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The passive oscillations of inverted flags are investigated both experimentally and
theoretically in this paper. First, the force and energy distributions of inverted flags,
which contain elastic and inertia components, are analysed based on the experimental
data. Two main differences between inverted and conventional flags are found: (1) the
elastic energy of a conventional flag is concentrated near the free end, while the
fixed end of an inverted flag presents the largest elastic energy; and (2) the elastic
component is several orders of magnitude greater than the inertia component for an
inverted flag, while they are of the same magnitude for a conventional flag. Second, a
linear analysis shows that the critical flow velocities obtained from the experiments at
small mass ratios are scattered around the theoretical curve of wavenumber k= 1.875,
which is in contrast with k= 4.694 of a conventional flag. For large mass ratios, the
mass ratio has a certain influence on the critical velocity rather than being irrelevant.
For two parallel inverted flags, both the experimental and theoretical results indicate
that the range of the in-phase flapping mode becomes smaller with an increase in
the separation distance, and a multiple flapping state may occur. For n > 2 parallel
inverted flags, the theoretical results show that two of all coupled flapping modes
are dominant with most parameters. These findings could contribute to a better
understanding of the passive oscillations of inverted flags.

Key words: aerodynamics, flow–structure interactions

1. Introduction
The oscillation of a flexible object in a uniform flow is a common phenomenon

in nature. In previous studies, a flexible flag where one edge is fixed and the other
edge is free, which is in fact a beam or thin plate whose primary stiffness is that of
a beam or plate in elastic bending, has been proposed as a simplified model. A flag
in the wind is called a conventional flag for its fixed leading edge and free trailing
edge (Taneda 1968; Watanabe et al. 2002a,b; Jia et al. 2007; Shelley & Zhang 2011).
In contrast, the leading edge of an inverted flag is free, and the trailing edge is fixed,
e.g. flapping leaves in the wind (Kim et al. 2013; Sader et al. 2016).

In recent years, the hydrodynamic characteristics of flexible flags, including
dynamical modes, shedding vortices and pressure jump, have attracted the attention of
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researchers. For a conventional flag, Taneda (1968) first gave its two stable dynamical
modes: straight and flapping modes. Zhang et al. (2000) creatively used a flowing
soap film to study the trailing-edge vortices of the conventional flag. It was found
that von Kármán-type vortices were shed from the fixed end in the straight mode.
When the conventional flag entered the flapping mode, the successive small eddies
produced by a single stroke were of a single sign, unlike the alternating signs in
the stretched-straight mode. Kim et al. (2013) and Sader et al. (2016) further noted
that the flapping of a conventional flag was due to flutter instability, indicating that
the fluid force had a stabilizing effect for a conventional flag. Jia & Yin (2008) first
described the force and energy distributions along two tandem conventional flags after
obtaining their oscillation equations based on experiments. It was determined that the
force and energy of the front flag were larger than those of the rear flag, which were
even larger than those of a single conventional flag. For a deeper understanding of
conventional flags, readers are referred to a review paper by Shelley & Zhang (2011).

Compared with a conventional flag, an inverted flag enters the unstable state at
a lower critical velocity and with a larger amplitude (Kim et al. 2013). Therefore,
an inverted flag is more valuable than a conventional flag in energy harvesting
(Kim et al. 2013; Ryu et al. 2015; Tang, Liu & Lu 2015a; Tang, Gibbs & Dowell
2015b; Shoele & Mittal 2016; Orrego et al. 2017) and wall heat transfer (Park
et al. 2016; Yu, Liu & Chen 2017, 2018; Chen et al. 2018). Kim et al. (2013) first
studied the dynamic behaviours of an inverted flag. Three modes were found with
a successive increase in the flow velocity: the straight mode, the large-amplitude
flapping mode and the deflected mode. Gurugubelli & Jaiman (2015) further revealed
the mechanism of entering the large-amplitude flapping mode and the reason for
maintaining the oscillation through numerical simulations. Gurugubelli & Jaiman
(2015) noted that the flapping instability was a static divergence instability, namely
the fluid force caused the disturbance to continue to diverge for the inverted flag.
After entering the large-amplitude flapping mode, the leading-edge vortex played an
important role in maintaining the oscillation of the inverted flag. Hu et al. (2019)
further confirmed the above conclusions in their experiments. The numerical results
of Ryu et al. (2015) and Tang et al. (2015a) showed that the energy conversion ratio
from the fluid kinetic energy to the strain energy of an inverted flag was as high as
0.4–0.6, indicating that the energy harvesting ability of an inverted flag was higher
than that of a conventional flag, which was usually approximately 10−3. Park et al.
(2016) and Yu et al. (2017) recently applied an inverted flag to wall heat transfer
and found that its periodical influence on the fluid near the wall enhanced the heat
transfer effect. For two parallel inverted flags, five coupled flapping modes were
observed by Huertas-Cerdeira, Fan & Gharib (2018), namely in-phase, anti-phase,
staggered, alternating and decoupled flapping modes. In the case of small distances
and low flow velocities, the anti-phase flapping mode was predominant. In addition,
the in-phase flapping mode rarely occurred throughout the experiments.

