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Summary

Kaempferol (KAE) is one of the most common dietary flavonols possessing biological activities
such as anticancer, anti-inflammatory and antioxidant effects. Although previous studies have
reported the biological activity of KAE on a variety of cells, it is not clear whether KAE plays a
similar role in oocyte and embryo in vitro culture systems. This study investigated the effect of
KAE addition to in vitro maturation on the antioxidant capacity of embryos in porcine oocytes
after parthenogenetic activation. The effects of kaempferol on oocyte quality in porcine oocytes
were studied based on the expression of related genes, reactive oxygen species, glutathione and
mitochondrial membrane potential as criteria. The rate of blastocyst formation was signifi-
cantly higher in oocytes treated with 0.1 pm KAE than in control oocytes. The mRNA level
of the apoptosis-related gene Caspase-3 was significantly lower in the blastocysts derived
from KAE-treated oocytes than in the control group and the mRNA expression of the embryo
development-related genes COX2 and SOX2 was significantly increased in the KAE-treated
group compared with that in the control group. Furthermore, the level of intracellular reactive
oxygen species was significantly decreased and that of glutathione was significantly increased
after KAE treatment. Mitochondrial membrane potential (A%¥m) was increased and the activity
of Caspase-3 was significantly decreased in the KAE-treated group compared with that in the
control group. Taken together, these results suggested that KAE is beneficial for the improve-
ment of embryo development by inhibiting oxidative stress in porcine oocytes.

Introduction

Improvements to the IVM system will benefit from a range of applications, including
animal husbandry and medicine, in addition to the potential use of planned in vitro fertilization,
including efficient embryo production, cloning, genetic modification and animal models
(de Souza-Fabjan et al., 2014). Compared with other animals, porcine animals have become
the model of choice for human transformation studies due to their similarity in body shape
and physiological structure (Cheong et al., 2015). Although in vivo embryos are better than
in vitro embryos, it is more expensive and laborious to produce embryos in vivo. Therefore,
the establishment of an in vitro culture system has become a better choice for related research.
Evidence suggests that although culture conditions during in vitro embryo production may have
a modest effect on the developmental potential of early embryos, the quality of oocytes at the
beginning of the process is a key factor in determining the proportion of oocytes to blastocysts
(Lonergan and Fair, 2016). Many studies have shown that antioxidants, such as melatonin (Miao
et al., 2018), glutamine (Gln) (Kim et al., 2014), vitamin C (Wongsrikeao et al., 2007), Ge (Kim
et al., 2015), etc., can improve the quality embryos by reducing oxidative stress and improving
the quality of oocytes.

Kaempferol (3,4',5,7-tetrahydroxyflavone, KAE) is one of the most common dietary flavo-
nols possessing biological activities, such as anticancer (Qiu et al., 2017) anti-inflammatory
(Kim et al., 2015b) and antioxidant activities (Choi, 2011). Kaempferol has been reported to
exhibit chemopreventive activity in cancer through a variety of mechanisms including the regu-
lation of oxidative stress, inhibition of enzymes that activate carcinogens, modification of signal
transduction pathways and interaction with related receptors and proteins (Aiyer et al., 2012).
Kaempferol upregulates Sirt3 (Yang et al., 2019), a mitochondrial sirtuin that plays an important
role in regulating cellular processes, such as homeostasis, oxidative stress and ageing (Cimen
et al., 2010). Although the antioxidant activity and prooxidant activity of brass compounds have
been studied, the antioxidant capacity of kaempferol in porcine oocytes has not been studied
(Yang et al.,, 2015).
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ROS are a double-edged sword: low levels of ROS are key
signalling molecules in many pathophysiological processes and
excessive ROS play a key role in destroying cellular components
and triggering cell death (Li et al., 2019). The continuous increase
in calcium ions may lead to oxidative stress and cell death (Mata
et al., 2008). Intracellular calcium overload leads to the accumula-
tion of mitochondrial calcium ions, changes in mitochondrial pH,
increases in ROS production, decreases or completely losses in
mitochondrial AYm and changes in mitochondrial permeability
(Choi, 2011). Previous studies have shown synergy between
quercetin and kaempferol associated with antioxidant activity
and Nrf2-ARE (Saw et al., 2014). The NRF2 pathway can further
regulate mitochondrial damage by regulating ROS, thereby affect-
ing mitochondrial apoptosis (Zhang et al., 2019). Studies have
shown that kaempferol exerts a significant protective effect on cell
mitochondrial disorders and the inhibition of ROS production,
oxidative stress and mitochondria is the main mechanism of
kaempferol protection in cells (Ondricek et al., 2012). Therefore,
the use of antioxidants may contribute to the resistance of oocytes
to oxidative stress during in vitro maturation (Khazaei and Aghaz,
2017). Although previous studies have reported the biological
activity of KAE on a variety of cells, it is not clear whether KAE
plays a similar role in the in vitro maturation culture system.

