor-set-like structure and act as leaky interfaces (MacKay, Meiss & Percival
1984). The stirring of the grey blob in figure 12 illustrates clearly the dynamics of
such partial barriers to transport. Even though these orbits are initially trapped on
the grey cantorus, they eventually escape to explore more of the chaotic regime. Yet
another cantorus is revealed by the stirring of the green blob. This torus, however,
appears to be a considerably leakier barrier than the grey one – notice the relatively
few orbits that define it. The gaps between adjacent cantori are populated with chaotic
regions as well as un-mixed islands of regular motion. Period-two, -three, -four, and
-five islands are clearly visible in figure 12. The complex three-dimensional topology
of these unmixed subsets of the flow domain is clarified in figure 13. We should
note that other higher-period islands may also exist but their emergence is strongly
dependent on the resolution of a given calculation (determined by the number of
initial conditions and the total number of iterates we employ). Typically, very high-
period islands may require a large number of iterates before they can be clearly
distinguished (Ottino 1989).

To illustrate the effects of varying the non-dimensional governing parameters of
this flow (Re and H/R) on the dynamics of vortex breakdown bubbles, we show in
figure 14 Poincaré sections for two Reynolds numbers, Re = 1492 and 1667, for a
container with H/R = 2. For both bubbles shown in figure 14, the region in the

vicinity of the axis is also occupied by the well-stirred Šil’nikov filament discussed
above while the interior of the bubble is foliated by quasi-periodic cantori and KAM-
tori embedded within stochastic regions. A striking difference between the Re = 1492
case and that shown in figure 12 is the apparent lack of any periodic islands in
figure 14(a). Even though we searched carefully for initial conditions whose orbits
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x
Period-4 islandPeriod-2 island

Period-3 island

y

z

Figure 13. Three-dimensional orbits illustrating the intertwining of the period-two, -three, and
-four islands in the interior of the bubble shown in figure 12.

remain confined within unmixed islands (similar to those shown in figures 12 and 13),
we were not successful in locating any such orbits. We should note, however, that
islands of very high period may still be present but, as previously discussed, such long
island chains are difficult to visualize. Comparison of the higher Reynolds number
case (figure 14b) with that shown in figure 14(a) reveals that the stochastic columnar
filament around the axis has grown in size, the quasi-periodic core has shrunk, and a
period-two island has appeared. Impermeable barriers are still present near the core
as evidenced by the innermost grey torus. Notice, however, that unlike in the lower
Re case (figure 14a), several orange orbits have exited the bubble, thus suggesting
that the inner core tends to become leakier as the Reynolds number increases.

The Poincaré sections shown in figures 12 and 14 serve as a preliminary parametric
investigation of the effects of varying governing flow parameters on the chaotic
dynamics and transport within vortex breakdown bubbles. Even though the few
cases we have included herein are not sufficient to draw definitive conclusions, some
important, albeit preliminary, trends emerge. More specifically, our computations
reveal that the extend of the chaotic columnar filament in the interior of the bubble
as well as the overall structure of the interior toroidal region are both strong functions
of Re and H/R. Comparing figures 14(a) and 14(b), for instance, suggests that the size
of the chaotic columnar region around the axis and that of the quasi-periodic core
appear to increase and shrink, respectively, with increasing Reynolds number. On the
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Figure 14. Poincaré sections for steady vortex breakdown bubbles in a container with H/R = 2.
(a) Re = 1492; (b) Re = 1667. See caption of figure 12 for details on the construction of the two
sections.

