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Abstract. Furstenberg’s ×2×3 theorem asserts that the double sequence (2m3nα)m,n≥1 is
dense modulo one for every irrational α. The same holds with 2 and 3 replaced by any two
multiplicatively independent integers. Here we obtain the same result for the sequences
(( m+n

d )ambnα)m,n≥1 for any non-negative integer d and irrational α, and for the sequence
(P(m)ambn)m,n≥1, where P is any polynomial with at least one irrational coefficient.
Similarly to Furstenberg’s theorem, both results are obtained by considering appropriate
dynamical systems.
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1. Introduction
By a well-known theorem of Kronecker, the sequence (nα)∞n=1 is dense modulo one for all
irrational α. As shown by Weyl, this sequence is even uniformly distributed modulo one.
Hardy and Littlewood [9] generalized the result of Kronecker, showing that the sequence
(nrα)∞n=1 is dense modulo one for every positive integer r and irrational α. (In fact, it
is also uniformly distributed modulo one.) A significant generalization in this direction,
for multiplicative semigroups of integers, was obtained by Furstenberg [7]. A semigroup
6 ⊆ Z is lacunary if there is an integer s such that every positive t ∈ S is a power of s, and
it is non-lacunary otherwise. Furstenberg proved that if 6 is a non-lacunary semigroup of
integers, then the set 6α is dense modulo one for every irrational α.

We may reformulate Furstenberg’s result basically as follows. Two integers a, b with
|a|, |b| ≥ 2 are multiplicatively dependent if ak

= bl for some non-zero integers k, l,
and they are multiplicatively independent otherwise. Furstenberg’s result claims that if
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a, b are multiplicatively independent, then the set {ambnα | m, n ∈ N} is dense modulo
one for every irrational α. On the other hand, there exist ‘many’ irrationals α for which
{amα | m ∈ N} is not dense modulo one (although it is dense for a set of α of full Lebesgue
measure).

Furstenberg’s proof used topological dynamics. (We note, in passing, that an elementary
proof is also available; see Boshernitzan [5].) The key is to view the set of numbers
6α modulo one as the orbit of the point α under the semigroup corresponding to 6 of
endomorphisms of the circle group T= R/Z. The theorem is (almost) equivalent to the
statement that if 6 is a semigroup of endomorphisms of T containing two multiplicatively
independent endomorphisms, then any closed, 6-invariant set is either a finite set of
rationals or T itself.

One may study the analogous questions on more general groups. Let 6 be a
commutative semigroup of endomorphisms of Td . Under what conditions on 6 is it
the case that the only infinite, closed, 6-invariant subset of Td is Td? Necessary and
sufficient conditions for6 to satisfy this property were obtained in [1]. (See Muchnik [12]
for an analogue in the case where 6 is not necessarily commutative.) A generalization to
semigroups of endomorphisms of a more general family of compact abelian groups was
proved in [2].

These topological dynamics results have, in turn, number-theoretical implications.
Specifically, the results of [1] and [2] led to a characterization of multiplicative semigroups
in real number fields, every dilation of which (with ‘very few’ constructible exceptions) is
dense modulo one. Similarly, Kra [10] and Meiri [11] were able to prove the density
modulo one of sets of the form {

∑k
i=1am

i bn
i α | m, n ∈ N} for pairs of multiplicatively

independent integers (ai , bi ). Urban [13–15], dealing with similar sums with algebraic
numbers ai , bi instead of integers, was able to generalize simultaneously both of the above
results in some cases.

Gorodnik and Kadyrov significantly strengthened the result of Urban. Denote the
algebraic closure of the p-adic field Qp by Qp. For convenience, put Q∞ = R. A
semigroup 6 of algebraic numbers is hyperbolic if, for every prime p (including p =
∞), there is a field embedding θ :Q(6)−→Qp such that θ(6)* {|z|p ≤ 1}. Then
ρ(6)* {|z|p 6= 1} for all field embeddings ρ :Q(6)−→Qp. In [8] they proved the
following theorem. Let (λi , µi ), i = 1, 2, . . . , k, be multiplicatively independent real
algebraic numbers of modulus greater than one. Assume that, for all θ ∈ Gal(Q/Q), we
have (θk(λi ), θ

k(µi )) 6= (λ
k
i , µ

k
i ) for all k ∈ N and i 6= j and that the semigroup generated

by each of the pairs (λi , µi ) is hyperbolic. Then {
∑k

i=1 λ
m
i µ

n
i ξi | m, n ∈ N} is dense

modulo one, where ξi , i = 1, 2, . . . , k are real numbers, at least one of which satisfies
ξi /∈Q(λi , µi ).

