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The decay of Hill’s vortex in a rotating flow
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Hill’s vortex is a classical solution of the incompressible Euler equations which consists of
an axisymmetric spherical region of constant vorticity matched to an irrotational external
flow. This solution has been shown to be a member of a one-parameter family of steady
vortex rings and as such is commonly used as a simple analytic model for a vortex ring.
Here, we model the decay of a Hill’s vortex in a weakly rotating flow due to the radiation
of inertial waves. We derive analytic results for the modification of the vortex structure
by rotational effects and the generated wave field using an asymptotic approach where the
rotation rate, or inverse Rossby number, is taken to be small. Using this model, we predict
the decay of the vortex speed and radius by combining the flux of vortex energy to the
wave field with the conservation of peak vorticity. We test our results against numerical
simulations of the full axisymmetric Navier–Stokes equations.

Key words: waves in rotating fluids, vortex dynamics

1. Introduction

Hill’s vortex (Hill 1894) is a classical axisymmetric solution of the incompressible Euler
equations in which a rotational spherical vortex is joined to an irrotational far-field flow.
The far-field flow was shown to match the flow around a sphere hence the vortex resembles
a travelling point dipole when viewed from far away. This solution has been shown
to correspond to an extreme member of a one-parameter family of steady vortex rings
(Fraenkel 1972; Norbury 1972, 1973) and is commonly used as a simple analytic model for
a vortex ring. Moffatt (1969) showed that there exists a doubly infinite family of spherical
vortices where the Hill’s vortex solution corresponds to the special case of vanishing
azimuthal velocity. Moffatt & Moore (1978) showed that the Hill’s vortex solution is
linearly stable to small axisymmetric disturbances and a perturbed vortex would either
entrain or detrain fluid from the rear stagnation point to return to a spherical shape.
However, the perturbation was shown to be swept down the surface of the vortex to the
rear stagnation point where perturbations could grow and potentially lead to a breakdown
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of the vortex once nonlinear effects became important (Pozrikidis 1986; Protas & Elcrat
2016).

When the system is rotated, the fluid admits inertial wave solutions so it could be
expected that a vortex in a rotating fluid would generate an inertial wave wake in a similar
manner to a solid body. This wave generation by solid bodies has been extensively studied
both experimentally (Taylor 1922; Long 1953; Machicoane et al. 2018) and analytically
(Taylor 1922; Fraenkel 1956; Bretherton 1967) and a general theory for the generation of
dispersive waves by moving forcing is given by Lighthill (1967). The interaction between
Hill’s vortex and an incident wave field was examined by Llewellyn Smith & Ford (2001)
as an example of acoustic scattering, however, the generation of waves by Hill’s vortex
has not been extensively studied. Scase & Terry (2018) noted that the steady solutions
postulated by Taylor (1922) can be matched to the Hill’s vortex solution. A conservation of
angular momentum argument led Taylor (1922) to believe that that those of his solutions
with closed streamlines could not arise in an initial value problem. Appendix B shows,
additionally, that the form of solution chosen by Taylor immediately implies energy input
from infinity and hence does not satisfy the radiation condition on flows driven by compact
forcing.

Steady wave generation problems assume that energy is injected into the system at a
constant rate by the forcing term (Lighthill 1967). In the case of waves generated by a
vortex, however, the vortex energy will decrease as energy is transferred to the wave field
which in turn leads to a weaker wave forcing. This results in a feedback mechanism in
which the vortex decays due to an outward flux of wave energy (Flierl & Haines 1994;
Johnson & Crowe 2021). If the time scale of this decay is sufficiently long, we may use a
time scale separation approach where the problem is assumed to be steady over the short
inertial time scale and vary over the slow decay time scale which is set by the outward
energy flux. This may be viewed as a slow-manifold approach similar to that used by
Ford, McIntyre & Norton (2000) to examine the emission of waves by a quasi-geostrophic
vortex. Flierl & Haines (1994) used this method to examine the decay of a beta-plane
modon due to Rossby wave emission. They assumed that the modon structure remained
the same throughout the evolution and hence the energy of the modon could be determined
using only its speed and radius. By combining the loss of vortex energy to the wave
field with the observation that the peak potential vorticity remained constant throughout
the evolution, the slow evolution of the modon speed and radius could be determined.
A similar method was also used in Johnson & Crowe (2021) to examine the decay of a
cylindrical vortex in both stratified flow and rotating flow.

Here, we model the decay of Hill’s vortex by inertial wave radiation in the limit of weak
rotation (corresponding to large Rossby number) using the approach of Flierl & Haines
(1994) and Johnson & Crowe (2021). We begin by determining the leading-order Hill’s
vortex solution modified by weak rotation in terms of the vortex speed and radius. The
inner solution is then matched to a linear wave field far from the vortex and the wave
field is used to determine the energy flux out of the vortex. This approach is effective as
there exists a ‘Long’s model’ for this geometry, i.e. a linear integral of the full nonlinear
equations of motion. The wave field satisfies this nonlinear system and so is a valid
solution near the vortex (where the amplitude is not small) with only small modifications
due to the finite vortex size. Combining an energy balance with the conservation of
peak vorticity allows us to predict the evolution of the vortex radius and speed in the
weak rotation limit. Finally our predictions are tested against numerical simulations
performed using Dedalus (Burns et al. 2020) and the limitations of our model are
discussed.
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Hill’s vortex in a rotating flow
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Figure 1. Diagram of our set-up showing Cartesian coordinates, (x, y, z), cylindrical radius, ρ, azimuthal
angle, φ, spherical radius, r and polar angle, θ . A spherical vortex of radius a(t) moves vertically with velocity
U(t) and the system is rotating with angular velocity of Ω corresponding to an inverse Rossby number of ε.

2. Set-up and governing equations

We begin by introducing Cartesian axes, Oxyz′, describing a frame rotating around the
vertical (z′) axis with angular velocity Ω . We consider the evolution of a spherical vortex
of (spherical) radius a(t) moving with speed U(t) in the z′ direction so we define a new
vertical coordinate

z = z′ −
∫ t

0
U(t′)dt′, (2.1)

such that the coordinate origin moves with the vortex. This transformation is only applied
to coordinates and not to the associated velocity fields. Our non-dimensional system is
described by the rotating, incompressible Euler equations[

∂

∂t
− U

∂

∂z

]
u + (u · ∇)u + εẑ × u = −∇p, (2.2a)

∇ · u = 0, (2.2b)

where u and p describe the fluid velocity and pressure respectively. We note that all
velocities are relative to the background fluid and we do not gain any fictitious forces
beyond the Coriolis force (Johnson & Crowe 2021). Here, we have non-dimensionalised
velocities by V , lengths by L, time by L/V and pressure by ρ0V2 for density ρ0. The length
scale L and velocity scale V are set by the initial size and translational velocity of the
vortex. The strength of the rotation is represented in our non-dimensional equations by the
inverse Rossby number, defined as

ε = 1
Ro

= 2ΩL
V

, (2.3)

which will be taken to be a small parameter. A diagram of our system is given in figure 1.
We now take the coordinate origin to be the centre of the spherical vortex and introduce

cylindrical coordinates (ρ, φ, z) where the cylindrical radius is given by ρ2 = x2 + y2 and
the azimuthal angle tanφ = y/x. Under the assumption that the flow is independent of the
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azimuthal angle, φ, the velocity field may be written as

u(ρ, z) = uρ ρ̂ + wφ̂ + uzẑ = − 1
ρ

∂ψ

∂z
ρ̂ + wφ̂ + 1

ρ

∂ψ

∂ρ
ẑ, (2.4)

for Stokes streamfunction ψ and swirl velocity w. We will later use spherical polar
coordinates (r, θ, φ) when solving for the vortex. Here the spherical radius r is defined
by r2 = ρ2 + z2 and the polar angle by tan θ = ρ/z.

