Structure and X-ray reference diffraction patterns of $(Ba_{6-x}Sr_x)R_2Co_4O_{15}$ (x = 1, 2) (R = lanthanides)

W. Wong-Ng,^{1,a)} G. Liu,² Y.G. Yan,³ and J.A. Kaduk⁴ ¹Materials Measurement Science Division, NIST, Gaithersburg, Maryland 20899 ²Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China ³State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, People's Republic of China ⁴BCPS, Illinois Institute of Technology, Chicago, Illinois 60616

(Received 16 October 2012; accepted 4 February 2013)

The structure and X-ray patterns of two series of barium lanthanide cobaltates, namely, $Ba_4Sr_2R_2Co_4O_{15}$ (R = La, Nd, Sm, Eu, Gd, and Dy), and $Ba_5Sr_2Co_4O_{15}$ (R = La, Nd, Sm, Eu, and Gd) have been determined. These compounds crystallize in the space group $P6_{3mc}$; the unit-cell parameters of Ba₄Sr₂ R_2 Co₄O₁₅ (*R* from La to Dy) decrease from a = 11.6128(2) Å to 11. 5266(9) Å, c = 6.86903(11) to 6. 7630(5) Å, and V = 802.23(3) Å³ to 778.17(15) Å³, respectively. In the Ba₅SrR₂Co₄O₁₅ series (R = La to Gd), the unit-cell parameters decrease from a = 11.735 44(14) Å to 11.619 79(12) Å, c = 6.942 89 (14) Å to 6.836 52(8) Å, and V = 828.08(3) Å³ to 799.40(2) Å³. In the general structure of $(Ba_{6-x}Sr_x)R_2Co_4O_{15}$, there are four Co ions per formula unit occupying one CoO_6 octahedral and three CoO_4 tetrahedral units. Through corner-sharing of these polyhedra, a larger Co_4O_{15} unit is formed. Sr^{2+} ions adopt both octahedral and 8-fold coordination environment. R^{3+} ions adopt 8-fold coordination (mixed site with Sr), while the larger Ba²⁺ ions assume both 10and 11-fold coordination environments. The samples were found to be insulators. X-ray diffraction patterns of these samples have been determined and submitted to the Powder Diffraction File (PDF). © 2013 International Centre for Diffraction Data. [doi:10.1017/S0885715613000171]

Key words: X-ray reference diffraction patterns, $(Ba_{6-x}Sr_x)R_2Co_4O_{15}$ (x = 1, 2) (R = La, Nd, Sm, Eu, and Gd), crystal structure

I. INTRODUCTION

Continuing demands for environmentally friendly alternative-energy technologies have led to increased activities in the area of thermoelectric (TE) research. For high-temperature waste-heat conversion applications, low-dimensional layered oxides have been found to have relatively high efficiency. The efficiency and performance of TE energy conversion or cooling is related to the dimensionless figure of merit (ZT) of the TE materials, given by $ZT = S^2 \sigma T / \kappa$, where T is the absolute temperature, S is the Seebeck coefficient or TE power, σ is the electrical conductivity, and k is the thermal conductivity (Nolas et al., 2001). Examples of these oxides include $NaCoO_x$ (Terasaki et al., 1997), Ca₂Co₃O₆ (Mikami et al., 2003; Mikami and Funahashi, 2005), and Ca₃Co₄O₉ (Masset et al., 2000; Minami et al., 2002; Grebille et al., 2004; Hu et al., 2005). Among these materials, the most efficient material, $Ca_3Co_4O_9$, is a misfit layered oxide that has two monoclinical subsystems with identical a, c, β , but different b (Masset et al., 2000). However, to have materials with high enough efficiency for large-scale industrial applications, ZT of two or higher is a requirement.

The search for cobaltate compounds with improved TE properties continues worldwide. The goal of this paper is two-fold. Firstly, $(Ba_{6-x}Sr_x)R_2Co_4O_{15}$ (x = 1, 2) compounds are investigated for their structures. The structures of Ba₆La₂Co₄O₁₅ and Ba₅CaNd₂Co₄O₁₅ have been reported by Mevs and Müller-Buschbaum (1990a), and Müller-Buschbaum and Martin (1992). Since X-ray diffraction is a non-destructive technique for phase identification, X-ray diffraction patterns are especially important for phase characterization, therefore another goal of this investigation was to determine the experimental patterns for $Ba_4Sr_2R_2Co_4O_{15}$ (R = La, Nd, Sm, Gd, and Dy), and $Ba_5SrR_2Co_4O_{15}$ (R = La, Nd, Sm, Eu, and Gd), and to make them widely available through submission to the Powder Diffraction File (PDF) (ICDD).

II. EXPERIMENTAL

A. Sample preparation

All samples were prepared by heating a stoichiometric mixture of BaCO₃ R_2O_3 (R = La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu), and Co_3O_4 in air. La_2O_3 and Nd_2O_3 were first heat treated at 550 °C overnight prior to use to ensure the absence of carbonates and hydroxides. Samples were weighed, well-mixed, and calcined at 800 °C for one day, 950 °C for one day, and subsequently at 980 °C, with intermediate grindings and pelletizations, for another 6 days. During each heat treatment, all samples were furnace cooled. The phase purity of the samples was established by powder X-ray diffraction.

^{a)}Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

B. X-ray Rietveld refinements and powder reference patterns

The Ba₄Sr₂ R_2 Co₄O₁₅ (R = La, Nd, Sm, Eu, and Gd) and Ba₅Sr R_2 Co₄O₁₅ (R = La, Nd, Sm, Eu, Gd, and Dy) powders were mounted as ethanol slurries on zero-background cells. The X-ray powder patterns of the former samples were measured on a Bruker D2 Phaser diffractometer. The X-ray powder patterns of the latter group of samples were measured at ambient conditions on a Panalytical X'Pert Pro MPD diffractometer equipped with a PIXcel positionsensitive detector and an Anton Paar HTK1200N furnace. Patterns were measured (Cu $K\alpha$ radiation, 45 kV, 40 mA, 0.5° divergence slit, and 0.02 rad Soller slits) from 5 to 130°2 θ in 0.02° steps.