other hand, comparing figure 12 with figure 14 suggests significant variations both
in the number and period of unmixed islands and in the permeability (or leakiness)
of cantori with Reynolds number and aspect ratio. Three-dimensional KAM-theory
should be able to explain the reasons for these variations. According to the theory
(see Mezić & Wiggins 1994), the fate of the invariant tori of the axisymmetric flow
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is, upon imposing a mild non-axisymmetric perturbation, determined by the ratio
of two frequencies (see Fountain et al. 2000 for a comprehensive discussion): (i)
the frequency of rotation on the diametral plane, Ωφ, that describes the motion on
planes that contain the axis; and (ii) the frequency of azimuthal rotation, Ωθ , that
describes the motion on planes perpendicular to the axis (x = const.). Tori for which
the ratio f = Ωφ/Ωθ is rational consist of periodic orbits whose period is equal
to the denominator, say p, of the rational fraction f. Such tori are likely to break
upon mild perturbation, leading to the formation of periodic islands surrounded by
chaotic regions. On the other hand, tori for which f is sufficiently irrational (see
Fountain et al. 2000 for the Diophantatine condition that needs to be satisfied for
this to occur) consist of orbits that cover the entire torus ergodically and according to
the theory many, although not necessarily the majority (see Mezić & Wiggins 1994),
of such tori could survive mild perturbations. Fountain et al. (2000) were able to
successfully apply these ideas to predict the period of the islands that formed upon
mild perturbation of their flow field – a toroidal recirculating region generated by a
tilted rotating disk fully submerged in a cylindrical container. Their results suggest that
application of frequency analysis to the axisymmetric vortex breakdown flow fields
should help explain the variations in the structure of periodic islands suggested by our
computations. Such an undertaking, however, will be left as a topic for future research.

Finally, it is important to point out that the discussion presented in this and the
previous sections clarifies the role of the various chaos-inducing mechanisms that
are at work within stationary vortex breakdown bubbles. The Šil’nikov mechanism
is responsible for breaking the invariance of the bubble-like surface and for the
chaotic stirring of orbits within the columnar filament around the axis and the thin
layer defining the outer surface of the bubble. The break-up of resonant tori and
the KAM theorem, on the other hand, account for the rich dynamics in the internal
toroidal region. Our computations suggest a general picture for this region, which
consists of many periodic orbits of elliptic or hyperbolic type, homoclinic orbits to the
hyperbolic orbits, invariant 2-tori around the elliptic ones, cantori and chaotic zones
(Helleman 1980; MacKay 1994). That is, the dynamics in the interior of stationary
vortex breakdown bubbles are entirely consistent with those of a mildly perturbed,
volume-preserving toroidal flow and are accurately represented by Helleman’s (1980)
sketch of the phase-space dynamics of a perturbed Hamiltonian system.

7. Residence times of non-diffusive particles
As we discussed in § 5, particles re-circulate within the breakdown region for

arbitrarily many times before finally exiting in a seemingly random sequence of
bursting events (see figure 11). To explore this aspect of stationary vortex breakdown
bubbles, we plot in figure 15 contours of constant residence time calculated from the
trajectories of 104 particles. The particles were initially distributed axisymmetrically
along a small disk of radius 0.01R centred around the axis just upstream of the
breakdown bubble and their trajectories were integrated in time until every particle
exited the bubble. For each particle, the residence time within the bubble is recorded
and assigned to the particle’s initial position on the release disk.

Figure 15 reveals a number of important new findings. First, we observe that
particles that remain in the bubble the longest are organized in four spiral bands.
This feature should be the result of the three-dimensionality of the approach vortex
core. As we have already discussed, non-axisymmetric disturbances in the container
flow grow inside the centrifugally unstable Stewartson layer, which loses stability in
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Figure 15 (a,b). For caption see page 284.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