As we will show later, there are two relevant time scales in the problem. The first is the
transient time scale on which the wave field develops and the second is the slow evolution
time scale on which the vortex loses energy. We therefore expand our time derivative using
a multiple scales approach to write

∂

∂t
→ ∂

∂t
+ δ

∂

∂T
, (2.5)

where T = δt is the slow evolution time scale and δ is a small parameter. It will be shown
later that δ = ε4. Finally we will ignore the problem of the transient evolution and look for
solutions with a fully developed wave field. Therefore, we take ∂/∂t = 0 and consider only
the slow evolution on time scale T . Since the vortex speed and radius may slowly evolve
as energy is lost we take U = U(T) and a = a(T).

2.1. The vorticity equation
Taking the curl of (2.2a) and neglecting the transient evolution gives the vorticity equation[

δ
∂

∂T
− U

∂

∂z

]
ω + ∇ × (ω × u)− ε

∂u
∂z

= 0, (2.6)

for vorticity

ω = − 1
ρ

∂

∂z
(ρw)ρ̂ − 1

ρ
D2ψ φ̂ + 1

ρ

∂

∂ρ
(ρw)ẑ. (2.7)

Here, D2 is related to the Laplacian operator and is given by

D2f = ∇2f − 2
ρ

∂f
∂ρ

= ρ
∂

∂ρ

(
1
ρ

∂f
∂ρ

)
+ ∂2f
∂z2 , (2.8)

for some field f. Substituting (2.4) and (2.7) into (2.6) gives two equations forψ and w from
the three vorticity components. Both the ρ and z components of the vorticity equation give[

δ
∂

∂T
− U

∂

∂z

]
(ρw)+ 1

ρ
J[ψ, ρw] − ε

∂ψ

∂z
= 0, (2.9)

while the φ component gives[
δ
∂

∂T
− U

∂

∂z

] [
1
ρ

D2ψ

]
+ J

[
ψ,

1
ρ2 D2ψ

]
+ 1
ρ3

∂

∂z
(ρw)2 + ε

∂w
∂z

= 0. (2.10)

The Jacobian operator J is taken to be between ρ and z hence

J[ f , g] = ∂( f , g)
∂(ρ, z)

= ∂f
∂ρ

∂g
∂z

− ∂f
∂z
∂g
∂ρ
, (2.11)

for some fields f and g.
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Hill’s vortex in a rotating flow

The rotation terms in (2.9) and (2.10) may now be combined with the swirl velocity and
the U∂z terms may be written using the Jacobian derivative to give

δ
∂

∂T
Γ + 1

ρ
J
[
ψ − U

2
ρ2, Γ

]
= 0, (2.12)

and

δ
∂

∂T

[
1
ρ

D2ψ

]
+ J

[
ψ − U

2
ρ2,

1
ρ2 D2ψ

]
+ 1
ρ3

∂

∂z
Γ 2 = 0, (2.13)

where

Γ = ρw + ερ2

2
, (2.14)

is the total azimuthal circulation divided by 2π. Equations (2.12) and (2.13) are our
governing equations which will be used throughout this analysis. On the z axis (ρ = 0)
we impose the condition that w = 0 and ψ = 0 such that all components of velocity and
vorticity are finite and continuous.

2.2. Asymptotic approach
To proceed we will assume that δ is small and expand ψ and w using a regular perturbation
expansion of the form

(ψ,w) = (ψ0,w0)+ δ(ψ1,w1)+ O(δ2), (2.15)

where each term in the expansion is a function of ε. We will later show that ε can be
related to δ through ε4 = δ and at this point we could expand each term in powers of
ε = δ1/4 before reordering terms such that the expansion is asymptotically well-ordered in
δ. Anticipating the relation ε4 = δ, we therefore ignore any components which are O(ε4)
or higher when calculating the leading-order solution in δ.

To leading order in δ (2.12) and (2.13) give that

1
ρ

J
[
ψ0 − U

2
ρ2, ρw0 + ερ2

2

]
= 0, (2.16)

and

J
[
ψ0 − U

2
ρ2,

1
ρ2 D2ψ0

]
+ 1
ρ3

∂

∂z

(
ρw0 + ερ2

2

)2

= 0. (2.17)

We begin by using (2.16) to relate the swirl velocity, w, to ψ .

2.3. The swirl velocity and Kelvin’s circulation theorem
Equation (2.12) states that the azimuthal circulation is conserved following a ring of
particles of radius ρ, where the term ερ2/2 describes the circulation of the rotating frame.
This can be thought of as a consequence of Noether’s theorem: axial angular momentum in
conserved due to the invariance of the system to azimuthal rotation. Consider an incoming
ring of particles that far from the vortex is arbitrarily close to the z axis, i.e. ρ � 1, so Γ is
vanishingly small. The circulation Γ is conserved as the ring of particles expands to pass
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around the vortex and so Γ remains arbitrarily small arbitrarily close to the vortex with Γ
vanishing on the vortex boundary by continuity. Thus

w0 = −ερ
2

at r = a. (2.18)

Equation (2.16) implies that

ρw0 + ερ2

2
= K

(
ψ0 − U

2
ρ2

)
, (2.19)

for some function K = K(ϕ). This result is simply Kelvin’s circulation theorem for a ring
of particles an axisymmetric flow. We now take

ψ0 = U
2
ρ2 at r = a, (2.20)

and use (2.18) to impose the condition that K(0) = 0. We note that (2.20) is equivalent
to the requirement that the vortex boundary, r = a, is a streamsurface in a frame moving
with the vortex.

For the fluid outside the spherical vortex, all streamlines must originate from the ultra
far field where ψ0 → 0 and w0 → 0. Therefore (2.19) gives that

1
2
ερ2 = K

(
−U

2
ρ2

)
, (2.21)

hence, outside the vortex, we can determine K as the linear function

K(ϕ) = −εkϕ, (2.22)

for some field ϕ. Here, we have defined k(T) = 1/U(T) to be an effective wavenumber.
Inside the vortex (2.19) remains valid, however, as streamlines do not necessarily

originate from the far field, we are unable to determine K using a far-field condition. The
choice of this function K is arbitrary and picking a general linear function, K(ϕ) = αϕ,
for some parameter α results in the family of vortices considered by Moffatt (1969). To
ensure that our vortex reduces to Hill’s vortex as ε → 0, we assume that (2.22) continues
to hold within the vortex. This assumption corresponds to a vortex with a slow swirl and
ensures that ∂w0/∂r is continuous across r = a. The value of α = −εk can be thought of
as an internal wavenumber describing the azimuthal rotation rate of the vortex.

