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This work is dedicated to systematically studying and predicting the wake character-
istics of a yawed wind turbine immersed in a turbulent boundary layer. To achieve
this goal, wind tunnel experiments were performed to characterize the wake of a
horizontal-axis wind turbine model. A high-resolution stereoscopic particle image
velocimetry system was used to measure the three velocity components in the turbine
wake under different yaw angles and tip-speed ratios. Moreover, power and thrust
measurements were carried out to analyse the performance of the wind turbine. These
detailed wind tunnel measurements were then used to perform a budget study of the
continuity and Reynolds-averaged Navier–Stokes equations for the wake of a yawed
turbine. This theoretical analysis revealed some notable features of the wakes of yawed
turbines, such as the asymmetric distribution of the wake skew angle with respect to
the wake centre. Under highly yawed conditions, the formation of a counter-rotating
vortex pair in the wake cross-section as well as the vertical displacement of the wake
centre were shown and analysed. Finally, this study enabled us to develop general
governing equations upon which a simple and computationally inexpensive analytical
model was built. The proposed model aims at predicting the wake deflection and the
far-wake velocity distribution for yawed turbines. Comparisons of model predictions
with the wind tunnel measurements show that this simple model can acceptably
predict the velocity distribution in the far wake of a yawed turbine. Apart from
the ability of the model to predict wake flows in yawed conditions, it can provide
valuable physical insight on the behaviour of turbine wakes in this complex situation.

Key words: turbulent flows, turbulent boundary layers, wakes/jets

1. Introduction
In order to address the increasing demand of wind energy production, researchers

seek ways to improve the efficiency of existing and future wind farms. The most
important cause of power losses in wind farms is the fact that turbines usually operate
in the wakes of upwind ones. Yaw angle control is one of the methods that could
be used to alleviate this situation by deflecting the wakes away from downwind
turbines (Dahlberg & Medici 2003). Even though yawing a turbine reduces its
power production, it can potentially increase the total power generated by the whole
wind farm.

† Email address for correspondence: fernando.porte-agel@epfl.ch
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To assess the viability of yaw-angle control strategies, a better understanding of
the wakes of yawed turbines is crucial. Most of the previous studies of yawed
turbines are limited to the performance of the turbine or the near-wake characteristics
(e.g. Grant, Parkin & Wang 1997; Grant & Parkin 2000; Haans et al. 2005; Haans,
van Kuik & van Bussel 2007; Sant 2007; Krogstad & Adaramola 2012; Micallef et al.
2013). Yawed turbines and their near wakes have also benefited from extensive studies
of flow through helicopter rotors in forward flight as they are conceptually similar
(e.g. Coleman, Feingold & Stempin 1945).

Studies of the far wakes of yawed turbines, by contrast, have received rather
little attention. In some of the early studies, Dahlberg & Medici (2003) and later
Medici & Alfredsson (2006) quantified the far-wake velocity distribution at a few
downwind locations for a yawed turbine located in a uniform flow. Their wind tunnel
measurements confirmed that yawing the turbine can be used as a promising method
to manipulate turbine wakes and mitigate their effects on downwind turbines. Later,
Jiménez, Crespo & Migoya (2010) used large-eddy simulation (LES) to investigate
the deflection of wakes of yawed turbines with different thrust coefficients. They
pointed out that, for a given yaw angle, the wake deflects more for turbines with
higher thrust coefficients. Recently, Fleming et al. (2014) also used LES to study
the wake of a turbine in yawed conditions and showed that yawing a turbine is an
effective method to redirect its wake.

Even though these numerical simulations and wind tunnel measurements showed
the potential of yaw-angle control, due to their high computational or measurement
costs, they cannot be employed to fully assess the capability of this strategy under
the wide variety of conditions that have to be considered for the optimum design
and operation of wind farms. For example, wind farms are continuously exposed to
change in mean wind magnitude and direction, ambient turbulence, thermal stability
and wind turbine characteristics (Porté-Agel, Wu & Chen 2013). Therefore, simple and
inexpensive models that can predict the wakes of yawed turbines with an acceptable
accuracy are still needed. Jiménez et al. (2010) assumed a top-hat profile for the wake
velocity deficit and developed a simple formula to predict the wake deflection angle
based on the conservation of mass and momentum for a control volume around the
turbine. Based on this study, the wake skew angle θ is determined by

θ = sin γCT

2
(

1+ ζ x
d

)2 , (1.1)

where γ denotes the yaw angle, x is the downwind distance, d is the rotor diameter
and ζ is the wake growth rate for the top-hat velocity-deficit profile which was chosen
to be 0.1 for γ = 10◦, 20◦ and 0.125 for γ = 30◦ (Jiménez et al. 2010). In (1.1) and
the remainder of this paper, the yaw angle γ is positive in the clockwise direction,
and θ is positive in the counter-clockwise direction, seen from the top. Note that the
apparent difference between (1.1) and the formula in the original work is due to the
different definitions used for the thrust coefficient of the turbine CT . In the current
study, CT is defined as

CT = T

0.5ρ
(π

4
d2
)

ū2
h

, (1.2)

where T is the total force exerted on the turbine by the incoming wind, ρ is
the air density and ūh is the incoming velocity at the hub height of the turbine.
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Later, Gebraad et al. (2014) integrated (1.1) to find the wake-centre trajectory for
a yawed turbine. They also used the top-hat model suggested by Jensen (1983) to
describe the wake velocity, although the applicability of this model for wakes of
yawed turbines is questionable.

Most of the aforementioned studies on far wakes of yawed turbines have been done
from a pragmatic point of view. In other words, they essentially aimed at finding the
amount of the wake deflection in different conditions, and whether or not the yaw-
angle control can improve the wind farm power production. Despite the merit of those
studies, many valuable insights could emerge from a more in-depth theoretical analysis
of turbine wakes in yawed conditions. In addition to providing a better understanding,
such theoretical analysis can ultimately help us develop more robust and accurate
analytical models.

In the present work, detailed wind tunnel measurements are used to study the
wake of a yawed wind turbine placed in a neutrally stratified boundary layer.
Highly spatially resolved velocity measurements, together with thrust and power
measurements, enable us to systematically study the interaction of the wake of the
model turbine with the incoming turbulent boundary layer. These experimental data are
then taken to study the budget of the steady-state continuity and Reynolds-averaged
Navier–Stokes (RANS) equations. This budget study reveals some valuable features
of turbine wakes in yawed conditions. In addition, the simplification of RANS
equations results in the approximate governing equations upon which an inexpensive
analytical model is built. This analytical model intends to acceptably predict the
velocity distribution in the wake of a yawed turbine under different conditions.

The remainder of this paper is organized as follows. In § 2, the experimental set-up
and some key measurements are shown. The budget study of governing equations is
then presented in § 3. Section 4 is dedicated to examining the self-similarity for wakes
of yawed turbines. An analytical model for the prediction of the far-wake velocity
is then developed in § 5, and the required wake characteristics in the onset of the
far-wake region are specified in § 6. The model predictions and the comparison with
wind tunnel measurements are shown in § 7. Finally, a summary is presented in § 8.

2. Wind tunnel measurements

Experiments were performed in the new closed-loop boundary-layer wind tunnel
at the WIRE Laboratory of EPFL. The test section, designed for atmospheric
boundary-layer studies, is 2.0 m high, 2.6 m wide and 28 m long. There is a
contraction with a 5:1 area ratio upwind of the test section, and the tunnel is driven
by a 130 kW fan. The turbulence intensity in the centre of the wind tunnel (free
stream) is lower than 0.1 %. The turbulent boundary layer is naturally developed
over the wind tunnel floor thanks to the long test section. In the current study, the
measurements were performed approximately 22 m downstream of the test section
entrance. The time-averaged incoming velocity at the hub height of the turbine
ūh is kept constant at 4.88 m s−1. Figure 1(a,b) shows the vertical profiles of the
normalized mean streamwise velocity ū/ūh and the streamwise turbulence intensity I
in the boundary layer in absence of the turbine obtained with hot-wire anemometry.
The boundary-layer thickness is approximately 0.4 m at the turbine location. The
aerodynamic surface roughness length and the friction velocity were found to be
z0 = 0.022 mm and u∗ = 0.19 m s−1, respectively, based on fitting a logarithmic
velocity profile to the measured velocity profile in the surface layer (approximately
lowest 15 % of the boundary layer) as shown in figure 1(c).
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FIGURE 1. Characteristics of the incoming turbulent boundary layer: (a) the normalized
mean streamwise velocity profile, and (b) the streamwise turbulence intensity profile.
The horizontal dashed lines represent the turbine hub height. (c) The normalized mean
streamwise velocity profile in a semi-logarithmic scale. The solid line shows the fitted
logarithmic profile.

A high-resolution stereoscopic particle image velocimetry (S-PIV) system from
LaVision was used to measure three velocity components downstream of the turbine
in the horizontal plane at hub height, i.e. xy plane, where x and y denote streamwise
and spanwise directions, respectively. Two 29MP 12-bit charge-coupled device
(CCD) cameras (6600× 4400 pixels) together with 105 mm lenses were installed on
Scheimpflug mountings to maximize the focused area in the field of view (FOV). The
area and spatial resolution of the FOV are 4d× 2.5d and 0.015d, respectively, where
d is the diameter of the wind turbine (15 cm). Data were sampled at a frequency
of 1 Hz. The measurements were performed in three FOVs with some overlapping
to capture the wake flow in a broad streamwise range from the near-wake (0.4d)
to the far-wake region (12d). The mean velocity field was obtained by ensemble
averaging 800 to 1000 instantaneous velocity fields. In addition to this PIV set-up,
S-PIV measurements were performed in planes normal to the incoming flow (i.e. yz
planes, where z denotes the vertical direction) at few selected downwind locations,
mainly to study the structure of the wake cross-section under yawed conditions. Two
16-bit sCMOS cameras (2560 × 2160 pixels) were used to capture the wake flow
in FOVs with the size of 3d × 2d and the spatial resolution of 0.023d. Data were
sampled at a frequency of 10 Hz. The mean velocity field was obtained by ensemble
averaging 1200 instantaneous velocity fields.