The Rietveld refinement technique (Rietveld, 1969) with the software suite GSAS (Larson and von Dreele, 2004) was used to determine the structure of $(Ba_{6-x}Sr_x)R_2Co_4O_{15}$. A structural model of $Ba_5SrPr_2Co_4O_{15}$ reported previously (Müller-Buschbaum and Uensal, 1996) was used for structural refinements. Reference patterns were obtained with a Rietveld pattern decomposition technique. Using this technique, the reported peak positions were derived from the extracted integrated intensities, and positions calculated from the unit-cell parameters. When peaks are not resolved at the resolution function, the intensities are summed, and an intensityweighted *d*-spacing is reported. They are also corrected for systematic errors both in *d*-spacing and intensity. In summary, these patterns represent ideal specimen patterns.

C. Bond valence sum (V_b) calculation

The bond valence sum values, V_b , for the Ba, R, and Co sites were calculated using the Brown–Altermatt empirical expression (Brown and Altermatt, 1985; Brese and O'Keeffe, 1991). The V_b of an atom i is defined as the sum of the bond valences v_{ij} of all the bonds from atoms i to atoms j. The most commonly adopted empirical expression for bond valence v_{ij} as a function of the interatomic distance d_{ij} is $v_{ij} = \exp [(R_0 - d_{ij})/B]$. The parameter, B, is commonly taken to be a "universal" constant equal to 0.37 Å. The values for the reference distance R_0 (Å) for Ba–O, Sr–O, Co²⁺–O, Co³⁺–O, La–O, Nd–O, Sm–O, Eu–O, Gd–O, and Dy–O are 2.29, 2.118, 1.692, 1.70, 2.172, 2.117, 2.088, 2.076, 2.065, and 2.036, respectively (Brown and Altermatt, 1985; Brese and O'Keeffe, 1991).

III. RESULTS AND DISCUSSION

Phases for Ba₄Sr₂ R_2 Co₄O₁₅, and Ba₅Sr R_2 Co₄O₁₅ were successfully prepared only for compounds with relatively larger size of *R*. Based on X-ray diffraction results, in Ba₄Sr₂ R_2 Co₄O₁₅, compounds with R = Dy, Ho, Er, Yb, Tm, and Lu, and in Ba₅Sr R_2 Co₄O₁₅, compounds with R = Ho,

TABLE I. Refinement residuals and phases present for (a) $Ba_4Sr_2R_2Co_4O_{15}$ and (b) $Ba_5SrR_2Co_4O_{15}$. Values inside brackets are standard deviations.

(a) $Ba_4Sr_2R_2Co_4O_{15}$						
R	La	Nd	Sm	Eu	Gd	Dy
R _{wp}	0.0688	0.0116	0.0293	0.0258	0.0257	0.0226
Rp	0.0458	0.0088	0.0220	0.0195	0.0194	0.0177
χ^2	2.354	2.990	2.056	2.238	2.231	2.497
R(F)	0.0401	0.0300	0.1159	0.0782	0.0708	0.1059
$R(F^2)$	0.0705	0.0745	0.1728	0.1291	0.1176	0.1575
$\Delta F(+), e Å^{-3}$	4.0	1.52	6.36	3.79	3.35	4.06
$\Delta F(-), e Å^{-3}$	-6.6	-1.43	-6.15	-2.87	-2.60	-7.10
Impurities (% mass fraction)						
(Ba,Sr)CoO ₄	-	4.1(1)	-	-	-	15.9(4)
R_2O_3	-	0.7(1)	-	-	-	-
BaSrCo ₂ O ₆	-	0.7(1)	-	-	-	-
CoO	-	1.2(1)	-	-	-	_
BaCoO _x	0.1(1)	-	-	-	-	-
BaR_2O_4	1.2(1)	-	-	-	-	-
Ba ₂ CoO ₄	6.9(1)	-	-	-	-	_
(b) $Ba_5SrR_2Co_4O_{15}$						
Rwp	0.1249	0.0654	0.0582	0.0767	0.0498	
Rp	0.0972	0.0496	0.0451	0.0598	0.0386	
χ2	1.492	2.429	2.265	1.527	1.712	
R(F)	0.0585	0.0268	0.0240	0.0299	0.0251	
$R(F^2)$	0.0985	0.0492	0.0451	0.0538	0.0440	
$DF(+), eÅ^{-3}$	4.2	1.9	1.9	2.2	2.2	
$DF(-), eÅ^{-3}$	-2.6	-1.9	-2.2	-3.1	-2.3	
Impurities (% mass fraction)						
(Ba, Sr)CoO ₃	0.6(1)	0.2(1)	2.9(1)	4.9(1)	3.5(1)	
BaCO ₃	0.5(1)	2.1(1)	1.6(1)	1.6(1)	1.9(1)	
BaR2CoO ₅	0.3(1)	1.6(1)	-	-	-	
BaCoOx	0.3(1)	2.1(1)	0.6(1)	1.1(1)	0.5(1)	
BaR_2O_4	-	2.1(1)	-	-	-	
R_2O_3	_	-	0.6(1)	0.5(1)	0.7(1)	

Figure 1. Observed (crosses), calculated (solid line), and difference XRD pattern (bottom) for $Ba_5SrSm_2Co_4O_{15}$ by Rietveld analysis technique. The difference pattern is plotted at the same scale as the other patterns up to 70° 2 θ . At higher 2θ angles, the scale has been magnified five times. Phases present are indicated next to the rows of tick marks (from bottom to top: $Ba_5SrSm_2Co_4O_{15}$, (Ba, Sr)CoO₃, BaCO₃, BaSm_2CoO₅, BaCoO_x, and Sm₂O₃).