Previous studies of inverted flags mainly adopted the methods of experiments
and numerical simulations. However, theoretical analysis has been proven to be
an effective tool for decomposing the displacement of a conventional flag in time
and space (Allen & Smits 2001). Theoretical analyses might take less time than
numerical simulations, but they have the same accuracy (Watanabe et al. 2002b).
Shelley, Vandenberghe & Zhang (2005) mainly adopted a linear theoretical model,
which ignored the finite length of the filament, the vortex shedding at the trailing edge
and the effect of viscosity in order to obtain the critical velocities of a conventional
flag. They found that this linear theoretical model gave a good estimate of the
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critical speed at small mass ratios, while the prediction result was one order of
magnitude lower at large mass ratios. They noted that the deviation was due to
neglect of the viscous force, which was predominant at large mass ratios. Afterwards,
Jia et al. (2007) applied the above theoretical model to two side-by-side conventional
flags. They found that the flapping mode of two parallel conventional flags switched
from the anti-phase mode to the in-phase mode with an increase in the flow velocity.
Schouveiler & Eloy (2009) applied the theoretical model to three and four side-by-side
conventional flags. They noted that the theoretical results agreed well with the
experimental results, but the critical velocities between different flapping modes could
not be well predicted. Based on the above theoretical model proposed by Shelley
et al. (2005), Kim & Kim (2019) assumed ω = 0 in order to obtain the critical
velocities between the different coupled modes of two parallel inverted flags and
studied the effect of the flag height-to-length ratio on the unstable boundary. In these
studies, it was demonstrated that some intuitional results can be obtained readily
using this linear theoretical model and that the coupling modes can be predicted
qualitatively. Gibbs et al. (2014) and Tang et al. (2015b) further applied the vortex
lattice method to consider vortex shedding from the trailing edge of a conventional
flag and obtained theoretical results that are in good agreement with experimental
results.

While the dynamic behaviours and flow fields of inverted flags have been studied,
there is currently no in-depth study of the force and energy distributions along inverted
flags. Therefore, we intend to experimentally study the force and energy distributions
of an inverted flag in order to gain a deep understanding of their relationship with
the flag oscillation. In addition, regardless of whether it is an inverted flag or a
conventional flag, it maintains a straight path at a low flow velocity, and then enters
a flapping mode as the flow velocity increases. To explore the physical mechanism
of the mode transition, the critical velocities between the different flapping modes are
theoretically studied using a simplified hydrodynamic model, which can be regarded
as an extension of the single-flag model proposed by Shelley et al. (2005).

This article is organized as follows. Section 2 introduces the experimental set-up
and theoretical model. Section 3 discusses the force and energy distributions, as well
as theoretical analysis results. Finally, the main research results are summarized.

2. Experimental set-up and theoretical model
2.1. Experimental method

The experiments were conducted in the recirculating water tunnel of Beijing University
of Aeronautics and Astronautics to obtain the deformed profiles of the inverted flag,
as shown in figure 1. The test section of the water tunnel was 0.6 m wide and 0.7 m
high. The flow velocity in this study ranged from 106 to 182 mm s−1. The flag was
made of polyvinyl chloride plastic with a density of ρs = 1.3× 103 kg m−3. The flap
was set at height H= 140 mm, length L= 100 mm and thickness h= 0.24 mm, which
could ensure the two-dimensionality of the flag (Tang et al. 2015a; Hu et al. 2019).
The trailing edge of the inverted flag was fixed by two semi-cylinders with a diameter
of 4 mm. As presented in figure 1, the middle height position of the fixed end of the
flag was set as the origin of the coordinates, the spanwise direction was defined as
the y axis and the streamwise direction was defined as the x axis.

Referring to previous studies (Kim et al. 2013), the dimensionless flow velocity U∗0
and fluid-to-structure mass ratio MS are two main dynamical parameters of the inverted
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FIGURE 1. Schematic diagram of the experimental set-up.

flag, which are defined as follows:

U∗0 =U0L

√
ρf L
B
, (2.1)

MS =
ρf L
ρSh

, (2.2)

where the flexural rigidity of the flag is B = Eh3/[12(1 − υ2)], in which
E=1173.3 MPa is the Young’s modulus. The density of the water is ρf =997 kg m−3.
In this experiment, U∗0 was set as 2.52, 2.70, 2.88, 3.06, 3.24, 3.96 and 4.31; MS
was 320. Furthermore, as did Shelley et al. (2005), five steel sheets were attached on
each surface of a special inverted flag at equal intervals to reduce its mass ratio and
increase its inertial force. The height, width, thickness and density of the steel sheets
were 100 mm, 4 mm, 0.2 mm and 7.8× 103 kg m−3, respectively. Similar to Shelley
et al. (2005), we can also assume that the density and stiffness of the ‘heavy’ flag
were uniform. Under this condition, MS was reduced to 106.