The model wind turbine used in this experiment was designed and built at the
WIRE laboratory of EPFL. This horizontal-axis turbine is three bladed, with a
diameter of 15 cm. The blade profile is a 5 % thick plate with a 5 % circular arc
camber. The height of the turbine hub above the floor is 12.5 cm. The blockage ratio
of the wind turbine model to the wind tunnel cross-sectional area is less than 0.004,
indicating that the confinement effect of the wind tunnel walls on the turbine wake
is negligible. The turbine rotor drives a small direct current (DC) generator to extract
the energy from the wind. The tower of the turbine was mounted on a multi-axis
strain gauge sensor to measure the thrust force exerted by the wind on the model
turbine. The tip-speed ratio was also varied by applying different electrical loads on
the generator attached to the turbine rotor.

Figure 2 shows the variation of the thrust coefficient CT and power coefficient Cp
of the wind turbine versus tip-speed ratio for different yaw angles. The value of CT
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FIGURE 2. Turbine performance versus tip-speed ratio (thrust coefficient CT (a) and
power coefficient Cp (b)) for different yaw angles: γ = 0◦ (circle), γ = 10◦ (diamond),
γ = 20◦ (square), and γ = 30◦ (triangle). For red coloured points, PIV measurements were
performed.

is calculated by (1.2) and Cp is calculated by

Cp = QΩ

0.5ρ
(π

4
d2
)

ū3
h

, (2.1)

where Q is the torque generated by the rotor, and Ω is the rotational velocity of the
rotor. The value of the generated torque Q is estimated by multiplying the generated
electrical current by the torque constant of the DC-generator. The rotational velocity
Ω is measured by the digital encoder attached to the DC-generator.

Figure 2 shows that both the thrust force and the generated power clearly decrease
as the yaw angle increases which is expected and in agreement with previous studies
(e.g. Krogstad & Adaramola 2012).

For each yaw angle, the wake-flow measurements were performed for two different
tip-speed ratios: (i) the tip-speed ratio of the turbine when the electrical circuit
connected to the generator is open, so the turbine rotates freely. This tip-speed ratio
is called λf later on in this paper. (ii) The tip-speed ratio at which the turbine has
the maximum power production, and it is called the optimal tip-speed ratio λo in the
following. λf and λo for each yaw angle are indicated in figure 2 with red coloured
points. For the sake of brevity, however, the following discussions will focus mostly
on the data related to the optimal tip-speed ratio λo, unless otherwise stated.

Figure 3 shows contours of the normalized mean streamwise velocity ū/ūh for
different yaw angles (γ = 0◦, 10◦, 20◦ and 30◦) in the horizontal plane at hub height.
It can be seen that the wake velocity deficit reduces as the yaw angle increases
because of the reduction in the total thrust force of the turbine (see figure 2). White
dots in the figure show the loci of the maximum velocity deficit in the measured PIV
plane at different downwind locations. As expected, the wake deflection increases
with the increase of yaw angle. The black lines in the figure show the initial wake
deflection predicted by Coleman et al. (1945). This study is further discussed in § 6.
Moreover, the white lines in figure 3 show the wake deflection predicted by the work
of Jiménez et al. (2010), described by equation (1.1). As shown in the figure, this
model considerably overestimates the wake trajectory for all cases. One can indeed
improve the predictions by empirically adjusting the coefficient ζ in (1.1) for each
case. However, this case specificity highlights the need for more realistic and robust
modelling of turbine wakes in yawed conditions.
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FIGURE 3. Contours of the normalized mean streamwise velocity ū/ūh in the horizontal
plane at hub height downwind of a turbine for different yaw angles (γ = 0◦, 10◦, 20◦
and 30◦) at λ= λo. White dots and white lines represent the wake-centre trajectory in the
horizontal plane obtained from the wind tunnel measurements and Jiménez et al. (2010)
(1.1), respectively. Black lines show the initial wake deflection predicted by Coleman et al.
(1945) (6.12). Overlapped locations of PIV planes are indicated by vertical dashed lines.

Although it is difficult to accurately predict the wake deflection, its cause can be
explained simply by the conservation of momentum. A yawed turbine exerts a lateral
force on the incoming airflow. Based on momentum conservation, this lateral force
induces a spanwise wake velocity. This can be confirmed by figure 4 that shows
contours of the normalized spanwise velocity v̄/ūh for two different yaw angles
(γ = 0◦ and 30◦). As a result of this strong spanwise velocity distribution, the wake
of a yawed turbine deflects to one side. It is also interesting to note that the peak of
spanwise velocity surprisingly does not occur where the streamwise velocity deficit is
maximum. This will be elucidated in the following section. In fact, it will be shown
later in § 3.2 that, based on the budget study of RANS equations, the spanwise
velocity distribution has to be asymmetric with respect to the wake centre.

Next, figure 5 shows contours of the normalized velocity deficit 1ū/ūh overlaid
with vectors of in-plane velocity components in four yz planes located at different
downwind locations (x/d = 2, 4, 6 and 8) for five different yaw angles (γ = 0◦, 10◦,
20◦, 30◦ and −30◦). The wake centre, defined as the point where the velocity deficit
is maximum at each downwind location, is also shown by white dots in the figure.

As seen in the figure, a counter-rotating vortex pair (CVP) is formed as the wake
moves downstream for higher yaw angles, so the wake has a kidney-shaped cross-
section in the far-wake region. In addition to the current study, this kidney-shaped
cross-section has been very recently reported for the wake of a yawed porous disk
in uniform flows performed by Howland et al. (2016). However, no explanation
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FIGURE 4. Contours of the normalized mean spanwise velocity (v̄/ūh) in the horizontal
plane at hub height downwind of a turbine for two different yaw angles (γ = 0◦, and 30◦)
at λ = λo. Black dots represent the wake centre trajectory in the horizontal plane, and
overlapped locations of PIV planes are indicated by vertical dashed lines.
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FIGURE 5. Contours of the normalized streamwise velocity deficit in yz planes at different
downwind locations and different yaw angles for a turbine operating at λ = λo. Black
circles indicate the frontal area of the wind turbine and white dots represent the wake-
centre position at each downwind location. The vector field represents the in-plane velocity
components.
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FIGURE 6. Contours of the terms of the mean continuity equation (3.1) in the horizontal
plane at hub height for two different yaw angles (γ = 0◦, and 30◦) at λ = λo. Contours
are non-dimensionalized with ūh and d. Black dots represent the locus of the maximum
velocity deficit in the measured plane, and overlapped locations of PIV planes are
indicated by vertical dashed lines.

regarding the formation mechanism of the CVP was provided in the mentioned
study. The budget study of mean continuity equation will be employed in § 3.1 to
explain the mechanism leading to the CVP under highly yawed conditions. Moreover,
the wake centre is observed to move vertically for high yaw angles (e.g. γ = 30◦)
and, more interestingly, the direction of this vertical displacement depends on the
yaw-angle direction. This will be elaborated in § 3.1.

3. Governing equations
3.1. Continuity equation

The mean continuity equation is

∂ ū
∂x︸︷︷︸
(I)

+ ∂v̄

∂y︸︷︷︸
(II)

+ ∂w̄
∂z︸︷︷︸
(III)

= 0, (3.1)

where u, v and w are the streamwise, spanwise and vertical velocities, respectively,
and the overbar denotes ensemble averaging. Figure 6 shows contours of the terms of
(3.1) in the horizontal plane at hub height of a turbine operating at two different yaw
angles (γ = 0◦ and 30◦). All the terms shown in the figure are normalized with respect
to the averaged incoming velocity at hub height ūh and the rotor diameter d. Note that
only variations in the x and y directions can be calculated with S-PIV measurements
in a horizontal plane, so term (III) shown in figure 6 is calculated based on the fact
that (3.1) has to be balanced. The figure shows that although the terms of (3.1) are
of the same order of magnitude for the non-yawed turbine, terms (II) and (III) are
considerably bigger than term (I) in the far-wake region under yawed conditions.

In the following, the scale analysis of (3.1) will be used to explain the fundamental
difference between the structure of wakes under non-yawed versus yawed conditions.
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The velocity scale ũs for the variation of ū can be defined as the maximum velocity
deficit at each streamwise position (Tennekes & Lumley 1972). Thus, we can write
∂ ū/∂x= O(ũs/L), where L denotes the scale of change in the x direction. Moreover,
we define the velocity scale ṽs for the variation of v̄ which is equal to the maximum
value of v̄ at each streamwise position. This leads to ∂v̄/∂y=O(ṽs/l), where l is the
cross-stream scale, and l/L→ 0 in far wakes. One possibility is to assume that terms
(I) and (II) in (3.1) are of the same order of magnitude which leads to the conclusion
that ṽs= ũsl/L. This means that ṽs is considerably smaller than ũs in far wakes which
occurs under non-yawed conditions (see figure 4). Equation (3.1) also implies that w̃s,
the velocity scale for the variation of w̄, cannot be higher than ũsl/L in this case.