Er, Yb, Tm, and Lu cannot be made at all under the current synthesis conditions. X-ray diffraction data of each Ba₄Sr₂ R_2 Co₄O₁₅ and Ba₅Sr R_2 Co₄O₁₅ were indexable with a hexagonal unit cell and with a space group of $P6_3mc$ (No. 186). X-ray patterns of the composition of the Ho-analog, Ba₄Sr₂Ho₂Co₄O₁₅, indicate a different structure. The major product of this preparation has the *P*4mm SrHoO3 type structure, with a = 4.1301(1), c = 4.1430(2) Å, and V = 70.670(5) Å³. Refinement of this structure indicated that the A site was occupied by Sr, and that the oxygen sites were fully occupied. This sample contains 5.9(1)% mass fraction of BaSrHo₄O₈, 3.4(1)% mass fraction of CaCoO_{2+x}, and 0.8(1)% mass fraction of a spinel, and traces of additional phases.

The samples are essentially isolators as they are very resistive and no reasonable Seebeck coefficient signal could be obtained.

A. Structure of Ba_{6-x}(Sr,Ca)_xR₂Co₄O₁₅

Table I gives the refinement residuals for $Ba_4Sr_2R_2Co_4O_{15}$ and $Ba_5SrR_2Co_4O_{15}$. Figure 1 provides the

TABLE II. Unit cell parameters of $Ba_4Sr_2R_2Co_4O_{15}$ and $Ba_5SrR_2Co_4O_{15}$ (P6₃mc (No. 186), Z=2), D_x refers to calculated density. Values inside brackets are standard deviations.

Compounds	<i>a</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	D_x (g cm ⁻³)	r(R ³⁺) (VIII-coord)
Ba ₄ Sr ₂ La ₂ Co ₄ O ₁₅	11.7022(1)	6.908 36(8)	819.30(2)	5.991	1.160
Ba ₄ Sr ₂ Nd ₂ Co ₄ O ₁₅	11.6457(2)	6.861 45(11)	805.90(3)	6.135	1.109
Ba ₄ Sr ₂ Sm ₂ Co ₄ O ₁₅	11.6121(8)	6.8392(5)	798.66(14)	6.242	1.079
Ba ₄ Sr ₂ Eu ₂ Co ₄ O ₁₅	11.5940(4)	6.8210(2)	794.05(6)	6.291	1.066
Ba ₄ Sr ₂ Gd ₂ Co ₄ O ₁₅	11.5872(4)	6.8169(2)	792.63(6)	6.342	1.053
Ba ₄ Sr ₂ Dy ₂ Co ₄ O ₁₅	11.5266(9)	6.7630(5)	778.2(2)	6.508	1.027
Ba ₅ SrLa ₂ Co ₄ O ₁₅	11.7354(2)	6.942 89(14)	828.08(3)	6.127	1.160
Ba ₅ SrNd ₂ Co ₄ O ₁₅	11.672 18(12)	6.886 89(8)	812.56(2)	6.288	1.109
Ba ₅ SrSm ₂ Co ₄ O ₁₅	11.640 12(12)	6.860 26(8)	804.98(2)	6.398	1.079
Ba ₅ SrEu ₂ Co ₄ O ₁₅	11.6250(2)	6.841 91(12)	800.75(3)	6.445	1.066
Ba ₅ SrGd ₂ Co ₄ O ₁₅	11.619 79(12)	6.836 52(8)	799.40(2)	6.500	1.053

Figure 2. Plot of unit-cell volume of (a) $Ba_4Sr_2R_2Co_4O_{15}$ and (b) $Ba_5SrR_2Co_4O_{15}$ vs. $r(R^{3+})$ [where "r" is the Shannon Ionic Radii (1976)].

TABLE III(a).	Atomic coordinates	and isotropic	displacement	factors for	$Ba_4Sr_2R_2$	C04O15; va	alues inside	brackets are	standard deviations.
---------------	--------------------	---------------	--------------	-------------	---------------	------------	--------------	--------------	----------------------