2.4. The streamfunction
Using (2.19), (2.17) becomes

J
[
ψ0 − U

2
ρ2,

1
ρ2 D2ψ0

]
+ 1
ρ3

∂

∂z

[
K

(
ψ0 − U

2
ρ2

)]2

= 0, (2.23)

and since it can be shown that

J
[
ϕ,

1
ρ2 K′ (ϕ)K (ϕ)

]
= 1
ρ3

∂

∂z
[K (ϕ)]2 , (2.24)

for some field ϕ, we can write

J
[
ψ0 − U

2
ρ2,

1
ρ2

{
D2ψ0 + K′

(
ψ0 − U

2
ρ2

)
K

(
ψ0 − U

2
ρ2

)}]
= 0. (2.25)
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Hill’s vortex in a rotating flow

Therefore, we have

D2ψ0 + K′
(
ψ0 − U

2
ρ2

)
K

(
ψ0 − U

2
ρ2

)
= ρ2Z

(
ψ0 − U

2
ρ2

)
, (2.26)

for some function Z(ϕ). We note that the function Z can be related to the pressure head
H(ψ0 − Uρ2/2) = p0 + |u0|2/2 using Bernoulli’s principle (Batchelor 2000, § 7.5) by
Z = H′.

We can now determine Z outside the vortex using the same method as was used to
determine K. In the far field D2ψ0 → 0, hence we have

− 1
2
ε2k2U = Z

(
−U

2
ρ2

)
, (2.27)

so Z is the constant function
Z = −1

2 Uε2k2, (2.28)

where we recall that kU = 1. For the flow inside the vortex we follow Moffatt (1969) and
take

H(ϕ) = H0 + λϕ =⇒ Z(ϕ) = λ, (2.29)

for some constant λ. Therefore, our leading-order streamfunction satisfies[
D2 + ε2k2

]
ψ0 =

{
0, r > a,(
λ+ 1

2 Uε2k2ρ2
)
ρ2, r < a,

(2.30)

such that ψ0 = Uρ2/2 on r = a and ∂ψ0/∂r is continuous across r = a so the velocity
is continuous across the vortex boundary. These boundary conditions will allow us to
uniquely determine λ. Once we have solved for ψ0, we can find w0 from ψ0 using (2.19).

We observe from (2.30) that there are two natural length scales in the problem – the
vortex radius, a, and the wavelength (εk)−1. We therefore expect our solution to consist of
an interior vortex region with εkr � 1 and an exterior wave field where εkr ∼ 1. We begin
by determining the interior vortex solution and then determine the exterior wave field, the
wave amplitude is obtained by matching to the interior solution.

3. Interior vortex solution

Here, we solve for the leading-order streamfunction, ψ0, in the interior region around the
vortex where εkr � 1.

3.1. The flow inside the vortex
Inside the vortex, where r ≤ a, we have[

D2 + ε2k2
]
ψ0 =

(
λ+ 1

2
Uε2k2ρ2

)
ρ2, (3.1)

from (2.30), with general solution

ψ0 =
[
λ

ε2k2 + U
2

]
r2 sin2 θ + r sin θ

∞∑
m=1

P1
m(cos θ)

[
Amjm(εkr)+ Bmym(εkr)

]
, r ≤ a.

(3.2)

Here, the P1
n are associated Legendre polynomials and the jn and yn are spherical Bessel

functions of the first and second kind respectively and we have imposed the conditions
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that our solution is 2π periodic and θ = 0,π are streamlines. Since we require ψ0 to be
non-singular at the origin we must have Bm = 0 for all m and the condition that ψ0 =
Uρ2/2 at r = a gives that Am = 0 for m ≥ 2 and

A1 = − λa
ε2k2j1(εka)

. (3.3)

Therefore, our solution is

ψ0 =
(

U
2

+ λ

ε2k2

[
1 − aj1(εkr)

rj1(εka)

])
r2 sin2 θ, r ≤ a, (3.4)

where the value of λ is determined by the continuity of polar velocity, uθ , across r = a.

3.2. The flow around the vortex
Outside the vortex, for r ≥ a, we have[

D2 + ε2k2
]
ψ0 = 0, (3.5)

from (2.30) with general solution

ψ0 = r sin θ
∞∑

m=1

P1
m(cos θ)

[
Cmjm(εkr)+ Dmyn(εkr)

]
, r ≥ a. (3.6)

Requiring that ψ0 = Uρ2/2 on r = a and our solution decays away from the origin for
εkr � 1 gives that

ψ0 = Ua
2

y1(εkr)
y1(εka)

r sin2 θ, r ≥ a. (3.7)

3.3. The full interior solution
Our final condition on ψ0 is that the polar velocity, uθ0, is continuous across r = a which
gives that ∂ψ0/∂r must be continuous. Using (3.7) and (3.4) we have

λa
ε2k2

εkaj2(εka)
j1(εka)

= −Ua
2
εkay2(εka)

y1(εka)
, (3.8)

so

λ = −15U
2a2

(
1 − 38

105
(εka)2 + O(ε4)

)
. (3.9)

Noting that εkr � 1 for r ≤ a and neglecting terms of order O(ε4) and higher, we can
expand (3.4) as

ψ0 = U
2

(
1 +

[
3
2

− 19
35
(εka)2

] [
1 − r2

a2

]
+ 3(εka)2

280

[
9 − 14r2

a2 + 5r4

a4

])
r2 sin2 θ,

r ≤ a. (3.10)

In the limit of εka → 0 this result reduces to the classical vortex solution of Hill (1894)
given by

ψ0 = 3U
4

[
5
3

− r2

a2

]
r2 sin2 θ, r ≤ a. (3.11)
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Hill’s vortex in a rotating flow

Similarly, expanding (3.7) for εkr � 1 and neglecting terms of order O(ε4) or higher we
obtain

ψ0 = Ua3

2

[
1 + (εka)2

2

(
r2

a2 − 1
)]

sin2 θ

r
, r ≥ a, (3.12)

which reduces to inviscid flow around a sphere in the case of εka → 0.

4. Exterior wave field

We now determine the wave field in the exterior region where εkr ∼ 1. From (2.30) we
have [

D2 + ε2k2
]
ψ0 = 0, (4.1)

for r > a. This equation may alternatively be derived from the linearised Euler equations
under the assumption that far from the vortex the wave wake is small in amplitude (Johnson
& Crowe 2021) showing that the linear wave field satisfies the nonlinear system. Since
solutions to (4.1) will vary over a length scale of order O(ε−1) we now balance the two
terms in this equation by introducing the long radial scale R = εr. Switching to spherical
coordinates gives

∂2ψ0

∂R2 + sin θ
R2

∂

∂θ

[
1

sin θ
∂ψ0

∂θ

]
+ k2ψ0 = 0, (4.2)

which can be solved using separation of variables for solution

ψ0 = kR
∞∑

n=1

sin θP1
n(cos θ)

[
Anjn(kR)+ Bnyn(kR)

]
. (4.3)

Long (1953) observed that waves are not seen ahead of objects moving through a rotating
flow. These observations are supported by the theoretical work of McIntyre (1972) for the
case of an unbounded rotating flow motivating us to use the radiation condition of no
upstream waves. Fraenkel (1956) showed that this condition can be satisfied by Bn = 0 for
n ≥ 2 and

An =

⎧⎪⎨⎪⎩
0, n odd,

− (2n + 1)(n − 2)!