Therefore, in the present study, we investigated the ability of
KAE to maintain the quality and promote the subsequent embryonic
development in porcine oocytes after parthenogenesis activation. We
evaluated the intracellular GSH and ROS levels and mitochondrial
membrane potential in oocytes exposed to KAE to gain insight into
the effects of KAE on oxidative stress in oocytes.

Materials and methods
Materials

Porcine ovary specimens obtained from a slaughterhouse were
placed in sterile saline solution (0.9% sodium chloride, 75 pg/ml
penicillin G and 50 pg/ml streptomycin sulfate) and transported
back to the laboratory within 2 hrs.

Main reagents and instruments

Tissue culture medium (TCM-199), polyvinyl alcohol (HEPES-TL-
PVA), phosphate-buffered saline (PBS), hyaluronidase (Hy),
cytochalasin B (CB), Triton X-100 and Hoechst 33342 were
purchased from Sigma, a rabbit anti-caspase-3 polyclonal antibody
was obtained from Abcam and the DyNAmo SYBR Green qPCR Kit
was purchased from Wizbiosolutions. A stereomicroscope was
purchased from Olympus, a confocal microscope was obtained from
Nikon, a real-time polymerase chain reaction (PCR) instrument was
obtained from Agilent and a CO, incubator was purchased
from ESCO.

Collection and in vitro maturation of porcine oocytes

Fresh porcine ovaries were washed two or three times with sterile
saline solution (0.9% sodium chloride, 75 pg/ml penicillin G and
50 pg/ml streptomycin sulfate) at 38°C. Cumulus-oocyte complexes
(COCs) were aspirated from ovaries with a 10 ml disposable syringe
with an 18G needle and placed in a 15 ml centrifuge tube. After pre-
cipitation in a water bath at 38°C for 10 min, the supernatant was
discarded and HEPES-TL-PVA was added to the pellets. Then,
the HEPES-TL-PV A-treated COCs were pipetted into a disposable
culture dish and the COCs were examined with a stereomicroscope.
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The COCs were washed three times with HEPES-buffered medium
containing 0.1% (w/v) HEPES-TL-PVA. For each group, 50 COCs
were matured in 500 pl of the tissue culture medium TCM-199. To
determine the dose effect of KAE on porcine oocytes cultured
in vitro, the COCs were cultured with different concentrations
(0.1, 1, 10 pM) of KAE under light mineral oil at 38.5°C for 44 h.