Atom	x	у	Z	Occupied	$U_{ m iso}$	Site
(i) $R = La$						
Sr1	0.0	0.0	-0.0048	1.0	0.0055(2)	2a
Ba2	0.174 78(6)	0.825 22(6)	0.1700(5)	1.0	0.0055(2)	6c
Ba3	0.333 33	0.666 67	0.4801(5)	1.0	0.0055(2)	2b
Sr4	0.475 99(6)	0.524 01(6)	0.8255(4)	0.333 33	0.0055(2)	6c
La5	0.475 99(6)	0.524 01(6)	0.8255(4)	0.666 67	0.0055(2)	6c
C06	0.333 33	0.666 67	-0.0079(9)	1.0	0.0035(2)	2b
Co7	0.175 15(14)	0.824 85(14)	0.6544(7)	1.0	0.0035(2)	6c
08	0.6684(6)	0.0733(6)	0.0280(9)	1.0	0.01	12d
O9	0.2465(3)	0.7535(3)	0.8397(11)	1.0	0.01	6c
O10	0.4130(3)	0.5870(3)	0.1502(11)	1.0	0.01	6c
011	0.9053(4)	0.0947(4)	0.2491(12)	1.0	0.01	6c
(ii) $R = Nd$						
Sr1	0.0	0.0	0.0	1.0	0.0157(4)	2a
Ba2	0.174 53(8)	0.825 47(8)	0.1757(6)	1.0	0.0157(4)	6c
Ba3	0.333 33	0.666 67	0.4875(6)	1.0	0.0157(4)	2b
Sr4	0.476 17(7)	0.523 83(7)	0.8320(6)	0.333 33	0.0103(5)	6c
Nd5	0.476 17(7)	0.523 83(7)	0.8320(6)	0.666 67	0.0103(5)	6c
Co6	0.333 33	0.666 67	-0.0101(10)	1.0	0.0090(8)	2b
Co7	0.1759(2)	0.8241(2)	0.6563(10)	1.0	0.0090(8)	6c
08	0.6658(6)	0.0673(6)	0.0306(10)	1.0	0.01	12d
09	0.2469(3)	0.7531(3)	0.8387(13)	1.0	0.01	6c
O10	0.4105(4)	0.5895(4)	0.1618(14)	1.0	0.01	6c
011	0.9040(4)	0.0960(4)	0.2571(14)	1.0	0.01	6c
(iii) $R = Sm$						
Sr1	0.0	0.0	0.0	1.0	0.01	2a
Ba2	0.1742(2)	0.8259(2)	0.179(2)	1.0	0.01	6c
Ba3	0.333 33	0.666 67	0.498(2)	1.0	0.01	2b
Sr4	0.4763(2)	0.5237(2)	0.833(2)	0.333 33	0.01	6c
Sm5	0.4763(2)	0.5237(2)	0.833(2)	0.666 67	0.01	6c
C06	0.333 33	0.666 67	-0.032(2)	1.0	0.01	2b
Co7	0.1763(4)	0.8237(4)	0.651(2)	1.0	0.01	6c
08	0.6553(7)	0.0789(8)	0.039(2)	1.0	0.01	12d
09	0.2424(3)	0.7576(3)	0.842(2)	1.0	0.01	6c
O10	0.4107(4)	0.5893(4)	0.148(2)	1.0	0.01	6c
011	0.9067(5)	0.0933(5)	0.256(2)	1.0	0.01	6c
(iv) $R = Eu$. ,					
Sr1	0.0	0.0	0.0	1.0	0.018 16	2a
Ba2	0.1744(2)	0.8256(2)	0.1788(13)	1.0	0.018 16	6c
Ba3	0.333 33	0.666 67	0.4936(11)	1.0	0.018 16	2b
Sr4	0.475 78(14)	0.524 22(14)	0.8338(12)	0.333 33	0.005 05	6c
Eu5	0.475 78(14)	0.524 22(14)	0.8338(12)	0.666 67	0.005 05	6c
Co6	0.333 33	0.666 67	-0.0226(14)	1.0	0.005	2b
Co7	0.1759(3)	0.8241(3)	0.654(2)	1.0	0.005	6c
08	0.6569(6)	0.0766(8)	0.0406(15)	1.0	0.01	12d
09	0.2459(3)	0.7541(3)	0.837(2)	1.0	0.01	6c
O10	0.4111(4)	0.5889(4)	0.153(2)	1.0	0.01	6c
011	0.9061(5)	0.0939(5)	0.258(2)	1.0	0.01	6c
(v) $\mathbf{R} = \mathbf{G}\mathbf{d}$						
Sr1	0.0	0.0	0.0	1.0	0.0131(8)	2a
Ba2	0.1744(2)	0.8256(2)	0.1785(13)	1.0	0.0131(8)	6c
Ba3	0.333 33	0.666 67	0.4937(12)	1.0	0.0131(8)	2b
Sr4	0.475 82(15)	0.524 17(15)	0.8337(12)	0.333 33	0.0064(10)	6c
Gd5	0.475 82(15)	0.524 17(15)	0.8337(12)	0.666 67	0.0064(10)	6c
Co6	0.333 33	0.666 67	-0.0219(15)	1.0	0.005	2b
Co7	0.1761(3)	0.8239(3)	0.654(2)	1.0	0.005	6c
O8	0.6568(7)	0.0768(8)	0.040(2)	1.0	0.019(4)	12d
O9	0.2463(3)	0.7537(3)	0.836(2)	1.0	0.019(4)	6c
O10	0.4110(4)	0.5890(4)	0.154(2)	1.0	0.019(4)	6c
O11	0.9060(5)	0.0940(5)	0.257(2)	1.0	0.019(4)	6c
(vi) $R = Dy$						
Sr1	0.0	0.0	0.0	1.0	0.013 14	2a
Ba2	0.1734(4)	0.8266(4)	0.178(3)	1.0	0.013 14	6c
Ba3	0.333 33	0.666 67	0.486(2)	1.0	0.013 14	2b
Sr4	0.4742(3)	0.5258(3)	0.839(2)	0.333 33	0.006 43	6c
Dy5	0.4742(3)	0.5258(3)	0.839(2)	0.666 67	0.006 43	6c

TABLE III(a). Continued

Atom	x	у	Z	Occupied	$U_{ m iso}$	Site
Co6	0.333 33	0.666 67	0.018(2)	1.0	0.005	2b
Co7	0.1837(5)	0.8163(5)	0.668(3)	1.0	0.005	6c
08	0.6516(8)	0.0802(9)	0.042(3)	1.0	0.019 25	12d
09	0.2636(4)	0.7364(4)	0.820(3)	1.0	0.019 25	6c
O10	0.4125(4)	0.5875(4)	0.177(3)	1.0	0.019 25	6c
O11	0.9031(6)	0.0969(6)	0.251(2)	1.0	0.019 25	6c

Rietveld refinement results for $Ba_5SrSm_2Co_4O_{15}$ as an example. The observed (crosses), calculated (solid line), and difference XRD patterns (bottom) for $Ba_5SrSm_2Co_4O_{15}$, as determined by the Rietveld analysis technique, are shown. The difference pattern is plotted at the same scale as the other patterns up to $70^{\circ}2\theta$. At higher 2θ angles, the scale has been magnified five times. The rows of tick marks refer to the calculated peak positions. The refinement residuals

mainly reflect variations in the counting times, and the presence of traces of additional impurities as indicated.

Table II lists the unit-cell parameters for $Ba_4Sr_2R_2Co_4O_{15}$ and $Ba_5SrR_2Co_4O_{15}$. The calculated density values, D_{∞} in both series increase as the size of *R* decreases. Figure 2 gives the plot of the unit-cell volumes, *V*, of $Ba_4Sr_2R_2Co_4O_{15}$ and $Ba_5SrR_2Co_4O_{15}$ vs. Shannon ionic radius, $r(R^{3+})$. The unit-cell volume decreases across the lanthanide series from La to Dy,

TABLE III(b). Atomic coordinates and isotropic displacement factors for $Ba_5SrR_2Co_4O_{15}$. Values inside brackets are standard deviations.

