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The dynamics of the air cavity created by vertical water entry of a three-dimensional
body is investigated theoretically, computationally and experimentally. The study
is focused in the range of relatively low Froude numbers, Fr ≡ V (gD)−1/2 � O(10)
(where V is the dropping velocity of the body, D its characteristic dimension and g

the gravitational acceleration), when the inertia and gravity effects are comparable.
To understand the physical processes involved in the evolution of cavity, we conduct
laboratory experiments of water entry of freely dropping spheres. A matched
asymptotic theory for the description of the cavity dynamics is developed based
on the slender-body theory in the context of potential flow. Direct comparisons with
experimental data show that the asymptotic theory properly captures the key physical
effects involved in the development of the cavity, and in particular gives a reasonable
prediction of the maximum size of the cavity and the time of cavity closure. Due
to the inherent assumption in the asymptotic theory, it is incapable of accurately
predicting the flow details near the free surface and the body, where nonlinear free
surface and body boundary effects are important. To complement the asymptotic
theory, a fully nonlinear numerical study using an axisymmetric boundary integral
equation is performed. The numerically obtained dependencies of the cavity height
and closure time on Froude number and body geometry are in excellent agreement
with available experiments.

Key words: bubble dynamics, collisions with walls/surfaces, wave–structure
interactions

1. Introduction
The entry of a solid into water or other liquids gives rise to a sequence of complex

events. Research work on this subject has been mainly focused on the following two
areas: (i) prediction of impact loads on the body at the initial stage of water entry;
and (ii) understanding of the evolution of the air cavity behind the falling body after
the initial impact. The focus of this paper is on the second problem, and for relatively
low Froude numbers where both inertia and gravity effects are of relevance.

The dynamics of water impact and air cavities was considered by Worthington &
Cole (1900). The study on this subject was intensified during World War II for the
design of military projectiles entering water at high speed (Gilbarg & Anderson 1948;
May & Woodhull 1948; Richardson 1948; May 1951, 1952). Most of these early studies
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were experimental and focused on high Froude numbers, for which the gravity effect
is relatively unimportant. Due to basic scientific interest and practical importance,
recent studies have expanded to relatively low Froude numbers, where gravity effects
are comparable to inertia effects. An important application in naval architecture
is the large hydrodynamic loads on surface ships and offshore structures due to
water entry/impact as a result of large-amplitude relative motions (e.g. Greenhow
1988; Korobkin & Pukhnachov 1988). The formation of air cavity also significantly
influences the dynamics and trajectory of low-speed projectiles such as mines deployed
from ships or airplanes (e.g. Chu et al. 2004; Holland et al. 2004). On a much smaller
scale, the water impact and subsequent cavity evolution play an important role in
the locomotion of water animals such as shore birds and lizards (e.g. Laerm 1974;
Glasheen & McMahon 1996).

In addition to experiments, there are also theoretical and numerical studies of the
air cavity dynamics associated with water entry. Two-dimensional analytic models
were used to study the cavity dynamics by Birkhoff & Zarantonello (1957) and Lee,
Longoria & Wilson (1997). Because a cavity cannot form in two-dimensional potential
flow, they have to introduce an arbitrary constant to make the (two-dimensional)
kinetic energy finite and, in effect, account for three-dimensional flow effects. The
value of this constant was determined by fitting the theoretical prediction with
experimental data and/or nonlinear numerical simulations. Duclaux et al. (2007)
developed an analytical model for the time evolution of the cavity based on the
Besant–Rayleigh equation. In this model, arbitrary coefficients are also introduced
in determining the kinetic energy of the fluid in the expansion phase of the cavity
and to model three-dimensional flow effects. These coefficients are again fitted against
experimental measurements. There are no theoretical models so far that do not
require the use of such empirical coefficient(s). Owing to complexity of the unsteady
nonlinear flow, numerical studies on the cavity dynamics associated with water entry
are limited. Gaudet (1998) performed a fully nonlinear potential flow simulation
of water entry of circular disks at low Froude numbers using a boundary-integral
method with constant panels. His numerical results are in good agreement with the
measurements of Glasheen & McMahon (1996).

In this work, we investigate the problem of air cavity dynamics in the water entry
of bodies at relatively low Froude numbers. We perform matched asymptotic analysis,
fully nonlinear numerical simulations, and also laboratory experiments. For simplicity,
we consider vertically axisymmetric bodies in normal incidence. The theoretical
analysis and numerical computation are based on the potential-flow formulation
(§ 2). An analytic solution is developed, based on the slender body assumption, for
the cavity evolution until pinch-off (§ 3). Unlike existing theoretical models, by using
matched asymptotic analysis, the present solution is complete in the sense that it does
not contain any arbitrary constant or fitting parameter. To understand the detailed
flow characteristics near the free surface and in the neighbourhood of the body where
the asymptotic solution is less valid, we perform fully nonlinear simulations using
a mixed Eulerian–Lagrangian (MEL) boundary-integral equation method based on
(axisymmetric) ring sources (§ 4.1). Laboratory experiments involving dropping of
billiard balls into water are conducted (§ 4.2) to provide direct comparisons to the
asymptotic theory and numerical simulations. The cavity dynamics and evolution
and their dependencies on Froude number are studied for the sphere and contrasted
against those for a variety of other body shapes (§ 5). Overall, potential-flow-based
formulation appears to adequately describe the cavity dynamics up till the moment
of pinch-off. In particular, the matched-asymptotic theory gives reliable predictions
of the cavity closure time (T ) and total cavity height (H ) as a function of the
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Figure 1. Schematic of an air cavity created by the vertical water entry
of an axisymmetric body.