For higher yaw angles, however, ṽs cannot be assumed negligible compared to
ũs. As already discussed, based on momentum conservation, ṽs is generated due to
the lateral component of the thrust force (i.e. ≈T sin γ ), whereas ũs is due to the
streamwise component of the thrust force (i.e. ≈T cos γ ). As a result, if the yaw
angle is large enough (i.e. tan γ → 1), we can write ṽs ≈ ũs. In this case, term (II)
in (3.1) is considerably bigger than term (I), and consequently it has to be balanced
with term (III). In other words, the continuity equation in the far wake of a rotor
with a high yaw angle is reduced to

∂v̄

∂y
+ ∂w̄
∂z
≈ 0. (3.2)

Equation (3.2) states that the strong variation of v̄ in the y direction that occurs
in wakes of turbines with a high yaw angle results in a strong variation of w̄ in
the z direction, which in turn alters the shape of the wake cross-section. In fact, we
hypothesize that the formation of the CVP presented in figure 5 can be explained with
the analysis of (3.2). This is demonstrated in the schematic of the wake cross-section
shown in figure 7. For the sake of simplicity, the incoming flow is assumed to be
uniform and the wake rotation and ground effects are ignored for now but will be
addressed later. In this regard, the horizontal line at the hub height can be considered
as a symmetry line with w̄ = 0. Point A in figure 7 signifies the position where v̄
is maximum and, as already seen in figure 4, it does not occur in the locus of the
maximum velocity deficit shown by point C in figure 7. On the left side of point A
(region I), ∂v̄/∂y> 0 and from (3.2), ∂w̄/∂z< 0. On the other hand, ∂v̄/∂y< 0 and
∂w̄/∂z> 0 on the right side of point A (region II). As a result, w̄ becomes negative
in region I and positive in region II. This spatial distribution of v̄ and w̄ induces
flow rotation as shown by solid arrows in the figure. At the wake edge shown by the
horizontal dotted line in the figure, the induced spanwise velocity v̄ due to yawing the
turbine becomes negligible, but the vertical component of velocity w̄ is still non-zero
and variable due to the flow rotation mentioned above. In order to satisfy continuity,
the flow rotation has to be therefore complete, as shown by dotted arrows in the figure.
With a similar argument, the presence of a counter-rotating vortex in the lower half
of the wake cross-section can be expected.

A general conclusion that can be drawn by the aforementioned discussion is that
any type of free shear flow with a strong variation of cross-wind velocity experiences
the formation of CVP to satisfy the continuity. For instance, the presence of CVP
in the cross-section of cross-flow jets can be justified similarly. Several different
mechanisms for the formation of the CVP in cross-flow jets have been suggested
in the literature (e.g. Broadwell & Breidenthal 1984; Kelso, Lim & Perry 1996;
Cortelezzi & Karagozian 2001; Muppidi & Mahesh 2006; Marzouk & Ghoniem 2007).
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FIGURE 7. Schematic figure of the mechanism leading to the formation of the CVP.

See the review of Mahesh (2013) for more information in this context. However, to
our best knowledge, it is the first time that mass conservation is used to explain the
formation of the CVP. Indeed, it will be of great interest to further investigate the
validity of our suggested mechanism leading to the CVP for other types of similar
flows in future studies.

As mentioned earlier, the wake rotation and the presence of the ground are ignored
in the idealized schematic figure of the wake cross-section shown in figure 7. In the
following, we will examine how the CVP interacts with the ground and the wake
rotation. For the sake of simplicity, we reduce the problem to a two-dimensional
potential flow in the yz plane, where the CVP is modelled with counter-rotating
vortices of strength Γ , and the wake rotation is modelled with a vortex of strength
Γ ′. Moreover, the presence of the ground is modelled by the method of images (see
White (2009) for more information). By using the complex variable ξ = y+ iz, where
i= (−1)1/2, the complex potential f (ξ) for this problem can be written as

f (ξ) = iΓ
2π
(−ln(ξ − ξ1)+ ln(ξ − ξ2)+ ln(ξ − ξ̄1)− ln(ξ − ξ̄2))

+ iΓ ′

2π
(−ln(ξ − ξ0)+ ln(ξ − ξ̄0)), (3.3)

where ξ0, ξ1 and ξ2 are the positions of the wake centre and upper and lower vortices
of the CVP, respectively, and the overbar denotes the complex conjugate. To find the
velocities at each position, one can simply differentiate f (ξ), so

df
dξ
= v − iw. (3.4)
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FIGURE 8. Wake-centre displacement predicted by the potential theory. Red curves show
the displacement of the wake centre, and blue ones show the displacement of the CVP.
The horizontal dashed lines indicate the initial position of the wake centre which is equal
to the normalized turbine hub height zh/d. The initial position of the pair of vortices is
zh/d± 0.5. Vectors show the flow field at t= 1.5 s.

It is worth recalling that the superposition of potential flow solutions implies that each
vortex is displaced by the other vortices, so the velocity at each vortex centre is only
due to the other vortices. Once the velocities are known, the vortices’ displacements
over time can be found by

dξ = dy+ idz=
∫ t

0
v dt+ i

∫ t

0
w dt, (3.5)

which can be solved numerically. The results are shown in figure 8 for different
values of Γ and Γ ′ over an arbitrarily chosen time period of t= 1.5 s. For the given
time period, the wake-centre’s displacement is shown by a red curve in each figure,
while the displacements of the CVP are indicated by blue curves. The initial vertical
positions of vortices are selected rather similar to their real positions in wakes of
yawed turbines. Note also that Γ and Γ ′ are assumed to be constant over the time
for the sake of simplicity although both change in real situations.

In figure 8(a,b), the wake rotation is set to zero (i.e. Γ ′= 0), so that the sole effect
of the ground can be studied for both negative and positive Γ , which correspond to
positive and negative yaw angles, respectively. The figures show that the wake centre
tends to slightly move upward with the same magnitude for both positive and negative
yaw angles. If the wake rotation is taken into account, figure 8(c,d), however, shows
that the vertical displacement of the wake centre can be either upward or downward
depending on the direction of the wake rotation with respect to the one of the CVP.
As can be seen in the figures, the wake rotation makes the wake centre move upward
if Γ and Γ ′ have the same sign, and vice versa. It is also interesting to note that the
magnitude of the wake-centre displacement is smaller in both horizontal and vertical
directions in figure 8(d) compared to the one in figure 8(c) which is consistent with
the wind tunnel measurements shown in figure 5. This is due to the fact that the
wake rotation and ground effects act against each other in figure 8(d). The accurate
prediction of the wake-centre displacement for real situations is obviously not possible
via this simple method based on the potential theory. However, the comparison of
figures 5 and 8 reveals that the employed method can provide useful insights on the
origin and behaviour of the wake-centre vertical displacement observed for wakes of
turbines with high yaw angles.

The vertical displacement of the wake centre increases the net wake deflection under
yawed conditions, which potentially can further mitigate wake effects on downwind
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FIGURE 9. Contours of the terms of the x-RANS equation (3.6) measured in the
horizontal plane at hub height for two different yaw angles (γ = 0◦, and 30◦) at λ= λo.
Contours are non-dimensionalized with ū2

h and d. Black dots represent the locus of the
maximum velocity deficit in the measured plane, and overlapped locations of PIV planes
are indicated by vertical dashed lines.

turbines. As discussed earlier, the direction of this vertical displacement depends on
the yaw-angle direction for rotating wakes (e.g. wind turbine wakes). The wake can
therefore be pushed towards the ground if the yaw angle is selected accordingly.
This situation might be favourable in very large wind farms as the kinetic energy is
transferred mainly from higher regions in the boundary layer towards wind turbines
(Cal et al. 2010; Calaf, Meneveau & Meyers 2010; Lu & Porté-Agel 2011; Abkar
& Porté-Agel 2013). On the other hand, yawing the turbine in the opposite direction
moves the wake upward which leads to a slightly bigger wake deflection as shown
in figures 5 and 8. Moreover, the upward motion of the wake may reduce the shear
in the incoming flow and lead to a more uniform flow, which in turn can reduce
unsteady loads on the blades of downwind turbines. It is, therefore, unclear at this
stage which yaw-angle direction is more suitable, but this topic definitely deserves
more attention in future studies. Note also that the vertical displacement of the wake
centre reduces with the decrease in yaw angle (see figure 5) simply because the CVP
weakens for lower yaw angles.

3.2. Reynolds-averaged Navier–Stokes (RANS) equations
The RANS equation in the streamwise direction at high Reynolds numbers is (Pope
2000)

ū
∂ ū
∂x︸︷︷︸
(I)

+ v̄ ∂ ū
∂y︸︷︷︸
(II)

+ w̄
∂ ū
∂z︸︷︷︸
(III)

=− 1
ρ

∂ p̄
∂x︸ ︷︷ ︸

(IV)

− ∂u′2

∂x︸︷︷︸
(V)

− ∂u′v′

∂y︸ ︷︷ ︸
(VI)

− ∂u′w′

∂z︸ ︷︷ ︸
(VII)

, (3.6)

where primes indicate turbulent fluctuations and p is the static pressure. Figure 9
shows contours of the terms in (3.6) measured in the horizontal plane at hub height
for the wake of a turbine operating at two different yaw angles (γ = 0◦ and 30◦).
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FIGURE 10. Contours of the terms of the x-RANS equation (3.6) measured in a yz plane
at x/d = 6 for two different yaw angles (γ = 0◦, and 30◦) at λ = λo. Contours are non-
dimensionalized with ū2

h and d. Black circles indicate the frontal area of the wind turbine.
The vector field represents in-plane velocity components.

Additionally, the contours of the terms of (3.6) measured in a yz plane at x/d = 6
are shown in figure 10 for two different yaw angles (γ = 0◦ and 30◦). On the line of
intersection of the xy and yz PIV planes, all the terms of (3.6) except the pressure one,
term (IV), can be calculated. Figure 11 shows the lateral profiles of all the measured
terms on the line of intersection at x/d = 6 for a turbine with γ = 30◦. Firstly, the
residual that is basically equal to the pressure term (term (IV)) in (3.6) is seen to be
small. We, therefore, neglect this term compared to the dominant terms of (3.6) in
the remainder of this paper. Secondly, figure 11 shows that terms (I), (II) and (VI)
are bigger than the other terms at hub height. In order to quantify the change of
these terms by moving downstream, the maximum of their normalized magnitude in
the horizontal plane at hub height is plotted as a function of downwind distance in
figure 12 for γ = 0◦ and 30◦. It can be seen that in the near wake of a yawed turbine,
the convective terms are considerably higher than the shear stress term. The convective
terms, however, diminish quickly as the wake moves downstream, and thus the shear
stress becomes noteworthy in the far-wake region. In other words, the wake of a
yawed turbine changes from a flow mostly dominated by gradients of mean velocities
in the near wake to a turbulent free shear flow in the far wake, and it ultimately
asymptotes to the wake of a non-yawed turbine.

