
Math. Struct. in Comp. Science (2014), vol. 24, iss. 5, e240513, 14 pages. c© Cambridge University Press 2014

doi:10.1017/S0960129512000527

H∞ stabilisation of networked control systems with

time delays and packet losses

HONGBO LI†§, FUCHUN SUN†, ZENGQI SUN†¶ and

CHANGQING YUAN‡‖

†Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, P. R. China

Email: hbli@tsinghua.edu.cn; fcsun@tsinghua.edu.cn; szq-dcs@tsinghua.edu.cn
‡Aviation University of Air Force, Changchun, 130022, P. R. China

Email: ycq02@mails.tsinghua.edu.cn

Received 20 July 2011; revised 18 August 2013

This paper addresses the H∞ state feedback stabilisation problem for networked control

systems (NCSs) in the presence of time delays and packet losses. By introducing the concept

of an effective sensor packet, the NCS is transformed into a new discrete-time switched

model, where the parameters have a clear physical meaning and can be easily determined. In

this framework, we derive the stability conditions of the closed-loop system in the H∞ sense,

and also provide the corresponding H∞ stabilising controller design method. Finally, we give

simulation and experimental results to demonstrate the effectiveness of the proposed

approaches.

1. Introduction

Networked control systems (NCSs) are a class of spatially distributed control systems

in which communication networks are employed for the connections between spatially

distributed system components, such as sensors, actuators and controllers. The advantages

of reduced system wiring, simple installation, increased system flexibility and resource

sharing offered by NCSs mean they have received a lot of attention within the control

community in recent years. Issues such as time delays (Nilsson et al. 1998; Hu and

Zhu 2003; Shi and Yu 2009; Peng et al. 2009), packet losses (Zhang et al. 2001; Xion and

Lam 2007), signal quantisation (Tian et al. 2007; Rasool and Nguang 2010) and multi-

channels (Hu and Yan 2008; Li, J. et al. 2011) have been investigated, with many important

results reported in the literature. NCSs have also found applications in the fields of remote

medical treatment, intelligent vehicle systems, robotics, manufacture processing, and so on.

Time delay in NCSs is a major cause for system performance deterioration and

potential system instability. In the literature, time delays have been modelled using
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various formulations, such as constant delay (Zhang et al. 2001), independent random

delay (Nilsson et al. 1998) and random delay governed by a Markov chain (Zhang

et al. 2005). Another important issue for NCSs is the packet loss phenomenon. Typically,

the literature containts two approaches to describing packet losses: the first assumes

that the packet losses follow certain probability distributions such as a Markov chain;

the second is the deterministic approach, which specifies the packet losses in a time

average sense, or places a bound on the number of consecutive packet losses. Note that

the packets in NCSs usually suffer both time delays and packet losses simultaneously

during network transmission. All this means that the analysis and synthesis of NCSs with

time delays and packet losses is a challenging and practically important problem. In the

literature, some important methodologies, such as stochastic control (Nilsson et al. 1998;

Hu and Zhu 2003), predictive control (Liu et al. 2006), state feedback control (Xion and

Lam 2007; Li et al. 2009), H∞ control (Gao and Wang 2003; Yue et al. 2005; Wang 2007)

and Fuzzy control (Dong et al. 2010), have been proposed to compensate for time delays

and/or packet losses – for details on this topic, see the aforementioned references and the

references they contain. It is worth noting that although the H∞ stabilisation problem for

NCSs with time delays and/or packet losses has been investigated for several years, there

are still some interesting problems in need of further research. For example, as illustrated

in our earlier work Li, H. et al. (2011), it is easy to reduce the conservativeness of an

NCS model, as well as the corresponding method, by thoroughly investigating the effects

and physical constraints of the network on the NCS. However, as far as we are aware,

the H∞ stabilisation problem for NCSs with time delays and/or packet losses including a

comprehensive investigation of the physical constraints of the network on the NCS model

still remains challenging, and this was the motivation for the present study.

