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The role of soluble surfactants in the linear
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The linear stability of Couette–Poiseuille flow of two superposed fluid layers in a
horizontal channel is considered. The lower fluid layer is populated with surfactants
that appear either in the form of monomers or micelles and can also get adsorbed at
the interface between the fluids. A mathematical model is formulated which combines
the Navier–Stokes equations in each fluid layer, convection–diffusion equations for the
concentration of monomers (at the interface and in the bulk fluid) and micelles (in the
bulk), together with appropriate coupling conditions at the interface. The primary aim
of this study is to investigate when the system is unstable to arbitrary wavelength
perturbations, and in particular, to determine the influence of surfactant solubility
and/or sorption kinetics on the instability. A linear stability analysis is performed and
the growth rates are obtained by solving an eigenvalue problem for Stokes flow, both
numerically for disturbances of arbitrary wavelength and analytically using long-wave
approximations. It is found that the system is stable when the surfactant is sufficiently
soluble in the bulk and if the fluid viscosity ratio m and thickness ratio n satisfy
the condition m < n2. On the other hand, the effect of surfactant solubility is found
to be destabilising if m > n2. Both of the aforementioned results are manifested for
low bulk concentrations below the critical micelle concentration; however, when the
equilibrium bulk concentration is sufficiently high (and above the critical micelle
concentration) so that micelles are formed in the bulk fluid, the system is stable if
m< n2 in all cases examined.

Key words: channel flow, particle/fluid flow

1. Introduction
Surfactants are surface-active compounds that play an important role as cleaning,

wetting or foaming agents in a range of practical applications and everyday products.
They can be produced naturally, for example by the lungs (Grotberg 1994) and
by microorganisms (De et al. 2015), but they are also manufactured for use in
many commercial products such as detergents, soaps and shampoos. The widespread
use of surfactants is mainly a result of their chemical structure, comprising an
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Two-layer shear flow with soluble surfactants 19

amphiphilic molecule that contains a hydrophilic head and a hydrophobic tail; hence
in fluid mixtures such as water–oil systems, surfactants tend to arrange themselves
at the interface with their heads in the aqueous phase and their tails in the oil
phase. It is also possible for surfactants to be soluble in either of the two phases,
either as individual molecules (at sufficiently low concentrations) or colloidal-sized
aggregates called micelles (at higher concentrations). The micelles occur only when
the concentration is above a critical value called the critical micelle concentration
(CMC), and are formed by directing their oil-soluble tails away from the aqueous
phase and trapping small droplets of oil inside. Micellisation can therefore promote
the mixing of immiscible liquids and can play a crucial role in cleaning processes.

One of the key functions of surfactants is to reduce the surface tension at fluid
interfaces. It is known that for bulk concentrations below the CMC, the surface
tension decreases with the surfactant concentration according to the Gibbs isotherm
(e.g. Chang & Franses 1995). Experimental surface-tension measurements have
indicated, however, that the surface tension reaches a saturation level as the surfactant
concentration in the bulk becomes larger than the CMC (Song et al. 2006). As soon
as the bulk concentration reaches the CMC, any additional surfactant mass is readily
available to form micelles and it is expected that the interface and bulk monomer
concentrations would remain constant. This implies that at equilibrium and for bulk
concentrations above the CMC, there is a disassociation between the change in
surfactant mass and the surface tension (which is not sensitive to the concentration
of micelles).

The reduction of the surface tension in the presence of surfactant (at sufficiently
low concentrations) gives rise to so-called Marangoni forces that act locally on
the interface and drive the fluid towards regions of higher surface tension. This
phenomenon can significantly influence microscopic multiphase flows where surface
tension is the dominant force. It is hence evident that surfactants can be used as a
means of manipulating flows and controlling interfacial instabilities (examples of such
instabilities arising in film spreading processes are given in the review by Matar &
Craster (2009)). The ability to control and manipulate multi-layer systems, by either
suppressing or enhancing instabilities, is essential in numerous applications that either
benefit from a flat and smooth film or require interfacial travelling waves to enhance
mass transport; examples include coating applications (Weinstein & Ruschak 2004),
oil recovery (Slattery 1974), foam drainage (Shaw 1992) and microfluidics technology
(Craster & Matar 2009). It is therefore of fundamental importance to understand the
physical mechanisms responsible for interfacial instabilities.

The stability of interfacial flows has been studied extensively. In the absence of
surfactants, Yih (1967) found that a two-layer parallel flow is unstable to perturbations
of long wavelength. The instability occurs as long as the Reynolds number is non-zero
and it requires a viscosity contrast across the interface. Yih’s work has been extended
by other authors to perturbations of arbitrary wavelength (Renardy 1985; Yiantsios
& Higgins 1988) and to semi-infinite fluids (Hooper & Boyd 1987) in order to
identify the effect of bounding walls. The impact of surfactants on two-layer flows
has been analysed predominantly for the case of insoluble surfactants. Linear stability
studies indicated that the interface can be destabilised by insoluble surfactants even
in the Stokes flow limit (Frenkel & Halpern 2002; Halpern & Frenkel 2003; Blyth &
Pozrikidis 2004b; Frenkel, Halpern & Schweiger 2019a,b), and eventually becomes
saturated to non-uniform states in the nonlinear regime (Blyth & Pozrikidis 2004b;
Pozrikidis 2004a; Wei 2005; Frenkel & Halpern 2006; Bassom, Blyth & Papageorgiou
2010; Samanta 2013; Kalogirou & Papageorgiou 2016; Frenkel & Halpern 2017;
Kalogirou 2018).
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20 A. Kalogirou and M. G. Blyth

There have been a number of studies considering the effect of soluble surfactants
on the linear stability of falling liquid films (Ji & Setterwall 1994; Karapetsas &
Bontozoglou 2013, 2014) or two-layer channel flows (Sun & Fahmy 2006; Zaisha
et al. 2008; You, Zhang & Zheng 2014; Picardo, Radhakrishna & Pushpavanam
2016). In the latter case, the papers were either based on the simplifying assumption
of a non-deformable interface or considered surfactant soluble in both phases, with
the surface tension linearly dependent on either bulk concentration. In this paper,
we also consider dynamic transport of surfactant at the interface and include the
adsorption kinetics. The literature considering flows in the presence of surfactant
at high concentrations above the CMC is very limited and is restricted to single
fluids with a free surface – see Breward & Howell (2004) for an analysis of
steady straining flow of a micellar surfactant solution; Edmonstone, Craster & Matar
(2006) for a report on surfactant-induced fingering patterns observed in droplet
spreading on clean films; Craster, Matar & Papageorgiou (2009) for a study on
break up of surfactant-laden jets; Karapetsas, Matar & Craster (2011) for a review of
surfactant-enhanced spreading and superspreading on solid surfaces.

In this article, we present a detailed mathematical model describing a two-layer
flow where one of the fluids is contaminated with soluble surfactant. Even though the
surfactant could theoretically exist in both fluid layers, here it is only allowed to live
in one of the fluids as this scenario is more relevant to practical applications involving
water–oil systems, for instance in cleaning processes. The model incorporates
surfactant in three different arrangements: molecules adsorbed at the interface, single
molecules (monomers) in the bulk fluid and multi-molecule aggregates (micelles)
in the bulk. The presence of soluble surfactants introduces additional complexity
in the model due to the coupling of the interfacial dynamics with the dynamics
in the bulk through mass exchange. To the best of our knowledge, this is the first
study that considers a multi-layer flow with soluble surfactants above the CMC.
The derived model integrates a number of salient physical properties that play an
important role in the dynamics of surfactant-laden multi-layer flows, such as inertia,
gravity, surface tension, Marangoni stresses, diffusion and mass transfer between the
different surfactant forms. This model reduces to that of Kalogirou (2018) (which is
the most general model presented so far and includes the effects of inertia and density
stratification) for a two-layer flow with an insoluble surfactant in appropriate limits.
We perform a linear stability analysis that yields an eigenvalue problem for the wave
speed, and obtain analytical expressions for the two dominant growth rates valid in
the long-wave approximation. The linearised system is also solved numerically for
perturbations of arbitrary wavelengths and results are presented for situations with
bulk concentrations below or above the CMC.

In recent experimental work, Georgantaki, Vlachogiannis & Bontozoglou (2012,
2016) investigated liquid film flow with soluble surfactants, and reported the formation
of solitary waves preceded by capillary ripples as well as small-amplitude sinusoidal
travelling waves. In other related experiments, Shen et al. (2002) studied fibre coating
with surfactant solutions and investigated the thickening properties of the film in terms
of the bulk surfactant concentration. Hashimoto et al. (2008) considered the flow of
surfactant-laden droplets in a microfluidic Hele-Shaw cell and found a range of flow
patterns, including elongation of droplets and shear-driven instabilities. However, to
our knowledge there are no experiments on two-layer channel flows with surfactants
that could serve as a means of validation for our model.

The paper is organised as follows. In § 2 the physical problem is presented and the
mathematical model is formulated. Linear stability analysis about the equilibrium state
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Two-layer shear flow with soluble surfactants 21
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FIGURE 1. (Colour online) Problem configuration: two superposed fluid layers in a
channel of fixed height H, driven by the upper wall motion with velocity U and by a
constant pressure gradient G=−(∂p/∂x). The lower fluid is contaminated with surfactant
molecules, which can also attach on the interface between the two fluids or form micelles.
The size of the molecules is not to scale.

is performed in § 3 and asymptotic long-wave expansions are introduced. Numerical
results for bulk concentrations below and above the CMC are presented and discussed
in § 4. The main conclusions of this study can be found in § 5.