2n
(n

2
+ 1

)
!
(n

2
− 1

)
!
B1, n even, (4.4)

so our solution may be written as

ψ0 = BR sin θ

[
y1(kR) sin θ +

∞∑
n=1

(4n + 1)(2n − 2)!
22n (n + 1)! (n − 1)!

j2n(kR)P1
2n(cos θ)

]
, (4.5)

where B = −kB1 can be found by matching to the interior solution. We note that spherical
Bessel functions take on a trigonometric form for kR = O(1) justifying the definition of
k = 1/U as a wavenumber. Substituting r = R/ε, we can see that wavelength of these
waves is O(1/ε) assuming that U remains O(1).
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In order to find the form of B we match (4.5) to the inner solution in (3.7) by substituting
R = εr. Noting that

jn(x) ∼ xn

(2n + 1)!!
and y1(x) ∼ − 1

x2 , (4.6a,b)

for small argument x we have

ψ0 ∼ εBy1(εkr)r sin2 θ + O(ε4). (4.7)

Hence, by comparison with (3.7), we have

B = Ua
2εy1(εka)

= −εUa3k2

2
+ O(ε3), (4.8)

to leading order in δ. We note that close to the vortex (R � 1), ψ0 is dominated by the
y1(kR) term. This behaviour is consistent with the expected dipole structure near the
vortex. Additionally, since B = O(ε), the wave amplitude is O(ε) and hence small for
R = O(1).

5. Summary of leading-order solution

Before moving on to the solvability conditions required to determine the slow time
evolution of the vortex, we present the full leading-order solution. The interior Hill’s
vortex solution is given by

ψ0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U
2

(
1 +

[
3
2

− 19
35
(εka)2

] [
1 − r2

a2

]
+ 3(εka)2

280

[
9 − 14r2

a2 + 5r4

a4

])
r2 sin2 θ,

r ≤ a,

Ua3

2

(
1 + (εka)2

2

[
r2

a2 − 1
])

sin2 θ

r
, r ≥ a,

(5.1)

for εkr � 1. The terms of order O((εka)2) in this result correspond to both the near-field
inertial waves and the modification of internal vortex structure by the rotation. Far from
the vortex, the exterior wave field streamfunction is

ψ0 = aUR sin θ
2εy1(εka)

[
y1(kR) sin θ +

∞∑
n=1

(4n + 1)(2n − 2)!
22n (n + 1)! (n − 1)!

j2n(kR)P1
2n(cos θ)

]
, (5.2)

for long radial scale R = εr. We note that the amplitude of the wave field is O(ε) since
y1(εka) = O(ε−2).

Figure 2(a) shows the streamfunction, ψ0, for the interior vortex solution from (5.1) for
U = 1, a = 1 and ε = 0.2. The black lines denote streamlines in a frame moving with
the vortex – corresponding to streamlines of ψ ′

0 = ψ0 − Uρ2/2. The blue line denotes
the streamline ψ ′

0 = 0 so corresponds to the vortex boundary, r = a. The streamlines of
ψ ′

0 describe the particle paths of incoming fluid over the short time scale, t, and will
vary over the slow scale, T , as the vortex speed and radius change. Figure 2(b) shows
the streamfunction, ψ0, for the exterior wave field given by (5.2). We plot ψ0/|B| (for B
defined in (4.8)) as a function of the long spatial scales (εkρ, εkz) = kR(sin θ, cos θ) so
the plotted result is unchanged for all values of ε, U and a. We observe a wave wake in the
region z < 0 with decaying upstream perturbation. The wave amplitude is maximal along
the line θ = 2π/3 as discussed in Appendix B.

919 A6-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.386


Hill’s vortex in a rotating flow

0 05 10 20
0

z εkz

εkρ

0.05

–5

–4

–3

–2

–1

1

2

3

4

5

0

–20

–15

–10

–5

5

10

15

20

0

–2.0

–1.5

–1.0

–0.5

0.5

1.0

1.5

2.0

0

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

ρ

(b)(a)

Figure 2. (a) Plot of ψ0 from (5.1) for U = 1, a = 1 and ε = 02. The black lines denote streamlines of ψ ′
0 =

ψ0 − Uρ2/2 and the blue line denotes the vortex boundary, r = a. (b) Plot of ψ0/|B| from (5.2) as a function
of the long spatial scales (εkρ, εkz) = kR(sin θ, cos θ).

6. Solvability conditions

We now consider the energy balance and azimuthal vorticity to determine solvability
conditions which will allow us to examine the long-time decay of the vortex.

6.1. Conservation of energy
The leading-order kinetic energy of the vortex is given by

E0 = 1
2

∫ (
u2
ρ0 + u2

z0 + w2
0

)
dV =

∫
1

2ρ2

(
|∇ψ0|2 + ε2k2ψ2

0

)
dV, (6.1)

where the integral is taken over the interior region. The generation of the wave field
removes energy from the vortex leading to vortex decay with the loss of vortex energy
balancing the outward flux of wave energy.

We can show (see Appendix A) that the total energy flux is given by

δ
dE0

dT
= U

∫ {
1

2ρ2

[(
∂ψ0

∂z

)2

−
(
∂ψ0

∂ρ

)2
]

ẑ · n̂ + 1
ρ2
∂ψ0

∂ρ

∂ψ0

∂z
ρ̂ · n̂

}
dS, (6.2)

where the right-hand integral is evaluated over the surface of a sphere of radius r = R/ε
and is independent of R. The required expression for ψ0 on the sphere is given by the
far-field streamfunction, (5.2), however, as the wave energy flux is R independent we can
use the asymptotic form of (5.2) for small R given by

ψ0 = εUa3

2

[
sin2 θ

R
+ k4R3 sin2 θ cos θ

8

]
+ O(R4), (6.3)
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to simplify calculation of (6.2). Evaluation of (6.2) gives that

δ
dE0

dT
= −πε4k4U3a6

4
+ O(R4), (6.4)

where the O(R4) term may be set to zero as the result is independent of R. Noting that
k = 1/U, defining δ = ε4 and calculating E0 as the leading-order kinetic energy of a Hill’s
vortex,

E0 = 10πU2a3

7
, (6.5)

our final result for the loss of vortex energy to the wave field is

d
dT

[
10πU2a3

7

]
= −πa6

4U
. (6.6)

6.2. Conservation of centre vorticity
As the vortex decays, we expect vortical fluid to escape and hence we do not necessarily
expect all vortex streamlines to form closed surfaces correct to O(δ). We proceed by
following the peak vorticity approach (Flierl & Haines 1994; Johnson & Crowe 2021)
and assuming that the innermost streamsurface of the streamfunction in a frame moving
with the vortex

ψ ′ = −U
2
ρ2 + ψ, (6.7)

remains closed to O(δ). The vorticity

ωφ = − 1
ρ

D2ψ, (6.8)

contained within this streamsurface is assumed to be conserved. Here this innermost
streamsurface corresponds to a torus of vanishing minor axis about the maximum of ψ ′ so
all quantities within this streamsurface can be evaluated at the position of this maximum,
referred to from now on as the ‘vortex centre’.