52
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005286
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Figure 15. (c,d). For caption see page 284.
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the form of four pairs of spiral vortices (Sotiropoulos & Ventikos 2001). Interestingly,
however, there is a bias toward two of the four spirals that are considerably larger
than the others. The most remarkable new finding perhaps is the internal composition
of these four spiral regions as they appear to exhibit a distinct fractal-like structure.
Clearly this is not a numerical artifact since in the small-residence-time regions of the
map the contours do not exhibit this strange behaviour. To further investigate this
issue, we repeat the same calculation by placing the 104 particles, which were initially
spread along the entire disk, within successively smaller spatial regions as shown in
figures 15(b) to 15(d). It is clear that as we increase the resolution at smaller scales, the
resulting patterns begin to exhibit a self-similar fractal structure – notice that at the
two smallest spatial scales we have zoomed in on, figures 15(c) and 15(d), the contour
plots are practically identical. In fact it is evident that as we focus into smaller scales,
additional bands of high residence times emerge continuously. These bands closely
resemble fractal boundaries of basins of attraction for non-attracting chaotic sets and
suggest a Cantor-set-like cross-section (Ott 1993). Their fractal structure is consistent
with the chaotic nature of vortex breakdown flow fields and a direct manifestation of
the extreme sensitivity of particle trajectories to arbitrarily small differences in initial
conditions.

An important feature of the computed residence time map that is not directly
apparent from the figure 15 is the fact that as we increase the resolution at smaller
scales we uncover release points that lead to continuously increasing residence times.
At the resolution of figure 15(a), the maximum residence time is approximately
700 non-dimensional units (corresponding to approximately 222 revolutions of the
rotating lid), while at the resolution of figure 15(d), we have picked up points which
lead to residence times as high as 7000 units (i.e. 2222 revolutions of the rotating
lid). To demonstrate this feature, we show in figure 16 a plot similar to figure 15 but
by including, at the two highest resolution levels, only contours that correspond to
the very large residence times (the levels included in this plot range from 1000 to
7000). The resulting Cantor-dust-like contour plot strongly suggests that there exists
a Cantor set of initial conditions (i.e. a set of measure zero but of finite dimension)
that will lead to arbitrarily long residence times within the breakdown region. This
conjecture is consistent with the chaotic nature of the flow and, in essence, is identical
to the theoretical arguments made by Holmes (1984) that particles will re-circulate
within the breakdown region for arbitrarily many times. Moreover, the concept of
arbitrarily long residence times associated with a subset of measure zero (i.e. a Cantor
set) of the total fluid flux into the bubble has already been introduced by MacKay
(1994) in the context of the perturbed spheromak. MacKay (1994) also points out that
the distribution of residence times within the bubble is ‘likely to be highly non-trivial’,
a conjecture that is confirmed by the fractal structure we uncover herein. Finally, the
existence of a Cantor set of initial conditions leading to arbitrarily long residence times
within non-attracting chaotic sets, such as the volume-preserving vortex breakdown

Figure 15. Contours of residence time within the breakdown bubble plotted in terms of initial
particle location. The extreme sensitivity to initial conditions and the fractal properties of this
map become evident by increasing the resolution at smaller scales. For the first simulation (a), 104

particles were distributed along a disk of radius 0.01R located just upstream of the breakdown
bubbles. For each of the other three simulations (b, c, and d), the 104 particles were released from
successively smaller patches of the initial disk as indicated in each figure. The rotating lid completes
one revolution in π time units. (Re = 1850, H/R = 1.75)
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Figure 16. Contours of residence time as in figure 15(c, d). Only very large residence times (1000
to 7000 by 1000) are plotted to demonstrate the Cantor-dust-like structure of the resulting map.
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flow field we study herein, is a well-documented phenomenon in studies of chaotic
scattering (see Ott 1993 for a detailed review).

Experimental evidence suggesting very large residence times in vortex breakdown
bubbles has been reported by Faler & Leibovich (1978) who visualized unsteady
vortex breakdown bubbles in a straight circular diffuser. They observed that dye
remained visible in the interior of the bubble for a considerable time after its supply
was interrupted (see also Leibovich 1978). Preliminary flow visualization experiments
we have recently carried out for the container flow point to similar conclusions.
More specifically we have been able to observe the toroidal region in the interior
of the bubble for extremely long times after the dye supply was interrupted (of
the order of hundreds of lid revolutions). The results of these ongoing experiments
will be reported in a future publication that is currently in preparation. We should
emphasize, of course, that no arbitrarily long residence times are possible in the
laboratory flow as molecular diffusion will ultimately cause the dye tracer to escape.
In our simulations, however, arbitrarily long residence times associated with a Cantor
set of initial conditions are possible as we are dealing with non-diffusive particles.