The deformed profiles of the inverted flag at different moments were obtained
by the boundary recognition algorithm, as given by Hu et al. (2019). The main
implementation process of the boundary recognition algorithm was as follows. First,
the original image was binarized. Then, the background noise in the binary image
was filtered. Finally, the polynomial fitting method was used to obtain the deformed
profiles of the inverted flag.

2.2. Theoretical model
The linear stability analysis of the two-dimensional inverted flag is described below.
The theoretical analysis model of n parallel inverted flags is presented here, as shown
in figure 2. The middle position of these n trailing edges is set as the origin of the
coordinates, and the distance between every two adjacent inverted flags is d. Thus,
the isolated inverted flag can be referred to as one typical case when d approaches
infinity. For the directions of the x axis and y axis, refer to figure 1. The wall-normal
displacements of the n inverted flags positioned at yi are written as ηi(x, t), where
i= 1, 2, . . . n. If the phase difference between two of the n flags is θ , then the two
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FIGURE 2. Theoretical model of n parallel inverted flags, where i= 1, 2, . . . n.

flags oscillate in phase at θ = 0 and oscillate out of phase at θ = π. Hence, the
critical flow velocity at which the n parallel inverted flags begin to oscillate, as well as
the coupled flapping mode, can be obtained. According to the Euler–Bernoulli beam
equation (Kornecki, Dowell & O’Brien 1976; Jia et al. 2007):

ρsh∂2
t ηi + B∂4

x ηi =1pi, i= 1, 2, . . . n, (2.3)

where the subscripts i = 1, 2, . . . n indicate the n flags and 1pi = pi+1 − pi is the
pressure jump across the ith flag. The pressure p in the above equation can be
obtained from the linear Bernoulli equation:

pj =−ρf (∂t +U0∂x)ϕj, j= 1, 2, . . . (n+ 1), (2.4)

where j= 1, 2, . . . (n+ 1) corresponds to (n+ 1) regions divided by n inverted flags.
Function Φj =Φ j + ϕj is the velocity potential function of the above (n+ 1) regions,
which consists of the average Φ j and perturbation ϕj parts.

According to the linear instability analysis, ϕj can be written as

ϕj = ϕ0j(y)ei(ωt+kx), j= 1, 2, . . . (n+ 1), (2.5)

where ϕ0j(y) is the amplitude of the initial perturbation, ω is the complex frequency
and k is the wavenumber.

For an inviscid incompressible fluid, the perturbation velocity potential ϕj must
satisfy the Laplace equation without considering the effects of temperature and
gravity. Additionally, ϕj must satisfy the appropriate boundary conditions:{

∂yϕi(x, yi, t)= (∂t +U0∂x)ηi(x, t),
∂yϕi+1(x, yi, t)= (∂t +U0∂x)ηi(x, t),

i= 1, 2, . . . n, (2.6)

1ϕj = 0, j= 1, 2, . . . (n+ 1). (2.7)
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Therefore, the wall-normal displacements ηi(x, t) of the two inverted flags can also be
written as

ηi(x, t)= η0iei(ωt+kx), i= 1, 2, . . . n, (2.8)

where η0i is the initial amplitude of the inverted flag.
Substituting (2.5) and (2.8) into the boundary conditions (2.6) and Laplace equation

(2.7), the perturbation velocity potential ϕj can be obtained. Afterwards, ϕj is
substituted into the Euler–Bernoulli beam equation (2.3), and the following equations
can be obtained:

An×nβ =



a1 a2 0 0 · · · 0
a2 a3 a2 0 · · · 0
0 a2 a3 a2 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · a2 a3 a2
0 0 · · · 0 a2 a1


η01
...
η0n

= 0, (2.9)

a1 =−
ω2

MS
+U∗−2

0 k4
−

1+ coth(kd∗)
k

(ω+ k)2,

a2 =
csch(kd∗)

k
(ω+ k)2,

a3 =−
ω2

MS
+U∗−2

0 k4
−

2 coth(kd∗)
k

(ω+ k)2,


(2.10)

where d∗ = d/L.
On the basis of the solution identification theorem in linear equations, |An×n| must

be equal to 0, that is ∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 0 0 · · · 0
a2 a3 a2 0 · · · 0
0 a2 a3 a2 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · a2 a3 a2
0 0 · · · 0 a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.11)

The coupled flapping mode of every two parallel inverted flags depends on

η0l

η0m
=Geiθlm, l,m= 1, 2, . . . n. (2.12)

Here, G and θlm are the ratios of the amplitude and phase angle, respectively. When
θlm = 0 or π, the two inverted flags are in the in-phase or anti-phase flapping modes,
respectively.

3. Results and discussion
In this article we mainly focus on the oscillation of inverted flags. Since inverted

flags are used to collect energy, it is critical to study the force and energy distributions
of the inverted flags. Considering that the magnitude of the force and energy is
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FIGURE 3. Variation of the tip spanwise displacement at U∗0 = 2.88, where the circles and
the curve represent the experimental and fitting results, respectively.

closely related to the flapping mode, it is of great significance to determine the
critical velocities between different modes via theoretical analysis. Therefore, the
force and energy distributions of the inverted flag are studied first, followed by a
theoretical prediction of the critical velocities. We verify the applicability of the
theoretical model through the experimental results for both one flag and two flags
and finally extend it to n flags.

