# Synthesis and X-ray diffraction data of dichlorodioxido (4,4-dimethoxycarbonyl-2,2'-bipyridyl) molybdenum(VI)

H.A. Camargo,<sup>1,a)</sup> N.J. Castellanos,<sup>1</sup> C.C. Rosas,<sup>1</sup> and J.A. Henao<sup>2</sup> <sup>1</sup>Grupo de Investigación en Nuevos Materiales y Energías Alternativas (GINMEA), Facultad de Química Ambiental, Universidad Santo Tomás, Campus Universitario Floridablanca, Santander, Colombia <sup>2</sup>Grupo de Investigación en Química Estructural (GIQUE). Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia

(Received 23 May 2013; accepted 14 August 2013)

The dichlorodioxido(4,4'-dimethoxycarbonyl-2,2'-bipyridyl)molybdenum(VI) complex was prepared from molybdenum(VI) dichloride dioxide and 4,4-dimethoxycarbonyl-2,2-bipyridyl in CH<sub>2</sub>Cl<sub>2</sub> obtaining a clear green solution. The molybdenum complex was separated by precipitation with ethyl ether. The XRPD pattern for the new compound showed that the crystalline compound belongs to the monoclinic space group  $P2_1/c$  (No 14) with refined unit-cell parameters a = 12.104(1) Å, b = 14.933 (2) Å, c = 11.010 (2) Å and  $\beta = 115.409^{\circ}$  (9). The volume of the unit cell is V = 1797.6 (3) Å<sup>3</sup>. © 2013 International Centre for Diffraction Data. [doi:10.1017/S0885715613000754]

Key words: dioxomolybdenum complex, X-ray powder diffraction, biomimetic compounds

## I. INTRODUCTION

Oxygen atom transfer to or from a substrate, is a very delicate operation that is performed in nature by enzymes such as oxotransferasas or hidrosilasas, which mostly have molybdenum-oxygen entity (Mo=O) as the active site (Enemark et al., 2004; Holm et al., 2011). Numerous bio-inspired dioxo-Mo complexes have been synthesized and it has been observed that the transfer of oxygen and the stability of these complexes is directly related to the chemical environment (metal-ligand interaction) surrounding its active site (Arzoumanian, 1998; Amini et al., 2013). Among the innumerable bidentate chelating ligands used to obtain complexes with transitions metals, the 2,2'-bipyridine is certainly one of the most widely used because of its ability of introducing different substituents and modify its physical and chemical properties (Constable and Steel, 1989; Ittel et al., 2000). This property has allowed us to study the coordination sphere effect in the reactivity of the Mo = O entity (Kühn *et al.*, 2000; Günyar et al., 2009). We have reported, over the years, the synthesis of several complexes with bypiridil ligands and studied, under homogeneous and heterogeneous conditions, their properties as oxygen atom transfer agents (Paez et al., 2008; Arzoumanian et al., 2010; Castellanos et al., 2012) Their ability to participate in catalytic oxidation has been reported in the selective oxidation of phosphines, arylalkanes and the photochemical oxidative decomposition of persistent organic pollutants (POPs) specifically using molecular O2 as oxygen atom donor under visible light irradiation (Paez et al., 2009; Bakhtchadjian et al., 2011; Castellanos et al., 2013). In this work we report the synthesis and results on the molecular characterization (FTIR, NMR) and X-ray powder diffraction data for the compound dichlorodioxido (4,4-dimethoxycarbonyl-2,2-bipyridyl) molybdenum(VI).

## II. EXPERIMENTAL

#### A. Synthesis

The ligand 4,4'-dimethoxycarbonyl-2,2'-bipyridyl was previously synthesized according to the literature procedure (Arzoumanian and Bakhtchadjian, 2006). CH<sub>2</sub>Cl<sub>2</sub> solution containing 2.57 mmol of 4,4'-dimethoxycarbonyl-2,2'-bipyridyl (0.7 g) was added over a slenchk containing 3 mmol of solid MoO<sub>2</sub>Cl<sub>2</sub>. We observed the gradual disappearance of the solid and change in coloration of the solution (light green) after 3 h of reaction. The solution was filtered and the product was precipitated with ethyl ether to give a light green solid with yield of 85%. Its synthesis is shown in the Figure 1. The density of 1.604 g cm<sup>-3</sup> was measured by the flotation method in an aqueous solution of potassium iodine.