2. Mathematical model
The flow considered in this paper is illustrated in figure 1. We define a Cartesian

coordinate system with horizontal coordinate x and vertical coordinate y, while time
will be denoted by t. The problem configuration comprises two immiscible viscous
fluids that fill a long horizontal channel, consisting of two impermeable parallel plates
at y= 0 and y= H. The two fluid layers are superposed and separated by a distinct
interface, each occupying regions 06 y6 h(x, t) and h(x, t)6 y6H, respectively. The
interface at y= h(x, t) can evolve in space and time, but in a steady scenario is flat
at y = h0H, with 0 < h0 < 1. The flow is driven in the x-direction by the motion of
the upper plate with longitudinal velocity U, as well as a constant pressure gradient
G=−(∂p/∂x).

2.1. Hydrodynamics
The two fluids have densities ρ1, ρ2, viscosities µ1, µ2 and thicknesses H1, H2, where
subscripts 1 and 2 refer to the lower and upper fluids, respectively. We define the
pressure pj and the velocity vector uj = (uj, vj) in each region j= 1, 2. The evolution
of the flow in each fluid layer is governed by the mass and momentum equations,
given by

∇ · uj = 0, (2.1a)

ρj

(
∂uj

∂t
+ uj · ∇uj

)
=−∇pj +µj∇

2uj + ρj g, (2.1b)

where ∇= (∂/∂x, ∂/∂y) and g= (0,−g) with gravitational acceleration g.
On both walls the no-slip and no-penetration conditions for the fluid velocities are

applied, namely

u1 = (0, 0) at y= 0, and u2 = (U, 0) at y=H. (2.2)
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22 A. Kalogirou and M. G. Blyth

At the interface the fluid velocities need to be continuous, i.e.

u1 = u2 at y= h(x, t), (2.3)

and should satisfy the kinematic condition

D
Dt
(y− h(x, t))= 0, with

D
Dt
=
∂

∂t
+ u1

∣∣∣∣
y=h

· ∇. (2.4)

The above kinematic condition is accompanied by a dynamic condition that requires
the stress to be continuous across the interface. The stress jump at the interface is
given by (Stone & Leal 1990; Milliken, Stone & Leal 1993)

n · (σ1 − σ2)= κγn−∇sγ , (2.5a)

where γ is the surface tension and σj is the stress tensor in fluid j defined by
(Batchelor 1967)

σj =−pj I +µj(∇u+ (∇u)T), j= 1, 2. (2.5b)

Also, n is the unit normal vector (pointing into fluid 1), ∇s is the surface gradient
operator and κ is the interfacial curvature, given by

n=
(hx,−1)√

1+ h2
x

, ∇s =
(1, hx)

1+ h2
x

∂x, κ =∇s · n=
hxx

(1+ h2
x)

3/2
. (2.5c)

Equation (2.5a) takes into account the capillary pressure jump due to interfacial
curvature (normal to the interface) and the Marangoni force arising as a result of
the variability of surface tension due to the presence of surfactant (in the tangential
direction). The stress balance in the normal and tangential directions is provided by
taking the dot product of (2.5a) with the unit normal vector n from (2.5c) and unit
tangent vector t = (1, hx)/

√
1+ h2

x , respectively, and is equal to[
n · (n · σj)

]1

2 = κγ ,
[
t · (n · σj)

]1

2 =−t · ∇sγ , (2.6)

where the jump notation
[

fj
]1

2 = f1 − f2 is used.

2.2. Surfactant transport and connection to surface tension
The lower fluid 1 is contaminated with surfactant of bulk concentration C(x, y, t).
The surfactant molecules can get transferred onto the interface or form into micelles,
whose concentrations are denoted by Γ (x, t) and M(x, y, t), respectively. We
suppose that the surfactant molecules join/leave the interface from/to the bulk with
adsorption/desorption rates ka, kd, and that the micelles form and break up with kinetic
rate constants kb, km, respectively (figure 2). It is also assumed that the micelles are
monodispersed (Shaw 1992) and each micelle has a preferred size consisting of
N monomers. We adopt the kinetic model presented by Edmonstone et al. (2006),
Craster et al. (2009), which introduces the following fluxes

Jb = kaC
(

1−
Γ

Γ∞

)
− kdΓ , and Jm = kbCN

− kmM, (2.7)
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Two-layer shear flow with soluble surfactants 23

Desorption Formation kb

kd Breakup km

Adsorption
ka

FIGURE 2. (Colour online) Schematic showing the adsorption and desorption kinetics at
the interface, as well as the assembly and disassembly kinetics of micelles in the bulk.
The size of the molecules is not to scale.

where the bulk concentration C in Jb is evaluated at the interface y = h. The above
kinetic model is clearly nonlinear and takes into account that the space on the
interface is limited, thus it can become fully packed with monomers at a finite
concentration Γ∞ (the maximum packing concentration), at which no more molecules
can be further adsorbed on the interface. The model also assumes that micelles are
formed rapidly (since N is typically large) when the critical micelle concentration is
exceeded – this is due to the nonlinear term CN .

The surfactant monomers at the interface, the monomers in the bulk and the
micelles follow appropriate transport equations, given by (Stone & Leal 1990; Craster
et al. 2009; Karapetsas et al. 2011)

dΓ
dt
− ṙ · ∇sΓ +∇s · (Γ uS)+ Γ κ (n · uI)=Ds∇

2
s Γ + Jb, (2.8)

Ct + u1 · ∇C=Db∇
2C−NJm, (2.9)

Mt + u1 · ∇M =Dm∇
2M + Jm, (2.10)

with Ds, Db and Dm denoting the surface, bulk and micelle surfactant diffusivities,
respectively. The first term in the interfacial transport equation (2.8) represents the
time derivative of a point on the interface which moves in a direction normal to
the surface (with an arbitrary tangential component ṙ) – see Wong, Rumschitzki &
Maldarelli (1996) for a detailed derivation. Also, uI and uS denote the interfacial
velocity and its tangential component, respectively, defined as follows

uI = u1|y=h, uS = (t · uI)t. (2.11)

At the bottom channel wall, no-flux conditions are imposed for the bulk and micelle
concentrations, i.e.

n · ∇C= 0 and n · ∇M = 0, at y= 0, (2.12)

and on the fluid 1 side of the interface the following flux conditions are valid

Db(n · ∇C)= Jb and Dm(n · ∇M)= 0, at y= h(x, t). (2.13)

The first condition in (2.13) describes the exchange of monomers between the
interface and the nearby bulk fluid, while the second condition states that the flux
of micelles onto the interface in zero. This condition is physically appropriate and
essentially means that no micelles can adsorb directly to the interface, but they must
first break up into monomers in the bulk.

Finally, the total mass M of surfactant in a domain of (arbitrary) length L is
conserved, that is

M=
∫ L

0

∫ h

0
(C+NM) dy dx+

∫ L

0
Γ dx= const., (2.14)

where micelles can only form as long as the mass available is sufficient for the bulk
concentration to exceed the critical micelle concentration.
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24 A. Kalogirou and M. G. Blyth

When the bulk concentration C is below the critical micelle concentration, CCMC,
addition of surfactant in the bulk also increases the interface concentration Γ , which
in turn reduces the interfacial surface tension γ according to the Gibbs law (Chang
& Franses 1995; Pozrikidis 2004b)

dγ =−RT Γ
dCs

Cs
, (2.15)

where R is the ideal gas constant, T is the absolute temperature and Cs denotes
the bulk concentration at the interface. The Gibbs isotherm assumes an ideal bulk
fluid and non-interacting molecules, and is valid when the bulk concentration and
the surface concentration are at thermodynamic equilibrium (Hiemenz & Rajagopalan
1997), namely when

Jb = 0 ⇔
Cs

χ
=

Γ

Γ∞ − Γ
, with χ =

kdΓ∞

ka
. (2.16)

Equation (2.16) is often called the Langmuir adsorption isotherm in the literature
of reaction kinetics (Halpern & Grotberg 1992; Jensen & Grotberg 1993; Chang
& Franses 1995; Breward & Howell 2004; Pozrikidis 2004b; Song et al. 2006;
Karapetsas et al. 2011). Using (2.16) in the Gibbs isotherm (2.15) and integrating,
results in the well-known Langmuir equation of state

γ = γ0 +RT Γ∞ ln
(

1−
Γ

Γ∞

)
, (2.17)

with γ0 corresponding to the clean surface tension in the absence of surfactant. Note
that even though the above equation of state only relates the surface tension to the
interfacial concentration, the surface tension is also affected by the bulk concentration
through (2.16).