Bergelson and Simmons [4] have recently considered sets related to {ambn
| m, n ∈ N},

where a, b ≥ 2 are again multiplicatively independent integers, but m and n are restricted
to certain ‘special’ types of sets. We mention here some of their results. A set A ⊆ N
is dispersing if Aα = {nα | n ∈ A} is dense modulo one for every irrational α. A set S =
{sk | k ∈ N} ⊆ N with s1 < s2 < · · · is syndetic if there exists a positive integer d such
that sk+1 − sk ≤ d for every k, thick if it contains arbitrarily long intervals and piecewise
syndetic if it is an intersection of a thick set and a syndetic set. With this terminology, they
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were able to show that if M is syndetic, N is piecewise syndetic and I ⊆ N is any infinite
set, then {ambnl | m ∈ M, n ∈ N , l ∈ I } is dispersing [4, Corollary 1.29]. A set S ⊆ N is a
Bohr set if there exist d ∈ N, v ∈ Td and an open set ∅ 6=U ⊆ Td such that ∅ 6= {n ∈ N |
nv ∈U } ⊆ S. They showed that, for a Bohr set M and a piecewise syndetic set N , the set
{ambn

| m ∈ M, n ∈ N } is dispersing [4, Corollary 1.30]. For a set A ⊆ N, the finite sum
set of A is FS(A)= {

∑
n∈F n | ∅ 6= F ⊆ A finite}. It was also shown that, for a syndetic

set M and for N = FS(R), where R is a set such that {(r/k) logb a | r ∈ R, (r/k) ∈ N} is
dense modulo one for all k, the set {ambn

| m ∈ M, n ∈ N } is dispersing [4, Theorem 1.31].
In this paper, we deal with yet another direction of generalization of Furstenberg’s

theorem. Namely, instead of exponential double sequences (ambnα)∞m,n=0, we consider
polynomial-exponential sequences of the form (

(m+n
d

)
ambnα)∞m,n=0 for any fixed d. We

are able to show that if a, b are multiplicatively independent, then this sequence is dense
modulo one for every irrational α. We also show that, under the same assumptions on a
and b, the double sequence (P(m)ambn)∞m,n=0 is dense modulo one for every polynomial
P with at least one irrational coefficient. These results will follow from a corresponding
result in topological dynamics, which may be of independent interest.

In §2, we formulate our main results. In §3, the proofs are presented.
We wish to thank the referee for helpful comments.

2. The main results
Let d > 0 and k ≥ 0 be integers. Denote by Id(k) the d × d matrix A = (ai j )

d−1
i, j=0 defined

by

ai j =

{
1 if j = i + k,
0 otherwise.

(Note that Id(0) is the identity matrix, and Id(k)= 0 if k ≥ d.) It can be easily verified that
Id(k)= Id(1)k and therefore Id(k)Id(l)= Id(k + l). If there is no possible confusion, we
write just I (k) instead of Id(k) and I instead of Id .

Let s= (s0, s1, . . . , sd−1), t= (t0, t1, . . . , td−1) ∈ Zd be such that s0 and t0 are
multiplicatively independent and that either s1 or t1 is non-zero. The semigroup generated
by σ =

∑d−1
j=0 s j I ( j) and τ =

∑d−1
j=0 t j I ( j) will be denoted by 6s,t.

THEOREM 2.1. Let s= (s0, s1, . . . , sd−1), t= (t0, t1, . . . , td−1) ∈ Zd be such that s0 and
t0 are multiplicatively independent and that either s1 or t1 is non-zero. Let A ⊆ Td be
an infinite, closed and 6s,t-invariant set. Then π1(A)= T, where π1 : Td

−→ T is the
projection on the first coordinate.