Froude number. On the other hand, the fully nonlinear simulations provide important
details associated with the cavity shape and the free surface evolution. We conclude
in § 6.

2. Problem statement
2.1. The initial boundary value problem

We address the hydrodynamic problem of air cavity development in vertical
water entry of an axisymmetric body with relatively low Froude numbers,
Fr ≡ V (gD)−1/2 � O(10), where V is the characteristic dropping velocity of the body,
D the characteristic length of the body and g the gravitational acceleration. For
relatively large bodies and speeds, and short evolution time, we neglect viscosity and
surface tension (which might be of importance near cavity closure), and assume a
smooth hydrophobic body surface. The problem is then governed by the Froude
number Fr (and body geometry and body relative density). For simplicity, we restrict
ourselves to the case of a vertically axisymmetric body and normal incidence, and
assume that the resultant flow is also (approximately) axisymmetric.

We define axisymmetric cylindrical coordinate system x ≡ (z, r) where z is the
vertical coordinate positive downwards, and r the radial coordinate. The origin is on
the undisturbed free surface (see figure 1).

Assuming that the fluid motion is irrotational, the velocity is described by a
potential φ which satisfies Laplace’s equation in the fluid domain V:

∇2φ(x, t) =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

∂2φ

∂z2
= 0, x ∈ V(t). (2.1)

On the free surface SF (x, t) which includes the wall of the cavity, φ satisfies the kinetic
boundary condition, which in Lagrangian form is

Dx
Dt

= ∇φ, on SF (x, t) (2.2)
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where D/Dt ≡ ∂/∂t + ∇φ · ∇. The dynamic boundary condition on SF (x, t) in
Lagrangian form is

Dφ

Dt
=

1

2
|∇φ|2 + gz − PF , on SF (x, t), (2.3)

where PF is the pressure on SF (x, t). Unless the impact speed is very high, aerodynamic
effects are small, and we set PF to be equal to the atmospheric pressure which is
constant in this study. This should be valid before cavity closure which is the main
objective of this study. (After cavity closure, the pressure on the cavity surface may
become time dependent, see e.g. Wang 2004). On the (wetted) body boundary, SB(x, t),
the normal velocity of the flow is specified,

∇φ · n = V (t)nz, on SB(x, t), (2.4)

where n ≡ (nz, nr ) is the unit normal pointing out of the fluid, and V (t) is the body
velocity which is in general a function of time. In addition, a far-field condition

∇φ → 0, for |x| → ∞ (2.5)

is imposed. At initial time, t =0, the body is just touching the undisturbed free surface
on which we impose the initial condition:

φ = 0, on SF (x, t = 0). (2.6)

The above equations define the initial boundary value problem for φ.
If the body drops freely in the water, its motion is governed by the equation of

motion:

Mg + F (t) = M
dV (t)

dt
, (2.7)

where M is the mass of the body and F (t) the total (hydrodynamic plus hydrostatic)
force

F (t) =

∫
SB (t)

pnz ds, (2.8)

where the pressure p on the wetted body surface is given by Bernoulli equation

p

ρ
= −∂φ

∂t
− 1

2
|∇φ|2 + gz. (2.9)

2.2. Physical insight

Before we carry out the detailed asymptotic analysis and nonlinear computation, it is
helpful to obtain a heuristic understanding of the cavity development and evolution.
The water entry of a body and the subsequent cavity evolution behind consist of two
main phases. Assuming a constant dropping velocity V , the body position zb(t)( > 0)
after initial impact (at time t = 0) is zb = V t . At some height z0, the cavity begins
to form at t0(z0) = z0/V with an initial radius a(z0, t0) ≈ D/2 where D/2 is the body
radius (assuming an axisymmetric body). Initially, the cavity expands (∂a/∂t > 0 for
t > t0(z0)) as the body continues to descend below z0. After some expansion time
δt1(z0), the cavity reached maximum radius, a(z0, t0 + δt1) = Rm(z0), and then starts to
contract, eventually collapsing the cavity. There is generally a height z = Hc at which
the cavity first closes, at closure time t = T , when a(Hc, T ) = 0. This initial cavity
closure can occur above the free surface (‘surface closure’, Hc < 0) or below the free
surface (‘deep closure’ or ‘pinch-off’, Hc > 0 ) depending on the value of the Froude
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number. Deep closure usually occurs for relatively low Froude numbers, while surface
closure generally occurs for larger Froude numbers (Birkhoff & Zarantonello 1957).

For the contraction phase, a heuristic estimate of closure time at any height z0 can
be obtained by assuming steady state, with a constant radial velocity approximated
by Bernoulli equation, −∂a/∂t = u(z0) = (2gz0)

1/2 for t > t0 + δt1. The time of collapse
at z0, tc(z0) = t0 + δt1 + δt2, can be estimated by δt2(z0) 	 0.5D/u(z0). For some body
shapes (e.g. a long vertical cylinder), the expansion phase is short compared to
the collapsing phase, δt1 
 δt2. Under this condition, one may neglect δt1 to obtain
the closure time, T = minz0

[t0(z0) + δt2(z0)]. Substituting the value of δt2 in terms
of z0, we finally obtain T V/D 	 (3/25/3)F 2/3

r , corresponding to a pinch-off position
z = Hc = H/3, where H = T V is the total cavity height at pinch-off time t = T . (Details
of this can be found in Mann 2005 and Mann et al. 2007.)