3.1. Force and energy distributions
Taking U∗0 = 2.88 as an example, figure 3 shows the periodic oscillation of the free
end over time based on the experimental data, where the circles and curve correspond
to the experimental and fitting results, respectively. The equation of this curve is y(t)=
0.8L sin(2π× 0.13t+ ϕ0), where 0.8L is the amplitude, 0.13 is the flapping frequency
and ϕ0 is the initial phase at t = 0. The other positions along the inverted flag also
have similar fitting results, and there is no phase difference between the different
positions. When the initial phase ϕ0 = 0, the spanwise oscillation of the inverted flag
can be approximately described as

y(s, t)= A(s) sin(2πfωt), (3.1)

where s is the curve coordinate from the fixed end to the free end, A(s) is the
amplitude at different positions and fω is the flapping frequency.

For U∗0 = 2.88, A(s)=−1.2162× 103s5
+ 722.5s4

− 153.4s3
+ 15.53s2

+ 0.17s. Then,
the spanwise oscillation of the inverted flag can be described as

y(s, t)= (−1.2162× 103s5
+ 722.5s4

− 153.4s3
+ 15.53s2

+ 0.17s) sin(2π× 0.13t).
(3.2)

In addition, the streamwise oscillation of the inverted flag can be obtained by
(∂x/∂s)2 + (∂y/∂s)2 = 1.

A comparison of the fitting and experimental results is shown in figure 4.
Figures 4(a) and 4(b) present the spanwise displacement at each point and the
dynamic profiles of the inverted flag, respectively, where s∗ = s/L, x∗ = x/L and
y∗= y/L. The left-hand panel of each pair shows the fitting results, and the right-hand
panel the experimental results. The results obtained by the above method are in good
agreement with the experimental results.

After obtaining the oscillation equation of the inverted flag, the force and energy
distributions at different times can be further statistically analysed. Referring to Jia &
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FIGURE 4. A comparison of the fitting and experimental results of the flag profiles at
U∗0 = 2.88: (a) spanwise displacement at each point along the inverted flag; (b) dynamic
profiles of the inverted flag. The left-hand and right-hand panels of each pair represent
the fitting and experimental results, respectively.

Yin (2008), the equations for the force and energy distributions of a two-dimensional
flag are as follows:

f1 = B
∂4y
∂s4

,

f2 = ρsh
∂2y
∂t2
,

fy = f1 + f2,

 (3.3)

ep(s, t)=
B
2
(∂2y/∂s2)2

1− (∂y/∂s)2
,

ek(s, t)=
ρsh
2

[(
∂x
∂t

)2

+

(
∂y
∂t

)2
]
,

e(s, t)= ep(s, t)+ ek(s, t).


(3.4)

Here, f1, f1 and fy are the elastic force, inertia force and total distributed force in the y
direction, respectively; and ep, ek and e are the strain energy, kinetic energy and total
distributed energy, respectively.

The force and energy distributions for a representative case of U∗0 = 2.88 are given
below. Figure 5 shows the variation of the force distribution and the tip displacement
over a period. Figure 5(a) presents the distribution of the elastic force f1 in one cycle,
corresponding to the force that causes the flag to be bent. It can be determined that
the elastic force f1 reaches a maximum at the fixed end (s∗ = 0) of the inverted flag,
gradually decreases along the flag and is mainly concentrated in the range 06 s∗6 0.5.
Thus, the bending of the inverted flag is mainly concentrated near the fixed end. Since
the elastic force f1 causes the flag to bend, the elastic force f1 at different positions and
the tip displacement present the same trend over time. During the periods 0–0.25T and
0.5T–0.75T , the inverted flag is in the bending process. The larger the displacement
of the flag, the larger the elastic force f1. During the periods 0.25T–0.5T and 0.75T–T ,
the inverted flag is in the rebounding process. The displacement and elastic force f1
then gradually decrease. The above results show that the elastic force f1 reaches a
minimum at the equilibrium position (i.e. t/T = 0, 0.5, 1) and a maximum at the
leftmost or rightmost position (i.e. t/T = 0.25, 0.75).
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FIGURE 5. Variation of the force distribution in a period: (a) the elastic force f1 (N m−1),
(b) the inertia force f2 (N m−1) and (c) the distributed force fy = f1 + f2 (N m−1).
(d) Variation of the tip displacement in a period.

Figure 5(b) displays the distribution of the inertia force f2 in one cycle, corresponding
to the force that causes the flag to oscillate. In contrast to the elastic force f1,
the inertia force f2 gradually increases along the flag and is the largest at the
free end (s∗ = 1) of the inverted flag. This phenomenon is mainly because the
acceleration of the flag can be calculated from the oscillation equation (3.1) as
−4π2fω2A(s) sin(2πfωt), resulting in the maximum acceleration at the free end of
the inverted flag. It also causes an opposite trend of the inertia force f2 and the tip
displacement.