Remark 2.2. The condition that at least one of s1 or t1 is not zero cannot be waived. Indeed,
if s1 = t1 = 0, then the set {0} × Td−1 is infinite, closed and 6-invariant, but π1(A)= {0}.

THEOREM 2.3. Let a, b be multiplicatively independent integers and let d be an arbitrary
fixed non-negative integer. Then the set {

(m+n
d

)
ambnα | m, n ∈ N} is dense modulo one for

every irrational number α.

THEOREM 2.4. Let a, b be multiplicatively independent integers and let P(x) be a
polynomial with at least one irrational coefficient. Then the set {P(m)ambn

| m, n ∈ N} is
dense modulo one.
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3. Proofs
Let d be a positive integer. Let T : Rd

→ Rd be a linear transformation and let v ∈ Rd .
We write T n(v)−−−→

n→∞
∞ if ‖T n(v)‖ −−−→

n→∞
∞ (for any norm ‖ · ‖ on Rd ).

LEMMA 3.1. Let T : Rd
→ Rd be a linear transformation whose eigenvalues are all of

absolute value greater than one. Then T n(v)−−−→
n→∞

∞ for every non-zero v ∈ Rd .

Proof. Use the Jordan normal form. �

LEMMA 3.2. Let T : Rd
→ Rd be a linear transformation. Assume that all eigenvalues

of T are of absolute value greater than one. Let A ⊆ Rd be a closed T -invariant set
containing zero as an accumulation point. Then there exists a non-zero point v ∈ A such
that T−n(v) ∈ A for all n ∈ N.

Proof. Let (vk)
∞

k=1 be a sequence of non-zero elements of A converging to zero. We
may assume that ‖vk‖< 1/‖T ‖k for every k, where ‖ · ‖ denotes both some norm on
Rd and the induced matrix norm. By the previous lemma, for every k there exists a
positive integer n such that T n(vk) /∈ B(0, 1), where B(x, r) is the open ball of radius
r centered at x . Let nk be the minimal such integer. Clearly, nk > k for each k. Note
that the sequence (T nk (vk))

∞

k=1 is bounded. Indeed, since ‖T nk−1(vk)‖< 1, we have
‖T nk (vk)‖ = ‖T (T nk−1(vk))‖ ≤ ‖T ‖‖T nk−1(vk)‖< ‖T ‖. As the set K = B(0, ‖T ‖) \
B(0, 1) is compact, there is a subsequence of (T nk (vk))

∞

k=1 that converges to some
vector v ∈ A ∩ K . Replacing (vk)

∞

k=1 by the corresponding subsequence, we may assume
that T nk (vk)−−−→

k→∞
v. For an arbitrary fixed n, we have nk ≥ n for k ≥ n. Since

T nk−n(vk)−−−→
k→∞

T−n(v), we have T−n(v) ∈ A for each n. �

LEMMA 3.3. Let σ =
∑d−1

j=0 s j I ( j), where s0 6= 0. Then, for every integer m, we have

σm
= sm

0
∑d−1

j=0 Pj (m)I ( j), where each Pj is a polynomial of degree at most j and
P0 = 1. Moreover, denoting by j0 the least j (if any) for which s j 6= 0, we have:
(a) Pj0(m)= (s j0/s0)m; and
(b) if j0 = 1, then the leading monomial of each Pj (m) is (1/j !)(s1/s0)

j m j .

Remark 3.4. The si in the lemma are any real numbers, and we consider σ as a real matrix
and not as an endomorphism of Td .

Proof of Lemma 3.3. First assume that m > 0. Denote by Z≥0 the set of non-negative
integers and by ‖ · ‖ the 1-norm. For m= (m0, m1, . . . , md−1) ∈ Zd

≥0, with ‖m‖ = m, let(m
m
)
=
( m

m0,m1,...,md−1

)
and sm

= sm0
0 sm1

1 · · · s
md−1
d−1 . By the multinomial theorem, and since

I ( j1)I ( j2)= I ( j1 + j2) for j1, j2 ≥ 0,

σm
=

∑
m:‖m‖=m

(
m
m

)
sm I

(d−1∑
j=0

jm j

)
.