Despite the simple model, the above estimate obtains good agreement with
measurements in the case of relatively long vertical cylinders (Duclaus et al. 2007),
and remarkably for the case of a sphere entering into soft sand (Lohse et al. 2004). For
general body shapes, however, the heuristic estimate fails. For example, experimental
data show an almost linear dependence of T V/D and H/D on Fr , and Hc 	 H/2, for
water entry of circular disks (entering normally) (Glasheen & McMahon 1996) and
spheres (Duclaus et al. 2007).

3. Asymptotic theory
To understand the basic mechanism governing the evolution of air cavity in water

entry of a body, we derive an asymptotic solution of the above problem by assuming
the diameter of the cavity d small relative to its length h (e.g. at Fr ≈ 5.0, d/h ≈ 0.14 for
spheres Duclaux et al. 2007 and d/h ≈ 0.12 for circular disks Glasheen & McMahon
1996 near cavity closure). Of particular interest is the dependence of key cavity
dynamics parameters such as closure time and cavity height on the Froude number.

3.1. Governing equations

We define a slenderness parameter, d/h = ε 
 O(1), where d is the characteristic
diameter of the cavity, and h its characteristic length. Based on ε 
 O(1), in the near
field of the cavity, the flow is two-dimensional:

∂φ

∂z

 ∂φ

∂r
, r/h = O(ε). (3.1)

The Laplace equation (2.1) reduces to

∂2φ

∂r2
+

1

r

∂φ

∂r
= 0, r 
 h, (3.2)

and (2.2) on the cavity wall, r = a(z, t), can be rewritten as

∂a

∂t
= φr − φz

∂a

∂z
, at r = a(z, t). (3.3)

To leading order, (3.3) becomes

∂a

∂t
= φr + O(ε), at r = R. (3.4)

We point out that (3.4) is now applied on a fixed radius R 
 h. In practice, R can
be chosen to be, say, the (maximum) radius of the body. Similarly, the leading order
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dynamic boundary condition (2.3) can also be written simply as

∂φ

∂t
= gz + O(ε), at r = R. (3.5)

For relatively large Fr (> O(1)) and short cavity evolution time, we ignore wave and
splash effects and assume a flat free surface with the boundary condition:

φ(0, r, t) = 0, at z = 0. (3.6)

In the far field of the cavity (r/h � O(1)), the flow is three dimensional with φ

satisfying (2.1) and (2.5), and the free-surface boundary condition (3.6).
We follow a standard matched asymptotic approach (Van Dyke 1964; Mei,

Stiassnie & Yue 2005; Wang 2005, 2007). To account for the effect of cavity wall
motion on the flow, we distribute a line source with unknown strength q(z, t) along
the centreline of the cavity. The presence of the (finite) body can be accounted for
by a moving point source with strength σ (t). To satisfy the zero Dirichlet condition
(3.6), negative images of the line source and point source with respect to z = 0 need
to be added. For later reference, to define the velocity potentials φc and φb associated
respectively with the cavity q(z, t) and the body σ (t), and write the total velocity
potential as

φ(z, r, t) = φb + φc. (3.7)

The body potential can be obtained by choosing σ (t) to satisfy (2.4).
The matched asymptotic solution follows standard procedure: (a) obtain the inner

and outer expressions of φc, φin and φout satisfying respectively (3.2), (3.4), (3.5) and
(2.1) and (2.5); (b) obtain the outer and inner expansions of φin and φout respectively
in an overlap region εh 
 r 
 h (far from the cavity in the inner region but close to
the body in the outer region) and (c) match these to determine the complete φc.

3.2. Determination of φb

We place a moving three-dimensional point source of strength σ (t) at cavity (or body
centroid) depth h(t). The velocity potential of this point source and its negative image
above z = 0 is

φb(z, r, t) = −σ (t)

4π

1√
(h − z)2 + r2

+
σ (t)

4π

1√
(h + z)2 + r2

. (3.8)

A conceptually clear way to specify the strength σ (t) is to use φb in (3.7) to account for
the vertical volume flux due to the body. Thus the value of σ (t) for (3.8) is obtained
by matching the vertical volume flux across the wetted body surface SB given by
(2.4) to that across the front (z >h) portion of the Rankine half body formed by the
single point source (this flux equals 0.36σ which we shall simply approximate as σ/3
below). For the sphere, SB depends on the (assumed) location of the detachment line,
which, if we specify it to be at maximum radius, say, obtains σ (t) = 2πR2V (t). For
the inverted truncated cone in § 5.2, the separation line is at the top edge, yielding
σ (t) = 3πR2V (t) sin(θ/2), where θ is the cone vertex angle. The circular disk is simply
the limit of θ = π giving σ (t) = 3πR2V (t). We remark that the decomposition (3.7) in
principle leaves some freedom in the specification of σ in (3.8). The present choice
which frees φc from satisfying the vertical flux due to the body is a theoretically
elegant one, and, as we shall show in § 5, gives remarkably good predictions relative
to fully nonlinear simulations and experiments.
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3.3. Determination of φc

For the inner solution, the problem is two-dimensional, and the velocity potential due
to line source (and its negative image) can be written as

(φc)in(z, r, t) =
q(z, t)

2π
log

( r

2h

)
+ f1(z, t), r 
 h, (3.9)

where the source strength q(z, t) is unknown. The function f1(z, t) is also unknown,
to be determined by later asymptotic matching.