Atom	x	у	Z	Occupied	$U_{ m iso}$	Site
(i) $R = La$						
Ba1/Sr2	0.0	0.0	-0.0048	0.5/0.5	0.0067(4)	2a
Ba3	0.174 56(11)	0.825 44(11)	0.1617(8)	1.0	0.0067(4)	6c
Ba5	0.333 33	0.666 67	0.4745(8)	1.0	0.0067(4)	2b
Ba7	0.475 84(11)	0.524 16(11)	0.8164(7)	0.166 67	0.0067(4)	6c
Sr8	0.475 84(11)	0.524 16(11)	0.8164(7)	0.166 67	0.0067(4)	6c
La9	0.475 84(11)	0.524 16(11)	0.8164(7)	0.666 67	0.0067(4)	6c
Co10	0.333 33	0.666 67	-0.0431(10)	1.0	0.0046(4)	2b
Co11	0.177 35(25)	0.822 65(25)	0.6374(11)	1.0	0.0046(4)	6c
O12	0.6609(5)	0.0800(6)	0.0241(11)	1.0	0.01	12d
O13	0.242 42(25)	0.757 58(25)	0.8301(12)	1.0	0.01	6c
O14	0.412 54(28)	0.587 45(28)	0.1238(11)	1.0	0.01	6c
015	0.9005(4)	0.0995(4)	0.2504(14)	1.0	0.01	6c
(ii) $R = Nd$						
Ba1/Sr2	0.0	0.0	-0.0048	0.5/0.5	0.004 13(17)	2a
Ba3	0.174 70(6)	0.825 30(6)	0.1558(5)	1.0	0.004 13(17)	6c
Ba5	0.333 33	0.666 67	0.4669(5)	1.0	0.004 13(17)	2b
Ba7	0.475 66(6)	0.524 34(6)	0.8150(4)	0.166 67	0.004 13(17)	6c
Sr8	0.475 66(6)	0.524 34(6)	0.8150(4)	0.166 67	0.004 13(17)	6c
Nd9	0.475 66(6)	0.524 34(6)	0.8150(4)	0.666 67	0.004 13(17)	6c
Co10	0.333 33	0.666 67	-0.0126(9)	1.0	0.002 11(17)	2b
Co11	0.176 95(15)	0.823 05(15)	0.6457(8)	1.0	0.002 11(17)	6c
012	0.6663(6)	0.0705(6)	0.0195(9)	1.0	0.01	12d
013	0.250 53(29)	0.749 47(29)	0.8248(11)	1.0	0.01	6c
014	0.413 57(32)	0.586 42(32)	0.1403(12)	1.0	0.01	6c
015	0.9030(4)	0.0970(4)	0.2462(13)	1.0	0.01	6c
(iii) $R = Sm$						
Ba1/Sr2	0.0	0.0	-0.0048	0.5/0.5	0.00673(16)	2a
Ba3	0.174 92(6)	0.825 08(6)	0.1533(4)	1.0	0.00673(16)	6c
Ba5	0.333 33	0.666 67	0.4660(4)	1.0	0.006 73(16)	2b
Ba7	0.47573(5)	0.524 27(5)	0.8167(4)	0.166 67	0.00673(16)	6c
Sr8	0.47573(5)	0.524 27(5)	0.8167(4)	0.166 67	0.00673(16)	6c
Sm9	0.475 73(5)	0.524 27(5)	0.8167(4)	0.666 67	0.006 73(16)	6c
Co10	0.333 33	0.666 67	-0.0071(8)	1.0	0.004 72(16)	2b
Co11	0.176 54(14)	0.823 46(14)	0.6490(8)	1.0	0.004 72(16)	6c
012	0.6672(5)	0.0708(6)	0.0193(8)	1.0	0.0032(13)	12d
013	0.25174(27)	0.748 26(27)	0.8267(11)	1.0	0.0032(13)	6c
O14	0.413 78(30)	0.586 22(30)	0.1418(11)	1.0	0.0032(13)	6c
015	0.902 40(34)	0.097 60(34)	0.2519(12)	1.0	0.0032(13)	6c
(iv) $R = Eu$						
Ba1/Sr2	0.0	0.0	-0.0048	0.5/0.5	0.0065(2)	2a
Ba3	0.174 41(8)	0.825 59(8)	0.1560(6)	1.0	0.0065(2)	 6c
Ba5	0.333 33	0.666 67	0.4711(5)	1.0	0.0065(2)	2h

TABLE III(b). Continued

Atom	X	у	z	Occupied	$U_{ m iso}$	Site
Ba7	0.475 59(8)	0.52441(8)	0.8168(5)	0.166 67	0.0065(2)	6c
Sr8	0.475 59(8)	0.52441(8)	0.8168(5)	0.166 67	0.0065(2)	6c
Eu9	0.475 59(8)	0.52441(8)	0.8168(5)	0.666 67	0.0065(2)	6c
Co10	0.333 33	0.666 67	-0.0264(9)	1.0	0.0045(2)	2b
Co11	0.176 93(18)	0.823 07(18)	0.6401(9)	1.0	0.0045(2)	6c
012	0.6625(5)	0.0753(6)	0.0212(9)	1.0	0.01	12d
013	0.250 57(24)	0.749 43(24)	0.8176(10)	1.0	0.01	6c
O14	0.410 90(28)	0.589 10(28)	0.1380(10)	1.0	0.01	6c
015	0.901 80(34)	0.098 20(34)	0.2509(13)	1.0	0.01	6c
(v) $R = Gd$						
Ba1/Sr2	0.0	0.0	-0.0048	0.5/0.5	0.008 39(18)	2a
Ba3	0.174 81(6)	0.825 19(6)	0.1552(4)	1.0	0.008 39(18)	6c
Ba5	0.333 33	0.666 67	0.4687(4)	1.0	0.008 39(18)	2b
Ba7	0.475 55(6)	0.524 45(6)	0.8185(4)	0.166 67	0.008 39(18)	6c
Sr8	0.475 55(6)	0.524 45(6)	0.8185(4)	0.166 67	0.008 39(18)	6c
Gd9	0.475 55(6)	0.524 45(6)	0.8185(4)	0.666 67	0.008 39(18)	6c
Co10	0.333 33	0.666 67	-0.0136(8)	1.0	0.006 37(18)	2b
Co11	0.176 87(14)	0.823 13(14)	0.6455(8)	1.0	0.006 37(18)	6c
012	0.6648(5)	0.0698(5)	0.0214(8)	1.0	0.01	12d
013	0.252 48(24)	0.747 52(24)	0.8213(10)	1.0	0.01	6c
O14	0.412 47(28)	0.587 53(28)	0.1416(10)	1.0	0.01	6c
015	0.902 24(32)	0.097 76(32)	0.2513(11)	1.0	0.01	6c

or with the decreasing size of the ionic radius (Shannon, 1976) (lanthanide contraction) of the metal ion at the octahedral site. This decreasing volume is a result of the decrease in both the a-and the c-parameters.