The entries of σm along the diagonal located k places to the right of the main diagonal
(namely, the diagonal consisting of the entries (1, k + 1), (2, k + 2), . . . , (d − k, d)) are
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therefore

p j =
∑

m:‖m‖=m
m1+2m2+···+(d−1)md−1= j

(
m
m

)
sm. (1)

A necessary condition for the contribution of the term indexed by m on the right-hand
side to be non-zero is that mi ≤ j/ i for each 1≤ i ≤ d − 1. Hence the actual number of
terms in the sum is bounded. Hence the right-hand side of (1) may be written in the form
sm

0 Pj (m) for an appropriate polynomial Pj .
Let m= (m0, m1, . . . , md−1) ∈ Zd

≥0 be such that ‖m‖ = m and

m1 + 2m2 + · · · + (d − 1)md−1 = j.

Then m1 + m2 + · · · + md−1 ≤ j , and therefore m0 ≥ m − j , so that deg Pj ≤ j . The
contribution of the term indexed by m on the right-hand side of (1) to the sum is(

m
m0, m1, . . . , md−1

)
sm0

0 sm1
j0
· · · smd−1

d−1 .

The only term on the right-hand side of (1), which contributes to the diagonal located j0
places to the right of the main diagonal, comes from m= (m − 1, 0, . . . , 0, 1, 0, . . . , 0).
Its contribution is (s j0/s0)m, which proves (a).

If j0 = 1, then m= (m − j, j, 0, . . . , 0) contributes the term
(m

j

)
(s1/s0)

i of maximal
degree to Pj . This proves (b).

Now assume that m < 0. Using the Cayley–Hamilton theorem, we get

σ−1
=

1
s0

d−1∑
i=0

(−1)d−i−1
(

d
i

)
1

sd−i−1
0

σ d−i−1.

By the previous case, the entries of each σ d−i−1 on the diagonal located j0 places to the
right of the main diagonal are q j0 = ksk−1

0 s j0 . Combining these two facts, we get that the
(1, d + j0) entry of σ−1 is (s j0/s

2
0)
∑d−2

i=0 (−1)d−i−1(d − i − 1)
( d

d−i

)
=−s j0/s

2
0 . Now

employ what we have proved above to the matrix σ−1 and the exponent −m.
The case m = 0 is trivial. �

Let 6 be a commutative semigroup of endomorphisms of Td . For a positive integer l,
denote 6l

= {σ l
| σ ∈6}.

LEMMA 3.5. Let 6 be a finitely generated commutative semigroup of endomorphisms
of Td . Let B ⊆ Td be a 6-invariant set containing a rational vector v1. Then there exist
a positive integer l and a rational vector u ∈ B such that σ(u)= u for every σ ∈6l .

Proof. Let S = {σ1, σ2, . . . , σr } be a set of generators of 6. Since v1 is a rational
vector, the orbit of v1 under 6 is finite. Hence, there exist integers i1 > j1 ≥ 0 such that
σ

i1
1 (v1)= σ

j1
1 (v1). Denote v2 = σ

j1
1 (v1). Now, there exist integers i2 > j2 ≥ 0 such that

σ
i2
2 (v2)= σ

j2
2 (v2). Denote v3 = σ

j2
2 (v2). Continuing this process for all members of S,

we finally arrive at a vector vr+1 = σ
jr

r (vr ). Let l = lcm{ik − jk | k = 1, 2, . . . , r}. We
have σ l(vr+1)= vr+1 for all σ ∈6. �

https://doi.org/10.1017/etds.2018.132 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.132


1734 M. Abramoff and D. Berend

LEMMA 3.6. Let 6 be a finitely generated commutative semigroup of endomorphisms
of Td . Suppose that for every positive integer l and every infinite closed and 6l -invariant
subset A of Td containing zero as an accumulation point, we have π1(A)= T. Then
every infinite closed and 6-invariant subset B of Td containing a rational vector as an
accumulation point satisfies π1(B)= T.