The outer problem is three-dimensional, and φc can be expressed as that due to a
three-dimensional line source (and its negative image):

(φc)out (z, r, t) = −
∫ h

−h

q(ξ, t)

4π

1√
(ξ − z)2 + r2

dξ. (3.10)

Equation (3.10) has an inner expansion for r/h 
 1 which has the form of (3.9)
(see e.g. Newman 1977) but with f1(z, t) given by

f1(z, t) =
1

4π

∫ h

z

∂q(ξ, t)

∂ξ
log[2(ξ − z)/(2h)] dξ − 1

4π

∫ z

−h

∂q(ξ, t)

∂ξ
log[2(z − ξ )/(2h)] dξ .

(3.11)
Note that with this matching, the potential φc in the whole fluid domain is uniquely
specified in terms of the unknown line source q(z, t).

To determine q(z, t), we impose the dynamic boundary condition (3.5) for the total
inner solution

φin(z, r, t) = (φc)in + φb. (3.12)

Upon integrating (3.5) with respect to time, we obtain

φin(z, R, t) = gz(t − t0(z)) + C(z) (3.13)

where t0(z) is the time when the body arrives at the depth z, i.e. z =
∫ t0

0
V (t) dt .

In (3.13), the integration constant C(z) given by the velocity potential on the cavity
wall at z at t = t0:

C(z) = φin(z, R, t0) = φb(z, R, t0) + f2(z), (3.14)

where

φb0 ≡ φb(z, R, t0) = −m(t0)

4π

1

R
+

m(t0)

4π

1√
4z2 + R2

, (3.15)

f2(z) = f1(z, t0) = − 1

4π

∫ z

−z

∂q(ξ, t0)

∂ξ
log[2(z − ξ )/(2z)] dξ. (3.16)

At any time t > t0, evaluation of (3.12) at r = R to satisfy (3.13) gives an integral
equation for the unknown q(z, t):

q(z, t) =
−2π

log(2h/R)
{gz(t − t0) − φb + φb0 − f1(z, t) + f2(z)}

∣∣∣∣
r=R

, t > t0. (3.17)

Equation (3.17) can be solved to O(ε2) by substituting into (3.17) an expansion for
q(z, t) of the form

q(z, t) = q0(z, t) + q1(z, t) + O(ε2), t > t0 (3.18)
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where q0 =O(1) and q1 = O(ε). The functions q0(z, t) and q1(z, t) are obtained
successively to yield

q0(z, t) =
−2π

log(2h/R)
{gz(t − t0) − φb + φb0}

∣∣∣∣
r=R

, (3.19a)

q1(z, t) =
−2π

log(2h/R)
{−f1(z, t) + f2(z)}

∣∣∣∣
r=R

, (3.19b)

where q = q0 is used in the evaluation of f1(z, t) and f2(z) in (3.19b). With the line
source strength q(z, t) now known, the velocity potential φ is obtained in a closed
form.

We remark that in the existing analytic models of Birkhoff & Zarantonello (1957)
and Lee et al. (1997), a purely two-dimensional (inner) solution is assumed at each
depth z (cf. (3.9)). Because this solution is divergent in the far-field, an arbitrary
parameter has to be introduced. For example, Birkhoff & Zarantonello (1957) set the
maximum radius of the two-dimensional flow to be 15 ∼ 30 times of the cavity radius
in the determination of kinetic energy of the two-dimensional flow. The present match-
asymptotic treatment and the introduction of the (three dimensional) body source
avoids this difficulty and correctly accounts for the full (far field) three-dimensional
effect, without any free parameter.

3.4. Time evolution of the cavity

The radial velocity of the cavity is

φr = (φc)r + (φb)r =
q(z, t)

2πr
+

∂φb

∂r
, at r = R. (3.20)

The radius a(z, t) of the cavity can be evaluated by integrating (3.4) with respect to t:

a(z, t) = R +

∫ t

t0

φr dt, t > t0. (3.21)

The decomposition (3.7) now allows us to obtain a clear qualitative description of
the phases of cavity development discussed in § 2.2: (a) For small (t − t0)V/R, at any
depth z0, q ∼ q0 ∼ (t − t0) from (3.19a), and (φb)r dominates the radial velocity (3.20).
Since (φb)r > 0 from (3.8) (for σ (t) > 0), this accounts for the initial expansion phase
of the cavity at this depth. (b) As t − t0 increases, it can be shown from (3.19a) (and
(3.19b)) that q(z0, t) < 0 (so that (φc)r < 0) for (t − t0) � V R/(gz0), with a magnitude
that increases with t − t0. In the meantime, (φb)r ∼ (t − t0)

−3 decreases, so that at
some time t = t0 + δt1(z0), the two competing contributions balance, at the point when
the cavity reaches maximum radius Rm(z0). (c) For t > t0 + δt1(z0), φr reverses sign
(dominated by (φc)r ), and the cavity eventually collapses at this location using time
tc − t0 − δt1 = δt2(z0).