To leading order we have

ωφ = 15Uρ
2a2 , (6.9)

and as the maximum ofψ ′ occurs for r = a/
√

2, θ = π/2 we have that the vorticity within
the innermost streamsurface is

ωφc = 15U

2
√

2 a
. (6.10)

Taking this quantity to be constant to O(δ) gives that

d
dT

[
U
a

]
= 0, (6.11)

hence U/a is equal to its initial value, U(T0)/a(T0), at T = T0. We note that this approach
may also be thought of as assuming that the value of ωφ is conserved following a particle
within the innermost streamsurface.
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7. Vortex decay

By combining the loss of vortex energy to the wave field, (6.6), with the conservation of
centre vorticity, (6.11), we have

a(T) = a0 exp

[
− 7a3

0

200U3
0
(T − T0)

]
, (7.1)

and

U(T) = U0 exp

[
− 7a3

0

200U3
0
(T − T0)

]
, (7.2)

where (U, a) = (U0, a0) at some initial time T = T0 corresponding to t = t0 = ε−4T0.
To leading order in ε, the maximum of ψ ′ within the vortex occurs for r = a/

√
2 and

θ = π/2 and is given by

ψc = 3Ua2

16
, (7.3)

where we use a subscript ‘c’ to denote the value of a quantity at the vortex centre. Using
(7.1) and (7.2) we can write

ψc = 3U0a2
0

16
exp

[
− 21a3

0

200U3
0
(T − T0)

]
, (7.4)

which may be tested against numerical simulations. Additionally, the centre vorticity may
be written using (6.10) as

ωφc = 15U0

2
√

2a0
, (7.5)

which clearly remains independent of time by the assumption of conservation of centre
vorticity. Finally the leading order (in ε) vortex energy should decay as

E0 = 10πU2
0a3

0
7

exp

[
− 7a3

0

40U3
0
(T − T0)

]
. (7.6)

8. Numerical simulations

To test the model presented here we run numerical simulations of the non-dimensional,
axisymmetric governing equations (see (2.2)) using the Dedalus package (Burns et al.
2020). Simulations are run for rotation parameters ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. We
solve the axisymmetric Navier–Stokes equations on the domain (ρ, z) ∈ [0, 51.2] ×
[−51.2, 51.2] with 1024 gridpoints in the ρ direction and 2048 gridpoints in the z direction.
Fields are expanded in terms of Fourier modes in z and Chebyshev polynomials in ρ
and integrated for t ∈ [0, 50] using a second-order semi-implicit backwards differentiation
formula scheme with a timestep of 2 × 10−3. Due to the choice of basis functions, our
fields satisfy periodic boundary conditions in the z direction and we impose rigid wall
conditions (uρ = 0) on ρ = 51.2. The boundary conditions at ρ = 0 are set by multiplying
all equations through by the highest power of ρ and substituting ρ = 0. This is dealt with
internally by Dedalus and efficiently deals with the coordinate singularity.

Since we do not know U(t) in advance, numerical simulations are performed
in coordinates moving at speed 1 in the z direction by setting U = 1 in (2.2a).
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Figure 3. The streamfunction, ψ , from numerical simulations with ε = 0.4. Results are shown for (a) t = 0,
(b) t = 25 and (c) t = 50.

Therefore, a vortex moving with speed U ≈ 1 should remain near the centre of the domain
and a vortex found to be moving in the negative z direction has U < 1. Viscous diffusion
with a viscosity of ν = 10−4 is included for numerical stability. This diffusion acts to
damp instabilities which would otherwise form near the rear stagnation point (Moffatt &
Moore 1978; Pozrikidis 1986; Protas & Elcrat 2016) leading to a breakdown of the vortex.

The ρ and z velocity components, (uρ, uz), are initialised using the classical Hill’s vortex
solution (corresponding to the ε = 0 limit of ψ0 in (5.1)) with U = 1 and a = 1 while the
swirl velocity w is set by

w = − εk
2ρ
ψ0. (8.1)

At early times we do not expect to see the vortex decay predicted in § 7 since this requires
an established wave field. Instead we expect fast transient behaviour where the wave field
is formed and the vortex adjusts to the effects of rotation. Once the transient adjustment
near the vortex has abated, comparison with our theory can be made. We therefore begin
all comparison from t0 = 10 which we observe to be sufficient for the wave field to develop
and the vortex to adjust. It should be noted that the vortex speed and radius may change
due this transient adjustment phase and hence the values of U(t0) = U0 and a(t0) = a0
may differ from the values of U = a = 1 imposed at t = 0.

Figure 3 shows the streamfunction ψ as a function of (ρ, z) for ε = 0.4 and t ∈
{0, 25, 50}. The formation of the wave field can be clearly seen with waves forming behind
the vortex of wavelength λ = 2πU/ε ≈ 16. Small additional disturbances are seen in the
wake of the vortex resulting from the initial transient evolution and from fluid escaping
the vortex core.

A supplementary movie available at https://doi.org/10.1017/jfm.2021.386 shows the
temporal evolution of the velocity fields for ε = 0.4 – we opt to plot the velocity fields
since they show the wave propagation more clearly than the streamfunction. Due to the
fast decay of uρ and uz with ρ, we plot ρuρ and ρuz instead so that the wave field is
visible for large ρ. We observe a wave field of similar structure to the prediction shown in
figure 2(b) with no disturbances propagating upstream. At later times the vortex appears
to move downwards, corresponding to a velocity, U, of less than 1. Additionally, a small
disturbance left by the initial adjustment of the vortex can be seen travelling downwards.
Due to the periodicity of the domain in the z direction and the boundary at ρ = 51.2 acting
to reflect outgoing waves, we might expect waves to loop around the domain and interact
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Figure 4. Scatter plots for ε = 0.4 and t = 30 showing (a) ρw against ψ , (b) −ρωφ + ε2k2ψ against ρ2 and
(c) ρωφ against ψ . The dashed lines give our theoretical predictions.

with the vortex. While some disturbances are seen re-entering the domain, the simulation
stop time, t = 50, is seen to be sufficient to prevent these waves from reaching the vortex.