When the concentration in the bulk fluid becomes greater than the critical micelle
concentration, then any additional surfactant in the bulk is converted into micelles
leaving the interface concentration Γ unchanged and, in turn, the surface-tension
constant. The phenomenon of the surface tension settling to a constant value for bulk
concentrations beyond the CMC is well known and has been reported in experimental
surface-tension measurements – see Elworthy & Mysels (1966), Zhmud, Tiberg &
Kizling (2000), Liao, Basaran & Franses (2003), Song et al. (2006). It is important to
note that in this argument ‘concentration in the bulk’ refers to the total concentration
Cb consisting of both monomer and micelle concentrations, i.e. Cb=C+M=C+CN

(Danov et al. 1996; Zhmud et al. 2000). Consequently, the plot of the surface tension
from (2.17) against Cb is seen reaching a plateau at a critical value γ = γc when
Cb > CCMC (figure 3).

2.3. Non-dimensionalisation
The problem is written in non-dimensional form by performing the following
transformation of variables

(x, y, h)=H(x∗, y∗, h∗), (uj, vj)=U(u∗j , v
∗

j ), t=
H
U

t∗, pj = ρ1U2p∗j ,

γ = γ0γ
∗, Γ = Γ∞Γ

∗, C=CCMCC∗, M =
CCMC

N
M∗,

Jb =
Γ∞U

H
J∗b , Jm =

CCMCU
H

J∗m, M= LΓ∞M∗,

 (2.18)
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FIGURE 3. (Colour online) Variation of surface tension of water γ to surfactant
concentration in the bulk Cb, according to the Langmuir equation of state (2.17). The
values used for parameters are taken from Song et al. (2006) and are: γ0 = 72 dyn cm−1

(surface tension of water at 25 ◦C), R= 8.314 N m K−1 mol−1, T = 298.15 K (equal to
25 ◦C), Γ∞ = 2.4 × 10−6 mol m−2 and χ = 8.35 × 10−6 mol m−3. The surface tension
reaches a plateau at bulk concentration Cb = 9 × 10−3 mol m−3, which confirms the
experimental prediction of the CMC found by Song et al. (2006) (here we assume that
each micelle consists of N = 100 monomers).

where CCMC = (km/Nkb)
1/(N−1) (Breward & Howell 2004; Edmonstone et al. 2006;

Craster et al. 2009; Karapetsas et al. 2011) and L is the length of an (arbitrary)
horizontal domain. A number of dimensionless parameters are therefore introduced
and are given in table 1. To simplify the notation, we will henceforth drop the
superscript stars from all dimensionless variables.

2.3.1. Governing equations within the fluids
The flow in each fluid region is described by the non-dimensional continuity and

Navier–Stokes equations, given below for fluids j= 1, 2,

ujx + vjy = 0, (2.19a)

ujt + ujujx + vjujy =−
1
rj

pjx +
1

Rej
(ujxx + ujyy), (2.19b)

vjt + ujvjx + vjvjy =−
1
rj

pjy +
1

Rej
(vjxx + vjyy)−

1
Fr2

. (2.19c)

The transport of surfactant monomers and micelles in the bulk of fluid 1 is described
by the convection–diffusion equations

Ct + u1Cx + v1Cy =
1

Peb
(Cxx +Cyy)− Jm, (2.20)

Mt + u1Mx + v1My =
1

Pem
(Mxx +Myy)+ Jm, (2.21)

with the dimensionless flux Jm given by

Jm =Km(CN
−M). (2.22)
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26 A. Kalogirou and M. G. Blyth

Fluid property Hydrodynamic Surfactant Solubility
ratios parameters parameters parameters

n=
H2

H1
Re=

ρ1UH
µ1

Ma=
RT Γ∞
µ1U

Bi=
Hkd

U

r=
ρ2

ρ1
We=

ρ1U2H
γ0

βs =
RT Γ∞
γ0

Kb =
ka

kd

CCMC

Γ∞

m=
µ2

µ1
Ca=

µ1U
γ0

Pes =
UH
Ds

βb =
Γ∞

HCCMC

Fr=
U
√

gH
Peb =

UH
Db

Rb =
ka

Hkd

Bo=
(1− r)H2ρ1g

γ0
Pem =

UH
Dm

Km =
kmH
NU

TABLE 1. Non-dimensional parameters arising in the model formulation. Key to parameter
names in table – n: thickness ratio; r: density ratio; m: viscosity ratio; Re: Reynolds
number (note that Re = Re1 = (m/r)Re2); We: Weber number; Ca: capillary number; Fr:
Froude number; Bo: Bond number; Ma: Marangoni number; Pes, Peb, Pem: Peclét numbers
(surface, bulk, micelle); Bi: Biot number. The following parameters are also defined: rj =

ρj/ρ1 and mj =µj/µ1, j= 1, 2, such that r1 = 1, r2 = r and m1 = 1, m2 =m.

The boundary conditions imposed on the channel walls are

No slip : u1 = 0 at y= 0, and u2 = 1 at y= 1, (2.23a)
No penetration : v1 = 0 at y= 0, and v2 = 0 at y= 1, (2.23b)
No flux : Cy = 0 at y= 0, and My = 0 at y= 0. (2.23c)

2.3.2. Coupling conditions at the interface
Continuity of horizontal and vertical velocities at the interface gives

u1 = u2, v1 = v2 at y= h(x, t), (2.24)

and the kinematic condition (2.4) becomes

v1 = ht + u1hx. (2.25)

The dimensionless forms of the normal and tangential stress jumps at the interface
(2.6) are respectively given by[

−pj(1+ h2
x)+

2rj

Rej

(
h2

xujx + vjy − hx(ujy + vjx)
)]1

2

=
γ

We
hxx√
1+ h2

x

, (2.26a)[
4mjhxujx +mj(h2

x − 1)(ujy + vjx)

]1

2

=−
γx

Ca

√
1+ h2

x . (2.26b)

The right-hand side terms in both the normal and tangential stress balance (2.26a),
(2.26b) indicate the dependence of the surface tension on the local surfactant
concentration; the two are connected via the dimensionless nonlinear equation of
state

γ = 1+ βs ln(1− Γ ), (2.27)
where parameter βs measures the sensitivity of interfacial tension to changes in the
surface surfactant concentration. The transport equation for the interfacial surfactant
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Two-layer shear flow with soluble surfactants 27

concentration is

Γt +
hxhtx

1+ h2
x

Γ +
1√

1+ h2
x

(√
1+ h2

x uIΓ
)

x
=

1
Pes

1√
1+ h2

x

(
Γx√

1+ h2
x

)
x

+ Jb,

(2.28)

with the flux boundary conditions at the interface becoming

−Cy + hxCx√
1+ h2

x

= PebβbJb and −My + hxMx = 0 at y= h(x, t), (2.29)

and the non-dimensional flux Jb given by

Jb = Bi (KbC(1− Γ )− Γ ) . (2.30)

The dimensionless total mass of surfactant is

M=
1
βbL

∫ L

0

∫ h

0
(C+M) dy dx+

1
L

∫ L

0
Γ dx, (2.31)

where the domain length L is also scaled in non-dimensional units (by writing L=HL∗
and then dropping the superscript star from L∗).

The model derived in this section reduces to the insoluble surfactant problem by
applying one of the limits:

(i) Bi→ 0, found when there is no desorption from the interface to the bulk, i.e.
kd→ 0 (Booty & Siegel 2010; Wang, Siegel & Booty 2014). This condition is
equivalent to setting the flux Jb = 0 in (2.28) and (2.29);

(ii) βb� 1, which is essentially equivalent to condition (i), see first equation in (2.29)
(Jensen & Grotberg 1993; Oron, Davis & Bankoff 1997; Edmonstone et al. 2006;
Craster et al. 2009);

(iii) Kb� 1, corresponding to the molecules being attracted to the interface, i.e. ka�

kd (Craster et al. 2009).

In place of conditions (ii) and (iii), we could instead satisfy Rb� 1, where Rb is a
new parameter defined by

Rb = βbKb =
Γ∞

HCCMC
·

ka

kd

CCMC

Γ∞
=

ka

Hkd
. (2.32)

As we will see in later sections, this combined parameter Rb will often appear
in the stability conditions of this problem. A similar observation has been made
by Karapetsas & Bontozoglou (2013) in a related liquid film flow with soluble
surfactants.

3. Linear stability analysis
3.1. Equilibrium state

At equilibrium both fluid layers have uniform thicknesses, with the interface located
at y= h0. The basic flow in each fluid layer j= 1, 2 is the standard two-fluid Couette–
Poiseuille flow and is given by
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28 A. Kalogirou and M. G. Blyth

u1(y)= qy2
+wy, v1 = 0, p1(x, y)= p0 −

1
Fr2

(y− h0)−Kx, (3.1a)

u2(y)=
q
m

y2
+

w
m

y+ b, v2 = 0, p2(x, y)= p0 −
r

Fr2
(y− h0)−Kx, (3.1b)

where p0 is the undisturbed constant pressure at the interface and the rest of the
coefficients are given by

q=−
1
2

ReK =−
GH2

2µ1U
, w=

m− q(1+ h2
0(m− 1))

1+ h0(m− 1)
, (3.1c)

b=
(m− 1)

m

(
mh0 − qh0(1− h0)

1+ h0(m− 1)

)
. (3.1d)

Parameter q represents the effect of the pressure gradient. We can define a new
parameter for the dimensionless shear rate s by

s := u′1(h0)= 2qh0 +w, (3.2)

which is equal to the slope of the basic velocity at the interface; we will see later
that this shear parameter plays a crucial role in the stability of the problem.