The molecular characterization which was carried out with ultraviolet–visible (UV–Vis) spectroscopy showed two absorption bands in the regions 230–300 and 310–379 nm. Infrared (IR) spectrometry showed stretching vibrations; *v*: 1727 (C=O); 1434 (C=C); 944, 911 (Mo=O); and nuclear magnetic resonance on protons (<sup>1</sup>H NMR, 400 MHz, CDCl<sub>3</sub>) showed  $\delta$  (ppm)=9.73 (d, 2H), 8.92 (s, 2H), 8.30 (d, 2H), 4.16 (t, 6H).

#### **B.** Powder data collection

A small portion of the title compound was gently ground in an agate mortar and sieved to a grain size less than 38  $\mu$ m. The specimen was mounted on a polymethyl methacrylate (PMMA) specimen holder. The XRPD pattern was recorded with a D8 ADVANCE BRUKER diffractometer operating in DaVinci geometry equipped with a Cu-target X-ray tube (40 kV and 30 mA), a nickel filter and a 1-dimensional LynxEye detector. A receiving slit (RS) of 0.6 mm and primary and secondary soller slits (SS) of 2.5° were used. The scan range was 2–70° 2 $\theta$  with a step size of 0.015 26° and a

<sup>&</sup>lt;sup>a)</sup>Author to whom correspondence should be addressed. Electronic mail: hernando.camargo@mail.ustabuca.edu.co



Figure 1. Synthesis of 1-[N-(methyl)-(3,5-dimethylphenylamino)]methylnaphthalene.



Figure 2. Powder X-ray diffraction pattern of 1-[N-(methyl)-(3,5-dimethylphenylamino)]methylnaphthalene.

TABLE I. X-ray powder diffraction data of 1-[N-(methyl)-(3,5-dimethylphenylamino)]methylnaphthalene. Cu- $K\alpha_1$  radiation ( $\lambda = 1.5406$  Å).

| $2\theta_{obs}$ (deg) | $d_{\rm obs}$ (Å) | ( <i>I</i> / <i>I</i> <sub>0</sub> ) <sub>obs</sub> | h  | k | l | $2\theta_{cal}$ (deg) | $d_{\rm cal}$ (Å) | $\Delta 2\theta$ (deg) |
|-----------------------|-------------------|-----------------------------------------------------|----|---|---|-----------------------|-------------------|------------------------|
| 8.081                 | 10.9322           | 100                                                 | 1  | 0 | 0 | 8.080                 | 10.9330           | -0.001                 |
| 10.020                | 8.8206            | 6                                                   | 1  | 1 | 0 | 10.019                | 8.8216            | -0.001                 |
| 10.692                | 8.2677            | 16                                                  | 0  | 1 | 1 | 10.679                | 8.2775            | -0.013                 |
| 10.856                | 8.1432            | 33                                                  | -1 | 1 | 1 | 10.852                | 8.1465            | -0.004                 |
| 11.849                | 7.4629            | 28                                                  | 0  | 2 | 0 | 11.843                | 7.4667            | -0.006                 |
| 14.360                | 6.1630            | 15                                                  | -1 | 2 | 0 | 14.353                | 6.1659            | -0.007                 |
| 14.833                | 5.9676            | 15                                                  | 0  | 2 | 1 | 14.824                | 5.9711            | -0.009                 |
| 14.950                | 5.9211            | 13                                                  | -1 | 2 | 1 | 14.949                | 5.9213            | -0.001                 |
| 15.553                | 5.6929            | 42                                                  | 1  | 1 | 1 | 15.552                | 5.6931            | -0.001                 |
| 15.914                | 5.5646            | 72                                                  | -2 | 1 | 1 | 15.909                | 5.5664            | -0.005                 |
| 16.192                | 5.4696            | 13                                                  | 2  | 0 | 0 | 16.201                | 5.4665            | 0.009                  |
| 17.258                | 5.1341            | 9                                                   | -2 | 1 | 0 | 17.260                | 5.1334            | 0.002                  |
| 17.819                | 4.9737            | 7                                                   | 0  | 0 | 2 | 17.823                | 4.9726            | 0.004                  |
| 18.238                | 4.8604            | 2                                                   | -2 | 0 | 2 | 18.239                | 4.8601            | 0.001                  |
| 18.664                | 4.7504            | 16                                                  | 1  | 2 | 1 | 18.662                | 4.7508            | -0.002                 |
| 19.191                | 4.6211            | 8                                                   | -2 | 1 | 2 | 19.189                | 4.6215            | -0.002                 |
| 19.557                | 4.5355            | 1                                                   | -1 | 3 | 0 | 19.579                | 4.5303            | 0.022                  |
| 20.026                | 4.4303            | 7                                                   | -1 | 3 | 1 | [ 20.024              | 4.4306            | -0.002                 |
|                       |                   |                                                     | -1 | 2 | 2 | l 20.028              | 4.4298            |                        |