In tackling this problem in the current paper, we propose a new NCS model, where

the parameters have a clear physical meaning and can be easily determined. We derive

the stability conditions in the H∞ sense, and develop the corresponding H∞ stabilising

controller design technique. It is worth noting that it is easy to implement the proposed

method for various applications since it is quite general and the parameters have a clear

physical meaning. We also give simulation and experimental results to demonstrate the

effectiveness and applicability of the proposed method.

1.1. Organisation of the paper

We formulate the stabilisation problem for NCSs with time delays and packet losses in

Section 2 and give the main results in Section 3. We give simulation and experimental

results in Section 4 to show the effectiveness of the results we have produced. Finally, we

present our conclusions in Section 5.

1.2. Notation

Throughout this paper, we write �n to denote the n dimensional Euclidean space and

P > 0 (� 0) to mean that P is real symmetric and positive definite (semidefinite). We

attach the superscript T to matrices to denote matrix transposition, and write I to denote
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Fig. 1. The structure of the NCSs being studied

the identity matrix with appropriate dimensions. We write Z+ to denote the set of non-

negative integers. Finallly, we write ∗ in symmetric block matrices as an ellipsis for the

terms introduced by symmetry.

2. Problem formulation

Consider the NCS shown in Figure 1, where the sensor and the actuator are time driven

and the controller is event driven. The plant is described by the following discrete-time

system:

x(k + 1) = Fx(k) + G1u(k) + G2w(k)

z(k) = Cx(k) + D1u(k) + D2w(k) (1)

where:

— x(k) ∈ �n is the plant state;

— u(k) ∈ �m is the control input;

— w(k) ∈ �p is the exogenous disturbance input with {w(k)} ∈ l2[0,∞);

— z(k) ∈ �q is the controlled output;

— F , G1, G2, C , D1 and D2 are known matrices with appropriate dimensions.

The networked controller takes the following form:

u = Lx(k) (2)

where L ∈ �m×n is the controller gain, which is to be designed. In NCS, a timestamp

is added to the sensor packet and then passed to the corresponding control packet. The

buffer will compare the time-stamp of the received control packet with the one stored in

it, and it will be updated only when the received control signal is more recent than the

existing one. Through such a mechanism, the ZOH (Zero-Order Hold) can always use the

most recent control signal to control the plant.

In NCSs, networks exist in both of the channels from the sensor to the controller and

from the controller to the actuator. It is well known that, for two spatially distributed

network nodes, it is easier to obtain the round-trip network characteristics than the point-

to-point network characteristic. Therefore, from the viewpoint of practical implementation,

it is desirable to develop NCS approaches based on round-trip network characteristics.

To this end, we introduce the following definitions and models to capture the nature of

round-trip time delays and packet losses.
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Definition 2.1. The round-trip time (RTT) delay is defined as

τ = τsc + τca,

where τsc is the delay from the sensor to the controller and τca is the delay from the

controller to the actuator. A natural assumption for τ is that

τ̌ � τ � τ̂,

where τ̌ and τ̂ are the lower and upper bounds of τ, respectively. We will use the notation

�τ̂/h	, where h is the sampling period and �·	 is the ceiling operator. We can then infer

that �τ/h	 takes values in a finite set

Ω1 = {�τ̌/h	 , �τ̌/h	 + 1, · · · , �τ̂/h	}.

Definition 2.2. A sensor packet is said to have encountered a round-trip packet loss if

the sensor packet is lost in the sensor-to-controller network or the corresponding control

packet is lost in the controller-to-actuator network. We write η to denote the number of

consecutive round-trip packet losses. A natural assumption for η is that η � η̂, where η̂

is the given upper bound for consecutive round-trip packet losses. It is clear that, η takes

values in a finite set Ω2 = {0, 1, 2, · · · , η̂}.

The objective of the current paper is to design a networked controller (2) such that the

closed-loop NCS with time delays and packet losses is asymptotically stable and the H∞
performance constraint is also satisfied.