Finally, we should clarify what may appear at first glance to be a numerical
paradox. The scales we have zoomed in on in figure 15 are much smaller than
the size of the computational mesh we used to obtain the Eulerian flow field. It
may, thus, appear odd that we find structure at such fine resolution. To clarify this
paradox, recall the comments we made in § 3 above. There is a threshold spatial
resolution that is required for the numerical method (Navier–Stokes solver) to yield
an Eulerian velocity field that exhibits chaotic dynamics. After such a velocity field
has been computed on a set of discrete nodes (the computational grid used to solve
the Navier–Stokes equations), an interpolation scheme is used to produce a spatially
‘continuous’ velocity field required for the solution of the Lagrangian problem. The tri-
linear spatial interpolation scheme we employ has been found adequate to preserve the
chaotic dynamics of the computed discrete velocity field – recall our earlier discussion
on numerical sensitivity in § 2. Since a chaotic flow field is characterized by extreme
sensitivity to initial conditions, particles that are initially placed at a distance as
small as the accuracy of the double-precision arithmetic we employ should diverge
exponentially in time as they recirculate in the chaotic regime – and this does indeed
happen. The scales we have zoomed in on in figure 15 are several orders of magnitude
larger than the accuracy of the double-precision arithmetic we employ in the solution
of the Lagrangian problem and, thus, the resulting fractal structure is well within the
accuracy of our numerical scheme.

8. Emptying of a vortex breakdown bubble: the devil’s staircase
In this section we further explore and quantify the emptying mechanism discussed

in § 5, by calculating the rate at which a group of upstream-originating particles exits
the bubble through the spiral-in saddle. We release the particles from a small disk,
similar to that used to study the residence-time distributions in the previous section,
and record the number of particles that remain inside the bubble at every instant
in time until the last particle exits (see below for a clarification of this point). A
particle is declared to have exited the bubble when it crosses a certain axial plane
just downstream of the spiral-in saddle. Note that for a given set of upstream initial
conditions, several particles do not enter the bubble and are, thus, the first to cross
the ‘exit’ plane. These particles are omitted from the simulation. To investigate the
sensitivity of the results presented herein to the size of the initial particle population,
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Figure 17. Emptying of a calculated stationary vortex breakdown bubble (Re = 1850, H/R = 1.75).
3×104 particles are distributed along a small disk located just upstream of the bubble. The number
of particles remaining in the bubble is plotted as a function of time revealing a devil’s staircase
distribution. The self-similar nature of this curve is illustrated by zooming into smaller scales.

we have varied the particle number from n = 103 to 3× 104 (see figure 18 below) – for
each simulation, the particles were released from exactly the same small disk upstream
of the vortex breakdown bubble. We have also investigated the effect of varying the
size of the time increment used in the trajectory integration, by performing, for a
fixed number of particles, simulations with successively smaller time steps. The results
reported in this section are independent of the size of the time increment.

The computed temporal decay of an initial population of n = 3× 104 particles, for
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the (Re = 1850, H/R = 1.75) vortex breakdown bubble, is plotted in figure 17. Note
that the initial number of particles in the vertical axis is less than 3 × 104 because,
as discussed above, particles that do not enter the bubble are omitted. A remarkable
characteristic of the curve shown in figure 17 is that it is a piecewise continuous
staircase-like structure, consisting of a series of horizontal plateaus each of seemingly
random temporal duration. Furthermore, and as shown in figures 17(b) and (c), if
part of the curve is magnified, the resulting curve looks very similar to the original
one – curves with similar properties have been obtained for all simulated cases. Of
course, and as clearly demonstrated in figure 17(c), magnification continues to reveal
similarity at smaller scales until we reach the resolution of our discrete simulation.