Continued

| $2\theta_{obs}$ (deg) | $d_{\rm obs}$ (Å) | ( <i>I</i> / <i>I</i> <sub>0</sub> ) <sub>obs</sub> | h  | k | l             | $2\theta_{cal}$ (deg) | $d_{\rm cal}$ (Å) | $\Delta 2\theta$ (deg) |
|-----------------------|-------------------|-----------------------------------------------------|----|---|---------------|-----------------------|-------------------|------------------------|
| 21.451                | 4.1391            | 5                                                   | 0  | 2 | 2             | 21.453                | 4.1388            | 0.002                  |
| 21.805                | 4.0727            | 11                                                  | -2 | 2 | 2             | 21.802                | 4.0732            | -0.003                 |
| 22.448                | 3 9575            | 3                                                   | 2  | 1 | -             | 22.447                | 3,9577            | -0.001                 |
| 22.872                | 3 8850            | 28                                                  | -3 | 1 | 1             | 22.865                | 3,8863            | -0.007                 |
| 23 349                | 3 8067            | 3                                                   | 1  | 1 | 2             | 23 361                | 3 8048            | 0.012                  |
| 24.089                | 3 6915            | 14                                                  | -1 | 3 | 2             | 24 088                | 3 6915            | -0.001                 |
| 24 729                | 3 5973            | 14                                                  | 2  | 2 | - 1           | 24 733                | 3 5968            | 0.004                  |
| 21.729                | 5.5775            | 11                                                  | _3 | 2 | 1             | (25.115               | 3 5430            | 0.001                  |
| 25 126                | 3 5/11/           | 13                                                  | -3 | 1 | 0             | 25.113                | 3 5404            | 0.007                  |
| 25.120                | 3 5101            | 8                                                   | 0  | 3 | 2             | 25.105                | 3 5180            | 0.007                  |
| 25.200                | 2 4026            | 7                                                   | 2  | 2 | 2             | 126.160               | 2 4027            | 0.000                  |
| 20.101                | 5.4050            | /                                                   | -3 | 2 | 2<br>1        | 28.130                | 3 1606            | -0.001                 |
| 29 156                | 2 1669            | 1                                                   | -2 | 2 | 1             | 28.156                | 2 1669            | 0.000                  |
| 28.130                | 5.1008            | 1                                                   | 2  | 3 | 1             | 28.150                | 2 1664            | 0.000                  |
| 20 001                | 2 0006            | 4                                                   | -5 | 1 | 3             | (28.100               | 2.0804            | 0.008                  |
| 20.004                | 5.0880            | 4                                                   | -1 | 4 | 2             | 28.870                | 2.0894            | -0.008                 |
| 00.765                | 2 0002            | 2                                                   | 1  | 3 | 2             | 28.902                | 3.0808            | 0.002                  |
| 29.765                | 2.9992            | 3                                                   | -4 | 0 | 2             | 29.763                | 2.9994            | -0.002                 |
| 29.896                | 2.9863            | 4                                                   | 0  | 4 | 2             | 29.904                | 2.9855            | 0.008                  |
| 30.046                | 2.9718            | 3                                                   | -3 | 2 | 3             | 30.041                | 2.9723            | -0.005                 |
|                       |                   |                                                     | 3  | 1 | 1             | (30.091               | 2.9674            |                        |
| 30.359                | 2.9418            | 4                                                   | -4 | 1 | 2             | 30.372                | 2.9406            | 0.013                  |
|                       |                   |                                                     | 3  | 3 | 0             | 30.373                | 2.9405            |                        |
| 30.539                | 2.9249            | 4                                                   | -4 | 1 | 1             | 30.538                | 2.9250            | -0.001                 |
| 31.315                | 2.8542            | 1                                                   | -1 | 5 | 1             | 31.306                | 2.8549            | -0.009                 |
| 31.868                | 2.8059            | 2                                                   | 3  | 2 | 1             | 31.868                | 2.8059            | 0.000                  |
| 32.830                | 2.7258            | 3                                                   | -4 | 1 | 3             | 32.835                | 2.7254            | 0.005                  |
| 33.640                | 2.6620            | 4                                                   | 1  | 2 | 3             | 33.623                | 2.6633            | -0.017                 |
| 33.788                | 2.6507            | 8                                                   | -3 | 0 | 4             | 33.792                | 2.6504            | 0.004                  |
| 34.187                | 2.6207            | 3                                                   | -2 | 5 | 0             | ∫ 34.183              | 2.6210            | -0.004                 |
|                       |                   |                                                     | 2  | 3 | 2             | 34.215                | 2.6186            |                        |
|                       |                   |                                                     | -3 | 4 | 0             | ∫ <b>34.36</b> 0      | 2.6078            |                        |