Parthenogenetic activation and culture in vitro

The COCs were placed in 1 mg/ml hyaluronidase solution and
pipetted repeatedly until the cumulus cells were removed.
Enucleated oocytes were parthenogenetically activated twice
with pulses at 120 V for 60 ps in 297 mM mannitol solution con-
taining 0.1 mM CaCl,, 0.05 mM MgSO4, 0.01% PVA (w/v) and
0.5 mM HEPES (pH 7.2). The activated embryos were cultured
in bicarbonate-buffered porcine zygote medium 5 (PZM-5) sup-
plemented with 4 mg/ml bovine serum albumin (BSA) and
7.5 pg/ml cytochalasin B (CB) for 3h to inhibit pseudosecond
polar body extrusion. The oocytes were then thoroughly washed
in a 4-well plate with bicarbonate-buffered PZM-5 (day 0) and
4mg/ml BSA and cultured in an incubator with 5% CO, at
38.5°C for 7 days.

Immunofluorescence staining

The oocytes were fixed in PBS containing 3.7% paraformaldehyde
for 30 min and then permeabilized in 0.5% Triton X-100 for
30 min, followed by blocking the embryos in a blocking buffer
(PBS containing 1% BSA) for 1h. The embryos were incubated
with the primary rabbit anti-Caspase-3 antibody at 4°C overnight
and then incubated with an Alexa Fluor 488-conjugated secondary
antibody. Subsequently, the embryos were blocked again for 1h
and then the DNA was counterstained with Hoechst 33342
(10 pg/ml in PBS) at 25°C. The stained embryos were fixed on a
slide and mounted. The slide was imaged using an inverted
fluorescence microscope to measure the intensity of the immuno-
fluorescence and data were analysed by Image] software.

Determination of reactive oxygen species (ROS) levels in early
porcine embryos by quantitative analysis of ROS and GSH

Early embryos were incubated with 10 pM 2’,7’-dichlorodihydro-
fluorescein diacetate (H2DCFDA; Thermo Fisher Scientific,
Waltham, USA) for 30 min and then subjected to spectroscopic analy-
sis (green fluorescence, UV filter, 490 nm). Early porcine embryos
were incubated with 10 pM cell tracker blue dye 4-chloromethyl-6,8-
difluoro-7-hydroxycoumarin (CMF2HC) (Thermo Fisher Scientific)
for 30 min and analysed by spectroscopic analysis (blue fluorescence,
UV Filter, 370 nm). The fluorescence intensity of the embryos was
analysed using Image] software. Three independent experiments were
performed.

Detection of mitochondrial membrane potential in early
embryos (A¥Ym)

For the measurement of the A¥m potential in cells, the early
embryos were compared with JC-1 in a culture dish, covered with
mineral oil and placed in an incubator for 10 min. The embryos
were washed with PVA-PBS and then placed into the droplets
on the dish for 30 min of vital staining. The stained embryos were
washed three times with PVA-PBS and placed in PVA-PBS to be
observed and imaged under a fluorescence microscope. The A¥m
potential of the cells was measured by the change in JC-1 emission
fluorescence. Accumulation of the A¥m potential in the cells was
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Table 1. Primer sequences for qRT-PCR

cox2 F: GGCTGCGGGAACATAATAGA 60 154
R: GCAGCTCTGGGTCAAACTTC

SOX2 F: AAGAGAACCCCAAGATGCACAACT 60 277
R: GCTTGGCCTCGTCGATGAAC

18S rRNA F: GCCCGAAGCGTTTACTTTGA 60 93
R: CCGCGGTCCTATTCCATTATT

Casp3 F: GACGGACAGTGGGACTGAAGA 60 101
R: GCCAGGAATAGTAACCAGGTGC

evidenced by the change of JC-1 fluorescence from green to red.
The change in the relative ratio of red and green fluorescence
reflected the change in membrane potential: a decreased ratio
indicated depolarization and an increased ratio indicated hyperpo-
larization of the membrane.