Further analysis of (3.6) can reveal some important features of turbine wakes in
yawed conditions. Multiplying the continuity equation (3.1) by ū and then subtracting
the resultant equation from (3.6) yields

v̄
∂ ū
∂y
− ū

∂v̄

∂y
+ w̄

∂ ū
∂z
− ū

∂w̄
∂z
=−∂u′2

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z
. (3.7)
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FIGURE 11. Lateral profiles of the terms of the x-RANS equation (3.6) at x/d= 6 for
γ = 30◦ and λ= λo. Profiles are non-dimensionalized with ū2

h and d.
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FIGURE 12. Variation of the maximum values of the dominant terms of the x-RANS
equation (3.6) at hub height as a function of the downwind distance for two different
yaw angles (γ = 0◦ and 30◦) at λ= λo. Profiles are non-dimensionalized with ū2

h and d.

As shown in figures 9 and 11, the first term on the right-hand side of the equation
is negligible compared to the other terms. Moreover, u′v′ and u′w′ in the second
and third terms on the right-hand side can be modelled with −νT(∂ ū/∂y) and
−νT(∂ ū/∂z), respectively, where νT is the turbulent viscosity. The left-hand side can
also be rearranged based on the quotient derivative rule, which yields

∂(v̄/ū)
∂y
+ ∂(w̄/ū)

∂z
=−νT

ū2

∂2ū
∂y2
− νT

ū2

∂2ū
∂z2

. (3.8)

v̄/ū in the above equation is equal to arctan θ , where θ denotes the wake skew
angle with respect to the streamwise direction. Our wind tunnel measurements as
well as LES data (Jiménez et al. 2010) show that θ is always small even in extreme
conditions (much smaller than 10◦ even at γ = 30◦ and CT = 0.8), so tan θ ≈ θ and
v̄/ū can be replaced with θ in (3.8). The above equation can be therefore written as

∂θ

∂y
+ ∂(w̄/ū)

∂z
=−νT

ū2

∂2ū
∂y2
− νT

ū2

∂2ū
∂z2

. (3.9)

In appendix A, (3.9) is employed to mathematically prove that ∂ ū/∂y has an extremum
(i.e. ∂2ū/∂y2 = 0) if the skew angle has an extremum (i.e. ∂θ/∂y = 0). The proof
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FIGURE 13. Variation of θ , (1/ūh)(∂ ū/∂(y/d)) and (ū/ūh) in the spanwise direction at
three different downwind positions (x/d = 3, 4, and 5) for a turbine with γ = 30◦ and
λ= λo.

is provided for the wake of a turbine with a low yaw angle and a uniform inflow.
However, figure 13 shows that this finding is in good agreement with the PIV data
even for the turbine wake with γ = 30◦ in boundary-layer inflow conditions. In fact,
it can be seen in the figure that the maximum value of θ is in one side of the
wake rather than the wake centre, and it exactly occurs where ∂2ū/∂y2 = 0. It seems
that there is another extremum for θ profiles on the other side of the wake where
∂2ū/∂y2= 0 but it is difficult to comment on that as the magnitude of θ is very small
on that side. It is worth mentioning that this finding, purely based on the x-RANS
and continuity equations, is likely to be valid for other similar free shear flows such
as inclined jets in cross-flow.

This asymmetric distribution of the skew angle with respect to the wake centre can
also provide more insight on the origin of the wake deflection for yawed turbines. As
shown in figure 11, terms (I), (II) and (VI) are the dominant terms of (3.6) at hub
height in the far wake of a yawed turbine. They can be readily rewritten as

∂ ū
∂x
≈ νT

ū
∂2ū
∂y2
− θ ∂ ū

∂y
. (3.10)

The first term on the right-hand side of (3.10) is approximately symmetric with respect
to the wake centre. The maximum value of the second term on the right-hand side,
however, occurs where θ is maximum (see figure 13). As a result, the term on the
left-hand side of (3.10), ∂ ū/∂x, has to be asymmetric with respect to the wake centre
so that the equation remains balanced. This implies that the wake velocity recovers
faster on the side of the wake in which θ is bigger and, as a consequence, the wake
shifts to the opposite side as it moves downstream. In other words, the wake deflection
for yawed turbines cannot occur unless θ has an asymmetric distribution with respect
to the wake centre.

The RANS equation in the spanwise direction at high Reynolds numbers is

ū
∂v̄

∂x︸︷︷︸
(I)

+ v̄ ∂v̄
∂y︸︷︷︸
(II)

+ w̄
∂v̄

∂z︸︷︷︸
(III)

=− 1
ρ

∂ p̄
∂y︸ ︷︷ ︸

(IV)

− ∂u′v′

∂x︸ ︷︷ ︸
(V)

− ∂v
′2

∂y︸︷︷︸
(VI)

− ∂v
′w′

∂z︸ ︷︷ ︸
(VII)

. (3.11)
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FIGURE 14. Contours of the terms of the y-RANS equation (3.11) measured in the
horizontal plane at hub height for two different yaw angles (γ = 0◦ and 30◦) at λ = λo.
Contours are non-dimensionalized with ū2

h and d. Black dots represent the locus of the
maximum velocity deficit in the measured plane, and overlapped locations of PIV planes
are indicated by vertical dashed lines.

Contours of the terms of (3.11) measured in the horizontal plane are shown in
figure 14. In addition, contours of the terms of (3.11) measured in a yz plane at
x/d = 6 are shown in figure 15. It can be seen that ∂v′2/∂y is generally bigger than
the other terms, particularly in the far-wake region. This term is likely to be balanced
with the pressure gradient term (term (IV)) which is the only term of (3.11) not
measured in the present work. Note that these two terms are also in balance in the
two-dimensional boundary-layer form of RANS equations (Pope 2000).

3.3. Integral form of RANS equations
The integral form of the RANS equation in the streamwise direction has been
extensively used in classical studies of bluff-body wakes (see Tennekes & Lumley
1972; Pope 2000; Johansson, George & Gourlay 2003). As the mean incoming
velocity ū∞ is only a function of z, equation (3.6), after neglecting the pressure term,
can be written as

ū
∂(ū∞ − ū)

∂x
+ v̄ ∂(ū∞ − ū)

∂y
+ w̄

∂(ū∞ − ū)
∂z

= ∂u′2

∂x
+ ∂u′v′

∂y
+ ∂u′w′

∂z
+ w̄

dū∞
dz

. (3.12)

Equation (3.12) can also be written in conservative form. In order to do that, we
multiply the continuity equation (3.1) by (ū∞− ū) and then add the resultant equation
to the left-hand side of (3.12). We obtain

∂ ū(ū∞ − ū)
∂x

+ ∂v̄(ū∞ − ū)
∂y

+ ∂w̄(ū∞ − ū)
∂z

= ∂u′2

∂x
+ ∂u′v′

∂y
+ ∂u′w′

∂z
+ w̄

dū∞
dz

. (3.13)

In order to integrate (3.13) with respect to y and z from −∞ to ∞, we neglect the
presence of the ground. Note that, however, this assumption might be questionable
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FIGURE 15. Contours of the terms of the y-RANS equation (3.11) measured in a yz plane
at x/d = 6 for two different yaw angles (γ = 0◦ and 30◦) at λ = λo. Contours are non-
dimensionalized with ū2

h and d. Black circles indicate the frontal area of the wind turbine.
The vector field represents the in-plane velocity components.

for very far-wake regions, where the wake clearly hits the ground. Integrating (3.13)
leads to(

d
dx

∫ ∞
−∞

∫ ∞
−∞
[ū(ū∞ − ū)− u′2] dy dz

)
−
∫ ∞
−∞

∫ ∞
−∞

w̄
dū∞
dz

dy dz= 0. (3.14)

The last term of the above equation can be neglected if: (i) the velocity gradient
dū∞/dz of the incoming boundary layer is not very large and (ii) the yaw angle is
not very high. Note that from the discussion of § 3.1, w̄ is much smaller than the
streamwise velocity deficit in the far-wake region for low yaw angles. Additionally,
as shown in figure 9, the variation of u′2 in the streamwise direction is considerably
smaller than the streamwise convective term, so it can be neglected in (3.14). Thus,
(3.14) can be approximated as

d
dx

∫ ∞
−∞

∫ ∞
−∞
[ū(ū∞ − ū)] dy dz≈ 0. (3.15)

This well-known equation states that the streamwise momentum deficit flow rate is
conserved and independent of the downwind location.

To predict the wake deflection for a yawed turbine, we also need the integral form
of the RANS equation in the spanwise direction. Multiplying the continuity equation
(3.1) by v̄ and then adding the resultant equation to the left-hand side of (3.11)
leads to

∂ ūv̄
∂x
+ ∂v̄v̄
∂y
+ ∂w̄v̄

∂z
=− 1

ρ

∂ p̄
∂y
− ∂u′v′

∂x
− ∂v

′2

∂y
− ∂v

′w′

∂z
. (3.16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

59
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.595


Experimental and theoretical study of yawed-turbine wakes 523

Integrating with respect to y and z from −∞ to ∞, we obtain

d
dx

∫ ∞
−∞

∫ ∞
−∞
(ūv̄ + u′v′) dy dz= 0. (3.17)

It is interesting to note that both dominant terms of the differential form of the
spanwise momentum equation (terms (IV) and (VI) in (3.11)) are eliminated in its
integral form (3.17). As no specific assumption is made to develop (3.17), it can
be used for similar type of flows such as the wakes of airfoils or inclined jets in
cross-flow. To our knowledge, our work is the first study that analyses the budget
of RANS equations in both streamwise and spanwise directions for a turbine wake,
and also develops the integral form of RANS equation in the spanwise direction.
Equation (3.17) can be simplified since the shear stress term is generally smaller than
the advection term for a yawed turbine (see figure 14). v̄ can be also replaced with
ūθ , hence

d
dx

∫ ∞
−∞

∫ ∞
−∞

ū2θ dy dz≈ 0. (3.18)

The above equation states that the flow rate of spanwise momentum is conserved,
regardless of the downwind location.