The structure of the curve shown in figure 17 is strikingly similar to the so-called
devil’s staircase (Bak 1986), a fractal curve that has been found to emerge in a
number of nonlinear systems, in both physics and engineering, undergoing a mode-
locking transition to chaos. In such systems, the staircase has been shown to describe
the dynamical behaviour as a function of frequency with the characteristic plateaus
indicating locking at various rational frequencies (for specific examples see Bak 1986,
Lacis et al. 1997, Reichhardt & Nori 1999). Recently Lai, Zyczkowski & Grebogi
(1999) have shown that the devil-staircase characteristic is the universal behaviour
in the parametric evolution of certain properties of chaotic saddles of nonlinear
dynamical systems. The defining characteristic of the staircase, which also led to its
name, is that between any two of its plateaus there is an infinite number of steps. Its
mathematical construction is closely linked with the Cantor set and this relation is
clearly evident in the computed curve shown in figure 17. Consider the time axis in
this figure and remove all the intervals corresponding to fixed particle populations.
What remains is a Cantor set, that is a set of points that has measure zero but, as we
will subsequently show, finite fractal dimension. Of course a true Cantor set will be
obtained in our case only in the limit of an infinite number of particles and as the
time increment approaches zero.

Most of the physical applications of the staircase described in Bak (1986) involve
dissipative systems with two competing frequencies where mode-locking occurs. In
the present case, therefore, the devil’s staircase emerges for the first time in an
autonomous, three-dimensional, volume-preserving dynamical system that is spatially
chaotic. The randomly varying lengths of its plateaus explain the emptying process
of the breakdown bubble discussed previously in § 5. The initial particle population
decays in time by sampling, as one would expect, all possible states, that is all
integer numbers from the initial population to zero, but the temporal interval that
the population remains fixed at a particular level varies randomly from level to
level. Consequently the long plateaus would appear as pauses in the emptying process
while a sequence of several consecutive short plateaus will result in what we previously
described as a bursting event. We should emphasize that in the present simulation,
with a finite set of discrete particles, the number of steps of the staircase cannot be
infinite but rather equal to the total number of particles that enter the bubble in
a given simulation. Only in the continuum limit would we anticipate that an initial
tracer concentration will decay to zero by sampling, for random time intervals, the
infinite sequence of all rational numbers between the initial concentration level and
zero, thus yielding a true devil’s staircase distribution.

In spite of the finite resolution we employ by specifying a fixed particle population,
we can still demonstrate the fractal nature of the computed curve without having
to perform simulations for an infinity of particles. To accomplish this, we calculate
herein the fractal dimension of the Cantor set associated with the staircase shown
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Figure 18. Fractal dimension of the Cantor set associated with the devil’s staircase shown in
figure 17. The number of particles used in the simulation is n and the simulated time interval for
each case is t. The particles were distributed axisymmetrically along a small disk centred around the
axis just upstream of the breakdown bubble. The slope of the straight line yields a fractal dimension
d = 0.4.

in figure 17. The procedure we employ is that described in Bak (1986). We choose a
given time interval r and calculate the total width T (r) of all plateaus that are larger
than r. We are interested in the space in between the plateaus, Tmax − T (r), which
eventually shrinks into a Cantor set (Tmax is the maximum residence time in our
discrete simulation). To measure this space we define the total number N of ‘holes’
of size r, given by

N(r) =
Tmax − T (r)

r
. (8.1)

If the variation of N(r) versus 1/r on a log–log scale is linear, then

N(r) ≈ (1/r)d (8.2)

where d is the slope of the resulting straight line. That is, the space between the
plateaus vanishes as r1−d at r → 0 and the devil’s staircase is complete (Bak 1986).
The exponent d is the fractal dimension of the Cantor set, which is complementary
to the set of plateaus comprising the devil’s staircase.