| 34.394                | 2.6054            | 6                                                   | -1 | 4 | 3             | l 34.407              | 2.6044            | 0.013                  |
| 36.203                | 2.4792            | 3                                                   | 0  | 4 | 3             | [ 36.209              | 2.4788            | 0.006                  |
|                       |                   |                                                     | 3  | 0 | 2             | 1 36.249              | 2.4762            |                        |
| 37.099                | 2.4214            | 3                                                   | -4 | 3 | 3             | (37.092               | 2.4218            | -0.007                 |
|                       |                   |                                                     | -5 | 0 | 2             | 37.111                | 2.4206            |                        |
|                       |                   |                                                     | -1 | 3 | 4             | (38.032               | 2.3641            |                        |
| 38.087                | 2.3608            | 1                                                   | 0  | 2 | 4             | { <u>38.118</u>       | 2.3589            | 0.031                  |
| 38.403                | 2.3421            | 1                                                   | -3 | 3 | 4             | (38.448               | 2.3395            | 0.045                  |
|                       |                   |                                                     | -4 | 4 | 2             | 38.469                | 2.3382            |                        |
| 38 833                | 2.3172            | 2                                                   | -5 | 1 | 3             | 38 832                | 2,3172            | -0.001                 |
|                       |                   |                                                     | -4 | 2 | 4             | (38.945               | 2.3107            |                        |
| 38.964                | 2,3097            | 2                                                   | -3 | 5 | 0             | 38.958                | 2.3100            | -0.006                 |
|                       |                   | _                                                   | -1 | 5 | 3             | 39,000                | 2.3076            |                        |
|                       |                   |                                                     | 1  | 6 | 1             | 39.000                | 2.3076            |                        |
| 40 634                | 2 2185            | 2                                                   | 0  | 5 | 3             | (40.626               | 2.3070            | -0.008                 |
| 10.051                | 2.2105            | -                                                   | 3  | 3 | 2             | 40.662                | 2.2109            | 0.000                  |
|                       |                   |                                                     | _5 | 0 | 4             | (41.656               | 2.2170            |                        |
| 41 608                | 2 16/3            | 2                                                   | 5  | 1 | -<br>0        | 41.050                | 2.1604            | 0.016                  |
| 42.067                | 2.1045            | 1                                                   | 5  | 1 | 4             | (42.113               | 2.1055            | 0.046                  |
| 42.007                | 2.1402            | 1                                                   | -5 | 1 | + 2           | 42.115                | 2.1440            | 0.040                  |
| 12 572                | 2 1210            | 2                                                   | 5  | 2 | 2             | 42.110                | 2.1430            | 0.001                  |
| 42.372                | 2.1219            | 2                                                   | -5 | 3 | 3             | 42.575                | 2.1210            | 0.001                  |
| 11 195                | 2 0250            | 1                                                   | -4 | 4 | 4             | 44.440                | 2.0300            | 0.022                  |
| 44.405                | 2.0350            | 1                                                   | 5  | 1 | 2             | 44.517                | 2.0330            | 0.052                  |
|                       |                   |                                                     | 4  | 1 | 2             | 44.528                | 2.0331            |                        |
| 45 022                | 2 0120            | 2                                                   | -4 | 2 | 3             | 44.990                | 2.0155            | 0.012                  |
| 45.022                | 2.0120            | 5                                                   | -0 | 0 | <u>_</u><br>1 | 45.010                | 2.0123            | -0.012                 |
|                       |                   |                                                     | 4  | 4 | 1             | 45.040                | 2.0110            |                        |
| 45 700                | 1.0000            | 1                                                   | -2 | / | 1             | (45.008               | 2.0100            | 0.000                  |
| 43.722                | 1.9828            | 1                                                   | -3 | 5 | 4             | 45./51                | 1.9824            | 0.009                  |
|                       |                   |                                                     | -6 | 1 | 3             | (45.743               | 1.9819            |                        |
|                       |                   |                                                     | -3 | 4 | 5             | 48.238                | 1.8851            |                        |
|                       |                   |                                                     | -4 | 5 | 4             | 48.241                | 1.8849            |                        |
| 10.072                |                   | 2                                                   | -3 | 7 | 1             | 48.241                | 1.8849            | A                      |
| 48.262                | 1.8842            | 2                                                   | -6 | 2 | 1             | (48.279               | 1.8835            | 0.017                  |