3. Main results

In this section, we address the H∞ stabilisation problem for NCSs with a networked

controller (2), and give complete results for system modelling, analysis and controller

synthesis.

3.1. Modelling of NCSs

By considering the effects of network induced delays and packet losses, the control input

of the plant can be described by the equation

u(k) = Lx(k − δk) (3)

where δk denotes the step delay of the control signal. From the definitions of Ω1 and Ω2,

it is easy to conclude that δk takes values in a finite set

Ω3 = {�τ̌/h	 , �τ̌/h	 + 1, · · · , �τ̂/h	 + η̂}.

By substituting (3) into (1), the closed-loop NCS is given by

x(k + 1) = Fx(k) + G1Lx(k − δk) + G2w(k)

z(k) = Cx(k) + D1Lx(k − δk) + D2w(k).
(4)
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It is easy to infer from the fact that δk ∈ Ω3 together with the definition of Ω3 that at

time step k, the control signal no older than

k − �τ̂/h	 − η̂

can be used to control the plant. In view of this, we introduce the augmented states

x̃(k) = [xTk xTk−1 · · · xTk−�τ̂/h	−η̂]
T

z̃(k) = [zTk zTk−1 · · · zTk−�τ̂/h	−η̂]
T

into (4). The closed-loop system (4) can then be described by the following discrete-time

system:

x̃(k + 1) =
(
F̃ + G̃1LẼk−δk

)
x̃(k) + G̃2w(k)

z̃(k) =
(
C̃ + D̃1LẼk−δk

)
x̃(k) + D̃2w(k)

(5)

with

F̃ =

⎡
⎢⎢⎢⎢⎢⎣

F 0 · · · 0 0

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎦

G̃1 =

⎡
⎢⎢⎢⎢⎢⎣

G1

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎦

G̃2 =

⎡
⎢⎢⎢⎢⎢⎣

G2

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎦

C̃ =

⎡
⎢⎢⎢⎢⎢⎣

C 0 · · · 0 0

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎦

D̃1 =

⎡
⎢⎢⎢⎢⎢⎣

D1

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎦

D̃2 =

⎡
⎢⎢⎢⎢⎢⎣

D2

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎦

Ẽk−δk =
[

0 · · · I · · · 0
]

(6)

where all elements of Ẽk−δk are zero except for the (k − δk + 1)th block, which is the

identity. It is worth noting that the closed-loop system in (5) is a discrete-time switched

system, where k − δk in Ẽk−δk is a piecewise constant function called the switch signal,

which takes values in a finite set Ω3.

Since the parameter δk is incorporated into the system (4), the transition of δk from one

mode to another will be involved in the evolution of the system. We are thus led to ask

the following natural questions, which will be of great importance for the development of

this paper:

— What is the domain of δk?

— Are there any physical constraints on the transition of δk?

It is worth noting that in NCSs, if a control signal Lx̂(k − δk) is available for the actuator

at time step k and no new control signal arrives, the actuator has at least Lx̂(k − δk) to

use at time step k + 1, which implies that

δk+1 = δk + 1.
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Therefore, the parameter δk in an NCS can increase by at most 1 at each time step. On

the other hand, δk can decrease by as many steps as possible under the constraint δk ∈ Ω1.

Based on this analysis, we can construct a switch matrix Υ = [δij] as follows:

Υ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

1

1

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

1

1

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1

1

1

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...

· · ·
. . .

· · ·
. . .

· · ·
. . .

0
...

...
. . .

. . .
. . .

...

0 · · · · · · · · ·
...

1 0 · · · · · ·
...

0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
...

. . .
. . .