The equilibrium state for the surfactant can be found by setting Jb = 0, Jm = 0 in
(2.30) and (2.22), resulting in

C=
Γ

Kb(1− Γ )
, CN

=M, (3.3)

where concentrations Γ , C, M are constants (note that C is bounded, hence Γ < 1).
The total surfactant mass is

M=
h0

βb
(C+M)+ Γ . (3.4)

For any given mass M, we can find the equilibrium concentration Γ by substituting
for M and then C from (3.3).

3.2. Linearised equations of motion
The interest of this work is to study the linear stability properties of the flow. To
formulate the stability problem, we first consider small disturbances (denoted with a
hat decoration) to the equilibrium state as follows

h(x, t)
uj(x, y, t)
pj(x, y, t)
Γ (x, t)

C(x, y, t)
M(x, y, t)

=


h0

uj(y)
pj(x, y)
Γ

C
M


+



ĥ(x, t)
ûj(x, y, t)
p̂j(x, y, t)
Γ̂ (x, t)

Ĉ(x, y, t)
M̂(x, y, t)


. (3.5a)

The incompressible condition (2.19a) allows us to write the fluid velocities in terms
of derivatives of scalar streamfunctions, i.e.

ûj = (ûj, v̂j)=

(
∂Ψ̂j

∂y
,−

∂Ψ̂j

∂x

)
, j= 1, 2. (3.5b)
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The perturbation variables are then written in a normal-mode form

ĥ(x, t)
Ψ̂j(x, y, t)
p̂j(x, y, t)
Γ̂ (x, t)

Ĉ(x, y, t)
M̂(x, y, t)


=



h̃
Ψ̃j(y)
p̃j(y)
Γ̃

C̃(y)
M̃(y)


eik(x−ct), (3.5c)

where k is the (real) wavenumber, c is the wave speed (generally a complex value)
and the tilde variables define the amplitude vector. The amplification or growth rate is
therefore given by λ= kIm(c) and hence stability is determined by the sign of Im(c):
a negative sign yields exponential decay of perturbations, while a positive sign means
linear instability.

Linearisation of the kinematic equation (2.25) gives

h̃=
Ψ̃1(h0)

c− u1(h0)
=
Ψ̃1(h0)

c̃
, (3.6)

where c̃ = c − u1(h0) defines the velocity of the moving disturbance relative to
the unperturbed interfacial velocity. Equation (3.6) will used in the remaining
equations to eliminate h̃ in terms of Ψ̃1(h0). Substituting perturbations (3.5) in
the Navier–Stokes equations (2.19b)–(2.19c) and boundary conditions (2.23a)–(2.23b),
(after eliminating the pressure) results in the Orr–Sommerfeld boundary value problem
for the streamfunction disturbance in each fluid, given by(

Ψ̃ ′′′′j (y)− 2k2Ψ̃ ′′j (y)+ k4Ψ̃j(y)
)

= ikRej

[
(uj(y)− c)

(
Ψ̃ ′′j (y)− k2Ψ̃j(y)

)
− u′′j (y)Ψ̃j(y)

]
, j= 1, 2, (3.7a)

Ψ̃1(0)= Ψ̃ ′1(0)= 0, Ψ̃2(1)= Ψ̃ ′2(1)= 0, (3.7b)

where primes denote differentiation with respect to y. The linearised conditions for
vertical and horizontal velocity continuity (2.24) at the interface y= h0 are

Ψ̃1(h0)= Ψ̃2(h0), Ψ̃ ′1(h0)− Ψ̃
′

2(h0)=

(
1
m
− 1
)

s
c̃
Ψ̃1(h0). (3.7c)

Inserting disturbances (3.5) into (2.26) and using the leading-order momentum
equations (2.19), yields the linearised normal stress jump at the interface(

mΨ̃ ′′′2 (h0)− Ψ̃
′′′

1 (h0)
)
+ ikrRe

(
c̃ Ψ̃ ′2(h0)+ u′2(h0)Ψ̃2(h0)

)
− 3k2

(
mΨ̃ ′2(h0)− Ψ̃

′

1(h0)
)

− ikRe
(

c̃ Ψ̃ ′1(h0)+ u′1(h0)Ψ̃1(h0)
)
=−

ik
Ca
Ψ̃1(h0)

c̃
(γ k2
+ Bo), (3.7d)

where γ = 1 + βs ln(1 − Γ ) is the equilibrium surface-tension value, and the
corresponding tangential stress jump(

mΨ̃ ′′2 (h0)− Ψ̃
′′

1 (h0)
)
+ k2

(
mΨ̃2(h0)− Ψ̃1(h0)

)
= ik

Ma
(1− Γ )

Γ̃ . (3.7e)
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30 A. Kalogirou and M. G. Blyth

Equation (3.7d) is simplified through cancellation of the second and fourth terms (and
by using velocity continuity (3.7c)) when the fluids have equal densities, i.e. for r= 1.
Note that with the exception of the right-hand side surfactant term in the tangential
stress equation (3.7e), the rest of the linear hydrodynamic system (3.7) up to here is
identical to that obtained by Yih (1967) for the stability of multi-layer flow without
surfactant.

What is left is to linearise the transport equations for the surfactant. This is achieved
by first substituting perturbations (3.5) into equation (2.28), providing the following
linear equation for the interfacial surfactant concentration disturbance

Γ̃

(
−ikc̃+

k2

Pes
+ Bi(KbC+ 1)

)
− BiKb(1− Γ )C̃(h0)=−ikΓ

( s
c̃
Ψ̃1(h0)+ Ψ̃

′

1(h0)
)
.

(3.8)
Finally, the convection–diffusion equations (2.20)–(2.21) for the monomers and
micelles in the bulk and the relevant boundary conditions (2.23c), (2.29) are linearised;
the resulting system for the disturbance in the monomer concentration reads

C̃′′(y)− k2C̃(y)− ikPeb(u1(y)− c)C̃(y)− PebKm

(
NCN−1C̃(y)− M̃(y)

)
= 0, (3.9a)

C̃′(0)= 0, C̃′(h0)+ PebβbBiKb(1− Γ )C̃(h0)= PebβbBi(KbC+ 1)Γ̃ , (3.9b)

and the corresponding perturbation system for the micelle concentration is

M̃′′(y)− k2M̃(y)− ikPem(u1(y)− c)M̃(y)+ PemKm

(
NCN−1C̃(y)− M̃(y)

)
= 0,

(3.10a)
M̃′(0)= 0, M̃′(h0)= 0. (3.10b)

Clearly the disturbances for both the monomer and micelle concentrations in the
bulk each satisfy a second-order ordinary differential equation with two boundary
conditions; while these are homogeneous in the micelle system, one of the conditions
(3.9b) in the monomer system is a Robin boundary condition.

At this point we should point out that the linear system (3.7)–(3.10) in effect only
depends on parameter Rb = βbKb and not on βb or Kb individually; this can be seen
by scaling C̃→ βbC̃ (M̃ needs to be also scaled appropriately) and noting that the
factor (KbC + 1) can be written in terms of Γ only (by applying the equilibrium
equation (3.3)).

3.3. Expansions for long waves
Previous studies on multi-layer flows have shown that the interface is susceptible to
long-wave instability, i.e. instability to disturbances with large wavelength. That
motivates us to look for a similar instability in multi-layer flows with soluble
surfactant, and hence we introduce the following expansions for long waves (i.e. small
wavenumber k),

c= c0 + kc1 + · · · , (3.11a)
Ψ̃j(y)= Ψ̃j,0(y)+ kΨ̃j,1(y)+ · · · , (3.11b)

Γ̃ = Γ̃0 + kΓ̃1 + · · · , (3.11c)
C̃(y)= C̃0(y)+ kC̃1(y)+ · · · , (3.11d)
M̃(y)= M̃0(y)+ kM̃1(y)+ · · · . (3.11e)
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Two-layer shear flow with soluble surfactants 31

The solution procedure followed is to seek solutions to the hydrodynamic and
surfactant systems individually at each order until we eventually recover all variables
up to order k, and most importantly obtain wave speeds c0, c1 which will provide
information of the stability properties of the problem. The leading-order variables
in the case of bulk concentrations beyond the CMC are found to be algebraically
rather complicated, and therefore the remaining of this section will consider bulk
concentrations below the CMC (with M̃ = 0) for the simplicity of presentation.

3.3.1. Hydrodynamic system at O(1)
The hydrodynamic system (3.7) at leading order in k is unaware of the presence of

surfactant and the solution is exactly the same as the one found by Yih (1967). The
leading-order relative velocity of interfacial waves is

c̃0 = c0 − u1(h0)=
2(1−m)n2s

m2 + 4mn+ 6mn2 + 4mn3 + n4
, (3.12)

where the thickness ratio n is connected to the undisturbed lower fluid thickness h0

through n= (1− h0)/h0.