TABLE II. Parameters obtained by X-ray powder diffraction for the compound 1-[N-(methyl)-(3,5-dimethylphenylamino)]methylnaphthalene.

| 1-[N-(methyl)-(3,5-dimethylphenylamino)]methylnaphthalene |                   |  |
|-----------------------------------------------------------|-------------------|--|
| a (Å)                                                     | 12.104 (1)        |  |
| <i>b</i> (Å)                                              | 14.933 (2)        |  |
| <i>c</i> (Å)                                              | 11.010 (2)        |  |
| β (°)                                                     | 115.409 (9)       |  |
| $V(Å^3)$                                                  | 1797.6 (3)        |  |
| Ζ                                                         | 4                 |  |
| $M_{20}$                                                  | 58.6              |  |
| $F_{30}$                                                  | 97.1 (0.0048, 66) |  |
| $D_{\rm m} ({\rm g}{\rm cm}^{-3})$                        | 1.604             |  |

count time of 2 s per step. Powder data were collected at room temperature (298 K).

Powder analytical software was used to remove the background (Sonneveld and Visser, 1975), smoothing (Saviztky and Golay, 1964), to eliminate the  $K\alpha_2$  component (Rachinger, 1948) and the second derivative method was used to determine the position and intensities of the diffraction maxima from each reflection.

## **III. RESULTS AND DISCUSSION**

The X-ray powder pattern of the compound dichlorodioxido(4,4-dimethoxycarbonyl-2,2-bipyridyl)molybdenum(VI) (2) is shown in Figure 2. X-ray powder diffraction data for the compound (2) are given in the Table I. All reflections were indexed successfully using the DICVOL06 program (Boultif and Louër, 2004) on a monoclinic unit cell and the peak positions, each with an absolute error of  $0.03^{\circ}$  $(2\theta)$ , were used in the calculations. The space group,  $P2_1/c$ (No. 14), estimated by the program CHEKCELL (Laugier and Bochu, 2002) was compatible with the systematic absences and with the crystal density. The unit-cell parameters of the compound (2) were refined with the program NBS\*AIDS83 software (Miguell et al., 1981). Its crystal data, X-ray density and figures of merit M<sub>20</sub> (de Wolff, 1968) and  $F_{20}$  (Smith and Snyder, 1979) are compiled in the Table II.

### ACKNOWLEDGEMENTS

The authors would like to thank Centro de Investigaciones of Universidad Santo Tomás (Bucaramanga-Colombia) for their support with the project approved in the VII internal call of research projects and the Laboratorio de Difracción de Rayos-X PTG of Universidad Industrial de Santander (Bucaramanga-Colombia) for data collection.

- Amini, M., Haghdoost, M., and Bagherzadeh, M. (2013). "Oxido-peroxido molybdenum(VI) complexes in catalytic and stoichiometric oxidations," Coord. Chem. Rev. 257, 1093–1121.
- Arzoumanian, H. (1998). "Molybdenum-oxo chemistry in various aspects of oxygen atom transfer processes," Coord. Chem. Rev. 178–180, 191–202.
- Arzoumanian, H. and Bakhtchadjian, R. (2006). "Synthesis and characterization of halo, cyanato, thiocyanato and selenocyanato molybdenum(VI) dioxo and dioxo-µ-oxo complexes," Transit. Met. Chem. 31, 681–689.