. . . 0

0

0

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
Υ11 Υ12

Υ21 Υ22

]

(7)

where

Υ11 ∈ �(�τ̂/h	−�τ̌/h	+1)×(�τ̂/h	−�τ̌/h	+1)

Υ22 ∈ �η̂×η̂ ,

and i and j take values in Ω3. The switching matrix Υ says that the switching signal δij
transfers from mode i to mode j with feasibility δij , where 0 and 1 stand for feasible and

unfeasible transitions, respectively. Note that the switching matrix Υ is quite general since

both time delays and packet losses are taken into account. In particular, the switching

matrix Υ captures the physical meaning of the time delay and packet loss in a clear way,

and makes the transition feasibility between different modes apparent.

3.2. H∞ performance analysis

Before proceeding, we need to introduce the following definition, which will be useful for

the development of our work.

Definition 3.1. Given a scalar γ > 0, the closed-loop system (5) is said to be asymptotically

stable with an H∞ performance γ if:

(1) The system with w(k) ≡ 0 is asymptotically stable.

(2) The controlled output z̃(k) satisfies

‖z̃(k)‖2 < γ‖w(k)‖2
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for all non-zero

w(k) ∈ l2[0,∞)

under zero initial conditions.

With the above definition, the following theorem states and establishes the sufficient

conditions for the existence of the network-based H∞ controller for the system (5).

Theorem 3.2. Given a scalar γ > 0, the closed-loop NCS (5) is asymptotically stable with

an H∞ performance γ if there exist positive definite matrices Pi, with i ∈ Ω3, satisfying

δij

⎡
⎢⎢⎣

−Pj 0 Pj(F̃ + G̃1LẼi) PjG̃2

∗ −I C̃ + D̃1LẼi D̃2

∗ ∗ −Pi 0

∗ ∗ ∗ −γ2I

⎤
⎥⎥⎦ < 0 (8)

where i, j ∈ Ω3 and δij ∈ Υ.

Proof. We first establish the asymptotic stability of the closed-loop system in (5) with

w(k) ≡ 0. Consider the following state-dependent Lyapunov function:

V (x̃(k)) = x̃T (k)Pk−δk x̃(k) (9)

where Pk−δk are matrices upon the switch state k − δk in the NCS model (5). Let k − δk
at time steps k and k + 1 be i and j, respectively, where i, j ∈ Ω3. The difference between

the values of the Lyapunov function is given by:

�V (x̃(k)) = V (x̃(k + 1)) − V (x̃(k))

= x̃T (k + 1)Pjx̃(k + 1) − x̃T (k)Pix̃(k).
(10)

Two cases arise:

(1) No new control signal arrives at the actuator at time step k + 1.

In this case, i in (10) takes values in

Ω4 = Ω3 − {�τ̂/h	 + η̂}

and j in (10) is specified to be

j = i + 1.

Then, for the solution of the closed-loop system (5) with w(k) ≡ 0, we have

�V (x̃(k)) = x̃T (k + 1)Pi+1x̃(k + 1) − x̃T (k)Pix̃(k)

= x̃T (k)
((

F̃ + G̃LẼi

)T
Pi+1

(
F̃ + G̃LẼi

)
− Pi

)
x̃(k)

(11)

where i ∈ Ω4. It is clear that this case corresponds to the non-zero elements above the

diagonal of Υ.

(2) The actuator has a new control signal available at time step k + 1.
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In this case, i in (10) takes values in Ω3 and j in (10) takes values in Ω1. Then, for the

solution of the closed-loop system (5) with w(k) ≡ 0, we have

�V (x̃(k)) = x̃T (k + 1)Pi+1x̃(j) − x̃T (k)Pix̃(k)

= x̃T (k)
((

F̃ + G̃LẼi

)T
Pj

(
F̃ + G̃LẼi

)
− Pi

)
x̃(k)

(12)

where i ∈ Ω3 and j ∈ Ω1. It is clear that this case corresponds to the non-zero elements

in and below the diagonal of Υ.

Summarising, we can conclude that if

δij

((
F̃ + G̃1LẼi

)T
Pj

(
F̃ + G̃1LẼi

)
− Pi

)
< 0 (13)

for i, j ∈ Ω3 and δij ∈ Υ, then we have

lim
k→∞

V (x̃(k)) = 0

lim
k→∞

x̃(k) = 0,

which imply that NCS (5) is asymptotically stable.