3.3.2. Surfactant system at O(1)
The surfactant equations (3.8)–(3.9) at leading order in k read

Γ̃0(KbC+ 1)−KbC̃0(h0)(1− Γ )= 0, (3.13a)
C̃′′0(y)= 0, (3.13b)

C̃′0(0)= 0, C̃′0(h0)+ PebβbBiKb(1− Γ )C̃0(h0)= PebβbBi(KbC+ 1)Γ̃0. (3.13c)

Combining condition (3.13a) and the second equation in (3.13c) yields C̃′0(h0) = 0
and (3.13a) can be then used to provide a condition for C̃(h0) in terms of Γ̃0.
Integrating equation (3.13b) twice in y gives

C̃0(y)=
Γ̃0

Kb(1− Γ )2
, (3.14)

which shows that the leading-order perturbation of the bulk concentration is constant
across the fluid. Interestingly, this solution for C̃0 is identical to the leading-order
bulk disturbance found in liquid film flow down an inclined plate (Karapetsas &
Bontozoglou 2014). This is unsurprising considering that the leading-order surfactant
system is unaware of the presence of the second fluid.

3.3.3. Surfactant system at O(k)
The bulk disturbance equation and boundary conditions at the next order are

C̃′′1(y)− iPeb(u1(y)− c0)C̃0 = 0, (3.15a)

C̃′1(0)= 0, C̃′1(h0)+ PebβbBiKb(1− Γ )C̃1(h0)= PebβbBi(KbC+ 1)Γ̃1. (3.15b)
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32 A. Kalogirou and M. G. Blyth

Integrating equation (3.15a) twice and using the boundary conditions (3.15b) to
determine the constants of integration results in the first-order perturbation for the
bulk concentration

C̃1(y) = iC̃0

[
Peb

( q
12
(y4
− h4

0)+
w
6
(y3
− h3

0)−
c0

2
(y2
− h2

0)
)

+
1

βbBiKb(1− Γ )

(
−

q
3

h3
0 −

w
2

h2
0 + c0h0

)
− i
Γ̃1

Γ̃0

]
, (3.16)

where the terms Γ̃0, Γ̃1 still need to be found. To obtain Γ̃0 we need to consider the
interfacial surfactant equation at O(k), and after some algebraic manipulations this is
found to be (given for q= 0)

Γ̃0 = Γ̃
ins

0 S, (3.17a)

with

Γ̃ ins
0 =

m(m2
+ 4mn+ 6mn2

+ 4mn3
+ n4)(m+ 3mn+ 3n2

+ n3)Γ

2s(m− 1)2n2(n2 + 2mn+m)
, (3.17b)

S =
(

1−
(n2
+m+ 2n)2

4(m− 1)n2(n+ 1)2(1− Γ )2Rb

)−1

, (3.17c)

where we have assumed that m 6= 1. The first factor Γ̃ ins
0 in (3.17a) is identical

to the leading-order perturbation in the corresponding insoluble problem, and the
second factor S tends to 1 in the insoluble limit Rb� 1, as expected. The solution
for Γ̃1 is found by solving the interfacial surfactant equation at O(k2) but it is too
lengthy to be given here. Having obtained Γ̃0 and Γ̃1, the leading-order and first-order
perturbations for the bulk concentration C̃0(y) in (3.14) and C̃1(y) in (3.16) are then
fully determined.

3.3.4. Hydrodynamic system at O(k)
Analytic calculations for the hydrodynamic system at O(k) are algebraically very

cumbersome so the symbolic software Maple is employed in order to find the first-
order perturbation of the wave speed c1; for Re = 0, Bo = 0, q = 0 the solution is

c1 = icinsS, (3.18a)

with

cins
=−

(m+ 3mn+ 3n2
+ n3)(m− n2)MaΓ

4(n+ 1)(m2 + 4mn+ 6mn2 + 4mn3 + n4)(m− 1)(1− Γ )
, (3.18b)

the corresponding insoluble component. The solution for c1 is purely imaginary and
hence provides the leading-order expression for the growth rate λ= kIm(c), given by
k2Im(c1)= cinsSk2. Since the soluble component S tends to 1 in the limit Rb� 1, the
growth rate reduces to the insoluble rate. As mentioned before, the expression (3.18a)
for the growth rate only depends on parameter Rb = βbKb through S given in (3.17c)
and not on parameters βb or Kb individually.

It is important to note that expressions (3.17) and (3.18) are only valid for m 6= 1
and Rb 6= R∗b, where

R∗b =
(n2
+m+ 2n)2

4(m− 1)n2(n+ 1)2(1− Γ )2
, (3.19)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.392


Two-layer shear flow with soluble surfactants 33

(provided that m > 1). At m = 1 it was shown by Frenkel & Halpern (2002) and
Halpern & Frenkel (2003) for the corresponding insoluble problem that the long-wave
expansion for the wave speed is not regular, but the first-order term in the expansion
is of O(k1/2) instead of O(k). This happens because in this particular limit, the linear
term in the quadratic equation that determines the wave speed c does not contribute
to the leading-order solution in k. We have proved that a similar result holds when
Rb = R∗b, in which case the first-order perturbation of the wave speed is given by

±
1
2
(1+ i)

√
s(m+ 3mn+ 3n2 + n3)(m− n2)(n2 +m+ 2n)2n2MaΓ
(m2 + 4mn+ 6mn2 + 4mn3 + n4)3(n+ 1)(1− Γ )

k1/2. (3.20)

3.3.5. Second (Marangoni) mode
The mode found above is a ‘hydrodynamic mode’, in the sense that it exists

independently of the presence of surfactant; this mode is known to be stable in the
Stokes flow limit and in the absence of surfactant (Yih 1967) but it is generally
unstable for non-zero Reynolds number. Several authors in the past have reported
a second ‘Marangoni mode’, associated with the surfactant concentration at the
interface and coming from the interfacial transport equation (e.g. Frenkel & Halpern
2002; Pereira & Kalliadasis 2008; Karapetsas & Bontozoglou 2014). We can find the
corresponding Marangoni mode for this problem by expanding the wave speed as in
(3.11a) and introducing expansions for the streamfunctions Ψ̃j with a leading term
of order α−1 (we note that the expansion is the same as in the insoluble problem,
see Frenkel & Halpern (2002)), while the surfactant concentrations Γ̃ and C̃ are
expanded with a leading term of order α−2. We obtain the following solution for the
wave speed at leading order

c0 =
(3Rb(1− Γ )2(n+ 1)+ 2)(ns− q+ s)− 1

2 s(n+ 1)
3(Rb(1− Γ )2(n+ 1)+ 1)(n+ 1)2

, (3.21)

whereas the expression of the O(k) term c1 is rather unwieldy and will be omitted.
Clearly, the leading-order wave speed c0 is real and therefore the growth rate λ =
kIm(c) passes through k= 0. In the insoluble limit Rb� 1, the above expression c0→

−qh2
0+ sh0= qh2

0+wh0 (upon setting n= (1− h0)/h0 and using (3.2)) which is equal
to the undisturbed interfacial velocity u1(h0).

The second mode has a similar form as (3.18); it also includes the solubility factor
S (defined in (3.17c)) and exhibits a different asymptotic behaviour at critical point
R∗b, similar to the first mode presented in § 3.3. Here we discuss the behaviour of these
two modes as the viscosity ratio m varies. In figure 4, the two long-wave modes are
shown with solid lines and the corresponding insoluble modes are shown with dash-
dotted lines – note that the vertical asymptotes do not signify a breakup of the long-
wave theory but rather a change in the asymptotic expansion as discussed above. Both
modes are seen to change stability as the boundary m = m∗ > 1 is crossed, but the
overall system always remains unstable in the vicinity of m∗ (similar to the behaviour
of the corresponding insoluble system at m= 1). The critical point m∗ exists as long
as Rb > 1/(1− Γ )2n2 and tends to 1 in the insoluble limit Rb� 1.

3.3.6. Other normal modes
The analogous insoluble problem admits only two normal modes under conditions

of Stokes flow. Both of these modes vanish when the disturbance has infinite
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FIGURE 4. (Colour online) Long-wave predictions for the two dominant modes and for
varying viscosity ratio m. The parameter values used are n=1.5 (h0=0.4), Γ =0.5, Bi=1,
Kb = 10, βb = 1 (i.e. Rb = βbKb = 10), Re= 0, Bo= 0, Ca= 0.1, Ma= 0.1, Pes = 1× 108,
Peb= 100. Thick solid lines demonstrate the soluble modes and thin dash-dotted lines the
corresponding insoluble modes. The vertical asymptotes at m∗= 1.3056 and m= 1 indicate
the values of m at which the growth rates change asymptotic behaviour.

wavelength, that is when k = 0. When the surfactant is soluble there is an infinite
number of modes that originate from the bulk transport equation (3.9) – see
appendix A for a method of obtaining these modes in the case of Stokes flow.
Two modes exactly pass through the origin k = 0 but all the other modes reach
a constant (negative) value at k = 0; further analysis of these remaining modes is
provided in appendix B.