To leading order in δ we expect that the swirl velocity, w, both inside and outside the
vortex, satisfies

ρw = K(ψ) = −εkψ, (8.2)

from (2.19) and (2.22). Similarly the vorticity and streamfunction are related by

− ρωφ + ε2k2ψ =
⎧⎨⎩0, r > a,

−15U
2a2

[
1 − 3

7
(εka)2

]
ρ2, r < a,

(8.3)

using (2.30), (3.9) and −ρωφ = D2ψ . If these relations are satisfied throughout the vortex
evolution then the vortex will remain close to a Hill’s vortex and our theory should be
valid. These relations tested are for ε = 0.4 and t = 30 in figure 4 using scatter plots.
These plots show the numerical values of two quantities at some point in (ρ, z) space; each
point represents a different numerical gridpoint and all gridpoints are included. Points are
coloured – red points represent points within the vortex (r < 0.9a), green points represent
points near the vortex edge (0.9a ≤ r ≤ 1.1a) and blue points represent points outside the
vortex (r > 1.1a). Theoretical predictions using (8.2) and (8.3) are included as dashed
lines.

Figure 4(a) shows the angular momentum, ρw, against the streamfunction, ψ . We can
see that all points lie very close to a line of constant gradient so (8.2) remains accurate
late in the evolution. The value of −εk can be determined by fitting the points to a straight
line. Figure 4(b) shows −ρωφ + ε2k2ψ against ρ2 with a focus on the region close to the
vortex, ρ ≤ 1. Points close to the centre of the vortex lie close to our prediction (see (8.3)),
however, we note that the predicted relation does not hold near the edge of the vortex where
viscosity acts to smooth the discontinuity in vorticity. Our prediction is determined using
the fitted value of εk to determine U = 1/k and the method described below to estimate a.
Finally, figure 4(c) shows ρωφ against ψ which, by (8.3), we expect to be linearly related
outside the vortex. As expected we observe that the blue points (corresponding to points
outside the vortex) lie close to a line of gradient ε2k2.

While viscosity acts to maintain the vortex integrity by damping small scale instabilities,
it also leads to a loss of around 10 % of the domain integrated energy. These viscous effects
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are particularly pronounced near the vortex edge as seen in figure 4 since Hill’s vortex
has a vorticity discontinuity across r = a. The smoothing of this discontinuity makes it
particularly difficult to determine an accurate value for the vortex radius, a, while the drag
associated with the boundary layers can modify the vortex speed, U.

To account for viscous effects, we assume that a diagnosed quantity, f , is a function of
the linear wave drag with coefficient ε4 and the viscous damping with coefficient ν. If
both ε4 and ν are small, we may expand

f (ε4, ν, t) = f (0, 0, t)+ ε4 ∂f
∂ε4 (0, 0, t)+ ν

∂f
∂ν
(0, 0, t)+ O(ε8, ε4ν, ν2), (8.4)

and hence we may determine the effect of the wave drag by running a simulation with
ε = 0 and subtracting the results from a non-zero ε run to get

f (ε4, ν, t)− [ f (0, ν, t)− f (0, 0, t)] = f (0, 0, t)+ ε4 ∂f
∂ε4 (0, 0, t)+ O(ε8, ε4ν, ν2),

(8.5)

where f (0, 0, t) = f (0, 0, 0) is constant in time and known from the analytical Hill’s
vortex solution or equivalently the initial conditions. We now use this method to estimate
the maximum streamfunction, ψc, and vortex energy, E0, adjusting for viscosity. The
unadjusted value of E0 is determined by integratingψ ωφ over the region r < a (see (A10))
where the value of a is estimated as the radial distance from the centre of the vortex to the
point where the vorticity is reduced to 10 % of its maximum value.

Figure 5 shows the centre streamfunction, ψc, centre vorticity, ωφc, and vortex energy,
E0. Here, the centre streamfunction, ψc, is the maximum value of ψ ′ (defined in (6.7))
inside the vortex and the centre vorticity, ωφc, is the value of ωφ at the position where
ψ ′ = ψc. As stated above, we perform all comparisons from t = t0 = 10 onwards; we also
normalise all quantities by their value at t0. Solid lines denote data from our numerical
simulations and dashed lines denote our predictions from § 7. Due to the difficulty in
determining the radius and speed of the adjusted vortex to the accuracy required to
calculate (a0/U0)

3 at t = t0, we instead take a0/U0 = 1.15 by fitting the predictions for
ψc to the numerical data in t ∈ [10, 20]. We expect the value of a0/U0 to depend on ε so
perform a fitting for all value of ε and find that all values satisfy a0/U0 ≈ 1.15. It should
be noted that this value of a0/U0 lies within the range of possible values calculated using
different methods for determining the vortex speed and radius so is consistent with our
numerical data.

Figure 5(a) shows the comparison between the numerical and theoretical values of the
centre streamfunction, ψc. We observe close agreement between the prediction and the
theory though, as noted previously, some fitting was involved to account for the difficulties
in determining a0/U0. As the results are consistent over the full range of ε, we conclude
that the time scaling t ∼ O(1/ε4) is likely correct. Figure 5(b) shows the centre vorticity,
ωφc, from our numerical simulations. We observe that ωφc is conserved to within 3 %
throughout the evolution for ε ≤ 0.4 which is consistent with our assumption that the
centre vorticity is conserved throughout the evolution. We do observe larger, oscillatory
deviations for ε = 0.5 which may suggest the presence of wavelike oscillations inside the
vortex due to the stronger rotation – these phenomena are likely to be strongly nonlinear
and may act to modify the vortex decay.

Figure 5(c) shows a comparison between the vortex energy, E0, from simulations and
theory. We note that our predictions are less accurate for the larger ε values and this
discrepancy may be due to several factors. Firstly the difficulties in determining the
vortex radius are particularly important here due to the integration domain depending
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Figure 5. (a) The centre streamfunction, ψc, (b) the centre vorticity, ωφc, (c) the vortex energy, E0.
All quantities are normalised by their value at t = 10 and shown from t = 10 for all non-zero ε values
simulated.

on a. Secondly, the expression for E0 does not include the rotational component of the
energy, w2, as this is an O(ε2) contribution. However, our numerical simulations suggest
that this component may be significant in the finite ε case and may even increase with
time due to finite ε effects which could be related to conservation of angular momentum.
Including this component would increase the predicted value back towards the numerical
value. Finally, the neglected higher-order components of the translational kinetic energy
T = |∇ψ |2/(2ρ2), and the wave drag will modify the energy balance in the finite ε case.

9. Discussion and conclusions

We have used an asymptotic analysis to examine the decay of a Hill’s vortex in a weakly
rotating flow. We observe that the effect of rotation is to allow the emission of inertial
waves which carry energy away from the vortex leading to its decay. This energy flux is
small, of the order of O(1/Ro4) = (2ΩL/V)4, resulting in a slow decay scale of the order
of t ∼ Ro4 for large Rossby number Ro = V/(2ΩL). By considering the energy balance
and combining this result with the conservation of centre vorticity (Flierl & Haines 1994;
Johnson & Crowe 2021) we derived results for the evolution of the vortex speed and radius
under the assumption that the vortex remains a Hill’s vortex to leading order. The present
approach is based on the existence of a ‘Long’s model’ for this geometry, i.e. a linear
integral of the full nonlinear equations of motion, and the wave field here satisfies that
linear equation. An example where this does not apply is the monopolar vortex of Griffiths
(1999), where significant nonlinear effects can occur in an intermediate region between the
vortex and wave field.