In figure 18, we plot on a log–log scale N vs. 1/r for the two staircases obtained
from the n = 103 and n = 3× 104 simulations, respectively. We include both of these
simulations in order to explore the sensitivity of the so-computed fractal dimension to
the number of initial particles. For both simulations, we find that a straight line with
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slope d = 0.4 fits well all points over a broad range of plateau sizes – approximately
2.3 and 3.0 orders of magnitude variation in r for the n = 103 and n = 3 × 104

cases, respectively. Note, however, that increasing the number of particles results in
dramatic improvements for small values of r and in smoother overall linear variation.
We should also note and comment on the apparent departure of the calculated
points for the n = 3 × 104 case from the linear variation as r approaches large
values (see figure 18). This trend is an artifact of our incomplete, for this case,
numerical simulation. Due to the asymptotic nature of the curve shown in figure 17,
larger plateaus tend to appear more frequently when relatively few particles remain
in the bubble. Since many of these last remaining particles could have arbitrarily
long residence times (see previous section), continuation of the time integration long
enough for all particles to exit requires excessive computational resources – especially
for the large number of particles used in this refined simulation. For that reason we
had to terminate the particle integration when approximately 4000 particles were still
remaining in the interior of the bubble. Consequently, the so-computed staircase does
not contain sufficiently many large size plateaus for the linear variation of N to be
sustained at larger r. To prove that this is indeed the reason for the observed departure
from linearity, we also include in figure 18 the curve that resulted when the n = 103

simulation, which was actually carried out until all particles exited (t = 2660), was
terminated at a much earlier time (t = 128) – only 100 particles were left inside the
bubble at t = 128 and, thus, more than 2500 s of additional simulation were required
for these few remaining particles to exit. Clearly, reducing the integration time results
in the same departure from linear variation at larger values of r as that observed for
the n = 3×104 simulation. This small discrepancy not withstanding, figure 18 provides
conclusive evidence that the curve shown in figure 17 is a complete devil’s staircase
with fractal dimension d = 0.4. Interestingly, this value of the fractal dimension is
lower than the d = 0.87 ‘universal’ constant (Bak 1986) that has been previously found
in a number of dissipative dynamical systems undergoing mode-locking transition to
chaos.

To further explore the statistical properties of the devil’s staircase curve, we plot in
figure 19 the calculated (for the staircase shown in figure 17) frequency of occurrence,
S(r), of the various plateau sizes (i.e. the waiting times between bursting events)
as a function of the plateau size r – i.e. the histogram of r. Figure 19 shows that
the frequency of occurrence diminishes monotonically as the plateau size increases.
Furthermore, a power law of the form

S(r) ≈ (1/r)a (8.3)

with a = 1.4 appears to fit well the computed data points. Note that a power-law
distribution for S is consistent with the nature of the devil’s staircase, as plateau
sizes of zero length correspond to the points of the complementary Cantor set and
should, thus, be infinitely many. It is also important to point out that the apparent
relation between the fractal dimension d and the exponent a (a = 1 + d) is not
coincidental. Assuming a continuous function S = S(r) of the form given by equation
(8.3) and noting that T (r) (the total length of plateaus with size greater than r) can
be computed from S as follows (rmax is the size of the largest plateau):

T (r) =

∫ rmax

r

r′S(r′) dr′, (8.4)

we can easily show that the number of holes N of size r defined by equation (8.2) is
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Figure 19. Histogram of the staircase plateau sizes (waiting times between consecutive bursts) for
the (Re = 1850, H/R = 1.75) vortex breakdown bubble. The two histograms shown were extracted
from the same staircases used to calculate the fractal dimension in figure 18, with 103 and 3× 104

particles, respectively. The continuous line is the power-law distribution that was obtained from
the 3× 104-particle simulation. Even though the unresolved simulation (103 particles) yields a very
noisy histogram, the same power-law appears to fit reasonably well over a considerable range of r
values.

given by the following equation:

N =
1

r

∫ r

0

r′S(r′) dr′ ≈
(

1

r

)a−1

. (8.5)

Comparison with equation (8.2) yields the relation implied by the numerical values
in figures 18 and 19, i.e. d = a − 1. In other words, the fractal dimension of the
complementary Cantor set can also be calculated from the histogram of plateau sizes.