By comparing figures 5(a) and 5(b), it can be determined that the elastic force f1 is
approximately 103 times the inertia force f2. Although the trends of these two types
of forces are opposite over time, the trends and magnitudes of the distributed force fy
are almost the same as those of the elastic force f1, as shown in figure 5(c). This is
explainable because the distributed force fy of the inverted flag is mainly completely
provided by the elastic force f1 during the oscillation process.

Figure 6 shows the variation of the energy distribution and the tip displacement over
a period. Figures 6(a) and 6(b) present the distributions of the strain energy ep and
the kinetic energy ek, respectively. Figure 6(c) gives the energy distribution e= ep+ ek
in one cycle. From figures 5(a) and 6(a), it is determined that the trend of the strain
energy ep along the flag is the same as that of the elastic force f1, both of which
gradually decrease along the flag due to the maximum degree of bending of the
fixed end. According to the expression of ep in (3.4), the strain energy ep at different
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FIGURE 6. Variation in the energy distribution in a period: (a) the strain energy ep
(J m−1), (b) the kinetic energy ek (J m−1) and (c) the distributed energy e = ep + ek
(J m−1). (d) Variation of the displacement of the tip in a period.

positions and the absolute value of the tip displacement show the same trend over
time. Given that the velocity of the flag can be written as 2πfωA(s) cos(2πfωt), the
kinetic energy ek gradually decreases along the flag, and a phase difference of 0.25T
occurs between it and the absolute value of the tip displacement (see figure 6b,d).
Similar to that shown in figure 5, the strain energy ep is also approximately 103

times the kinetic energy ek. Thus, the trends of the distributed energy e and the strain
energy ep are almost identical.

Both figures 5 and 6 show that the elastic component (i.e. f1 and ep) is several
orders of magnitude greater than the inertia component (i.e. f2 and ek). In contrast,
these two components of a conventional flag are of the same magnitude (Jia 2009).
This is mainly because the flag stiffness required for the large-amplitude flapping of
the inverted flag is several orders of magnitude larger than that of the conventional flag
under the same conditions. Additionally, the elastic component of the conventional flag
is concentrated near the free end because its tip bends the most (Jia 2009), which is
contrary to the results for the inverted flag in our study.

The force and energy distributions in figures 5 and 6 are integrated along the flag,
and then the variation in the total force and total energy in one cycle can be obtained.
Figures 7(a) and 7(b) give the time history of the total force Fy in the y direction
and the total energy E in one cycle, respectively. As shown in figures 5(c) and 7(a),
the trend of Fy is similar to that of the distributed force fy. This phenomenon is
mainly because the distributed force fy has the same trend at different positions (see
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FIGURE 7. Variation of (a) the total force Fy (N) in the y direction and (b) the total
energy E (J) in a period.

figure 5c). Specifically, Fy of the inverted flag is constantly increasing during the
bending process, and in the rebound process Fy decreases continuously. As depicted
in figures 6(c) and 7(b), the trends of the total energy E and the distributed energy e
are also identical. The total energy E continues to increase during the bending process,
corresponding to the energy accumulation process. In other words, the inverted flag
collects energy from the surrounding fluid in the bending process. Additionally, the
trend of the total energy E is opposite in the rebounding process, corresponding to
the energy release process. Under this condition, the inverted flag releases energy into
the surrounding fluid through the leading-edge vortex.

The time-averaged energy E = (1/T)
∫ T

0 E dt of the inverted flag can be further
evaluated. The conversion ratio, defined as R= Emax/Ef (Kim et al. 2013; Ryu et al.
2015), represents the efficiency of energy harvesting from the fluid kinetic energy
to the flag strain energy; Ef = 0.5ρf U3

0A is the kinetic energy of the uniform flow
in which Emax the strain energy at the maximum deformation position, and A is
the amplitude of the inverted flag. Figure 8 shows the time-averaged energy E, the
amplitude A and the conversion ratio R at different flow velocities. In addition, the
critical velocities between the straight, flapping and deflected modes are marked
by dashed lines. For the definition of these three modes, see Hu et al. (2019). It is
determined from figure 8(a) that the trend of the time-averaged energy E is essentially
consistent with that of the amplitude A/L as a function of the flow velocity, indicating
that the amplitude of the inverted flag gives a good estimate of the strain energy.
The present results further reveal that the averaged energy E in the deflected mode is
equivalent to that in the flapping mode. As shown in figure 8(b), the conversion ratio
R first increases and then decreases with the successive increase in the flow velocity.
The maximum conversion ratio R immediately follows the critical velocity, which is
earlier than for the experimental results of Kim et al. (2013) in a wind tunnel. Unlike
the averaged energy E plotted in figure 8(a), the conversion ratio R of the deflected
mode is far lower than that of the flapping mode.
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3.2. Linear analysis
The force and energy distributions of an isolated inverted flag during the oscillation
process are analysed above. It can be concluded that the averaged energy and
conversion ratio are considerable in the flapping mode. Hence, it is of great
significance to determine the critical velocities between the different modes. To
achieve this goal, a theoretical analysis provides us with a more convenient but
sufficiently accurate approach in comparison with the experimental means. Thus, a
theoretical analysis is further conducted to reveal the characteristics of the critical
velocities. To give a global overview, isolated and multiple inverted flags will be
analysed.