At depth z0, δt1(z0) is determined from setting φr = 0 in (3.20); and Rm(z0) from
(3.21) with t = t0(z0) + δt1(z0). The time of collapse, tc(z0) = t0 + δt1(z0) + δt2(z0) is then
the upper limit of the integral to tc in (3.21) to obtain a = 0. Finally, the closure time
of the cavity itself T is defined as the minimum of tc(z0) over all z0 of the cavity,
given by

dtc(z0)

dz0

∣∣∣∣
z0 =Hc

= 0, (3.22)

where z0 =Hc is the depth at which this (first) pinch-off occurs. The total cavity height

H at this closure time T is simply
∫ T

0
V dt .
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3.5. Evaluation of the hydrodynamic drag

For later reference, for the case of freely falling bodies, it is necessary to determine
the hydrodynamic (drag) force on the body. The drag force on the body F (t) can be
evaluated in terms of the rate at which total energy E is imparted into the fluid at
that time, which is in principle now known (from § 3.3). One approach leading to an
approximation can be obtained by accounting for this energy in terms of the total
energy in the two-dimensional plane E2D(z):

E(t) =

∫ zb(t)

0

E2D(z, t) dz, (3.23)

where zb(t) is the current position of the body. Thus

F (t) =
1

V

dE

dt
= E2D(zb, t) +

1

V

∫ zb(t)

0

dE2D

dt
dz. (3.24)

We now make the slender body assumption that the energy E2D(z) in each two-
dimensional plane is conserved (Birkhoff & Zarantonello 1957), which gives

F (t) ≈ E2D(zb, t) ≈
∫ Rm(zb)

0

(ρgzb)2πr dr = πρgzbR
2
m(zb), (3.25)

where the second approximation is obtained from the slender body approximation
and equating the total energy E2D to the maximum potential energy of the fluid
displaced by the cavity at the current body depth zb(t).

We note that, in comparing (3.24) and (3.25), it can be seen that the second
(neglected) term in (3.24) is generally negative. The reasoning is clear again because
of the decomposition (3.7). E2D(z) is due to both φb and φc. The contribution due to
the line source φc satisfies approximately slender body assumption (so that the time
change at any depth is small). The contribution due to the body source φb is negative
for z < zb (see (3.8)), so that the net contribution is negative and (3.25) is expected to
somewhat overestimate the drag on the body (see figure 5).

4. Numerical simulation and laboratory experiments
4.1. Fully nonlinear numerical simulation

The matched asymptotic analysis is not expected to be good for the flow near the
free surface or close to the body. To provide an independent check of its validity
and to provide a simulation capability for general entry body geometries and Froude
numbers we develop here a fully nonlinear numerical method based on an MEL
ring-source boundary-integral equation method. The general approach follows closely
that of Dommermuth & Yue (1987) and Xue & Yue (1998); for completeness, we
outline here the key steps.

The nonlinear initial boundary value problem in § 2 is solved in the time domain
starting from initial conditions. The problem is solved in the (axisymmetric) z-r plane.
At each time, the unknown normal velocities on the trace of the free surface/cavity
SF , ∂SF , and the unknown velocity potential on the trace of the body surface SB , ∂SB ,
are obtained by solving the integral equation (Dommermuth & Yue 1987):

β(z, r, t)φ(z, r, t) =

∫
∂SF +∂SB

(
∂φ

∂n′ − φ
∂

∂n′

)
G(z, r; z′, r ′)r ′ d�′, (z, r) ∈ ∂SF + ∂SB,

(4.1)
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Fr = 3 Fr = 5

α0 T V0/D Hc/D T V0/D Hc/D

60◦ 4.38 1.76 7.10 2.74
65◦ 4.38 1.76 7.09 2.72
70◦ 4.36 (4.36) 1.74 (1.73) 7.04 (7.03) 2.71 (2.72)
75◦ 4.32 1.70 6.94 2.68
80◦ 4.23 1.65 6.78 2.64

Table 1. Effect of the flow separation angle α0 upon the cavity closure time T and closure
depth Hc in water entry of a freely falling sphere (§ 5.1) at two Froude numbers (Fr = 3.0
and Fr = 5.0) obtained by fully nonlinear simulation. The values inside the parentheses are
obtained with doubled panel numbers along ∂SB +∂SF and halved time step in the simulation.

where β is the subtended solid angle and G =
∫ 2π

0
R−1dθ ′, R =[(z − z′)2 + (r −

r ′ cos θ ′)2 + (r ′ sin θ ′)2]1/2 is the Rankine ring source Green function (Hulme 1983).
Because of the transient nature of the problem, the special far-field closure treatments
of Dommermuth & Yue (1987) and Xue & Yue (1998) are not important here. On the
other hand, the treatment of flow separation from the body must be considered with
some care. For bodies with sharp edges or corners (such as the disk or the inverted
truncated cone in § 5.2), the separation point (from which the flow leaves tangentially
from the body) is well defined.

For general smoothed geometries such as spheres, the separation point may be
affected by the Froude number and body surface properties (Duez et al. 2007). In
the numerical method, the separation position may be determined based on the
requirement of satisfying both the free-surface and body boundary conditions, but
sensitively depends on numerical resolution (e.g. Dommermuth & Yue 1987; Liu,
Xue & Yue 2001). For the present problem, the separation point is observed in the
experiments to be relatively invariant during the development of cavity. Thus, in this
study, we presume the separation angle α0 (measured from the downward vertical)
and assume the flow detaches the body surface (at α = α0) tangentially. Table 1 shows
the dependence of cavity closure time and closure depth on prescribed value of
separation angle α0 for a freely falling sphere for two different Fr values (§ 5.1). The
results indicate that the key cavity closure parameters are relatively insensitive to α0 in
the low-Froude-number range. For a horizontal circular cylinder impact, Lin & Shieh
(1997) observed that the separation point remains unchanged after separation with
α0 = 70◦ ∼ 80◦ for Fr = O(1). In water entry of small hydrophobic spheres, Aristoff &
Bush (2009) found that α0 = 70◦ ∼ 80◦ for Fr = O(10−1) ∼ O(102). Based on the above,
we set α0 = 70◦ in this study for the sphere entry problem.