To investigate whether the fractal dimension of the devil’s staircase is universal for
this problem or varies with the governing parameters of the flow (H/R and Re), we
carried out computations similar to those described above but for the two bubbles
shown in figure 14 (Re = 1492 and 1667 for H/R = 2). For both simulations we
used 3 × 104 particles and obtained staircase-like curves such as the one shown in
figure 17. We also found that the fractal dimension d decreases with Reynolds number
from 0.65, for Re = 1492, to 0.55, for Re = 1667. Although these results suggest that
the fractal dimension is a strong function of H/R and Re, the few cases we have
considered thus far do not allow us to establish any meaningful trends. Computations
over a much broader range of Reynolds numbers and aspect ratios will be needed
before such trends can be extracted with certainty.

Finally, we should point out that our findings in this and the previous sections point
to the conclusion that the infinite intersections of the stable and unstable manifolds
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of the spiral-in saddle, through which upstream-originating particles enter and exit
that bubble, exhibit a fractal spatial structure. Since chaotic Šil’nikov orbits will have
to exit through this fractal ‘window’, their exit time will be extremely sensitive to
arbitrarily small differences in the particle initial location, and, thus, the resulting
fractal structure in the residence time maps and the variations in the sizes of the
devil’s staircase plateaus.

9. Summary and concluding remarks
We have investigated computationally the dynamics of particle paths within three-

dimensional, stationary, vortex breakdown flow fields in a closed cylindrical con-
tainer with a rotating lid. By demonstrating that the upstream and downstream
fixed hyperbolic points of a vortex breakdown bubble are of spiral focus type, we
argued that the Šil’nikov mechanism is responsible for the destruction of the invariant
axisymmetric bubble surface and the chaotic stirring of upstream-originating particles
(Šil’nikov’s 1965). We constructed Poincaré sections to clarify the rich dynamics of the
flow in the interior of vortex breakdown bubbles. The picture that emerged is con-
sistent with what we would generically anticipate for a perturbed, three-dimensional,
volume-preserving system. The dynamics are characterized by a sequence of nested
KAM-tori and cantori with the gaps between adjacent tori populated by periodic
islands embedded within large regions of chaotic motion. We calculated residence
times of non-diffusive Lagrangian tracers and argued that there exists a Cantor set
of initial conditions leading to arbitrarily long residence times within the breakdown
region. We also showed that the rate at which upstream originating particles exit the
breakdown region exhibits a devil’s staircase distribution. The fractal nature of this
curve was established rigorously by computing the fractal dimension of the Cantor
set associated with its construction. We presented results for two aspect ratios and a
total of three Reynolds numbers, which show that the chaotic dynamics within the
bubble (number of un-mixed islands and the extent of the chaotic and quasi-periodic
regions) and the fractal dimension of the devil’s staircase depend strongly on the
Reynolds number and container aspect ratio.

Holmes’s (1984) ingenious prediction of a spatially chaotic flow field in which
particles enter the breakdown region and recirculate arbitrarily many times before
they finally exit, is essentially the type of Lagrangian motion we find herein. An
important difference between our findings and Holmes’s arguments is that he discussed
the effects of an arbitrarily small, time-periodic, non-axisymmetric mode on a steady,
axisymmetric vortex breakdown bubble. Our results, on the other hand, suggest
that even stationary non-axisymmetric perturbations suffice to drastically alter the
integrable dynamics of the axisymmetric flow and lead to the onset of chaotic
particle paths. It is important to recognize that such a scenario is not new in
the dynamical systems literature. Its theoretical foundations, in the context of an
autonomous, three-dimensional, dynamical system whose dynamics closely mimic
those of a stationary vortex breakdown bubble, were first laid out by Broer &
Vegter (1984) – see also the more recent discussion in Wiggins (1990). Our results
are also entirely consistent with the more recent theoretical predictions by MacKay
(1994). His descriptions of the manifold structure and internal dynamics of the
perturbed stationary spherical vortex are essentially identical to those derived from our
computations for three-dimensional, stationary vortex breakdown bubbles (McKay
1994). Interestingly, MacKay (1994) also discussed the possibility of highly complex
distributions of residence times and alluded to the existence of a subset of measure
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zero of the total flux into the bubble that is associated with arbitrarily long residence
times.