The atomic coordinates, displacement parameters for the structures of Ba₄Sr₂R₂Co₄O₁₅ and Ba₅SrR₂Co₄O₁₅ are given in Tables III(a) and 3(b). $Ba_4Sr_2R_2Co_4O_{15}$ and $Ba_5SrR_2Co_4O_{15}$ are isostructural with Ba₆R₂Fe₄O₁₅ (Rüter and Müller-Buschbaum, 1990; Mevs and Müller-Buschbaum, 1990b, 1990c, 1992; Abe *et al.*, 2006). The structure of $Ba_{6-x}Sr_xR_2Co_4O_{15}$ in general consists of two crystallographically independent Co sites, one is 6-fold, while the other is 4-fold coordinated. The CoO₆ octahedra and CoO_4 tetrahedra are linked by corner-shared oxygen ions. Specifically, a CoO₆ octahedron in the center can be viewed as sharing three corners of its triangular face with three tetrahedral CoO_4 units, leading to a Co_4O_{15} cluster (Figure 3). In Ba₄Sr₂R₂Co₄O₁₅, all R sites are mixed with Sr (randomly occupied by 2/3R and 1/3Sr), while in Ba₅SrR₂Co₄O₁₅, all R sites are mixed with Ba and Sr (randomly occupied by 2/3R, 1/6Ba, and 1/6Sr). Figure 4 gives the structure of $(Ba_{6-x}Sr_x)R_2Co_4O_{15}$ as viewed along the *c*-axis. It features six units of Co_4O_{15} and seven SrO₆ octahedral units viewed along the *b*-axis. For clarity,

Figure 3. The structure motif of Co_4O_{15} which consists of three corner-shared $[CoO_4]$ tetrahedral units with one CoO_6 octahedral unit at the center.

Figure 4. Crystal structure of $Ba_4Sr_2R_2Co_4O_{15}$ at room temperature showing the unit cell outline, and different coordination environment of tetrahedral [CoO₄] and octahedral [CoO₆] units. The 8-fold coordinated (*R*, Sr)O₈ bisdisphenoids and BaO₁₀ and BaO₁₂ polyhedra were not shown for clarity.

Figure 5. Crystal structure of $Ba_4Sr_2Gd_2Co_4O_{15}$ at room temperature showing the capped trigonal prism BaO_{10} and cubic close packed BaO_{12} coordination environment.

TABLE IV(a).	Bond distances and bond valence sum values (V_b) for
Ba ₄ Sr ₂ R ₂ Co ₄ O ₁₅	. Values inside brackets are standard deviations.

TABLE IV(a). Continued

Atom	Atom	Distances	Vh	Atom	Atom	Distances	V_{b}
$\overline{(i)} P - I c$. 0		O11	1.818(8)	
(1) $K = La$ Sr1	011	$2.601(8) \times 3$	1 710	(iv) $R = Eu$	011	0.555(10) 0	1.010
511	011	$2.565(7) \times 3$	1.,10	Srl	011	$2.5/7(12) \times 3$ $2.508(0) \times 3$	1.913
Ba2	08	2.970(6) × 2	1.772	Ba2	08	$2.508(9) \times 3$ 3.028(8) $\times 2$	1 711
		$2.952(6) \times 2$		542	00	$2.998(8) \times 2$	1.711
	09	2.706(8)			O9	2.739(10)	
	O10	$2.7866(10) \times 2$			O10	$2.770(3) \times 2$	
	011	$3.120(2) \times 2$ 3.220(0)			011	$3.083(3) \times 2$	
Ba3	08	3.072(6) × 6	1 886	5.4	0.0	3.296(15)	
Das	08	$3.044(7) \times 3$	1.000	Ba3	08	$2.939(8) \times 6$	2.332
	010	$2.793(7) \times 3$			09	$2.926(9) \times 3$ 2.800(0) × 3	
La5/Sr4	08	$2.582(6) \times 2$	3.002	Fu5/Sr/	010	$2.800(9) \times 3$ $2.444(7) \times 2$	3 027
		2.418(5) × 2		Eu5/514	08	$2.336(7) \times 2$	5.027
	O9	$2.5256(12) \times 2$			09	$2.499(3) \times 2$	
	O10	2.581(7)			O10	2.535(10)	
a (0.0	2.555(7)				2.584(8)	
C06	09	$2.051(6) \times 3$	2.692	Co6	O9	$2.001(7) \times 3$	2.780
Co7	010	$1.949(7) \times 3$ 1.821(5) × 2	2 700		O104	$1.969(8) \times 3$	
01	09	1.031(3) × 2	2.199	Co7	08	$1.858(6) \times 2$	2.709
	011	1.756(7)			09	1.877(7)	
(iii) $R - Nd$	011	1.150(1)		$(\mathbf{v}) \mathbf{P} - \mathbf{C} \mathbf{d}$	011	1.790(8)	
Sr1	011	2.619(9) × 3	1.695	(V) K = Gu	011	$2573(12) \times 3$	1 91/
511	011	$2.555(8) \times 3$	11070	511	011	$2.575(12) \times 3$	1.914
Ba2	08	$2.910(7) \times 2$	1.851	Ba2	08	$3.029(8) \times 2$	1.713
		2.937(7) × 2				$2.996(8) \times 2$	
	O9	2.735(9)			O9	2.744(10)	
	O10	$2.7761(14) \times 2$			O10	$2.768(3) \times 2$	
	011	$3.104(2) \times 2$			011	$3.080(3) \times 2$	
	0.0	3.280(10)	1 0 5 2			3.296(15)	
Ba3	08	$3.10/(6) \times 6$ $2.074(0) \times 2$	1.953	Ba3	08	$2.934(8) \times 6$	2.378
	09	$2.974(9) \times 3$ $2.723(0) \times 3$			09	$2.916(9) \times 3$ $2.702(0) \times 2$	
Nd5/Sr4	010	$2.725(9) \times 3$ 2.586(6) × 2	2 842	Gd5/Sr4	010	$2.792(9) \times 3$ $2.442(7) \times 2$	2 083
1100/011	00	$2.359(6) \times 2$	2.012	005/514	00	$2.442(7) \times 2$ 2 333(7) × 2	2.905
	09	$2.5140(14) \times 2$			09	$2.393(7) \times 2$ $2.497(3) \times 2$	
	O10	2.622(9)			010	2.541(10)	
		2.567(8)				2.581(8)	
C06	O9	$2.029(7) \times 3$	2.747	Co6	O9	$1.997(7) \times 3$	2.806
	O10	$1.953(8) \times 3$			O10	$1.966(8) \times 3$	
Co7	08	$1.847(6) \times 2$	2.788	Co7	08	$1.857(6) \times 2$	2.714
	09	1.902(7)			09	1.876(7)	
	011	1./54(/)			011	1.790(8)	
(iii) $R = Sm$	0.14	0.5(1/10) 0	1 0 0 0	(V1) K = Dy	011	$2576(14) \times 2$	1 760
Srl	011	$2.564(13) \times 3$	1.930	511	011	$2.570(14) \times 3$ 2 564(12) × 3	1.709
Ba2	08	$2.313(10) \times 3$ $3.071(8) \times 2$	1 706	Ba2	08	$3.074(9) \times 2$	1.545
Daz	00	$3.071(0) \times 2$ $3.004(9) \times 2$	1.700			3.019(10)	
	09	2.684(11)			O9	3.018(13) × 2	
	010	$2.781(4) \times 2$			O10	$2.765(6) \times 2$	
	O11	$3.081(2) \times 2$			O11	$3.046(6) \times 2$	
		3.32(2)				3.26(2)	
Ba3	08	$2.904(8) \times 6$	2.263	Ba3	08	$2.859(9) \times 6$	3.642
	09	$2.980(9) \times 3$			09	$2.650(11) \times 3$	
0.500.4	O10	$2.852(10) \times 3$	2 000	G45/S+4	010	$2.023(11) \times 3$ $2.401(0) \times 2$	2 144
5m5/Sr4	08	$2.439(7) \times 2$	3.088	005/314	08	$2.401(9) \times 2$ 2 296(0) \times 2	3.144
	00	$2.325(7) \times 2$			09	$2.230(5) \times 2$ 2.439(5) × 2	
	09	2.322(4) × 2 2.528(10)			010	2.598(12)	
	010	2.599(9)			- *	2.513(10)	
Co6	09	$2.021(7) \times 3$	2.641	Co6	O9	1.929(8) × 3	3.307
	010	$1.987(7) \times 3$			O10	1.912(8) × 3	
Co7	08	1.864(6) × 2	2.651	Co7	08	$1.867(6) \times 2$	2.577
	O9	1.865(8)			09	1.899(9)	
					011	1.822(9)	