4. Self-similarity
It is well known that bluff-body wakes achieve self-similarity at a certain downwind

distance. This means that the velocity deficit 1ū profiles normalized by the maximum
velocity deficit 1ūc against y∗/σ collapse onto a single curve for different downwind
locations (Tennekes & Lumley 1972), where σ is the characteristic width of the wake
and y∗ is the lateral distance from the wake centre. Different possible ways were
introduced in the literature to define the characteristic width of the wake: (i) the wake
half-width r1/2, where the velocity deficit is half of its maximum value (Pope 2000),
(ii) the position where the velocity is 99 % of the incoming velocity and (iii) the
standard deviation of a Gaussian fit of the velocity-deficit profile (Bastankhah & Porté-
Agel 2014). The first two methods are rather sensitive to the measurement uncertainty
and the latter only works accurately for purely Gaussian profiles. If spatially resolved
wake velocity profiles (e.g. from LES or PIV data) are available, the below equation
does not have the mentioned limitations, and it can provide a more robust definition
for the wake width:

σy = 1√
2π(ū∞ − ūc)

lim
y→∞

∫ y

−y
(ū∞ − ū) dŷ, (4.1)

where σy is the wake width in y direction, ūc is the velocity of the wake centre and ŷ
is the integration variable. The integral can be calculated numerically to find the wake
width at each downstream position. An equation similar to (4.1) can be also written
for the wake width in the vertical direction. Note that for a pure Gaussian profile,
(4.1) reduces to the standard deviation of the profile.

Previous studies showed that the velocity profiles in turbine wakes with zero
yaw become self-similar rather quickly (Bastankhah & Porté-Agel 2014; Abkar &
Porté-Agel 2015; Xie & Archer 2015). Figure 16(a) shows the lateral profiles of the
normalized velocity deficit for the wake of a yawed turbine. As seen in the figure,
despite the wake deflection, the wake of yawed turbines exhibits some degree of
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FIGURE 16. The self-similar lateral profiles of (a) velocity deficit, and (b) wake skew
angle at different downwind positions in the wake of a turbine with γ = 30◦ and λ= λo.

self-similarity in the horizontal plane at hub height. As mentioned earlier, one side
of the wake (the left side in figure 16a) is influenced by the strong spanwise velocity
distribution which makes the wake velocity profile slightly skewed and, as a result,
the degree of self-similarity is inferior in this side. However, the figure shows that
in general self-similarity can be assumed for lateral velocity profiles in the far-wake
region. Additionally, akin to bluff-body wakes, a Gaussian distribution, written as

1ū
1ūc
= e−0.5(y∗/σy)

2
, (4.2)

acceptably fits the self-similar velocity profiles for most of the wake except the
edges. In addition to the velocity profiles, the lateral profiles of the wake skew angle
θ exhibit self-similarity to some extent, as shown by figure 16(b). Although the
collapse of the θ -profiles is not as remarkable as the one for the velocity profiles,
the figure shows that a Gaussian curve can be still used to approximately express the
variation of θ . The centre of the fitted Gaussian curve for θ profiles, however, lies
somewhere close to y∗=−σy. Note that the peak value of θ should be located exactly
at y∗ = −σy for a pure Gaussian velocity profile given the fact that at this lateral
position ∂2ū/∂y2 = 0, and θ is thus maximum according to (3.9) and confirmed in
figure 13. This small difference seen in the figure is due to the moderately asymmetric
distribution of the velocity profiles discussed earlier. The wake skew angle distribution
in the y direction can be therefore approximated by

θ

θm
= e−0.5(y∗/σy+1)2, (4.3)

where θm is the maximum skew angle at each downwind location.
The value of the wake width at each downstream position is very important

as it is used to examine self-similarity. Furthermore, the proper estimation of its
variation with the downwind distance is critical for the accurate prediction of the
wake velocity distribution. In the absence of ambient turbulence, classical theories
of free shear flows (see Tennekes & Lumley 1972; Pope 2000) state the well-known
fact that three-dimensional turbulent wakes of bluff bodies such as disks and spheres
grow proportional to x−1/3, and the velocity deficit decays with x as x−2/3. Far wakes
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FIGURE 17. Variation of the normalized lateral wake width σy/d for λ=λo: γ = 0◦ (plus),
γ = 10◦ (circle), γ = 20◦ (asterisk), γ = 30◦ (square). Fitted lines with the slope of 0.022
are shown by blue lines.

of wind turbines are also shown to behave similarly under laminar inflow conditions
(Dufresne & Wosnik 2013; Okulov et al. 2015). The evolution of wake flows is,
however, considerably modified in the case of turbulent inflow conditions (Wu &
Faeth 1994; Bagchi & Balachandar 2004; Amoura et al. 2010). Different numerical
and experimental studies on wakes of spheres (e.g. Legendre, Merle & Magnaudet
2006), cylinders (e.g. Eames, Jonsson & Johnson 2011b) and wind turbines (see
Bastankhah & Porté-Agel 2014; Johnson et al. 2014) showed that turbulent far wakes
grow approximately linearly with x in the presence of ambient turbulence. Eames
et al. (2011a) tried to mathematically model the interaction of the ambient turbulence
with wake flows. They suggested that the wake grows linearly with x and the wake
growth rate is proportional to the incoming streamwise turbulence intensity provided
that: (i) the velocity deficit is comparable or smaller than the standard deviation of
the incoming velocity and (ii) the wake radius is not bigger than the integral length
scale of the incoming flow. In turbulent boundary-layer flows, both of these conditions
are expected to be fulfilled for a broad streamwise range in turbine far wakes.

Figure 17 shows the wake width variation with the downwind distance calculated by
(4.1) for different yaw angles. It can be seen that the wake width varies approximately
linearly in the far-wake region for different yaw angles which is consistent with
previous studies as the incoming flow is turbulent. In addition, the figure shows
notably that the wake growth rate k is approximately the same for all the different
yaw angles (k= 0.022 for this experimental configuration). This is in contrast with the
common conjecture stating that the wake growth rate increases with increase in yaw
angle (Jiménez et al. 2010). This can be explained by the fact that, as discussed in
§ 3.2, the wake of a yawed turbine quickly asymptotes to a turbulent free shear flow
in the far-wake region. In this flow regime, the wake recovery is mainly influenced
by the incoming flow properties such as the ambient turbulence (Vermeulen 1980).
Turbine characteristics such as the thrust coefficient CT or the yaw angle γ are
likely to only affect the wake characteristics in the onset of the far-wake region. See
for instance the intercepts of parallel lines corresponding to different yaw angles
in figure 17. In the current study, the incoming turbulent boundary layer remained
unchanged during the measurements, so the wake growth rate k is expected to be the
same for different yaw angles.
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5. Model derivation for the far-wake region

It is shown in § 4 that velocity-deficit and skew angle profiles in the y direction
can be acceptably represented by self-similar Gaussian distributions even for high yaw
angles. However, a Gaussian profile cannot be fitted satisfactorily to the profiles in
the z direction for turbines with high yaw angles (e.g. γ = 30◦) since the wake cross-
section has a kidney shape due to the presence of the CVP, as discussed in detail
in § 3.1 and shown in figure 5. Therefore, one may consider a more complicated
shape in the z direction for this case, e.g. a bimodel distribution as used by Kikkert
(2006) to represent the cross-section of cross-flow jets. However, yaw angles greater
and equal to 30◦ are rather impractical for yaw-angle control methods, which is our
main motivation to derive a simple analytical model for wind turbine wakes in yawed
conditions. This is due to the fact that the substantial reduction in turbine power
caused by a yaw angle of 30◦ is unlikely to be compensated by the increase in the
power of downwind turbines (Jiménez et al. 2010).

As seen in our PIV measurements of turbine wakes as well as flow visualizations
of inclined jets in cross-flow (Wang & Kikkert 2014), the presence of the CVP is
not strong for angles smaller than 30◦, so a Gaussian distribution may still be used
to approximate the wake in the z direction for yaw angles smaller than 30◦. As a
result, it seems unnecessary to consider a more complicated profile in the z direction,
and a Gaussian distribution in both the y and z directions is used in this paper to
approximate the velocity and skew angle profiles. It is worth mentioning that similar
distribution has been also extensively used in studies of cross-flow jets (e.g. Fan
1967; Abraham 1970; Ooms 1972) due to its simplicity. The velocity and skew angle
distribution in the wake of a yawed turbine can be therefore written as

ū(x, y, z)
ū∞

= 1−Ce−(y−δ)
2/2σ 2

y e−(z−zh)
2/2σ 2

z ,

θ(x, y, z)
θm

= e−(y−δ+σy)
2/2σ 2

y e−(z−zh)
2/2σ 2

z ,

 (5.1)

where C is the velocity deficit at the wake centre normalized with the incoming
velocity (i.e. 1ūc/ū∞) and δ is the wake-centre deflection at each downwind location.
The wake centre in (5.1) is assumed to remain at hub height zh as the vertical
displacement of the wake centre is rather small for lower yaw angles (see figure 5).
Furthermore, different wake widths in the y and z directions are considered in (5.1),
denoted by σy and σz, respectively. Previous studies showed that the wake of a
non-yawed turbine might have different widths in the spanwise and vertical directions
due to the effect of ground (Xie & Archer 2015) or incoming boundary-layer
conditions (Abkar & Porté-Agel 2015). The difference is, however, inevitable and
more significant for a yawed turbine as its frontal area is an ellipse, instead of a
circle, with the minor axis equal to d cos γ in the spanwise direction and the major
axis equal to d in the vertical direction.