Our work, along with our earlier contribution (Sotiropoulos & Ventikos 2001)
and the recent experimental study of Spohn et al. (1998), clarify the origin of the
asymmetries observed in all laboratory visualization experiments and resolve con-
clusively the fifteen-year old controversy regarding the fundamental nature of the
bubble-type mode of vortex breakdown in the container problem. The asymmetric
folds that invariably appear at the downstream end of the bubble (see, among others,
Escudier 1984; Fujimura, Koyama & Hyun 1995; Spohn et al. 1998) are due to the
very complex topology of trajectories in the vicinity of the spiral-in saddle. Moreover,
the spiral deflection of the dye filament at the upstream end of the bubble is not an
artifact of the visualization technique, as has been repeatedly argued in the literature
(Stevens et al. 1999), but the projection on a diametral plane of the unstable manifolds
of the spiral-out saddle.

The present computational findings in conjunction with previous theoretical work
in the area of nonlinear dynamical systems (Broer & Vetger 1984; Wiggins 1990;
MacKay 1994) explain clearly the reason why previous axisymmetric computations
have succeeded in predicting most Eulerian features of the flow reasonably well (e.g.
Lopez 1990; Gelfgat et al. 1996; Brons et al. 1999). The non-axisymmetric component
of the flow in the vicinity of real-life vortex breakdown bubbles is indeed very
small and, thus, the Eulerian flow can be approximated well by the axisymmetric
assumption. Yet this small three-dimensional perturbation has a profound effect
on the Lagrangian characteristics of the flow. In other words, even though the
real-life and ideal (axisymmetric) flow fields are very similar from the Eulerian
standpoint, their Lagrangian descriptions are as fundamentally different as order and
chaos.

Our findings concerning the fractal structure of the residence-time maps and the
devil’s staircase, which essentially confirm and help clarify Holmes’s and MacKay’s
theoretical predictions, are both spectacular examples of the physical relevance of
the Cantor set. Note, for instance, that the concept of arbitrarily long residence
times appears counter-intuitive from the standpoint of conservation of volume in
an incompressible fluid. Yet when linked to a Cantor-set of release conditions, this
apparent physical contradiction is removed. By definition a Cantor set is not dense at
any interval, and, thus, the total tracer flow rate that emanates from points leading
to arbitrarily long residence times is in fact zero.

There are numerous aspects of the Lagrangian dynamics of steady vortex break-
down bubbles we have uncovered herein that require further investigation. Extensive
parametric studies, over a broad range of aspect ratios and Reynolds numbers, should
be carried out to explore and quantify the dependence of the dynamics in the interior
of the bubbles and the fractal properties of residence-time distributions on Reynolds
number and aspect ratio. Results from these studies could help validate recent theories
that have linked the extent of chaotically advected regions in wall-bounded flows with
the Reynolds number of the flow and the thickness of the wall boundary layers (Mezić
2001). They should also provide a useful test-bed for testing and further refining the
predictive capabilities of three-dimensional KAM theory (see Fountain et al. 2000).
By identifying and quantifying links between Lagrangian transport and the physics of
the flow, results from such studies could also lead to rational strategies for controlling
chaotic stirring and residence times of particles within the breakdown region. Such
quantitative parametric investigation is currently under way and its results will be
reported in a future communication.
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