4. Numerical solutions for arbitrary wavenumbers
4.1. Numerical method

A general solution of the linear eigenvalue problem (3.7)–(3.10) for perturbations of
arbitrary wavelengths can only be obtained numerically. Here we use the Chebyshev
collocation method which requires to first map each fluid region to the canonical
interval [−1, 1]. This is achieved by performing a y-coordinate transformation to new
coordinates y1, y2 ∈ [−1, 1] defined by

y1 = 1−
2y
h0
, for 0 6 y 6 h0, and y2 =

2y− 1− h0

1− h0
, for h0 6 y 6 1, (4.1)

with the interface located at y1 = y2 =−1. The streamfunctions Ψ̃1, Ψ̃2 and surfactant
concentrations C̃, M̃ are then written in terms of Chebyshev expansions (Orzag 1971;
Boomkamp et al. 1997)

Ψ̃j(yj)=

Nj∑
`=0

ψ̃j`T`(yj), C̃(y1)=

N1∑
`=0

c̃`T`(y1), M̃(y1)=

N1∑
`=0

m̃`T`(y1), (4.2)

where T`(yj) is the `th Chebyshev polynomial of the first kind and N1, N2 are
appropriately chosen truncation levels for each fluid layer j= 1, 2. The total number
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of unknowns considered is 3N1 + N2 + 5, comprising N1 + 1 expansion coefficients
ψ̃1`, N2+ 1 coefficients ψ̃2`, N1+ 1 coefficients c̃`, N1+ 1 coefficients m̃` and Γ̃ . The
linearised set of equations (3.7)–(3.10) is assembled into a system (A · x)= c(B · x),
where A, B are square matrices of size 3N1+N2+5. The linear system then becomes
a finite-dimensional generalised eigenvalue problem for the complex eigenvalue
c = cr + ici and the associated eigenvector. The solution of this system provides the
growth rate λ= kci for any wavenumber k.

In practice, the two Orr–Sommerfeld equations are solved with N1 − 3 and N2 − 3
interior collocation points, respectively, while the bulk and micelle concentration
equations are solved at N1− 1 interior points each. The remaining 13 equations come
from the boundary conditions (3.7b)–(3.7e), (3.8), (3.9b), (3.10b). Note that some of
the boundary conditions do not contain the eigenvalue c and so a number of rows
in B are zero, making the matrix singular. The singularity in B in general leads to
the emergence of spurious eigenvalues (Dongarra, Straughan & Walker 1996), which
were carefully eliminated in order to obtain accurate numerical results. This was
achieved in one of the following ways: (i) by removing the null rows and columns
and obtaining a reduced system; or (ii) by using the built-in generalised eigenvalue
solver eig in MATLAB, which implements a QZ algorithm. Computations with both
of these methods have been carried out with eigenvalues being in excellent agreement
in both cases.

The system at hand has an infinite number of eigenvalues and associated
eigenfunctions for non-zero values of the Reynolds number. In the Stokes flow
approximation, Re = 0, the corresponding problem with insoluble surfactant has
precisely two eigenvalues. As already mentioned, the problem with soluble surfactant
considered here has infinitely many eigenvalues even for Stokes flow; the two
dominant modes are identified and demonstrated in the numerical results that follow
in this section.

To validate the code and check its numerical accuracy, a number of test cases
were simulated and numerical solutions were compared to available results from
the literature. As a first test case, growth rates were obtained for multi-layer Couette
or Poiseuille flow with an interface that is devoid of surfactants, and comparisons
with results presented in Renardy (1985) and Yiantsios & Higgins (1988) showed
excellent agreement. A further check was performed by computing growth rates
for single-layer or multi-layer flow with insoluble surfactant at the interface and
recovering those obtained by Halpern & Frenkel (2003), Blyth & Pozrikidis (2004a)
and Pereira & Kalliadasis (2008). We have also solved a modified code for liquid
film flow in the presence of soluble surfactant and growth rates were confirmed to
be identical to those found by Karapetsas & Bontozoglou (2013). Furthermore, in the
case of multi-layer flow with soluble surfactant it was verified that the code reproduces
the results of an independently written code for the corresponding insoluble problem
when Bi= 0, or Bi� 1 and Rb� 1.

As a final validation case we compared the numerically computed growth rates
to the long-wave asymptotic solutions presented in § 3.3. Figure 5 demonstrates an
example, where the two dominant modes calculated using the Chebyshev method
are shown with solid black lines and the long-wave predictions are portrayed
with red circles. Clearly the numerical and asymptotic growth rate curves become
indistinguishable as they approach the origin. We verified that this is indeed the case
for all other results presented next.
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FIGURE 5. (Colour online) Comparison of the two dominant growth rates with the long-
wave analysis, for m = 0.5, n = 10 (equivalently, h0 = 1/11), Γ = 0.5, Bi = 1, Kb = 1,
βb= 1 (i.e. Rb= βbKb= 1). The solid black lines are the numerical results obtained using
Chebyshev collocation method and the circles are the asymptotic results found analytically
for long waves. Parameter values for Re, Bo, Ca, Ma, Pes, Peb are the same as in figure 4.

4.2. Numerical results
The primary aim of this section is to identify the effect of surfactant solubility and
sorption kinetics on the stability of the interface, in order to distinguish the stability
properties of multi-layer flow with soluble surfactant from those of the equivalent
flow where the surfactant is treated as insoluble. The degree of surfactant solubility
is represented in the mathematical model by parameter Rb, with Rb� 1 being highly
soluble in the bulk and Rb � 1 nearly insoluble (we have confirmed that βb or Kb
do not affect the numerical results individually but only through the parameter Rb =

βbKb, as expected). A measure of sorption kinetics is provided by the Biot number
Bi, with Bi � 1 corresponding to surfactant leaving the interface very slowly and
Bi� 1 indicating a fast desorption rate towards the bulk fluid. We will investigate
the influence of the two parameters Bi, Rb on the stability properties of the system
and explore how these properties are affected when the bulk concentration becomes
larger than the CMC.

Considering the large number of dimensionless parameters involved in the problem
at hand (table 1), it is practical to fix some of these parameters in the numerical
simulations. All the results presented in this section will be for Stokes flow, Re= 0,
and unless otherwise specified the following parameters will be kept fixed: r = 1,
Bo= 0, Ca= 0.1, Ma= 0.1, Pes = 1× 108, Peb = 100, Pem = 100, Km = 1 (note that
the last two parameters are relevant only in the presence of micelles).

4.2.1. Bulk concentrations below the CMC
Frenkel & Halpern (2002) showed that the interface between two viscous fluids

under Stokes flow conditions exhibits long-wave instability in the presence of
insoluble surfactant, but only if an underlying shear is imposed. We investigated
if the related problem with soluble surfactant follows the same behaviour and indeed
we found that the problem is stable to small disturbances of any wavelength if the
basic flow shear is removed. This result was shown using both numerical calculations
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FIGURE 6. Growth rate curves for decreasing values of Rb and all other parameters fixed,
specifically m= 0.5, n= 10 (i.e. h0= 1/11) and Γ = 0.5, with the corresponding insoluble
surfactant problem being unstable. Panel (a) shows the dominant growth rate for fixed
Bi = 0.01 and Rb = 100, 10, 1, 0.2, 0.1. Panel (b) uses fixed Bi = 1 and depicts the two
most significant modes for each value of Rb = 10, 2, 1, 0.5. Parameter values for Re, Bo,
Ca, Ma, Pes, Peb remain the same as in figure 4.

of the linearised system and long-wave analysis with shear rate s = 0 (results not
shown for brevity). It is therefore imperative that an underlying shear flow is present
for this problem to exhibit any kind of instability to interfacial disturbances. The
rest of the results presented in this section will accordingly employ a non-zero shear,
s 6= 0, given by (3.2).

We start the numerical investigation by considering a parameter set that supports
instability when the surfactant is mostly attracted to the interface (i.e. insoluble or
nearly insoluble) and slowly strengthen the effect of surfactant solubility or sorption
kinetics by varying parameters Rb or Bi. Figures 6 and 7(a) use m = 0.5, n = 10
(h0 = 1/11) and Γ = 0.5, which corresponds to an unstable interface in the case of
insoluble surfactant (since m < n2, see Frenkel & Halpern (2002)). In figure 6, the
effect of solubility parameter Rb on the stability of the interface is displayed. For
small and fixed Bi = 0.01 (figure 6a), the dominant growth rate is close to the one
for the insoluble problem when Rb = 100 (shown with a thick solid line); decreasing
Rb = 10, 1, 0.2, 0.1 reduces the cutoff wavenumber and eventually stabilises the
problem. The growth rates are seen to pass through the origin and to have a
non-monotonic behaviour even after they are stabilised, with instability established
for sufficiently long waves only. For larger Bi = 1, the stabilisation occurs at a
higher value of Rb and is monotonic as Rb decreases (figure 6b shows the two most
significant modes for each value of Rb= 10, 2, 1, 0.5). When Rb becomes smaller than
the value Rb= 0.25 (not shown in the figure), the two curves cross each other and the
second mode becomes dominant (but both modes remain stable). Fixing Rb = 5 and
increasing Bi= 0.001, 0.0025, 0.005, 0.01 reduces the range of unstable wavenumbers
(but only by a small amount) as shown in figure 7(a), whereas larger values of the
Biot number leave the growth rate curves unaffected. In the large Biot number limit
the transport is controlled by diffusion and the interface–bulk exchange kinetics are
in equilibrium (Booty & Siegel 2010).