For the linear stability analysis of an isolated inverted flag (n= 1), equation (2.11)
can be written as

(ω+ k)2 +
(

kω2

MS
−U∗−2

0 k5

)/
2= 0. (3.5)

The imaginary part ±ωi of the complex frequency ω corresponds to the growth rate
of disturbance. When ωi > 0 the inverted flag is unstable. To investigate the effect
of MS and U∗0 on the dynamic behaviour of the inverted flag, the wavenumber k
must first be determined. For a cantilever beam with one end fixed and one end
free, the wavenumbers of the first three modes are k = 1.875, 4.694 and 7.855,
respectively (Young & Felgar 1949). Substituting the wavenumbers of the first three
modes into (3.5), the critical flow velocities can be obtained (see the curves in
figure 9). The critical flow velocities obtained from previous experiments (Kim
et al. 2013; Fan 2015; Sader et al. 2016) and theoretical results (based on Kim &
Kim (2019)) are also shown in figure 9. It can be determined that the critical flow
velocities obtained from the experiments are located around the theoretical curve of
wavenumber k = 1.875, especially at a small mass ratio. This is mainly because the
value of ω in (3.5) is indeed almost zero for a small mass ratio, which is similar
to the result of assuming ω = 0 by Kim & Kim (2019). This further explains the
applicability of the above theoretical model for a small mass ratio. For an isolated
conventional flag, however, the critical flow velocity corresponds to the wavenumber
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FIGURE 9. The curves represent the critical flow velocities of an isolated inverted flag at
different wavenumbers k, and the symbols represent the results of previous experiments.

of the second mode k = 4.694 (Schouveiler & Eloy 2009). Thus, although there is
a great difference between inverted and conventional flags, the applicability of this
theoretical model to an isolated inverted flag is acceptable.

However, figure 9 also shows that for large mass ratios, the critical velocity obtained
in our experiment is much larger than that of the theoretical results of Kim & Kim
(2019). Additionally, the discrepancy between our experimental and theoretical results
can reach an order of magnitude. Specifically, the critical velocity obtained in our
experiment is U∗0 = 2.7; in contrast, the result predicted by the theoretical model
is 33.6, and the result based on Kim & Kim (2019) is 1.815. The reasons for the
discrepancies are as follows. The experiments in previous studies (Kim et al. 2013;
Yu et al. 2017, 2018; Chen et al. 2018) using a water tunnel yielded a single-side
small-amplitude flapping mode (i.e. a biased mode). When ω = 0 is assumed, the
critical velocity obtained in the above condition is the critical velocity at which the
biased mode, rather than the large-amplitude flapping mode, begins to occur. Without
assuming ω = 0, the static divergence instability is not satisfied, resulting in an
excessive prediction result. Additionally, the same degree of discrepancy was also
found by Shelley et al. (2005) for a conventional flag at large mass ratios due to the
ignoring of the viscous force in (2.3). The viscous force has a diverging effect for the
inverted flag, thus leading to a larger prediction result (see figure 9). In contrast, the
viscous force causes the conventional flag to be stable, and thus a smaller prediction
result was found (Shelley et al. 2005). To reduce the effect of the viscous force
and improve the reliability of (2.3), an additional experiment was performed on a
special inverted flag with five steel sheets attached on each surface; thus, the mass
ratio is reduced to MS = 106. The results show that the critical velocity is then
increased to 3.96, which is significantly improved compared to the critical velocity
of 2.7, and becomes closer to the results of the theoretical prediction. However, the
critical velocity at which a large-amplitude oscillation disappears does not change.
This indicates that the mass ratio has a certain impact on the critical velocity for the
water tunnel experiments.
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In conclusion, although the oscillation of the inverted flag is caused by static
divergent instability, the mass ratio can affect the critical velocity to some extent in a
water tunnel, and ω is almost zero in a wind tunnel. Therefore, unlike Kim & Kim
(2019), while we do not directly assume ω= 0, the above results are highly reliable.
As shown below, the theoretical model is mainly applied to inverted flags at small
mass ratios.