- Arzoumanian, H., Castellanos, N. J., Martínez, F., Paez-Mozo, E. A., and Ziarelli, F. (2010). "Silicon-assisted direct covalent grafting on metal oxide surfaces: synthesis and characterization of carboxylate N, N'-ligands on TiO<sub>2</sub>," Eur. J. Inorg. Chem. 11, 1633–1641.
- Bakhtchadjian, R., Tsarukyan, S., Barrault, J., Martinez, F., Tavadyan, L., and Castellanos, N. J. (2011). "Application of a dioxo-molybdenum(VI) complex anchored on TiO<sub>2</sub> for the photochemical oxidative decomposition of 1-chloro-4-ethylbenzene under O<sub>2</sub>," Transit. Met. Chem. 36, 897–900.
- Boultif, A. and Loüer, D. (2004). "Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method," J. Appl. Crystallogr. 37, 724–731.
- Castellanos, N. J., Martínez, F., Páez-Mozo, E. A., Ziarelli, F., and Arzoumanian, H. (2012). "Bis(3,5-dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N, N'-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O<sub>2</sub>," Transit. Met. Chem. 37, 629–637.
- Castellanos, N. J., Martínez, F., Lynen, F., Biswas, S., Van Der Voort, P., and Arzoumanian, H. (2013). "Dioxygen activation in photooxidation of diphenylmethane by a dioxomolybdenum(VI) complex anchored covalently onto mesoporous titania," Transit. Met. Chem. 38, 119–127.
- Constable, E. C. and Steel, P. J. (1989). "N,N'-Chelating biheteroaromatic ligands; a survey," Coord. Chem. Rev. 93, 205–223.
- de Wolff, P. M. (1968). "A simplified criterion for the reliability of a powder pattern indexing," J. Appl. Crystallogr. 1, 108–113.
- Enemark, J. H., Cooney, J. J. A., Wang, J. J., and Holm, R. H. (2004). "Synthetic analogues and reaction systems relevant to the molybdenum and tungsten oxotransferases," Chem. Rev. 104, 1175–1200.
- Günyar, A., Zhou, M. D., Drees, M., Baxter, P., Bassioni, G., Herdtweck, E., and Kühn, F. E. (2009). "Studies on bis(halogeno) dioxomolybdenum (VI)-bipyridine complexes: synthesis and catalytic activity," Dalton Trans. 40, 8746–8754.
- Holm, R. H., Solomon, E. I., Majumdar, A., and Tenderholf, A. (2011). "Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes," Coord. Chem. Rev. 255, 993–1015.
- Ittel, S. D., Johnson, L. K., and Brookhart, M. (2000). "Late-metal catalysts for ethylene homo- and copolymerization," Chem. Rev. 100, 1169–1203.
- Kühn, F. E., Lopes, A. D., Santos, A. M., Hertdweck, E., Haider, J. J., Romäo, C. C., and Santos, A. G. (2000). "Lewis base adducts of bis-halogeno-dioxomolybdenum(VI): syntheses, structures, and catalytic applications," J. Mol. Catal. A: Chem. 151, 147–160.
- Laugier, J. and Bochu, B. (2002). CHEKCELL. "LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments," (ENSP/ Laboratoire des Matériaux et du Génie Physique, BP 46. 38042, Saint Martin d'Hères, France). http://www.inpg.fr/LMGP and http://www. ccp14.ac.uk/tutorial/Imgp/.
- Miguell, A. D., Hubberd, C. R., and Stalick, J. K. (1981). NBS\* AIDS80: A FORTRAN Program for Crystallographic Data Evaluation. Tech. Note 1141. USA: National Bureau of Standards.
- Paez, C. A., Castellanos, N. J., Martinez, F., Ziarelli, F., Agrifoglio, G., Paez-Mozo, E. A., and Arzoumanian, H. (2008). "Oxygen atom transfer photocatalyzed by molybdenum(VI) dioxodibromo-(4,40-dicarboxylate-2,20-bipyridine) anchored on TiO<sub>2</sub>," Catal. Today 133–135, 619–624.
- Páez, C. A., Lozada, O., Castellanos, N. J., Martínez, F., Ziarelli, F., Agrifoglio, G., Paez-Mozo, E. A., and Arzoumanian, H. (2009).
  "Arylalkane photo-oxidation under visible light and O<sub>2</sub> catalyzed by molybdenum(VI)dioxo-dibromo (4,4'-dicarboxylato-2,2'-bipyridine) anchored on TiO<sub>2</sub>," J. Mol. Cat. A.: Chem. 299, 53–59.
- Rachinger, W. A. (**1948**). "A correction for the  $\alpha_1 \alpha_2$  doublet in the measurement of widths of X-ray diffraction lines," J. Sci. Instrum. **25**, 254.
- Saviztky, A. and Golay, M. J. (1964). "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. 36, 8, 1627–1639.
- Smith, G. S. and Snyder, R. L. (1979). "F<sub>N</sub>: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing," J. Appl. Crystallogr. 12, 60–65.
- Sonneveld, E. J. and Visser, J. W. (1975). "Automatic collection of powder diffraction data from photographs," J. Appl. Crystallogr. 8, 1–7.