A particularly interesting result is seen when varying the equilibrium surfactant
concentration at the interface, Γ . In the insoluble problem, increasing the basic
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FIGURE 7. Dominant growth rates for different values of (a) the Biot number, Bi, and
(b) the equilibrium surfactant concentration at the interface, Γ . The rest of the parameters
take the values m = 0.5, n = 10 (i.e. h0 = 1/11) corresponding to an unstable insoluble
problem. In panel (a), Rb= 5 and Γ = 0.5 are fixed, while in panel (b) Rb= 1 and Bi= 1
are fixed. Parameter values for Re, Bo, Ca, Ma, Pes, Peb remain the same as in figure 4.

concentration Γ would make the problem more unstable by increasing the cutoff
wavenumber. Here this is not the case, as illustrated in figure 7(b) for fixed Rb = 1,
Bi = 1 and Γ = 0.1, 0.3, 0.5, 0.7, 0.9 (again, m = 0.5, n = 10); clearly the growth
rates follow a non-monotonic behaviour as Γ is varied, with instability supported
only for Γ < 0.723. An increase in the basic concentration Γ enhances the range of
instability as long as the concentration is small and between 0 < Γ < 0.42. Further
increase in Γ beyond the value 0.42 is seen to diminish the interval of unstable
wavenumbers and leads to complete stabilisation at Γ = 0.723. A similar behaviour
has been reported in the study of falling film flow in the presence soluble surfactant,
see Karapetsas & Bontozoglou (2013).

The next set of results demonstrate that surfactant solubility can destabilise a system
which is stable for insoluble surfactant. The flow with insoluble surfactant is known to
be stable when m> n2 (Frenkel & Halpern 2002); computations are hence performed
for m = 3 and n = 1.5 (i.e. h0 = 0.4), so as to satisfy this condition. Parameter Γ
is fixed to the value 0.5 while C is found by (3.3). Figure 8 illustrates the growth
rates for fixed Rb = 1 and increasing Bi = 0.001, 0.01, 0.025, 0.1, 1. The thick solid
line for Bi= 0.001 is nearly identical to the insoluble growth rate and is stable, but
as the Biot number increases the growth rates become unstable. For larger values of
the Biot number the growth rate curves are found to be nearly indistinguishable from
the curve for Bi = 1. Results for varied Rb are considered next and we fix Bi = 1.
Figure 9(a) depicts the dominant growth rate for Rb = 100, 10, 3, 2, 1. Lowering Rb
from a large value Rb = 100 decreases the stable dominant mode and at the same
time increases the second most dangerous mode which is also stable (not shown in
the figure). This behaviour persists until around Rc

b = 2.4426, at which point the two
growth rates become almost identical in a small region near the origin but both are
stable (although the dominant growth rate curve has an inflection point). The dominant
mode eventually crosses the k-axis and becomes unstable at the critical value Rs

b =

2.4312. These results are in line with the predictions of the long-wave theory, as can
be seen in figure 9(b): there are two negative modes for Rb > Rs

b, which are seen to
cross each other at Rc

b= 2.4426 and the second mode is positive between R∗b<Rb<Rs
b,
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FIGURE 8. Dependence of the dominant growth rates on the Biot number for m= 3, n=
1.5 (i.e. h0= 0.4), Γ = 0.5 and Rb= 1 (the corresponding insoluble problem is stable since
m > n2). The thick solid line for Bi = 0.001 is almost identical to the insoluble growth
rate. Parameter values for Re, Bo, Ca, Ma, Pes, Peb remain the same as in figure 4.

0 0.05 2.30 2.35 2.40 2.45 2.500.10 0.15 0.20

10

5

0

-5

0.05

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30
R*

b

Rb

Rc
b

Rs
b

Mode 1
Mode 2

Rb = 1
Rb = 2
Rb = 3
Rb = 10
Rb = 100

k

kci

Im
(c

1)

(÷ 10-6)(a) (b)

FIGURE 9. (Colour online) (a) Numerically computed growth rate curves and
(b) analytical long-wave predictions for varying Rb. The parameter values used are
m = 3, n = 1.5 (h0 = 0.4), Γ = 0.5 and Bi = 1 (the corresponding insoluble problem is
stable since m> n2). The blue solid lines in panel (b) refer to the leading-order analytical
solution (3.18) while the orange dotted lines correspond to the second mode mentioned
in § 3.3.6. The vertical asymptote at R∗b = 2.42 signifies the value of Rb at which the
growth rates change asymptotic behaviour according to (3.20). Parameter values for Re,
Bo, Ca, Ma, Pes, Peb remain the same as in figure 4.

where R∗b= 2.42 (as given by (3.19)) is shown with a vertical asymptote in the figure.
At the value R∗b= 2.42 the long-wave expansion has a different form, according to the
discussion in § 3.3.4. The system is unstable for all 0< Rb < R∗b, but as Rb→ 0 the
positive growth rate tends to 0 from above, i.e. it becomes almost neutral.

All the results presented so far considered some parametric sets which support
instability for sufficiently long waves. However it has been found by Halpern &
Frenkel (2003) that when the surfactant is insoluble, it is possible for instability
to exist in a finite interval of wavenumbers bounded below away from the origin
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FIGURE 10. Growth rate curves demonstrating mid-wave instability for different values of
Bi and Rb, with the rest parameters taking the values m= 17, n= 4 (h0 = 0.2), Γ = 0.1,
Ca = 1, Ma = 8. In panel (a) Rb = 0.1 is fixed and in panels (b,c) the Biot number is
fixed to Bi= 0.1 and Bi= 1, respectively. Parameter values for Re, Bo, Pes, Peb remain
the same as in figure 4.

(the so-called mid-wave instability), while long and short waves are stable. We find
a similar result here for soluble surfactant (note that the mid-wave instability has
also been reported for related systems in Picardo et al. (2016) and Frenkel et al.
(2019b)). In figure 10 we take m = 17, n = 4 (i.e. h0 = 0.2) and Γ = 0.5; for these
parameter values, the insoluble problem is long wave stable since m> n2 but exhibits
mid-wave instability. The numerically computed growth rates for fixed Rb = 0.1
and increasing Bi = 0.001, 0.01, 0.1, 1, 10 are shown in figure 10(a). The range of
unstable wavenumbers reduces as the Biot number increases but only until Bi= 0.526,
above which the instability interval vanishes and the system is stabilised. Keeping the
Biot number fixed to Bi = 0.1 while lowering Rb = 100, 10, 1, 0.1, 0.01 reduces the
length of the unstable wavenumber interval, until around Rb = 0.081 when long-wave
instability also arises – see figure 10(b) and the inset therein. A similar study but
now for larger Bi = 1 with decreasing Rb = 100, 1, 0.5, 0.1, 0.05 depicts that the
range of wavenumbers which support instability is reduced until the critical value
Rb = 0.126, below which the interface becomes completely stable (figure 10c). The
problem remains stable as far as Rb= 0.081, at which value instability for long waves
emerges (note that this critical value is the same for both values of Bi shown here
as the mode that becomes unstable is independent of the Biot number (cf. § 3.3.4)).
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FIGURE 11. Dominant growth rates for different values of the total mass M and micelle
sizes (a) N = 10 and (b) N = 50. The rest of the parameters take the values m = 0.5,
n= 10 (i.e. h0 = 1/11), Km = 1, Pem = 100 and parameter values for Bi, Rb, Re, Bo, Ca,
Ma, Pes, Peb remain the same as in figure 4.

4.2.2. Bulk concentrations above the CMC
If the surfactant concentration in the bulk exceeds the CMC, micelles are formed in

the lower fluid. In the case where the interface is not subject to any shear, the system
is found to be stable to perturbations of any wavelength. For non-zero shear rate,
s 6= 0, we conducted numerical experiments aiming to determine the effect of micelle
formation on the stability of the flow. This is achieved by changing the amount of
available surfactant mass at the equilibrium state, M, starting with bulk concentrations
below the CMC (for small M) and gradually increasing the concentration until C> 1
so that the bulk monomer concentration is above the CMC. Given a value for the total
mass M, we find from (3.3), (3.4) that Γ satisfies a polynomial of degree N+ 1, with
only one physically acceptable real root in the range 0<Γ <1, so that the equilibrium
state is unique.

Figure 11 shows the dominant growth rates for various values of the surfactant
mass, M, and for two different micelle sizes N = 10 and N = 50 (we also set
m = 0.5, n = 10). While the available mass is relatively small, we find that the
growth rate curves are indistinguishable from the corresponding curves found in the
absence of micelles; this is physically anticipated as at low mass availability the bulk
concentration is small and below the CMC. For the chosen parametric set and N= 10,
this is true for approximately M6 0.3. Increasing the mass diminishes the range of
unstable wavenumbers and stabilises the system for M > 0.519 (figure 11a). When
the preferred micelle size is larger at N = 50, more mass needs to be available to
stabilise the interface, as shown in figure 11(b). The growth rate remains identical to
the equivalent soluble one (obtained for M̃ = 0) up to M = 0.4, but a rather rapid
transition to stabilisation is seen as the surfactant mass increases to M = 0.57. The
final stable growth rate for large M is confirmed to be identical to the growth rate
for a clean system without surfactant.