Substituting ū in (3.15) with (5.1) and integrating results in

πū2
∞

d
dx
[σyσzC(2−C)] = 0. (5.2)

The above equation is valid only in the far-wake region where the velocity distribution
can be expressed by (5.1). In other words, (5.2) can be used from x = x0 to ∞,
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where x0 indicates the downwind location where the velocity distribution achieves
self-similarity. Thus, (5.2) can be written as

σy0σz0C0(2−C0)= σyσzC(2−C). (5.3)

The values of variables at x= x0 are shown with a zero in the subscript in (5.3) and
in the remainder of this paper. All the variables related to x= x0 will be determined
in § 6. For now, they are assumed as known values. Solving (5.3) for C gives

C= 1−
√

1− (σy0σz0)M0

(σyσz)
, (5.4)

where M0 = C0(2 − C0). Equation (5.4) gives the maximum velocity deficit as a
function of wake conditions in the far-wake onset (σy0, σz0 and M0) and wake widths
(σy and σz). It is already seen in § 4 that turbine far wakes expands approximately
linearly with x in our interested streamwise range under the boundary-layer inflow
condition which is always the case for wind turbines operating in the field. Therefore,
σy and σz can be estimated by

σy

d
= ky

(x− x0)

d
+ σy0,

σz

d
= kz

(x− x0)

d
+ σz0,

 (5.5)

where ky and kz are the wake growth rates in the spanwise and vertical directions,
respectively.

Next, the wake deflection in the far-wake region will be determined. Inserting (5.1)
in (3.18) and then integrating yields

2πū2
∞

3e1/3

d
dx
[θmσyσz(C2 − 3e1/12C+ 3e1/3)] = 0, (5.6)

so the wake skew angle of the wake centre θc (θc = θme−0.5) can be written as

θc = θc0(σy0σz0)E0

σyσz(C2 − 3e1/12C+ 3e1/3)
, (5.7)

where E0 = C2
0 − 3e1/12C0 + 3e1/3. Equation (5.7) can be integrated to find the wake

deflection. After some algebraic manipulations (see appendix B), δ can be written as

δ = δ0 + θc0E0

5.2

√
σy0σz0

kykzM0
ln


(1.6+√M0)

(
1.6
√

σyσz

σy0σz0

−√M0

)
(1.6−√M0)

(
1.6
√

σyσz

σy0σz0

+√M0

)
 . (5.8)

Equation (5.8) gives the value of the wake deflection δ at each downwind location as
a function of the wake characteristics in the far-wake onset as well as the wake growth
rate. Note that (5.8) only takes into account the wake deflection due to yawing of the
turbine, and the slight horizontal deflection caused by the interaction of the rotating
wake and the incoming shear flow reported by Fleming et al. (2014) is not considered
in the current study.

To close the model, the wake characteristics in the onset of the far-wake region
(i.e. the values of variables at x = x0) should be determined. The values of C0, θc0 ,
σy0 , σz0 and δ0 will therefore be specified in § 6.
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Potential core

x

y

FIGURE 18. Schematic of the wake of a yawed turbine.

6. Onset of the far-wake region
To find the wake characteristics in the onset of the far-wake region, one can benefit

from the analogy between wakes and coflowing jets. For a jet in coflow, a region
with a uniform velocity, called potential core, develops after the jet exit. The potential
core, however, diminishes gradually as it moves downstream due to its interaction
with the surroundings (Rajaratnam 1976). After a certain downwind distance, the
potential core ultimately disappears and the velocity profile develops fully into a
self-similar Gaussian distribution (Fan 1967). Few early studies (e.g. Lissaman 1979;
Vermeulen 1980) tried to model the near wake of a non-yawed turbine in a similar
manner. Although this idealized image of the near wake cannot evidently predict the
detailed characteristics of this complex region, it will be shown in the following that
it can be used to provide key characteristics of the far-wake onset, which are needed
to model the far-wake region.

Figure 18 shows an idealized schematic of the wake of a yawed turbine. As the
wake moves downstream, the potential core becomes smaller until it eventually ends
at x = x0. Before reaching this point, however, the central part of the potential core
is not influenced by the ambient flow. Accordingly, the flow angle and the velocity
magnitude in the wake centre do not change across the potential core. After the
termination of the potential core, the recovery of the wake centre starts, and the
wake deflection angle decreases due to the interaction with the ambient flow. The
velocity and the wake deflection angle in the potential core are denoted by u0 and
θc0 , respectively, in figure 18.

As mentioned in § 1, extensive research has been performed on yawed rotors and
the flow passing through them mainly to improve the performance of helicopters
and autogiros. Different methods have been suggested in the literature to relate CT
of yawed rotors to the induction factor in the direction normal to the rotor denoted
by a. The one suggested by Glauert (1926) is widely used in previous studies (e.g.
Sant 2007; Haans 2011) as it is simple and also able to estimate the thrust force of
yawed turbines correctly (Burton et al. 1995). A more complicated alternative model
is the one obtained with the vortex theory (see Burton et al. (1995) for the detailed
discussion). However, both predict rather similar variation of CT as a function of
a, especially for γ 6 20◦. Thus, the former one is used in the current study for the
sake of simplicity. Based on this model, the thrust coefficient CT of a yawed rotor is
determined by

CT = 4auR

u∞
= 4a

√
1− a(2 cos γ − a), (6.1)
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where uR is the wind velocity at the rotor. Since we need to know the value of the
normal induction factor a for a given CT , the current form of (6.1) is not suitable
because it has to be solved numerically for each value of CT . Alternatively, an
approximate expression of a can be found from (6.1) as seen in the following. First,
(6.1) can be simplified as in general

√
1− x asymptotes to (1− 0.5x) for small values

of x. Moreover, a can be ignored compared to 2 cos γ , especially for lower yaw
angles. Hence,

CT ≈ 4a(1− a cos γ ). (6.2)

From (6.2), we obtain

a≈ 1
2 cos γ

(1−√1−CT cos γ ). (6.3)

The value of a predicted by (6.3) always lies within ±5 % of the true value provided
that CT 6 1 and γ 6 30◦. Substituting (6.3) into (6.1) gives uR as a function of CT
and γ :

uR

u∞
= CT cos γ

2(1−√1−CT cos γ )
. (6.4)

The pressure of the air drops as it passes through the rotor; however, it returns to
atmospheric pressure shortly downstream. Based on Bernoulli’s equation, the velocity
further decreases from uR to u0 (Sørensen 2015). Applying the Bernoulli’s equation in
both upwind and downwind sides of the rotor results in

upwind p∞ + 1
2ρu2

∞ = p+R + 1
2ρu2

R, (6.5)

downwind p−R + 1
2ρu2

R = p∞ + 1
2ρu2

0, (6.6)

where p+R and p−R are the air pressure in front and back of the rotor, respectively.
Subtracting the two equations to obtain the pressure drop across the rotor and then
replacing the pressure drop with (1/2)ρu2

∞CT give the following simple relationship
for u0:

u0

u∞
=
√

1−CT . (6.7)

Note that u0, unlike uR, depends only on CT for any yaw angle. The distance from
the rotor to where the air velocity becomes equal to u0 is typically assumed to be
very small (Frandsen et al. 2006), so for the sake of simplicity, we assume that the
air velocity remains equal to u0 from x= 0 to x0 across the whole potential core (see
figure 18).

Figure 19 shows experimental values of the normalized maximum velocity deficit
in the horizontal plane at hub height for different yaw angles and tip-speed ratios.
In addition, the theoretical value of the normalized velocity deficit in the potential
core (i.e. C0 = 1 − u0/u∞) predicted by (6.7) is shown in the figure by horizontal
blue lines. As seen in the figure, not only are the real values of the maximum
velocity deficit in all cases higher than the theoretical ones, but also they are not
constant in the near-wake region in contrast with the assumption of constant velocity
for the potential core. This departure is expected as the near-wake region has a
highly complex structure due to the effect of the nacelle, rotating blades, etc. so we
are unable to predict detailed characteristics of the near-wake region by assuming
a potential core downwind of the turbine. However, it will be shown later that it
can be still quite useful to provide some general but essential information about the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

59
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.595


530 M. Bastankhah and F. Porté-Agel

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

0.2

 0.4

0.6

 0.8

0.2

 0.4

0.6

 0.8

0.2

0.4

0.6

 0.8

0.2

 0.4

0.6

 0.8

FIGURE 19. Variation of the maximum normalized wake velocity deficit in the horizontal
plane at hub height for different yaw angles shown by black lines. Solid lines and dashed
lines correspond to λ=λo and λf , respectively. Horizontal and vertical blue lines represent
the values of u0 and x0 for each case, respectively.

near-wake region. As already implemented by Vermeulen (1980) for a non-yawed
turbine, the location where the velocity deficit at the wake centre reaches to the
theoretical value can be considered as the end of the potential core (i.e. x= x0) which
is shown by vertical blue lines in figure 19.

It is important to note that as u0 is smaller than uR, the potential core area at x= 0
should be considered bigger than the rotor area so that the mass is conserved. Based
on mass conservation, the potential core area at x = 0 is an ellipse whose vertical
major axis is d

√
uR/u0 and lateral minor axis is equal to d cos γ

√
uR/u0. It is worth

remembering that the frontal rotor area is an ellipse with major and minor axes of d
and d cos γ , respectively.

As mentioned in § 3.2, the streamwise momentum deficit flow rate is almost
constant along the streamwise direction (3.15). Given the velocity distribution at
x = 0 and x0, the value of the streamwise momentum deficit flow rate can be
calculated for these two locations as follows:

∫ ∞
−∞

∫ ∞
−∞
[u(u∞ − u)] dy dz=


πd2

4
uR

u0
cos γ u0(u∞ − u0) at x= 0

πσy0σz0(u∞ + u0)(u∞ − u0) at x= x0.

(6.8)

Equating the two equations, and assuming an elliptic wake cross-section imposed by
the rotor frontal area results in

σz0

d
= 1

2

√
uR

u∞ + u0
,

σy0

d
= σz0

d
cos γ . (6.9a,b)
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FIGURE 20. (a) The value of the normalised lateral wake width at x = x0, σy0/d, for
different yaw angles. The light grey bars show the values predicted by (6.10), and the
black ones show the experimental data. (b) The prediction of the normalized potential core
length x0/d compared with the experimental data for different yaw angles and tip-speed
ratios.