TABLE IV(b).	Bond distances and bond valence sum values (V_b) for
$Ba_5SrR_2Co_4O_{15}$.	Values inside brackets are standard deviations.

TABLE IV(b). Continued

Atom	Atom	Distances	$V_{\rm b}$	Atom	Atom	Distances	$V_{\rm b}$
(i) D L -					O15	1.741(6)	
(1) $K = La$ $R_{0.1}/S_{r/2}$	015	$2680(10) \times 2$	1 777	(iv) $R = Eu$			
Da1/312	015	$2.069(10) \times 3$ 2.641(7) × 3	1.///	Ba1/Sr2	015	$2.640(9) \times 3$	2.037
Ba3	012	$2.041(7) \times 3$ 3.083(7) $\times 2$	1 624	5.4		$2.589(7) \times 3$	
Dus	012	$3.025(7) \times 2$	1.024	Ba3	012	$2.986(6) \times 2$	1.716
	013	2.684(8)			012	$2.997(6) \times 2$	
	014	$2.807(2) \times 2$			013	2.777(7)	
	015	$3.144(3) \times 2$			014	$2.7742(14) \times 2$ $3.118(2) \times 2$	
		3.238(12)			015	$3.118(2) \times 2$ 3.168(10)	
Ba5	O12	$2.959(7) \times 6$	1.883	Ba5	012	$2.905(6) \times 6$	2 308
	O13	$3.084(7) \times 3$		DaJ	012	$2.995(0) \times 0$ 2.898(7) $\times 3$	2.508
	O14	$2.919(7) \times 3$			014	$2.000(7) \times 3$	
La9/Ba7/Sr8	O12	$2.497(6) \times 2$	3.468	Ba7/Sr8/I a9	012	$2.703(7) \times 3$ 2.504(6) × 2	3 107
		$2.407(5) \times 2$		Da//010/Ea/	012	$2.304(0) \times 2$ 2.372(5) × 2	5.107
	O13	$2.542(2) \times 2$			013	$2.4916(14) \times 2$	
	O14	2.492(7)			014	2.555(7)	
		2.634(6)				2.592(6)	
Co10	O13	$2.047(5) \times 3$	2.567	Co10	013	$1.979(5) \times 3$	3.044
	O14	$1.984(6) \times 3$			O14	1.925(6) × 3	
Col1	012	$1.833(5) \times 2$	2.844	Co11	012	$1.826(4) \times 2$	2.836
	O13	1.881(6)			013	1.917(5)	
	015	1.767(6)			015	1.757(6)	
(ii) $R = Nd$				(iv) $R = Gd$			
Ba1/Sr2	015	$2.615(9) \times 3$	2.053	Ba1/Sr2	015	$2.634(8) \times 3$	2.082
_		$2.606(7) \times 3$				$2.579(6) \times 3$	
Ba3	012	$2.929(7) \times 2$	1.768	Ba3	O12	$2.910(6) \times 2$	1.807
		$2.989(6) \times 2$				$2.993(6) \times 2$	
	013	2.747(8)			O13	2.767(7)	
	014	$2.7795(11) \times 2$			O14	$2.7646(10) \times 2$	
	015	$3.128(2) \times 2$			015	$3.124(2) \times 2$	
D. (012	3.228(10)	1.074			3.167(8)	
Bas	012	$3.08/(6) \times 6$	1.974	Ba5	O12	$3.072(6) \times 6$	2.164
	013	$2.980(8) \times 3$			O13	$2.908(7) \times 3$	
Do7/S#9/NI40	014	$2.773(8) \times 3$ $2.556(6) \times 2$	2 1 2 4		O14	$2.746(7) \times 3$	
Da//516/INU9	012	$2.330(0) \times 2$	5.154	Ba7/Sr8/La9	012	$2.539(5) \times 2$	3.031
	012	$2.405(0) \times 2$				$2.373(5) \times 2$	
	013	$2.5039(12) \times 2$			013	$2.4866(10) \times 2$	
	014	2.508(8)			O14	2.547(6)	
Co10	013	2.342(7) 2.014(6) × 3	2 878	~		2.558(6)	
010	014	$1.934(7) \times 3$	2.070	Co10	013	$1.980(5) \times 3$	3.090
Coll	012	$1.936(5) \times 2$	2 772	0.11	014	$1.914(6) \times 3$	2 702
com	013	1.030(5) × 2	2.772	Coll	012	$1.834(4) \times 2$	2.792
	015	1.758(7)			013	1.939(5)	
(iii) $R = Sm$					015	1.749(0)	
Ba1/Sr2	015	$2.641(8) \times 3$	2.061				
		$2.580(7) \times 3$					
Ba3	O12	2.915(6) × 2	1.832	the 11- and 12-	fold coordinated	l Ba–O polyhedra and	l the 8-fold