Proof. Pick up a rational vector v ∈ B ′. By the preceding lemma, there exist a rational
vector u = (a0/k, a1/k, . . . , ad−1/k)T and a positive integer l such that σ l(u)= u for
every σ ∈6. Define A = B − u. Obviously, A is an infinite, closed and 6l -invariant
set containing zero as an accumulation point, and therefore π1(A)= T. Now π1(A)=
π1(B)− a0/k, so that π1(B)= T. �

Proof of Theorem 2.1. Assume, say, that s1 6= 0. Without loss of generality, we may
assume that s0 and t0 are positive. Indeed, if, say, s0 < 0, then by replacing σ by σ 2,
we revert to the case where the entries on the main diagonal are positive. Moreover, note
that then the entries on the diagonal {(i, i + 1) : 0≤ i ≤ d − 2} change from s1 to 2s0s1.
In particular, if s1 6= 0, then σ 2 enjoys the analogous property. Finally, the validity of the
theorem for the subsemigroup 62

s,t, generated by σ 2 and τ 2, certainly implies its validity
for 6s,t itself.

Take an arbitrary fixed positive integer l. Let A be an infinite, closed and 6l
s,t-invariant

set. We will first show that if, in addition, A contains zero as an accumulation point, then
π1(A)= T.

Since 6l
s,t satisfies the same properties as 6s,t, it suffices to prove that π1(A)= T for

l = 1. Thus, let A be an infinite, closed and 6s,t-invariant subset of Td . By Lemma
3.2, there exists a non-zero point v = (x0, x1, . . . , xd−1) ∈ Ã such that τ−n(v) ∈ Ã for
every n ≥ 0, where Ã is the lifting of A to Rd . Without loss of generality, assume that
xd−1 6= 0. (If j ≤ d − 2 is the largest index for which x j 6= 0, then replace Td by its
subgroup T j+1

× {0}d− j−1 and change A and 6s,t accordingly.) By Lemma 3.3, for non-
negative integer m,

σm
= sm

0



1 P1(m) P2(m) · · · Pd−2(m) Pd−1(m)
0 1 P1(m) · · · Pd−3(m) Pd−2(m)
0 0 1 · · · Pd−4(m) Pd−3(m)
...

...
...

. . .
...

...

0 0 0 · · · 1 P1(m)
0 0 0 · · · 0 1


,

where each Pk may be written in the form

Pk(m)=
1
k!

(
s1

s0

)k

mk
+ p̃k−1(m)
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for an appropriate polynomial p̃k−1 with deg p̃k−1 < k. (Here p̃−1 = 0.) The same lemma
also yields

τ−n
= t−n

0



1 Q1(n) Q2(n) · · · Qd−2(n) Qd−1(n)
0 1 Q1(n) · · · Qd−3(n) Qd−2(n)
0 0 1 · · · Qd−4(n) Qd−3(n)
...

...
...

. . .
...

...

0 0 0 · · · 1 Q1(n)
0 0 0 · · · 0 1


,

where each Qk may be written in the form

Qk(n)=
1
k!

(
−

t1
t0

)k

nk
+ q̃k−1(n)

for an appropriate polynomial q̃k−1 with deg q̃k−1 < k. (Again, q̃−1 = 0.) Hence

σmτ−n
= sm

0 t−n
0



1 R1(m, n) R2(m, n) · · · Rd−2(m, n) Rd−1(m, n)
0 1 R1(m, n) · · · Rd−3(m, n) Rd−2(m, n)
0 0 1 · · · Rd−4(m, n) Rd−3(m, n)
...

...
...

. . .
...

...

0 0 0 · · · 1 R1(m, n)
0 0 0 · · · 0 1


,

where each Rk(m, n) may be written in the form

Rk(m, n)=
k∑

j=0

Pj (m)Qk− j (n)

=

k∑
j=0

1
j !(k − j)!

(
s1

s0

) j(
−

t1
t0

)k− j

m j nk− j
+ r̃k−1(m, n)

=
1
k!

(
m

s1

s0
− n

t1
t0

)k

+ r̃k−1(m, n)

for an appropriate polynomial r̃k−1 with deg r̃k−1 < k.
Let

n(m)= bm logt0 s0 + logt0 md−1
c. (2)

We have

sm
0 t−n(m)

0 =
t
{m logt0

s0+logt0
md−1

}

0
md−1 ,

where {x} denotes the fractional part of a real number x . Put

αm = {m logt0 s0 + logt0 md−1
}.