Inserting (6.4) and (6.7) into (6.9) leads to

σz0

d
=
√

1+√1−CT cos γ
8(1+√1−CT)

≈
√

1
8
,

σy0

d
= σz0

d
cos γ .

 (6.10)

It is interesting to note that for a zero yawed turbine, σy0/d and σz0/d reduce to the
constant value of 1/

√
8. This might be used in general as an indicator to find the

beginning of the self-similar region in limited wake measurements that usually occur
in field measurements.

Figure 20(a) shows the values of σy0 predicted by (6.10) for different yaw angles
against the ones obtained from the wind tunnel measurements. The comparison shows
that the agreement is fairly good, especially for lower yaw angles.

Next, the wake skew angle in the potential core will be determined. Even though
the model suggested by Glauert (1926) can estimate the thrust coefficient correctly
(Burton et al. 1995), it is unable to properly estimate the skew angle of the flow past
a yawed rotor. This is due to the fact that this model only takes into account the
component of the induced velocity normal to the rotor, and not the tangential one. As
a result, this model is expected to overestimate the flow skew angle at the rotor. Based
on the vortex theory, however, the induced velocity at a yawed rotor has a tangential
component equal to a tan(χ/2), where χ is the flow skew angle with respect to the
rotor axis (i.e. χ = γ + θ ) (Coleman et al. 1945). Based on this work, the value of
χ at the rotor disk can be approximated by (Burton et al. 1995)

χ = θ + γ = (0.6a+ 1)γ . (6.11)

By substituting a in (6.11) with (6.3), the value of θ at the rotor can be found by:

θ ≈ 0.3γ
cos γ

(1−√1−CT cos γ ). (6.12)
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Although (6.12) is intended for the estimation of the flow angle only at the rotor
disk, it can acceptably predict the flow skew angle even up to a few rotor diameters
downstream, as shown in figure 3 by black lines. Thus, we use (6.12) to estimate
the flow skew angle for the whole potential core indicated by θc0 in figure 18. It is
noteworthy to mention that previous flow visualizations as well as inverse free wake
simulations (Haans et al. 2005; Micallef et al. 2009) suggest an empirical formula of
χ = (0.29CT + 0.96)γ in the near wake of a yawed rotor. Although the predictions of
the mentioned empirical formula are not shown here for the sake of brevity, they are
found in good agreement with the predictions of (6.11).

Next, the wake deflection at x= x0, δ0 will be estimated. As the wake skew angle
is assumed to be constant in the potential core, the value of δ0 is simply equal to
x0 tan θc0 or approximately x0θc0 . To estimate the value of x0, we use a modified
version of the hypothesis suggested by Lee & Chu (2012). It was originally used to
find the length of the potential core for a round jet in coflow. Before applying this
hypothesis for a yawed turbine, however, the interaction of the potential core and
surroundings needs to be further elaborated. The difference in the velocity magnitude
between these two regions creates a free shear layer between them as shown in
figure 18. The velocity in this layer gradually increases from u0 at the potential core
border to u∞ at the far lateral distance from the wake centre. The velocity distribution
in the horizontal plane at hub height for 06 x6 x0 can be therefore assumed to have
the following distribution:

u
u∞
=
{

1−C0 if r 6 rpc,

1−C0e−(r−rpc)
2/2s2 if r > rpc,

(6.13)

where r is the lateral distance from the wake centre, rpc is the potential core radius
in the horizontal plane at each x and s denotes the characteristic width of the shear
layer. The width of the shear layer increases from s= 0 at x= 0 to finally s= σy0 at
x= x0. For a uniform and laminar incoming flow, Lee & Chu (2012) suggested that
a change in width of a shear layer, in a Lagrangian frame of reference (moving with
the eddies), is only proportional to the velocity difference between the potential core
and unperturbed surroundings. In real situations, however, we know that the incoming
turbulence also enhances the flow entrainment and consequently the growth of the
shear layer. In this regard, we can generalize the model proposed by Lee & Chu
(2012) by writing the variation of the shear layer width in the following form:

1
u∞

ds
dt
= us

u∞

ds
dx
= αI + β ue

u∞
, (6.14)

where us is the characteristic velocity of the shear layer and is equal to 0.5(u∞+ u0),
I=
√

u′2/ūh is the incoming streamwise turbulence intensity at hub height, ue denotes
the characteristic relative velocity in the shear layer which is equal to 0.5(u∞ − u0)

and α and β are constants. Equation (6.14) can be integrated as follows:∫ σy0

0
ds= u∞

us

(
αI + β ue

u∞

) ∫ x0

0
dx. (6.15)
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Inserting the values of σy0 , us and ue in (6.15) and integrating lead to

x0

d
= cos γ (1+√1−CT)√

2[4αI + 2β(1−√1−CT)]
. (6.16)

In order to use (6.16), values of α and β should first be estimated. The value of
β can be determined thanks to the analogy with jet flows. In ideal conditions with
no incoming turbulence (i.e. I = 0), equation (6.16) predicts a similar value for x0

as the one reported in studies of jet flows if 2β is equal to 0.154. The value of α
can then be found in such a way that (6.16) provides acceptable predictions for x0

compared with our measured data. Figure 20(b) shows the values of x0 for different
cases predicted by (6.16) compared with the values obtained from the wind tunnel
measurements. The value of α is chosen 0.58 to have an acceptable agreement with
the experimental dataset. The available data are not likely to be sufficient to reliably
find constant coefficients of (6.16); nonetheless, the figure shows that (6.16) is able
to capture the variation of x0 for different cases, provided α is properly specified.
Indeed, more numerical simulations or wind tunnel measurements are needed to
estimate the universal values of α and β. According to (6.16), it can be readily
shown that the length of the potential core decreases with increasing thrust coefficient
of the turbine, incoming turbulence and yaw angle. It is important to note that (6.16)
does not aim to predict the detailed features of the near wake such as the location
of the tip vortices’ breakdown, but instead it is intended to estimate the length of
the hypothetical potential core used for the far-wake modelling. It should be noted
that the tip-speed ratio of the turbine and the wake rotation have no contribution in
this equation as they have no effects on the far-wake region (Vermeer, Sørensen &
Crespo 2003).

7. Model predictions

For the sake of completeness, the final form of the equations, which predict the
far-wake velocity for a yawed turbine, is written in the following:

1ū
ū∞
=
(

1−
√

1− CT cos γ
8(σyσz/d2)

)
e−0.5((y−δ)/σy)

2
e−0.5((z−zh)/σz)

2
, (7.1)

where the wake widths in the lateral and vertical directions can be, respectively,
found by

σy

d
= ky

(x− x0)

d
+ cos γ√

8
,

σz

d
= kz

(x− x0)

d
+ 1√

8
.

 (7.2)

The normalized length of the potential core x0/d is

x0

d
= cos γ (1+√1−CT)√

2(α∗I + β∗(1−√1−CT))
, (7.3)
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where α∗ = 2.32 and β∗ = 0.154. The normalized wake deflection δ/d is θc0x/d for
x 6 x0, and for x> x0 it can be determined by

δ

d
= θc0

x0

d
+ θc0

14.7

√
cos γ
kykzCT

(2.9+ 1.3
√

1−CT −CT)

× ln


(1.6+

√
CT)

(
1.6

√
8σyσz

d2 cos γ
−
√

CT

)

(1.6−
√

CT)

(
1.6

√
8σyσz

d2 cos γ
+
√

CT

)
 , (7.4)

where θc0 is calculated by (6.12). As x approaches to infinity, the wake deflection
asymptotes to the constant value of

δ∞
d
= θc0

x0

d
+ θc0

14.7

√
cos γ
kykzCT

(2.9+ 1.3
√

1−CT −CT) ln
(

1.6+√CT

1.6−√CT

)
. (7.5)

Figure 21 shows profiles of the wake velocities predicted by (7.1) against the wind
tunnel measurements for γ = 0◦, 10◦ and 20◦. To plot the model predictions, the
wake growth rate in the vertical direction is assumed to be equal to the one in the
horizontal direction (i.e. ky = kz) as the available velocity data in the z direction are
limited. As clearly shown in the figures, the analytical model acceptably predicts
the velocity distribution in the wake of a yawed turbine. The prediction on one side
of the wake is, however, less accurate for higher yaw angles. This might be due to
the fact that the wake velocity profiles are assumed to have a symmetric Gaussian
distribution, whereas it was already shown that the velocity profiles are slightly
skewed. This simple analytical model can, however, be particularly useful to assess
the potential of yaw-angle control strategies for wind farm power optimizations.

It is worth mentioning that the proposed model is likely able to also predict the
wake flow of a tilted turbine. In order to do so, the wake deflection δ in (7.1) should
simply be reinserted into the Gaussian profile in the z direction, rather than the one
in the y direction. However, one must bear in mind that the model should be used
cautiously for tilted turbines because if the turbine wake moves towards the ground,
its interaction with the ground in the far-wake region cannot be considered negligible.

In addition to providing wake predictions, the proposed model can lead to a
better understanding of the effect of different parameters on the turbine wake. For
example, figure 22 shows the variation of the normalized wake deflection in the
very far-wake region δ∞/d predicted by the proposed model as a function of the
incoming turbulence intensity I and the turbine thrust coefficient CT for a turbine
with γ = 20◦. To calculate the wake deflection, the wake growth rate in the far-wake
region is assumed to be linearly proportional to the incoming turbulence intensity
as suggested by Johnson et al. (2014). It can be seen in the figure that the wake
deflection increases with an increase in the thrust coefficient which is consistent
with the finding of Jiménez et al. (2010). In addition, the figure shows that the
wake deflection increases with a decrease in the incoming turbulence. The decrease
in the incoming turbulence basically extends the length of the potential core, and
it also reduces the flow entrainment in the far-wake region. As a result, the wake
deflection increases in this case. This finding suggests that the implementation of
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FIGURE 21. Lateral profiles of the normalized streamwise velocity ū/ūh in the wake of a
turbine with γ = 0◦, 10◦ and 20◦ at λ= λo: wind tunnel measurements (open circle), and
new proposed model (blue solid line). Red dots show the wake-centre position predicted
by the proposed model. Horizontal dashed lines indicate the location of the side tips of
the turbine. For each downwind location, ū/ūh = 1 on the vertical thick black line. The
width of grid squares corresponds to 15 % of ūh.

yaw-angle control strategies in offshore wind farms, compared to onshore ones, is
more promising.