Finally, we comment on the numerics. For axisymmetric problems, the present
method requires discretization only along a (one-dimensional) line. In this study, we
typically use 40 panels along ∂SB , 300 panels on ∂SF and dimensionless time step
�t = 0.005. With these parameters, the numerical errors are converged to less than
1 %. Table 1 shows a sample convergence result with two discretizations. (Extensive
convergence tests and numerical validations can be found in Dommermuth & Yue
1987 and Xue & Yue 1998.)

4.2. Freely falling sphere experiments

We conduct laboratory experiments of water entry of freely falling spheres. Of
special interest in the present context are the salient features of the cavity shapes
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Figure 2. Sketch of the experimental set-up.

and development (for Fr � O(10)). Details of the experimental effort are given in
Kominiarczuk (2007) (the experimental set-up is similar to that of Truscott & Techet
2009). The experiment is conducted in a water tank 0.9 m wide, 1.5 m long and
1.8 m deep, as shown in figure 2. Standard billiard balls, diameter 5.72 cm, made
of phenolic resin (ρb/ρ ≈ 1.73) are dropped from different heights above the still
water level corresponding to Fr = 3 ∼ 7. The cavity development after water entry
is recorded by high-speed video camera at up to 2100 frames per second at 50 μs
exposure (typical dimensional T ∼ 0.1 s) captured at a resolution of 800 (vertical) by
350 (horizontal) pixels in a (vertical) field of view of 0.4 m (dimensional H is between
0.2 ∼ 0.4 m for our Froude number range).

5. Results
5.1. Freely falling spheres

We compare asymptotic theory, nonlinear simulation and laboratory experiments with
special focus on the evolution of the kinematics and profile of cavity wall, and the
dependence of closure time and pinch-off height on Froude number, for a free falling
sphere, diameter D and initial velocity at water impact V0.

Figure 3 displays a sequence of pictures for Fr = V0/
√

gD = 5.03 from the
experiment which illustrates the evolution of air cavity starting form initial formation
until pinch-off. Detailed comparisons of the cavity profiles (for the case in figure 3)
among the experimental data, theoretical prediction and fully nonlinear simulation
are shown in figure 4. Excluding the spray which is hard to quantify from video
images and to obtain accurately in the MEL panel method, the result from the
nonlinear simulation agrees very well with the experimental data for the cavity shape
and size, body position, as well as the cavity pinch-off location. (The comparison is
somewhat less satisfactory near the pinch-off probably due to effects such as surface
tension not included in the simulation.) The asymptotic solution captures the main
features of the cavity, and agrees remarkably well with the numerical simulation and
experimental data except near the body where the slender body assumption is poor.
The asymptotic theory profiles are omitted near the free surface (or for small time)
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t′ = 1 t′ = 2 t′ = 3 t′ = 4 t′ = 5 t′ = 6 t′ = 6.9

Figure 3. Time (t ′ = tV0/D) evolution of an air cavity in water entry of a billiard ball at
Fr = 5.03 from the experiment.
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Figure 4. Comparisons of the cavity profile (Fr = 5.03) between experimental measurement
(�), numerical simulation (—–) and asymptotic solution (- - -) at different time t ′ = tV0/D.

here and in the following where the solution is invalid because splash effects are
neglected (cf. 3.6)).

Figure 5 compares the position zb(t) of the freely falling sphere (Fr =5.03)
as a function of time until pinch-off T , obtained by the experiment, simulation
and asymptotic theory. The agreements are excellent almost everywhere. For the
asymptotic theory, zb(t) is slightly underpredicted. This is mainly due to the deficiency
of the slender-body drag approximation (3.25), which as noted in § 3.5, generally
overpredicts the actual drag.

The radial position of the cavity wall a(Hc, t) (at depth z =Hc ≈ 2.48D from the
experiment) is compared in figure 6 for t > t0 ≈ 2.74D/V0 (from figure 5, zb = Hc is
reached at this time). The trajectory a is well predicted by the nonlinear simulation and
in particular the time to reach Rm at t = t0 + δt1 ≈ 4.45D/V0. Consistent with figure 4,
the comparison is not as good for later time t ∼ T (≈ 6.9D/V0). The asymptotic theory
consistently overpredicts a, with Rm overpredicted by about 9.3 %, although δt1 seems
to be well predicted. Considering the rather approximate estimate for σ in § 3.2 (based
on an assumption of the separation position), this is acceptable.