Real-time reverse transcription polymerase chain reaction

Expression of related genes was detected using real-time fluores-
cent quantitative PCR. For each group, 20 blastocysts (Day 7) were
washed with PBS, rapidly frozen in liquid nitrogen and stored at
—80°C for use. The mRNA was extracted using a Dynabeads
mRNA kit and reverse transcribed into cDNA using SuperScript
reverse transcriptase. The mRNAs were subjected to real-time
fluorescence quantitative PCR detection using specific primers
(primer sequences are shown in Table 1) a DyNAmo SYBR
Green qPCR kit according to the manufacturer’s instructions.
The PCR procedure was as follows: 95°C for 3 min, 40 cycles at
95°C for 155, 60°C for 30 s and 72°C for 20 s and a final extension
at 72°C for 5min. The target genes were Caspase-3, COX2
and SOX2. The gene encoding glyceraldehyde-3-phosphate (18S
rRNA) was used as a reference gene. The primers used to amplify
each gene are shown in Table 1. The mRNA quantification data
were analysed using the 2722t method (Livak and Schmittgen,
2001). Three separate experiments were carried out with three
samples per experiment.

Statistical analysis

The results are presented as the means+ standard deviation.
Statistical analysis was performed using SPSS software version 22.0
(IBM, IL, USA). The strength of the normal distribution was tested
using the Shapiro—Wilk normality test. We used t-tests/analysis of
variance (ANOVA)s when the data were normally distributed;
otherwise, we used the Mann-Whitney test for data that were not
normally distributed. The total numbers (n) of oocytes/embryos used
in each group and in the replicates (R) for each experiment are shown
in the data column and the legends of each figure, respectively.

Results

Parthenogenetic activation of KAE-treated oocytes increased
the rate of blastocyst development

To investigate the effects of different concentrations of KAE on cell
maturation rate, division rate and blastocyst formation rate,
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Table 2. Effects of KAE supplements on oocyte maturation, cleavage and
blastocyst rates

0 208 193 (92.06+0.97)* 183 (87.03+0.86)2 93 (44.88 0.74)?
0.1 221 209 (93.56+1.47)* 197 (89.12+2.23)2 114 (51.53 +1.56)°
1 237 206 (86.21£2.01)° 189 (79.58+2.33)> 83 (35.37 +1.48)°
10 216 166 (77.86+1.97)° 155 (71.41£2.75)° 65 (29.27 +1.93)¢

Note: the same shoulder mark indicates no significant difference between the two groups
(P > 0.05); different lowercase letters indicate significant differences (P < 0.05); different
uppercase letters indicate extremely significant differences (P < 0.01); the same below. M,
metaphase II.

we used different concentrations of KAE (0, 0.1, 1 and 10 pM) in
in vitro culture (IVC) after the parthenogenetic activation of
mature oocytes. The results showed that the maturation rate and
the cell division rate were not significantly different between the
groups (Table 2), however the 0.1 pM KAE group (P < 0.05)
showed a significant increase in the blastocyst formation rate com-
pared with that in the other groups (Fig. 1A, B). Moreover, 0.1 pM
KAE significantly increased the total cell number in the blastocyst
after parthenogenesis activation (Fig. 1A, C). Therefore, we used
0.1 pM KAE for subsequent experiments.

KAE can improve the relative expression of COX2, SOX2 and
caspase-3 mRNA in early embryos

To further investigate the effect of KAE on embryonic develop-
ment, we examined the effect of 0.1 pM KAE treatment compared
with the control on gene expression. The mRNA expression levels
of COX2 and SOX2 in the 0.1 uM KAE group were significantly
increased (P < 0.05) and the mRNA expression levels of
Caspase-3 in the 0.1 pM KAE group were significantly decreased
(P < 0.05) (Fig. 2).

KAE ameliorates oxidative stress in porcine early embryos

To assess the antioxidant effects of KAE on early embryos, we
examined ROS and GSH levels in early embryos from the control
and KAE-treated groups (Fig. 3A-C). The results showed that the
ROS levels in the control group were significantly higher than
those in the KAE-treated group (P < 0.05). Intracellular GSH levels
were significantly lower in the control than those in KAE-treated
early embryos (P < 0.05).