It is important to note that, to estimate the wake characteristics in the onset of
the far-wake region, we assumed that the turbine works in the windmill state, i.e.
CT < 0.96 (Manwell, McGowan & Rogers 2010). Therefore, the model prediction is
not likely to be valid for higher CT values.

8. Summary
Wind tunnel measurements of the wake of a model wind turbine with different yaw

angles (0◦, 10◦, 20◦ and 30◦) and tip-speed ratios were conducted in a turbulent
boundary-layer flow. Power and thrust measurements were performed to study
the performance of the wind turbine under these different operating conditions.
In general, we found that, as expected, both the generated power and the thrust
force of the turbine decrease with the increase of yaw angle. For each yaw angle,
high-resolution S-PIV measurements were carried out in a horizontal plane at hub
height covering a broad streamwise range (from 0.4d to 12d downwind of the turbine).
The velocity measurements indicate that the wake velocity deficit becomes smaller and
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FIGURE 22. Variation of δ∞/d as a function of the incoming streamwise turbulence
intensity I =

√
u′2/ūh for different values of thrust coefficient CT . The yaw angle γ is

assumed to be 20◦.

the wake deflection increases with an increase in yaw angle. In another set of S-PIV
measurements performed in cross-stream planes, the wake cross-section is quantified
at a few selected downwind locations. A CVP is observed in the cross-section of
turbine wakes under highly yawed conditions. Moreover, turbine wakes are observed
to move upward or downward in these conditions depending on the direction of the
yaw angle.

The detailed wind tunnel data were then used to study the budget of the continuity
and the RANS equations for the wake of a yawed turbine. The budget study of the
continuity equation shows that a strong variation of the spanwise velocity occurring
in highly yawed conditions leads to the formation of the CVP. Furthermore, a
simple method based on the potential theory is employed to reveal that the vertical
displacement of the wake centre under yawed conditions is due to the interaction
between the CVP, the ground and the wake rotation. The budget study of the RANS
equations points out that the maximum value of the wake skew angle at each
downwind location does not occur at the wake centre, but instead it happens where
the second derivative of the lateral profile of the streamwise velocity is zero. Our
findings show that this asymmetric distribution of the wake skew angle with respect
to the wake centre is associated with the origin of the wake deflection for yawed
turbines. The integral forms of the RANS equations in both streamwise and spanwise
directions were then derived, which provides a solid basis for the development of a
simple analytical model to predict the wake flows of yawed turbines.

In the far-wake region of a yawed turbine, self-similarity was examined for both
the velocity and skew angle profiles. The results suggest that these profiles can be
approximated with a self-similar Gaussian distribution in both spanwise and vertical
directions for low yaw angles. The wake growth rate is found to be the same for
different yaw angles. This is consistent with the assumption that the far-wake recovery
is mainly influenced by incoming flow characteristics, and wind turbine characteristics
solely affect the wake properties in the onset of the far-wake region.

The self-similarity analysis along with the budget study of RANS equations enabled
us to develop an inexpensive analytical model to predict the velocity distribution in
the far wake of a yawed turbine. A new method was employed to estimate the wake

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

59
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.595


Experimental and theoretical study of yawed-turbine wakes 537

characteristics in the onset of the far-wake region (i.e. where self-similarity holds). An
idealized region with a uniform velocity, termed potential core, is assumed downwind
of the turbine, analogous with coflowing jets. The potential core shrinks as the wake
moves downstream until it eventually fades away, and after that the self-similar region
starts to develop. Although the idealized concept of the potential core flow cannot
predict the complex three-dimensional structure of the near-wake region, it is shown
that it can be successfully employed to provide the necessary information for the
beginning of the far-wake self-similar region.

Finally, comparison with the high-resolution wind tunnel measurements shows
that the model predictions of the velocity profiles in the wake of a model turbine
with different yaw angles are in good agreement with the experimental data. The
proposed model can be used as a useful tool to assess the possibility of wind farm
power optimization by controlling the yaw angle of turbines. In addition to being a
quantitative predictive tool, the proposed model can examine the effect of different
turbine and incoming flow characteristics on the wake of a yawed turbine. For
instance, a decrease in the incoming turbulence intensity is found to increase wake
deflection for a yawed turbine. This suggests that the yaw-angle control has more
potential to improve the power production of offshore wind farms, compared with
onshore ones.
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Appendix A

THEOREM 1. Suppose that the incoming flow is uniform, the flow is extended to
infinity in both lateral and vertical directions and the turbine yaw angle is low. Then
∂2ū/∂y2 = 0 if ∂θ/∂y= 0.

Proof. Writing (3.9) for the lateral position where ∂θ/∂y= 0 gives

∂(w̄/ū)
∂z

=−νT

ū2

∂2ū
∂y2
− νT

ū2

∂2ū
∂z2

. (A 1)

Integrating (A 1) with respect to z from −∞ to ∞ yields

w̄
ū

∣∣∣∣+∞
z=−∞
=−νT

∫ ∞
−∞

1
ū2

∂2ū
∂y2

dz− νT

∫ ∞
−∞

1
ū2

∂2ū
∂z2

dz. (A 2)

The left-hand side of (A 2) can be neglected as w̄/ū vanishes at large values of z.
Next, let ū∞ and ūc denote the incoming velocity and the velocity at the wake centre,
respectively. Then,

1
ū2

c

∂2ū
∂z2

>
1
ū2

∂2ū
∂z2

>
1

ū2∞

∂2ū
∂z2

. (A 3)
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Integrating (A 3) with respect to z from −∞ to ∞ leads to

1
ū2

c

∂ ū
∂z

∣∣∣∣+∞
z=−∞

>
∫ ∞
−∞

1
ū2

∂2ū
∂z2

dz >
1

ū2∞

∂ ū
∂z

∣∣∣∣+∞
z=−∞

. (A 4)

The middle term in (A 4) has to be equal to zero as both side terms are equal to
zero, which in turn suggests that the second term on the right-hand side of (A 2) is
also equal to zero. Hence, from (A 2),∫ ∞

−∞

1
ū2

∂2ū
∂y2

dz= 0. (A 5)

Now, assume that ū at each x has the form of the product,

ū= φ(y)ψ(z), (A 6)

where both φ(y) > 0 and ψ(z) > 0 for all the values of y and z. Although (A 6) is
unlikely to be valid for wakes of turbines with high yaw angles, it is an acceptable
assumption for wakes of turbines with low yaw angles where the wake cross-section
can be approximated by a two-dimensional Gaussian function found in (5.1). From
(A 6), we can write

∂2ū
∂y2
= φ′′(y)ψ(z). (A 7)

Based on (A 7), we conclude that the sign of ∂2ū/∂y2 in the given lateral position
does not change from z=−∞ to ∞ (i.e. it is strictly non-negative or non-positive).
Therefore, ∂2ū/∂y2 has to be zero in order to satisfy (A 5).

Appendix B
This appendix contains the algebraic manipulations needed for the estimation of the

wake deflection δ. In order to find the trajectory of the wake centre, θc in (5.7) should
be replaced with dy/dx, then (5.7) can be integrated to find the wake deflection δ at
each x. To make the integration simpler, the product of σyσz is approximated by σ̄ 2

which is defined as
σ̄ = k̄(x− x0)+ σ̄0, (B 1)

where k̄=√kykz and σ̄0=√σy0σz0 . Note that σ̄ 2 is exactly equal to σyσz if kyσz0= kzσy0 .
Moreover, C in the right-hand side of (5.7) should be substituted by (5.4) which gives

C2 − 3e1/12C+ 3e1/3 = [2+ 3(e1/3 − e1/12)] − σ̄
2
0 M0

σ̄ 2
+ (3e1/12 − 2)

√
1− σ̄

2
0 M0

σ̄ 2

≈ 2.93− σ̄
2
0 M0

σ̄ 2
+ 1.26

√
1− σ̄

2
0 M0

σ̄ 2
. (B 2)

√
1− (σ̄ 2

0 M0/σ̄ 2) in the above equation can be replaced with (1− (σ̄ 2
0 M0/2σ̄ 2)) as σ̄

quickly grows in the far wake (note that
√

1− x asymptotes to (1− 0.5x) as x→ 0).
Equation (B 2) is therefore simplified to

C2 − 3e1/12C+ 3e1/3 ≈ 1.6
(

2.6− σ̄
2
0 M0

σ̄ 2

)
. (B 3)
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Now, inserting (B 3) into (5.7) and replacing θc with dy/dx enables us to find the wake
deflection δ: ∫ δ

δ0

dy≈ θc0 σ̄
2
0 E0

1.6k̄

∫ σ̄

σ̄0

dσ̂
2.6σ̂ 2 − σ̄ 2

0 M0
, (B 4)

where dx is replaced with dσ̂ /k̄. Performing the integration leads to

δ ≈ δ0 + θc0 σ̄0E0

2.6k̄
√

M0

[
arctanh

(
1.6√
M0

)
− arctanh

(
1.6√
M0

σ̄

σ̄0

)]
. (B 5)

After using hyperbolic trigonometric identities, (B 5) can be simplified to

δ ≈ δ0 + θc0 σ̄0E0

5.2k̄
√

M0
ln

(1.6+
√

M0)

(
1.6

σ̄

σ̄0
−√M0

)
(1.6−√M0)

(
1.6

σ̄

σ̄0
+√M0

)
 . (B 6)
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