Then

π1(σ
mτ−n(m)(v))= tαm

0
1

md−1 (U0(m)x0 +U1(m)x1 + · · · +Ud−1(m)xd−1), (3)
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where the functions Uk(m) are obtained from restrictions of the Rk above, that is,

Uk(m)= Rk (m, n(m)) .

We have

lim
m→∞

Ul(m)
mk

= lim
m→∞

(1/ l!)(m(s1/s0)− bm logt0 s0 + logt0 md−1
c · (t1/t0))l + r̃l−1(m, n(m))

mk

=


0 if 0≤ l ≤ k − 1,
1
k!

(
s1

s0
−

t1
t0

logt0 s0

)k

if l = k.

Since s0 and t0 are multiplicatively independent, (t1/t0) logt0 s0 ∈ (R \Q) ∪ {0}, and since
s1/s0 ∈Q \ {0}, (1/k!)(s1/s0 − t1/t0 logt0 s0)

k
6= 0. Denote

γm =
1

md−1 (U0(m)x0 +U1(m)x1 + · · · +Ud−1(m)xd−1).

Since xd−1 6= 0, we have

γm −−−−→m→∞
γ =

1
(d − 1)!

(
s1

s0
−

t1
t0

logt0 s0

)d−1

xd−1 6= 0.

Without loss of generality, we may assume that γ > 0. By (3), and since
limm→∞(t

αm
0 γm − tαm

0 γ )= 0, we may look at the limit points of the sequence (tαm
0 γ )∞m=1

instead of those of the sequence (tαm
0 γm)

∞

m=1.
By [6, Theorem 1.10], the sequence (αm)

∞

m=1 is well distributed modulo one and, in
particular, is dense modulo one. Hence (tαm

0 γ )∞m=1 is dense in [γ, t0γ ). Changing (2)
by putting n(m)= bm logt0 s0 + logt0 md−1

c − r for some sufficiently large non-negative
constant integer r , we see, similarly to the above, that (tαm

0 γ )∞m=1 is dense modulo one.
Hence the sequence (tαm

0 γm)
∞

m=1 is dense modulo one and, consequently, so is the sequence
(π1(σ

mτ−n(m)(v)))∞m=1.
Now let A be a general infinite closed and 6-invariant subset of Td . Since 6 is

hyperbolic and multi-parameter, by [3, Theorem 2.1], there is a rational accumulation
point v ∈ A. By the previous lemma, π1(A)= T, as needed. �

Proof of Theorem 2.3. Consider the semigroup 6 generated by the endomorphisms of
Td+1 given by

σ = a(I + I (1)), τ = b(I + I (1)).

By Lemma 3.3, we have σm
= am ∑d

j=0
(m

j

)
I ( j) and τ n

= bn ∑d
j=0

(n
j

)
I ( j). Hence

the (1, d + 1)-entry of σmτ n is ambn ∑d
j=0

(m
j

)( n
d− j

)
= ambn(m+n

d

)
. Let v =

(0, . . . , 0, α)T ∈ Td+1, where α is any irrational. Put A =6v. It is clear that A is infinite,
closed and 6-invariant. By Theorem 2.1, we have π1(A)= T. As

π1(A)=
{(

m + n
d

)
ambnα | m, n ∈ N

}
,

this proves the theorem. �
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Proof of Theorem 2.4. Let d = deg P . Consider the semigroup 6 generated by the
endomorphisms

σ = a(I + I (1)), τ = bI

of Td+1. By Lemma 3.3, we have σm
= am ∑d

j=0
(m

j

)
I ( j). Hence the first row of σmτ n

is

ambn
((

m
0

)
,

(
m
1

)
,

(
m
2

)
, . . . ,

(
m
d

))
.

Since the polynomials
(x

0

)
,
(x

1

)
, . . . ,

(x
k

)
form a basis of the linear space R≤d [x] consisting

of all polynomials of degree up to d over R, there exist scalars λ0, λ1, . . . , λd such that
P(x)=

∑d
j=0 λ j

(x
j

)
. Putting v = (λ0, λ1, . . . , λd)

T
∈ Td+1 and A =6v, we therefore

get
π1(A)= {P(m)ambn | m, n ∈ N}.

By Theorem 2.1, we have π1(A)= T, which proves the theorem. �
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