KAE enhances mitochondrial membrane potential (A¥Ym) in
porcine early embryos

Mitochondrial dysfunction is one of the major causes of increased
ROS levels and compromises embryo development (Ramalho-
Santos et al., 2008). Therefore, we evaluated the A¥m potential
status of early embryos by examining the ratio of red/green fluo-
rescence. The ratio of the fluorescence signal was much lower in the
control group than that in the KAE-treated group (P < 0.05)
(Fig. 4A, B). This observation indicated the remarkable efficacy
of KAE in maintaining the A¥Ym potential in porcine early
embryos.
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Control

Blastocyst

Figure 1. KAE improves embryos development after
parthenogenetic activation. (A) Representative pictures
of the embryonic development with blastocyst develop-
ment rate and total cell number of embryos of control
and KAE group. (B) Blastocyst formation rate of control
and the presence of different concentrations (0, 0.1,
1 and 10 pg/ml) of KAE. R = 7. (C) Total cell number of
embryos. R = 5. *P < 0.05 indicates significant
differences.
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Figure 2. The relative mRNA levels of genes encoding COX2, SOX2 and Caspase-3, as
analysed by RT-PCR. R = 3. *P < 0.05 indicates significant differences.

KAE supplementation decreases caspase-3 activity in
blastocysts

To detect the effect of KAE treatment at the vitro maturation stage
of oocytes on the apoptosis of embryonic cells after partheno-
genetic activation, we also examined the activity of Caspase-3 in
blastocysts (Fig. 5A, B). The results showed that the Caspase-3
activity of the blastocysts in the control group was significantly
lower than that in the KAE-treated group (P < 0.05).

Discussion

During these experiments, we examined mature oocytes and found
no significant differences. However, it is puzzling that oocytes cul-
tured using KAE exhibited stronger embryonic development. In
this study, we used the proportion of developing embryos as a mac-
roscopic indicator of embryo quality assessment. According to our
experimental results, 0.1 pM KAE was the optimal concentration
for screening. At this concentration, mRNA expression of COX2
and SOX2 in the 0.1 pM KAE treatment group was significantly
increased and expression of Caspase-3 mRNA was significantly
decreased. Therefore, we speculated that KAE could improve
zygotic development after oocyte activation by regulating expres-
sion of SOX2, COX2 and Caspase-3. Previous studies have shown
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that a lack of SOX2 can lead to impaired oocyte maturation, fertili-
zation and early embryonic development (Kim ef al., 2015b). The
SOX2 gene is expressed in the inner cell mass of the blastocyst,
which is related to the pluripotency of the cell and plays an impor-
tant role in embryonic development (White et al., 2016). Caspase-3
is required for some typical hallmarks of apoptosis and was indis-
pensable for apoptotic chromatin condensation and DNA
fragmentation in all cell types examined (Mishra et al., 2017).
This finding is consistent with our experimental results and
suggested that the reasonable addition of KAE to the medium
in vitro not only enhanced the blastocyst rate and the number of
blastocysts but also promoted growth and development of early
embryos by regulating related growth factors.

Oocyte maturation and oocyte quality are key factors in fertility
in all mammals (Gilchrist et al., 2016). Oocyte quality is typically
affected by the production of oxidative stress (Prasad ef al., 2016).
Previous studies have shown that ROS can target mitochondria,
cause oxidative stress and interfere with glutathione metabolism
and ROS induction leads to caspase-dependent apoptosis (Wang
et al., 2019). The mitochondrial electron transport chain produces
ATP during the maturation process, thereby producing ROS
(Sinha et al., 2013). When the excess ROS is beyond the physiologi-
cally acceptable range, the quality of the oocyte can be reduced
(Kala et al., 2017). With the increase in operation time in vitro,
the accumulation of ROS in oocytes was also augmented.
However, few studies have examined whether antioxidant-treated
oocytes exhibit antioxidant capacities during early embryonic
development. Therefore, we tested the ROS and GSH levels in
developing embryos. Our results show that KAE treatment
significantly decreased the level of ROS and increased the levels
of GSH to reduce oxidative stress and improve the quality of
oocytes. This finding is similar to other reports showing that
KAE can act as an antioxidant to significantly increase GSH levels
and inhibit ROS production.