Figure 7 shows the maximum cavity size Rm(z) reached at each depth. Our results
indicate that Rm(z) generally decreases with z for the cases we considered (with
V (t) non-increasing). This can be qualitatively obtained by considering the matched
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Numerical result

Asymptotic solution

Experimental data

Figure 5. Trajectory of the freely falling sphere (Fr =5.03) as a function of time:
experimental measurement (�), numerical simulation (—–) and asymptotic solution (- - -).
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Figure 6. The radial trajectory of the cavity wall at z0 = 2.48D as a function of time
(Fr = 5.03): experimental measurement (�), numerical simulation (—–) and asymptotic solution
(- - -).

asymptotic solution. From § 3.4, the expanding radial velocity due to φb is counter-
acted by the contracting radial velocity due to φc. The contribution due to the latter
increases (in magnitude) with increasing depth z (see (3.19a)). Thus, in general Rm(z)
is smaller for greater z, for non-increasing V (t) with time. If V (t) is increasing, the
expanding radial velocity (φb)r also increases with time ((3.8) with σ (t) = 2πR2V (t)).
On the other hand, the contracting radial velocity (φc)r depends only weakly on V (t)
(through φb, for increasing z). The net effect as a function of z is therefore not definite
and Rm(z) may or may not be a decreasing function of z. The overall comparisons
among the three results are again very satisfactory for a broad range of z up to z ∼ H .
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Figure 7. Maximum cavity radius as a function of depth (Fr = 5.03): experimental
measurement (�), numerical simulation (—–) and asymptotic solution (- - -).
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Figure 8. Time variation of the radial trajectory of cavity wall at depth z0/D = 1 (—–),
2 (- - -), 2.71 (· · ·) and 4 (- · -) obtained by fully nonlinear simulations (Fr = 5.03).

Figure 8 shows the numerical results for the radial trajectory a(z0, t) of the
cavity wall at different depths z0 from initial time t = t0(z0) until cavity pinch off
at t = T (≈ 7.08D/V0 for this case). The profiles of a(z0, t) are similar for different
z0 and confirm the qualitative behaviour described in § 2.2. After the body passes
z0, t > t0(z0), a increases, reaches a maximum a =Rm at t = t0(z0) + δt1(z0), and then
decreases. Pinch-off occurs at some (intermediate) depth z = Hc( ≈ 2.71D) where a first
reaches zero, as shown in the figure. Rm(z0) decreases with z0 as discussed in figure 7.
It is noteworthy that a(z0, t) is not symmetric in time with respect to t = t0(z0)+δt1(z0)
when a = Rm. This differs from prediction by two-dimensional models (Birkhoff &
Zarantonello 1957; Lee et al. 1997), which predict symmetry with respect to the
expansion and contraction phases.
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Figure 9. Dependence of (a) cavity closure time T , (b) total height of cavity H and (c) depth
of cavity closure Hc on Froude number Fr : present experimental data (�), experimental data
of Duclaux et al. (2007) (sphere diameter D = 12 mm (�), D = 15.6 mm (�) and D =24 mm
(� )), fully nonlinear simulation (—) and asymptotic solution (- - -).

Finally, we examine the dependence of cavity development on Froude number for
the freely falling sphere. Figure 9 plots pinch-off time T , position Hc and total cavity
height at pinch-off H for Fr =1 ∼ 7. We include for comparison also the measurements
of Duclaux et al. (2007) (who use glass spheres of specific densities ranging from 2.36
to 7.74, relative to our value of ρb/ρ ≈ 1.73). The results are generally in agreement
especially for the dependence of dimensionless pinch-off time T V0/D on Fr . As
expected, for the higher density spheres of Duclaux et al. (2007) the values for H/D
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Figure 10. Schematic of the different (axisymmetric) geometries at the point of flow
separation. The flow separation angle α used in the nonlinear simulations are (a) α = 0◦

for the disk; (b) α = 90◦ − θ/2 for the inverted truncated cone and (c) α = 70◦ prescribed for
the sphere.
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Figure 11. Cavity profiles in water entry of a disk (—), inverted truncated cones (height
L/D = 0.5, θ = 90◦ (- - -); height L/D = 2.75, θ = 40◦ (– –); height L/D = 3.73, θ = 30◦ (- · · -))
and a sphere (- · -) with Fr = 5 at different time t ′ = tV0/D. The results are obtained by fully
nonlinear simulations.

and Hc/D are somewhat greater (especially for larger Fr ) corresponding to greater
(average) V/V0. If we think of the Froude number in terms of the average V/V0, then
denser spheres have effectively greater Froude numbers, which explains the steeper
slopes of the H/D and Hc/D versus Fr curves for denser spheres.

As observed by Duclaux et al. (2007) and others (e.g. Glasheen & McMahon
1996 for dropping disks) in experiments and by the numerical simulation of Gaudet
(1998) (for the disk); and consistent with (two-dimensional) theories (e.g. Birkhoff &
Zrantonello 1957; Lee et al. 1997); T , Hc and H are all approximately linear
increasing functions of Fr . Our results capture this linear dependence with excellent
comparison between the nonlinear simulation and measurements. The asymptotic
solution predicts the slope but somewhat overpredicts the value of T (Fr ). The theory
slightly underpredicts Hc(Fr ) and H (Fr ) especially for higher Fr . As pointed out in
figures 6 and 7, the asymptotic theory overpredicts the drag force which (among other
effects) delays the arrival of the body and evolution of the cavity.
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Figure 12. Comparison of the cavity shapes obtained by fully nonlinear simulation (—) and
asymptotic analysis (- - -) in the water entry of a circular disk with Fr = 5 at different time
t ′ = tV0/D.
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Figure 13. Fully nonlinear simulation results of (a) total cavity length (H ) and (b) cavity
closure depth (Hc) in water entry of a disk (—), inverted truncated cones (height L/D = 0.5,
θ = 90◦ (- - -); height L/D = 2.75, θ = 40◦ (– –); height L/D = 3.73, θ = 30◦ (- · · -)) and a
sphere (- · -).
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Figure 14. Dependence of total cavity length (H ) and depth of pinch-off (Hc) on cone vertex
angle θ for water entry of inverted truncated cones at Fr = 5. Plotted are the asymptotic
prediction for H (—) and Hc (– –), numerical simulation result of H (�) and Hc(�) for the
cones and H (�) and Hc(�) for the disk.