On the other hand, using the Schur complement, (8) is equivalent to

δij

(
Πi

T P̃jΠi − P̂i

)
< 0 (14)

where

Πi =

[
F̃ + G̃1LẼi G̃2

C̃ + D̃1LẼi D̃2

]

P̃j =

[
Pj 0

0 I

]

P̂i =

[
Pi 0

0 γ2I

]
.

(15)

It is clear that the conditions (13) are implied by (14). Therefore, if the conditions (8)

hold, the closed-loop system in (5) is asymptotically stable.

We will now establish the H∞ performance for the NCS (5). To this end, we assume

zero initial conditions, and consider the following index:

J∞ =

∞∑
k=0

[z̃T (k)z̃(k) − γ2wT (k)w(k)]

�
∞∑
k=0

[z̃T (k)z̃(k) − γ2wT (k)w(k)] + V (x̃(∞)) − V (x̃(0))

=

∞∑
k=0

[z̃T (k)z̃(k) − γ2wT (k)w(k) + ΔV (k)]

=

∞∑
k=0

δij[ξ(k)T (Πi
T P̃jΠi − P̂i)ξ(k)] (16)
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where

ξ(k) = [x̃(k)T , w(k)T ]T .

Using similar arguments to those used earlier, we can conclude that (8) guarantees (14),

so we have

δijξ(k)T (Πi
T P̃jΠi − P̂i)ξ(k) < 0

for all non-zero ξ(k), which means J∞ < 0. Therefore, we can conclude from (16) that for

all non-zero w(k) ∈ l2[0,∞), we have

‖z̃(k)‖2 < γ‖w(k)‖2,

which completes the proof.

It is worth noting that the physical meaning of δij in the stability condition is to

guarantee that the NCS is not only stable in a special mode, but also remains stable when

it switches from one mode to another.

3.3. H∞ controller design

We are now ready to address the H∞ controller design problem. Note that the sufficient

conditions (8) are non-linear in the state feedback gain matrix L. In order to circumvent

the synthesis problem, the following theorem proposes equivalent conditions to (8).

Theorem 3.3. Given a scalar γ > 0, the closed-loop NCS (5) is asymptotically stable with

an H∞ performance γ if there exist Pi > 0 and Qj > 0 satisfying

δij

⎡
⎢⎢⎣

−Qj 0 F̃ + G̃1LẼi G̃2

∗ −I C̃ + D̃1LẼi D̃2

∗ ∗ −Pi 0

∗ ∗ ∗ −γ2I

⎤
⎥⎥⎦ < 0 (17)

and

PjQj = I (18)

where i, j ∈ Ω3 and δij ∈ Υ.

Proof. From (18) we have

Qj = P−1
j . (19)

Substituting (19) into (17), we have

δij

⎡
⎢⎢⎣

−P−1
j 0 F̃ + G̃1LẼi G̃2

∗ −I C̃ + D̃1LẼi D̃2

∗ ∗ −Pi 0

∗ ∗ ∗ −γ2I

⎤
⎥⎥⎦ < 0. (20)

Performing congruence transformations on (20), by diag{Pj, I, I, I}, we get (8). Then,

according to Theorem 3.2, we can conclude that if the conditions (17) and (18) hold, NCS

(5) is asymptotically stable with an H∞ performance γ.
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Fig. 2. The actual networked DC motor system setup

Note that the conditions stated in Theorem 3.3 do not form a convex set due to the

matrix equality constraints in (18). In the literature, there are several approaches to solving

such non-convex problems, amongst which the cone complementarity linearisation (CCL)

approach is the most commonly used since it is simple and very efficient for numerical

implementation (Ghaoui et al. 1997; Zhang et al. 2005). For these reasons, we used the

CCL approach for the current paper to calculate L from Theorem 3.3. Note that the CCL

approach is quite standard, and it is easy to adapt the way we used it in Li et al. (2009)

to solve the controller design problem in the current paper, but to save space and avoid

repetition, we will omit the details of the CCL-based controller design procedure here.