Replacing the dimensional scales in (7.1) and (7.2) we find that the (dimensional) vortex
radius, a, and translation speed, U, decay as

(a,U) = (a0,U0) exp

[
− 14

25

(
Ωa0

U0

)4 U0

a0
(t − t0)

]
, (9.1)

where a0 and U0 are the (dimensional) radius and velocity of the vortex at t = t0. These
results could be similarly derived using the equivalent wave drag approach of Johnson &
Crowe (2021) as outlined in Appendix C.
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Numerical simulations have been used to test our predictions and show good agreement
in the case of small inverse Rossby number. For larger values of ε = 1/Ro we observe
some discrepancies between the theory and numerics likely due to the modification of the
vortex structure by finite ε effects. For order O(1) values of ε the vortex does not remain
spherical throughout the evolution and becomes an oblate spheroid, this may be related to
the conservation of angular momentum arising from the non-zero swirl velocity induced
by rotation. The decay of an initially spherical vortex in a strongly rotating fluid is therefore
not likely to be analytically tractable so would have to be examined numerically.

9.1. Extensions
The problem considered here can be extended in several ways. Firstly, Hill’s vortex is one
particular vortex from the doubly infinite family examined by Moffatt (1969). In the far
field, all vortices in this family appear as dipoles of the same strength therefore the linear
wave field and wave energy flux will be unchanged from the Hill’s vortex case. Similarly,
the dependence of the energy and centre vorticity on a and U will be the same for all
member of this vortex family with the only change being the value of coefficient in the
expression for E0. Therefore, we may use (6.2) and (6.11) for a Moffatt vortex with

E0 = βπU2a3, (9.2)

to get that the (dimensional) radius and speed to decay as

(a,U) = (a0,U0) exp

[
− 4

5β

(
Ωa0

U0

)4 U0

a0
(t − t0)

]
, (9.3)

where (a,U) = (a0,U0) at t = t0. We note that the Hill’s vortex result corresponds to the
case where β = 10/7.

Another extension of this problem would be to consider the decay of a spherical vortex
in a domain bounded in the radial direction. Taking the boundary to be a distance of
order 1/ε from the vortex, the leading-order vortex solution will be unchanged, however,
the wave field, which varies over the scale R = 1/ε, will be discretised by the wall
boundary conditions. While the rigid wall would result in wave reflection, we do not expect
significant re-absorption of energy as most waves would be reflected far behind the vortex.
This modified wave field would lead to a modified energy flux and hence change the decay
rate of the vortex. Finally, we could examine the decay of vortex rings travelling along the
rotation axis of a weakly rotating fluid using a combined numerical and analytic approach.
This will be a topic for future work and may be useful for estimating the lifespan of these
typically long-lived structures in a rotating flow.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.386.
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Hill’s vortex in a rotating flow

Appendix A. Energy flux

The kinetic energy density is given by

E = 1
2
|u|2, (A1)

and satisfies [
δ
∂

∂T
− U

∂

∂z

]
E + ∇ · [

u(E + p)
] = 0. (A2)

We now integrate (A2) over a sphere of radius r = R/ε for R = O(1) (denoted V) and
consider the leading-order contribution in ε from each term. Noting that the wave field is
O(ε) for r ∼ O(1/ε) we can neglect the terms cubic in velocity and set the pressure using
the linearised z-momentum equation

− U
∂uz

∂z
= −∂p

∂z
, (A3)

so p = Uuz. The leading-order volume integrated energy balance can now be written as

δ
d

dT

∫
EdV = U

∫
[E ẑ · n̂ − uzu · n̂] dS, (A4)

where the integral on the right-hand side is evaluated over the surface of V (denoted ∂V).
Substituting

u · n̂ = − 1
ρ

∂ψ

∂z
ρ̂ · n̂ + 1

ρ

∂ψ

∂ρ
ẑ · n̂, (A5)

and

E = 1
2

(
1
ρ2 |∇ψ |2 + w2

)
, (A6)

gives

δ
d

dT

∫
EdV = U

∫ {
1

2ρ2

[(
∂ψ

∂z

)2

−
(
∂ψ

∂ρ

)2

+ ρ2w2

]
ẑ · n̂ + 1

ρ2
∂ψ

∂ρ

∂ψ

∂z
ρ̂ · n̂

}
dS.

(A7)

The energy, E, within V may now be split into an interior vortex component and an
exterior wave component. Using simple scalings with ε, we may show that the interior
vortex component dominates for small ε. Hence, for all R, the leading-order kinetic energy
contained with in V is given by E0, the kinetic energy of Hill’s vortex. Therefore, the
surface flux term on the right-hand side of (A7) must also be independent of R. Noting that

919 A6-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.386


M.N. Crowe, C.J.D. Kemp and E.R. Johnson

ψ = O(ε) and w = O(ε2) on ∂V we may neglect the w terms to get our final leading-order
result

δ
dE0

dT
= U

∫ {
1

2ρ2

[(
∂ψ0

∂z

)2

−
(
∂ψ0

∂ρ

)2
]

ẑ · n̂ + 1
ρ2
∂ψ0

∂ρ

∂ψ0

∂z
ρ̂ · n̂

}
dS. (A8)

The vortex energy, E0, to leading order in ε is given by

E0 =
∫

1
2ρ2 |∇ψ0|2dV = 1

2

∫ [
∇ ·

(
ψ0∇ψ0

ρ2

)
− ψ0

ρ2

(
∇2ψ0 − 2

ρ

∂ψ0

∂ρ

)]
dV, (A9)

so neglecting the small surface term gives

E0 = −1
2

∫
1
ρ2ψ0D2ψ0 dV = π

∫
ψ0ωφ0 dρ dz, (A10)

hence

E0 =
∫

r≤a

15πU2

2a2

(
5
4

− 3r2

4a2

)
r4 sin3 θ dr dθ = 10πU2a3

7
. (A11)

The leading-order kinetic energy in the outer wave field is given by

Ew = 1
2ρ2

(
|∇ψ0|2 + ε2k2ψ2

0

)
, (A12)

so the total wave energy within a region of radius r ≥ O(1/ε) scales as∫
Ew dV ∼ 〈ψ0〉2

r
+ ε2r 〈ψ0〉2 , (A13)

where 〈ψ0〉 = O(ε) is the ε scaling of the wave field streamfunction, ψ0. Taking r = R/ε
gives the result that the wave energy scales as∫

Ew dV ∼ O(ε3), (A14)

which is much smaller than the contribution from the vortex energy as noted above.
However, taking r = R/ε4 gives an order-1 energy contribution from the swirl component.
This suggests that the energy lost from the vortex is stored in the wave field over a scale of
r = O(1/ε4). This is unsurprising since, assuming order-1 propagation speeds, this scale
also describes the distance travelled by a wave over the time scale, T . Therefore the wave
field is confined to the region r ≤ O(1/ε4)which suggests the existence of an ultra far-field
region for r � 1/ε4 in which there is no disturbance.