5.2. Body geometry effect

To understand the effect of body geometry, we conduct nonlinear numerical
simulations for the cavity development behind a number of other shapes, specifically
for circular disk and inverted truncated cones of different heights, and compare these
to the sphere (see figure 10). For the numerics, flow separation is enforced at the
sharp edges for the disk and inverted truncated cones. For simplicity we set imposed
constant downward velocity V0 in all cases.

Figure 11 compares the numerically obtained profiles of the cavity associated with
water entry of the different bodies. As expected, the cavity lateral size (corresponding
to the same time) increases with the bluffness of the body geometry, in particular with
decreasing flow separation angles α. Note that the profiles for the inverted truncated
cone of vertex angle θ = 40◦ (α = 70◦) is slightly narrower than that of the sphere
(with the same value of α) due to the difference of the wetted body geometry.

For illustration, the asymptotic theory prediction is also shown and compared to
numerical result for the case of the disk (figure 12). The comparison is excellent
including near the body. Because of the neglect of splash effect, the asymptotic theory
is invalid near the free surface (results are omitted).

Figure 13 compares the total cavity length H (= T V0) and closure depth Hc of
different body geometries as functions of Fr . The linear dependencies observed earlier
(for the sphere) obtain here. The slopes of the H (Fr ) and Hc(Fr ) curves increase
with body bluffness. This qualitative behaviour of H and Hc increasing with body
bluffness shown in figure 13 can be obtained from the asymptotic theory where the
point source strength σ increases with bluffness. Larger σ strengthens the expansion
phase of the cavity development and thus leads to greater H and Hc. Figure 14 shows
the asymptotic theory prediction of H and Hc for a wide range of vertex angle θ

for inverted truncated cones at Fr =5.0. The asymptotic solution agrees well with the
nonlinear simulation. H and Hc monotonically increase with θ as σ does.
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Figure 15. Comparisons of (a) total cavity height (H ) and (b) depth of cavity closure
(Hc) among the experimental data of Glasheen & Mcmahon (1996) (�), the fully nonlinear
simulation result(—) and the asymptotic solution (- - -) for a disk with constant dropping
velocity.

We remark here that from the (near) linear dependencies of H and Hc on Fr in
figure 13 (and the fact that H and Hc vanish for Fr → 0), it follows that Hc/H

is (nearly) constant and independent of Fr for a given geometry (Lee et al. 1997;
Duclaux et al. 2007; Bergmann et al., private communication, 2009).

H and Hc as a function of Fr for the disk have been measured experimentally
by Glasheen & McMahon (1996). Figure 15 compares the measurements with our
numerical simulation and asymptotic theory prediction. The comparisons are quite
satisfactory. Relative to the measurements, our results slightly overpredict H and Hc

which can be explained by experimental deviation (decrease) of the drop velocity
from V0. Recently, Bergmann et al. (private communication, 2009) repeated the same
measurements with carefully controlled constant V =V0 which may remove such
discrepancies.
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6. Conclusions
We consider the hydrodynamic problem of air cavity development and evolution

in vertical water entry of an axisymmetric body. The problem is studied using
asymptotic analysis and fully nonlinear numerical simulations in the context of
potential flow, and laboratory experiments. The focus is in the range of relatively
low Froude number, Fr � O(10), where gravity effects cannot be neglected. Using a
matched asymptotic approach, we derive a theoretical solution for the description
of the dynamics of the air cavity including three-dimensional body and flow
effects. The asymptotic solution provides useful insights into the understanding
of salient features and associated dynamics in the evolution of the air cavity. To
validate and complement the asymptotic analysis, we develop a nonlinear numerical
simulation which includes full body and nonlinear free-surface wave effects. Finally, we
conduct a relatively limited set of experimental measurements using freely dropping
spheres.

Satisfactory quantitative comparisons among the asymptotic theory predictions,
nonlinear numerical simulations and the present and existing experimental
measurements are obtained for the freely dropping sphere including predictions of the
cavity shape, maximum radius, pinch-off position, closure time and closure height. To
understand the effect of body geometry on cavity properties, we apply the matched
asymptotic solution and numerical simulations to circular disk and inverted truncated
cones. The asymptotic solution is found to be remarkably robust. For the disk, our
analytical and numerical predictions agree well with available measurements.

These results underscore the importance of air cavity dynamics in bluff body
water entry. The dynamics of the body differs significantly before and after cavity
closure and depends critically on cavity closure parameters. In the low-Froude-
number regime, in particular, depth of cavity closure and total cavity height increase
linearly with the Froude number independent of body geometry. This study lays the
foundation for understanding more general water impact/entry problems involving
complex geometries, such as ship bow impact, projectile entry and animals running
on water surface.

This research is supported financially by grants from the Office of Naval Research.
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