To further verify the practicality of the theoretical model for inverted flags at small
mass ratios, we compare the theoretical and experimental results for two parallel
inverted flags. For the linear stability analysis of two inverted flags (n = 2), four
solutions of the complex frequency ω in (2.11) can be obtained for determined d∗,
MS and U∗0 . The imaginary parts ω1i obtained by a1 − a2 = 0 indicate that the two
inverted flags are in the anti-phase flapping mode since G = 1 and θ12 = π (see
(2.12)). Similarly, the imaginary part ω2i obtained by a1 + a2 = 0 indicates that the
two inverted flags are in the in-phase flapping mode since G = 1 and θ12 = 0 (see
(2.12)). When ω1i> 0 or ω2i> 0, the two inverted flags begin to oscillate. The coupled
flapping mode depends on the relative sizes of ω1i and ω2i. Therefore, the definition
of the disturbance growth rate ratio γ is as follows:

γ =
ω2i

ω1i
. (3.6)

Figure 10 shows the statistical analysis of the disturbance growth rate ratio γ in the
(MS, U∗0 )-plane under different separation distances. The γ < 1 region corresponds to
the anti-phase flapping mode (region II). The γ > 1 region corresponds to the in-phase
flapping mode (region III). The γ = 1 region corresponds to the indefinite flapping
mode (region IV), in which the coupled flapping mode cannot be determined. The
solid line corresponds to the critical flow velocity where the two parallel inverted flags
convert between different modes. As shown in figure 10, two inverted flags are both
in the straight mode (region I) at a low flow velocity. As the flow velocity increases,
the two inverted flags enter the anti-phase flapping mode and finally enter the in-phase
flapping mode, which is consistent with the experimental results in a wind tunnel
(Huertas-Cerdeira et al. 2018). When d∗ ≈ 0, the two inverted flags can be regarded
as one inverted flag. In this case, the two inverted flags always oscillate in phase (see
figure 10a). As presented in figure 10(b–d), region III (the in-phase flapping mode)
becomes smaller, and the disturbance growth rate ratio γ in region II becomes closer
to 1. When d∗ = 4, the indefinite flapping mode (region IV) occurs. Additionally, the
disturbance growth rate ratio γ is almost always 1 in region II or, to be exact, always
larger than 0.999. Given the uncertainties in the experiments, the two inverted flags
may enter a multiple flapping state dominated by the anti-phase flapping mode under
this condition.

Figure 11 presents the results of the theoretical analysis for two inverted flags with
different disturbances but a fixed mass ratio of 0.42, with the experimental results of
the in-phase and anti-phase flapping modes from the previous experiment of Huertas-
Cerdeira et al. (2018) also being given. The thin solid curve in region II represents
γ = 0.99. The theoretical analysis shows that the in-phase flapping mode (region III)
only occurs at small separation distances. With an increase in the flap distance, the in-
phase flapping mode disappears, and the anti-phase flapping mode (region II) occurs.
In general, the present predicted critical velocities for the anti-phase flapping mode are
quite close to the experimental data. In region II, the disturbance growth rate ratio
γ first decreases rapidly before gradually increasing. When d∗ > 2, the disturbance
growth rate ratio γ begins to be greater than 0.99, which is denoted as the region to
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FIGURE 10. Contour plot denoting the disturbance growth rate ratio γ in the (MS, U∗0 )-
plane under different separation distances: (a) d∗ = 0.0001, (b) d∗ = 1, (c) d∗ = 2 and
(d) d∗= 4. Region I corresponds to the straight mode (γ is not a number); II corresponds
to the anti-phase flapping mode (γ < 1); III corresponds to the in-phase flapping mode
(γ > 1); and IV corresponds to the indefinite mode (γ = 1).

the right of the thin solid curve. Under this condition, the perturbation growth rates of
the in-phase and anti-phase flapping modes are almost the same, and the two inverted
flags may enter a multiple flapping state. Therefore, the critical velocities obtained
from the experiment in which the anti-phase oscillation begins to disappear are located
near γ = 0.99. It can be concluded that the inviscid model presents a good estimate of
the critical velocities between the different flapping modes and explains the occurrence
of multiple flapping states at a mass ratio of approximately 1, fully indicating the
good applicability, easy operability and high reliability of the theoretical model for
two parallel inverted flags.

Since the results of the theoretical model are in good agreement with the
experimental results of a single and two inverted flags at small mass ratios, it can be
concluded that this model has a certain practicability for studying the oscillation of
inverted flags at small mass ratios. Then, we extend two flags to n> 2 flags in order
to study the coupled flapping modes of multiple inverted flags. For n > 2 inverted
flags, the method of determining the coupled flapping mode is similar to that for the
two inverted flags (see (2.11) and (2.12)). Figure 12 shows the critical velocities at
which the different flapping modes begin to occur in the (MS, U∗0)-plane for n = 3
and 4 and d∗ = 2. When n= 3, three flapping modes are predicted by the theoretical
model: η01/η03= 1, η02/η03=−p31 (mode 1); η01/η03= 1, η02/η03= p32 (mode 2); and
η01/η03 = −1, η02 = 0 (mode 3). Here p31 and p32 are two positive coefficients that
are only related to MS and U∗0 . When n= 4, four flapping modes are predicted by the
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FIGURE 12. (a) Observation of the coupled flapping modes of n= 3 and d∗= 2: η01/η03=