4. Illustrative examples

In this section, we will illustrate the applicability and effectiveness of the proposed

approaches. To this end, we constructed a real-world networked DC motor system and

subjected it to a comprehensive study to develop both simulation and experimental results.

The system setup is shown in Figure 2, where the experimental apparatus consists of

a PC controller, a local board and a DC motor with sensors. The PC controller is used

to implement the networked controller. The local board is on the plant side and used for

two functions:

(1) to convert the control signal read from the buffer into a pulse width-modulation

(PWM) signal, and then send the PWM signal to drive the DC motor;

(2) to encapsulate the plant state and its timestamp into a packet and send it to the PC

controller via the network.

Both the local board and the sensor are time-driven, and they are synchronised using the

same clock signal. We set the sampling period to 0.3s and let

x = [ia, ω]T

where ia and ω are the armature winding current and the rotor angular speed, respectively.

The DC motor can be described by the equations

x(k + 1) =

[
1 0.0046

0 0

]
x(k) +

[
2.2685

7.6794

]
u(k)

[
1.4721

−570.6426

]
w(k)

z(k + 1) =
[

1 0
]
x(k) + 0.1u(k).

(21)
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Fig. 3. Histograms for the RTT delays of the network under consideration

The Internet connection between Tsinghua University, Beijing, China and Stanford

University, CA, USA was investigated and the RTT delay and packet loss information

measured for a 24-hour period (00:00-24:00). 45000 packets were sent and only 129

packets lost, with the maximum consecutive packet loss being 1. The histogram of RTT

delays for the 44871 received packets is shown in Figure 3, from which it can be seen that

the lower and the upper bounds of τk are τ̌ = 0.285s and τ̂ = 0.332s, respectively. This

further demonstrates that the delay and packet loss models formulated in this paper are

natural and realistic.

Applying the proposed method to the above NCS, we obtain the following network

controller:

u = [−0.095 0.011] x. (22)

It is worth noting that the networked DC motor system is designed to drive the

DC motor to a pre-set angle, so we introduce the reference input r into the networked

controller and rewrite (22) as

u = [−0.095 0.011] x + 0.095r (23)

4.1. Numerical simulation results

For the numerical simulation, the networked dc motor system was simulated using

MATLAB with a fully controlled environment. The disturbance input w(k) was given by

w(k) =

{
0.05 0 � k � 10

0 otherwise.
(24)

With the initial condition [0, 0]T and reference input r = 40 degrees, typical simulation

results for the networked DC motor system are given in Figure 4. These show that the

position of the networked DC motor converges to the reference input, which demonstrates

that the resulting NCS is asymptotical stable.

4.2. Experimental results

With the same initial state, reference input and control parameters as used for the

numerical simulation, typical experimental results for the networked DC motor system
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Fig. 4. Simulation result of networked system
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Fig. 5. Simulation result of networked system

are given in Figure 5 and are consistent with the simulation results shown in Figure 4,

with the exception of a small steady-state error in the experimental result. Note that

this steady-state error does not come as a surprise since there are inevitable modelling

errors, and, most importantly, there are inevitable non-linearities such as a dead zone and

fabrication errors in the experimental apparatus.

5. Conclusions

In this paper, we have investigated the H∞ stabilisation problem for a class of NCSs

with time delays and packet losses. In doing this, we constructed a new discrete-time

switched NCS model for the resulting NCSs. In this framework, we derived the stability
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conditions for the closed-loop NCSs and proposed an iterative algorithm for designing

the corresponding H∞ stabilising controller. The simulation and experimental results

demonstrate the effectiveness of the proposed approach.

In future work, we will extend our results to the output feedback case, where full state

measurement is not available. We will also introduce integral control to the networked

controller to address the steady-state error problem for NCSs.
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