Appendix B. The Taylor (1922) solutions

Dotting (2.2a) with u gives the energy equation
∂E
∂t

+ ∇ · F = 0, (B1)

where E = u2/2 and F = (−Uẑ + u)E + up. Integrating (B1) over a volume V with
surface S fixed in the frame moving at speed U gives the energy conservation equation

d
dt

∫
V

EdV = −
∮

S
[−EUẑ · n̂ + ( p + E)u · n̂] dS. (B2)

The vortex energy decreases at a rate given by the rate of working of the pressure force
and the flux of energy through the boundary. In terms of the polar angle θ and azimuthal
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Hill’s vortex in a rotating flow

angle φ the flux integral for the energy travelling outwards across a sphere of radius R is
thus

FR = R2
∫ 2π

0

∫ π

0
[−EU cos θ + ( p + E)ur] sin θ dθ dφ

= 2πR2
∫ π

0
[−EU cos θ + ( p + E)ur] sin θ dθ. (B3)

As in the main text, the velocities appearing in (B3) are relative to the laboratory frame.
Taylor (1922) takes the same moving frame but considers velocities relative to the moving
frame. Thus the streamfunction in Taylor (1922) is related to that in the text here through
ψT = −[Ur2 sin2 θ ]/2 + ψ . Taylor looks for solutions with form ψ = Uf (r) sin2 θ . For
large R this form of solution gives

FR = U3f1(R)
∫ π

0
ΘT(θ) dθ, (B4)

where ΘT(θ) = − sin3 θ cos θ , the contribution to the outward flux along a ray
θ =constant, and f1(R) follows from f (r) as

f1 ∼ 1
2

[
f ′2 + 4Ω2

U2 f 2
]

→ 4Ω2C
U2 , as r → ∞, (B5)

for some constant C. Taylor discusses in detail the particular solution whose tangential
and normal velocity components vanish on the sphere r = a. For this solution C = 1 +
3Ro2 + 9Ro4 where Ro = U/(2Ωa). For the Taylor solutions of Scase & Terry (2018),
chosen to match a Hill’s vortex in r < a, C = 1.

Figure 6(a) shows the directional dependence ΘT(θ) of the outward energy flux for
solutions of the Taylor type. The integral in (B4), i.e. the area under the graph in
figure 6(a), vanishes, as it must in order that no work is done on the enclosed fluid
and the motion is steady. This, however, gives an inward flux of energy from z > 0,
i.e. 0 < θ < π/2 to balance the outward flux in z < 0, i.e. π/2 < θ < π and thus is
unsatisfactory for problems without an energy source at infinity. This feature is distinct
from upstream influence: the modification of the oncoming flow by columnar modes which
propagate upstream from the disturbance and do satisfy the radiation condition (Lighthill
1967; McIntyre 1972; Scase & Terry 2018).

The Fraenkel (1956) solutions used in (5.2) for the wave field contain extra terms, odd in
θ − π/2, that in the far field precisely cancelΘT(θ) for 0 < θ < π/2 and exactly reinforce
it for π/2 < θ < π, giving the θ dependence

ΘF(θ) =
{

0, 0 < θ < π/2,
ΘT(θ), π/2 < θ < π,

(B6)

(see figure 6b) and a maximum contribution along the line θ = 2π/3, as apparent in
figure 2(b). The unsteadiness and finite forcing time of the flow widen the peak response
in the unsteady simulations of figure 3.

Appendix C. Wave drag approach

An alternative approach to deriving the rate of decay of the vortex energy is to compute
the rate of working of the vortex on the fluid (Johnson & Crowe 2021).
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Figure 6. The directional dependence of the outward energy fluxes in terms of the polar angle, θ . (a) Taylor
(1922)-type solutions, ΘT (θ). (b) Fraenkel (1956)-type solutions, ΘF(θ).

The far-field inertial wave wake satisfies the homogeneous equation

ψρρ − (1/ρ)ψρ + ψzz + κ2ψ = 0, for ρ > 0, (C1)

where κ = εk. On this scale the vortex appears as a dipole of strength μ = 2πUa3 at the
origin, so

ψ = −Ua3δ(z), on ρ = 0. (C2)

The solution to (C1), (C2) has the Fourier representation

ψ(ρ, z) = 1
2π

∫ ∞

−∞
ψ̂(ρ, λ) exp(iλz) dλ, (C3)

where, for outward group velocity (inward phase velocity), ψ̂ is given by

ψ̂ = −Ua3

{
(λ2 − κ2)1/2ρK1[(λ2 − κ2)1/2ρ], λ2 > κ2

(iπ/2)(sgnλ)(κ2 − λ2)1/2ρH(1)1 [(sgnλ)(κ2 − λ2)1/2ρ], λ2 < κ2.
(C4)

Here, K1 is the modified Bessel function of the second kind of order one and H(1)1 is the
Hankel function of the first kind of order one. Fraenkel (1956) gives a closely related result.
Inverting (C4) gives the wave field in (5.2). This is, however, unnecessary and the energy
flux is obtained below directly from (C4).

To derive the drag force, let ξ(ρ0, z) be the displacement from the radius ρ0 of a particle
originally at a distance ρ = ρ0 from the rotation axis far upstream. Then the drag D exerted
on the vortex by the fluid is given by the component of the pressure force in the negative-z
direction on the material surface ρ = ρ0 + ξ(ρ0, z),

D = −2πρ

∫ ∞

−∞
p
∂ξ

∂z
dz. (C5)

Substituting uρ = −U∂ξ/∂z from the definition of ξ , and p = Uuz from the linearised
z-momentum equation gives

D = 2πρ

∫ ∞

−∞
uρuz dz = −2π

ρ

∫ ∞

−∞
∂ψ

∂z
∂ψ

∂ρ
dz = − 1

ρ

∫ ∞

−∞
∂̂ψ

∂z
∂̂ψ

∂ρ

∗
dλ, (C6)

from Plancherel’s theorem with ∗ denoting the complex conjugate. The drag determination
D in (C6) is independent of the radius ρ along which the integral is evaluated and thus it
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is convenient to let ρ → ∞, so

∂̂ψ

∂z
→ iλUa3(iπ/2)ωρ|2/πωρ|1/2 exp[i(ωρ − 3π/4)], (C7a)

∂̂ψ

∂ρ
→ Ua3(iπ/2)ω2ρ|2/πωρ|1/2 exp[i(ωρ − π/4)], (C7b)

for |λ| < κ and exponentially small otherwise, with ω = (sgnλ)(κ2 − λ2)1/2. Then

D = π

2
U2a6

∫ κ

−κ
|λ|(κ2 − λ2) dλ = πU2a6κ4/4. (C8)

As expected, this is positive showing that the fluid exerts a decelerating drag on the vortex.
The terms involving the energy density E in (B1) are cubic in small quantities and so the

leading-order energy flux is given by the quadratic flux of pressure with the flux of energy
radially outwards from the vortex becoming

W = 2πρ

∫ ∞

−∞
uρp dz = 2πρ

∫ ∞

−∞
Uuρuz dz = UD = πε4a6

4U
, (C9)

the rate of working of the vortex on the fluid through the drag force. The vortex energy
equation

dE0

dT
= −W, (C10)

matches (6.6).
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