The latter observation is confirmed in figure 12 which illustrates the variation of
surfactant concentrations Γ , C, M at equilibrium as functions of the total mass M,
for micelle size N = 50. It is noteworthy that micelles only start to form for mass
higher than approximately M= 0.57, after which both C and Γ saturate to constant
values while M keeps increasing (the saturated values are approximately C → 1
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FIGURE 12. (Colour online) Equilibrium surfactant concentrations Γ , C, M against
available mass of surfactant M, found from (3.4) with N = 50, h0= 1/11, βb= 1, Kb= 1.

and Γ → 0.5). This implies that as soon as the micellisation starts, the adsorption
and desorption processes are suspended, leaving the interface at a constant surface
concentration while any additional mass causes the micelle concentration to grow
(Burlatsky et al. 2013). The stabilising action of micelles is physically associated
with the plateau in the interfacial tension for bulk concentrations beyond the CMC
(see figure 3), consequently the multi-layer Stokes flow is expected to be stable
(similarly to the surfactant-free problem with constant surface tension).

In cases with m> n2, it is observed that the formation of micelles reduces the range
of unstable wavenumbers and drives the growth rates towards zero; this is found to
be true even for large values of mass M or micelle size N (data not shown), and was
corroborated using the long-wave asymptotic results.

5. Conclusions
We have presented a mathematical model for the dynamics of a two-layer

surfactant-laden flow that allows for surfactant present at high concentrations (above
or below the CMC). The model comprises governing equations for the hydrodynamics
and appropriate transport equations for the surfactant concentration at the interface,
the concentration of monomers in the bulk fluid and the micelle concentration. It
accounts for all the salient physical effects, including inertia, density stratification,
viscosity contrast, Marangoni stresses, surface and bulk diffusion, adsorption and
desorption kinetics and micellar dis/assembly kinetics. In the limit of vanishing
desorption or rapid adsorption rates, the model reduces to that of Kalogirou (2018)
for a two-layer flow with an insoluble surfactant.

We have performed a linear stability analysis and solved the resulting Orr–
Sommerfeld eigenvalue problem to determine the growth rate. This was done
analytically in the limit of long-wave disturbances (assuming surfactant concentrations
below the CMC) and numerically for perturbations of arbitrary wavelengths using
a Chebyshev collocation method. We note that while the Orr–Sommerfeld system
includes inertia and gravitational effects, in our results we excluded both of these.
The numerical investigation focused on the effect of surfactant solubility and/or
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sorption kinetics on the stability of the interface by varying the two key parameters:
Rb, which is the ratio of the adsorption rate to the desorption rate; or Bi, which is
proportional to the rate of desorption.

We have presented numerical results for Stokes flow and for bulk concentrations
below or above the CMC. In both cases, short waves were seen to be stable as
expected due to the action of surface tension forces (Hooper & Boyd 1987), but
disturbances of long or intermediate wavelengths were found to be unstable under
certain conditions; we have referred to these as long-wave and mid-wave instabilities,
respectively. The instability due to a soluble surfactant is manifested provided that
a non-zero shear rate is maintained at the interface. We have analysed the effect
of sorption kinetics or surfactant solubility by either increasing the Biot number
Bi or reducing the value of Rb, respectively. It was found that a flow that is
long wave unstable in the presence of insoluble surfactant may be stable if the
surfactant is soluble (of concentration below the CMC). Karapetsas & Bontozoglou
(2014) suggested that the stabilisation due to surfactant solubility is connected to
a near 90◦ phase shift between the interface displacement and the mass flux Jb

(see their figure 3); this has the effect of redistributing surfactant at the interface
so as to stabilise the system. We have confirmed that a similar phase shift is
observed here. In particular, the maxima in the eigenfunction of the interfacial
disturbance occur at almost the same spatial locations as the maxima of the interfacial
concentration disturbance, and this mitigates the Marangoni forces. In the case where
the corresponding flow with insoluble surfactant is stable (m> n2), the role of soluble
surfactant was found to be destabilising. In this case, the maxima in the interface
displacement and the minima in the interfacial concentration disturbance almost
coincide, leading to the intensification of the local Marangoni stresses. Interestingly,
long-wave instability was found to co-exist with mid-wave instability at specific
parametric sets.

When the lower fluid is not the most viscous fluid, i.e. for m > 1, the long-wave
approximation of the dominant growth rate has been seen to change asymptotic
behaviour from k2 to k3/2 at certain values of the parameters (such as Rb = R∗b or
m=m∗). This was confirmed both numerically and analytically and is similar to what
Halpern & Frenkel (2003) found for multi-layer flows with insoluble surfactant.

The solubility factor S in (3.17c) is less than one for m< 1, causing the reduction
of the leading-order interfacial concentration Γ̃0 and hence weakening the action of the
Marangoni forces. Factor S becomes smaller (but always remains positive) as Rb is
reduced, therefore the attenuation of the Marangoni stresses has a stabilising influence
as the solubility effects become stronger. We also note that as the critical points Rb=

R∗b or m=m∗ are crossed, factor S changes sign, resulting in a 180◦ change in phase
of the interface concentration Γ̃0; the two dominant modes also change sign (and
phase), thus the system is always unstable in the vicinity of the boundary points
(cf. figures 4 and 9b). For Rb > R∗b or m>m∗, the solubility factor S is greater than
one, and therefore the Marangoni effects are strengthened with increasing solubility.

When the total mass of surfactant is small, the surfactant concentration in the bulk
remains below the CMC. For higher values of available mass, the bulk concentration
eventually becomes larger than the CMC, micelles start to form and their action
is seen to stabilise the system very rapidly. Any additional mass only increases
the concentration of micelles while the interface and bulk concentrations saturate
to constant values. Consequently at surfactant concentrations beyond the CMC,
the interface is virtually at a constant surface tension, the Marangoni stresses are
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eliminated and the system behaves as if it was clean (and in the case of Stokes flow,
it is stable).

This work represents the first attempt to examine the stability of a multi-layer flow
with soluble surfactants beyond the CMC, by incorporating the presence of micelles
as well as their formation and break up. The proposed mathematical model provides
a useful framework for modelling the nonlinear dynamics of interfaces in multi-layer
flows with surfactant above the CMC. This study can motivate experimental work
to investigate the predictions of the linear stability theory, as well as nonlinear
simulations to examine the dynamics beyond the linear regime. Such nonlinear
investigations are currently in progress.
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Appendix A. Solution for Stokes flow

In the case of Stokes flow, Re = 0, the Orr–Sommerfeld equations (3.7a) can be
solved exactly and the streamfunctions take the form

Ψ̃j(y)= αj,1 cosh ky+ αj,2 y cosh ky+ αj,3 sinh ky+ αj,4 y sinh ky, (A 1)

with coefficients αj,`, j = 1, 2, ` = 1, . . . , 4. In the absence of a pressure gradient,
i.e. for q= 0, the transport equation for the bulk concentration can be solved in terms
of Airy functions, with the solution given by

C̃(y)= b1Ai
(
(iksPeb)

1/3

(
y−

c
s
−

ik
sPeb

))
+ b2Bi

(
(iksPeb)

1/3

(
y−

c
s
−

ik
sPeb

))
,

(A 2)
where b1, b2 are arbitrary constants. When q 6= 0 the solution of the bulk equation
involves parabolic cylinder functions, but study of that case is not pursued here.

The linear system in § 3.2 can be then written as an eigenvalue problem of the form

M · x= 0, (A 3)

where the matrix M depends on the eigenvalue c and the eigenvector x =
(α1,1, α1,2, α1,3, α1,4, α2,1, α2,2, α2,3, α2,4, b1, b2, Γ̃ )

T holds the unknown coefficients.
The non-trivial solution can be found by setting the determinant of M to zero and
solving the resulting transcendental equation for c. In general, numerical computation
(e.g. Newton’s method) is needed to obtain the growth rates, but we can check on
the analysis of § 3.3 by considering a long-wave expansion for c = c0 + kc1 + · · ·

and solving only for the two leading-order terms c0 and c1. At O(1), we find two
solutions for c0 which coincide with the expressions found earlier in (3.12) and
(3.21). Solving at the next order O(k) provides two solutions for c1. Motivated by
the results of § 3.3.4, we can also consider a more general expansion of the form
c= c0+ k1/2c1/2+ kc1+ · · · . We find that the term c1/2 vanishes if Rb 6=R∗b, in which
case we obtain a regular expansion as before, but the term remains in the expansion
when Rb = R∗b. In the latter situation, we find the solution given in (3.20).
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Appendix B.

The following expansion for the wave speed is introduced

c=
1
k

c−1 + c0 + kc1 + · · · , (B 1)

motivated by the numerically computed growth rate λ= kci which is found to have a
non-zero value at k = 0. The linear bulk concentration system (3.9) at leading order
in k becomes (assuming we are below the CMC)

C̃′′(y)+ iPebc−1C̃(y)= 0, (B 2a)

C̃′(0)= 0, C̃′(h0)+
ic−1PebβbBiKb(1− Γ )
(ic−1 − Bi(KbC+ 1))

C̃(h0)= 0, (B 2b)

where the second boundary condition in (B 2b) has been simplified using the leading-
order interfacial equation (3.8). The solution of (B 2) results in a transcendental
equation for c−1, given by

ic−1(C tan(Ch0)− PebβbBiKb(1− Γ ))− Bi(KbC+ 1)C tan(Ch0)= 0, (B 3a)

with

C = (1+ i)

√
Pebc−1

2
. (B 3b)

It is not possible to solve this equation analytically, but solutions can be obtained
using Maple for specific values of the parameters.
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