Mitochondria not only control energy metabolism in the body
but also regulate apoptosis or necrosis (Wang et al., 2017). During
the in vitro culture of oocytes, oxidative stress directly affects mito-
chondrial function (Yao et al., 2018). During early embryo culture,
the body needs to provide strict energy in the form of adenosine
triphosphate (Spinaci et al., 2019). Previous studies have shown
that oocytes with stronger antistress mechanisms are more likely


https://doi.org/10.1017/S0967199419000674

Effect of kaempferol on the porcine embryonic development

Control

B
§
-
A Control KAE f
(-]
El
5
v p
Q =
=
X~ s
=
Control
C
—  1.017
s 7
7] &
@] T
]
ko
@
=
E
(]
-2
Control

B

A =

Green Red Merge S

e

= ~

o g

g

2

£

3

~

;-'..‘

=

A Caspase-3 Merge

z *]
g

L=

)

<

"

Control

to produce high-quality embryos after fertilization (Chappel,
2013). Studies by Guo et al. (2015) showed that KAE pretreatment
attenuated the increase in the ROS levels, as well as the loss of Aym
and the release of cytochrome ¢ (Guo et al., 2015). This finding is
consistent with our results. The addition of KAE to the in vitro
growth environment of porcine oocytes can maintain early
embryos with relatively high mitochondrial membrane potential
and reduce mitochondrial the energy metabolism caused by oxida-
tive stress.

In addition to inducing mitochondrial function, oxidative stress
can also cause DNA damage (Czarny et al., 2018). Caspases play
important roles in the process of early apoptosis. Caspase-3 is a
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KAE

Figure 3. Effects of KAE on ROS and GSH levels in porcine
early embryos. (A) Embryos were stained with H2DCFDA to
detect the intracellular level of ROS. Embryos were stained
with Cell Tracker Blue CMF2HC dye to detect the intracellular
level of GSH. (B, C) The relative level of intracellular ROS and
GSH in in vitro-matured porcine embryos from the groups

KAE (control, KAE). *P < 0.05 indicates significant differences. R = 3.

Figure 4. Evaluation of the effect of KAE on mitochondrial
membrane potential. (A) 5,5,6,6'-Tetrachloro-1,1/,3,3'-
tetraethyl-imidacarbocyanineiodide  (JC-1) staining of
embryos. (B) Fluorescence intensity for JC-1 in embryos.
*P < 0.05 indicates significant differences. R = 3.

KAE

B

o *

o —————————
w

=

=

e

L

- Y

= 2

S

] |
2 11

o

-

B

=

I e .
7

Figure 5. Effect of KAE on the caspase-3 activity of blastocysts.
(A) Representative images showing caspase-3 activity in control
and KAE-treated blastocysts. (B) Quantified fluorescence inten-
sity for caspase-3 in blastocysts. *P < 0.05 indicates significant
differences. R = 3.

KAE

critical apoptosis protease that functions downstream in the
caspase cascade (Wei et al., 2017). the sequential activation of cas-
pases plays a central role in cell apoptosis. The results of this study
showed that KAE treatment reduced the expression of Caspase-3
activity in the control group compared with that in the KAE group.
These results showed that KAE can significantly reduce the expres-
sion of Caspase-3 and reduce the damage of apoptosis on porcine
early embryos.

In conclusion, our research reveals that KAE effectively relieved
oxidative stress, decreased early apoptosis levels, maintained mito-
chondrial membrane potential and remarkably improved the
blastocyst rate in porcine animals.
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