1, η02/η03=−p31 (mode 1); η01/η03= 1, η02/η03= p32 (mode 2); and η01/η03=−1, η02= 0
(mode 3). (b) Observation of the coupled flapping modes of n=4 and d∗=2: η01/η04=−1,
η02/η03 =−1, η01/η02 =−p41 (mode 1); η01/η04 = 1, η02/η03 = 1, η01/η02 = p42 (mode 2);
η01/η04=−1, η02/η03=−1, η01/η02= p43 (mode 3); and η01/η04= 1, η02/η03= 1, η01/η02=

−p44 (mode 4).

theoretical model: η01/η04 =−1, η02/η03 =−1, η01/η02 =−p41 (mode 1); η01/η04 = 1,
η02/η03 = 1, η01/η02 = p42 (mode 2); η01/η04 = −1, η02/η03 = −1, η01/η02 = p43

(mode 3); and η01/η04 = 1, η02/η03 = 1, η01/η02 = −p44 (mode 4). Here p41, p42, p43

and p44 are four positive coefficients related to MS and U∗0 . It can be determined that
only two kinds of flapping modes are observed under most parameters at n= 3 and 4.
Additionally, several other flapping modes are concentrated in only a small parameter
range. Similarly, for n= 5, 6 and 7 inverted flags, the theoretical model predicts 6, 8
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and 12 coupled flapping modes, respectively. By analogy, when n = 2q (q > 1), the
theoretical model predicts 2q coupled flapping modes; when n = 2q + 1, 2q

+ 2(q−1)

coupled flapping modes are predicted by the theoretical model.

4. Concluding remarks
In this article, the force and energy distributions and the linearization analysis

of an inverted flag are studied. First, the oscillation equation of the inverted flag is
obtained. Subsequently, the relationship between the force and energy distributions and
the oscillation of the flag is analysed. The applicable conditions of the inviscid model
and the theoretical analysis results of n parallel inverted flags are also presented. The
main conclusions are as follows.

The force and energy analysis indicates that there are two significant differences
between conventional and inverted flags. First, the analysis of the force and energy
distributions shows that the distributed force and energy are almost completely
provided by the elastic component for the inverted flag, while the elastic and inertia
components make the same contribution to the distributed force and energy for
the conventional flag. This is because the flapping inverted flag requires a stiffness
that is several orders of magnitude greater than a conventional flag under the same
conditions. Second, due to the maximum bending at the fixed end, the distributed force
and energy of the inverted flag are both mainly concentrated there. In contrast, the
free end of the conventional flag bends the most and presents the largest distributed
force and energy.

As far as the entire inverted flag is concerned, it obtains energy from the
surrounding fluid in the bending process. In the rebounding process, its energy
is released into the surrounding fluid through the leading-edge vortex. Additionally,
the time-averaged energy and displacement of the inverted flag both increase with an
increase in the flow velocity, revealing that the amplitude of the inverted flag gives
a good estimate of the strain energy. However, the conversion ratio R first increases
before reaching a maximum just after the critical velocity and finally decreases with
a successive increase in the flow velocity.

The linear analysis of the inverted flag shows that k= 1.875 gives reasonably good
agreement with the critical flow velocities obtained from the experiments at small
mass ratios, with k= 4.694 for an isolated conventional flag. However, the discrepancy
can reach an order of magnitude for large mass ratios. This is mainly because the
viscosity is not considered, and the static divergence instability is not satisfied. When
reducing the mass ratio MS of the flag at large mass ratios, the critical velocity at
which the oscillation occurs increases, but the critical velocity at which the oscillation
disappears is the same, indicating that the mass ratio has some influence on the critical
velocity in the water tunnel experiments.

The theoretical analysis of the two parallel inverted flags shows that the straight
mode, the anti-phase flapping mode and the in-phase flapping mode occur with an
increase in the flow velocity. The flags in the wind tunnel present the above three
modes in turn as the flow velocity increases. The range of the in-phase flapping mode
becomes smaller as the separation distance d∗ increases. Meanwhile, the disturbance
growth rate ratio γ becomes increasingly closer to 1. Under this condition, a multiple
flapping state occurs. When n = 2q and 2q + 1 (q > 1), 2q and 2q

+ 2(q−1) coupled
flapping modes will appear, respectively. Additionally, only two of these flapping
modes are dominant under most parameters.

The theoretical analysis in this paper is an extension of previous studies (Shelley
et al. 2005; Jia et al. 2007; Schouveiler & Eloy 2009) on the linear theoretical model
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of a conventional flag, which fully demonstrates its good applicability. Although the
theoretical model has inevitable shortcomings, some intuitive results and quantitative
critical velocities can be obtained, indicating its high reliability. In addition, while
the theoretical model is indeed nonlinear, the simple calculation process and easy
operability give it good application prospects. However, given that the fluid viscosity,
the finite length of the flag and leading-edge vortex shedding are not taken into
consideration in our linear theoretical model, a more precise theoretical model should
be proposed in the future in order to gain a deeper understanding of the nonlinear
dynamic behaviour of inverted flags.
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