		2.987(6) × 2		coordinated R/S	r_O or R/Ba/Sr-	-O polyhedra are not (drawn The
	O13	2.724(7)		unit_cell outline	is also illustrate	d There are two Co.(D clusters
	O14	$2.7671(10) \times 2$		non unit coll the	is also intustiate	ained by verieus lent	bonido and
	O15	$3.135(2) \times 2$				Sined by various failu	
		3.164(9)		alkaline-earth ca	ations that are in	1 6-fold (octahedral Sr	O_6), 8-fold
Ba5	O12	3.081(6) × 6	2.043	(bisdisphenoid	$(R/Sr)O_8), 10$	-fold (capped trigor	nal prism,
	O13	$2.972(7) \times 3$		BaO_{10}), and 12	-fold (cubic clo	ose packed, BaO_{12}) co	oordination
	O14	$2.752(7) \times 3$		to various oxyge	en ions. In Ba ₅ Sr	$Gd_2Co_4O_{15}$, the octahe	edral cation
Ba7/Sr8/Sm9	O12	$2.563(6) \times 2$	3.037	positions are ran	domly occupied	by an equal amount of	f Sr and Ba,
		$2.395(5) \times 2$		and the bisdisph	enoid cation po	sitions are randomly o	ccupied by
	013	$2.4960(10) \times 2$		2/3R = 1/6Ra and	d 1/6Sr In Ra	$Sr_2R_2C_0O_{12}$ the bis	disphenoid
	O14	2.556(7)		cotion positions	a = 1/0.51. III Da	$\frac{101}{102}$	and 1/2°
G 10	~	2.530(6)		Element 5	the example of the	n anning mark of D	anu 1/331.
Co10	013	$2.001(6) \times 3$	2.999	Figure 5 gives	une coordinatio	n environment of Ba	exhibiting
G 11	014	$1.917(6) \times 3$		both 10-fold and	a 12-told coordi	nation.	
Coll	012	$1.837(5) \times 2$	2.792	Tables IV(a) and IV(b) g	give the bond distand	ces of Ba/
	013	1.945(6)		Sr–O, <i>R</i> –O, an	nd Co-O, and	bond valence sum v	values (V_b)
			Continued	for $Ba_4Sr_2R_2C_4$	0 ₄ O ₁₅ and Ba ₅	$SrR_2Co_4O_{15}$, respect	ively. The

TABLE V. X-ray powder pattern for $Ba_4Sr_2Gd_2Co_4O_{15}$ ($P6_{3}mc$ (No. 186), a = 11.5872(4) Å, c = 6.8169(2) Å, V = 792.63(6) Å³, Z = 2, and $D_x = 6.35$ g cm⁻³). The symbols "M" and "+" refer to peaks containing contributions from two and more than two reflections, respectively. The symbol * indicates that the particular peak has the strongest intensity of the entire pattern and is designated a value of "999."

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L
3.7928 6 2 1 0 3.4084 3.8 0 0 2 3.3143 149 2 1 1 3.2274 75 1 0 2 3.0029 106 3 0 2.5767 35 3 1 1 2.5352 144 2 1 2 2.3874 348 3 0 2.2073 55 2 2 2 2.1811 46 3 2 1 2.1558 26 3 1 2.2073 55 2 1 3 1.9312 18 3 3 0 1.9252 95 5 0 1.9078 17 3 2 2 1.8796 14 3 0 3 1.8423 214 4 1 1.4270 40 4 2 1 1.8023 26 5 0 2 1.7042 6 0 0 1.6572 91 4 2 2 1.6137 125 2 0 1 1.5645	1
3.314.3 1.49 2 1 1 3.2274 75 1 0 2 3.0029 106 3 0 2.9378 3.29 1 1 2.5866 999* 2 2 0 2.8194 461 2 0 2.3543 1.34 4 0 1 2.3021 20 3 2 0 2.2162 89 1 0 2.073 55 2 2 2.181 46 3 2 1 2.1658 2.6 3 1 1.52084 4 0 1 2.0204 1.83 4 0 1.9492 5 2 1 3 1.9312 18 3 0 1.9252 95 5 0 0 1.9078 17 3 2 2 1.8796 14 3 0 3 1.8423 2.14 4 1 1.14 1.17294 811 5 0 2 1.7642 64 1 1 1.41.5437 101 3 2	0
2.9378 3.29 1 1 2 2.8068 999* 2 2 0 2.8194 4.61 2 0 2.5767 35 3 1 1 2.5321 1.44 2 1 2 2.814 3.84 0 2.2073 55 2 2 2 2.1811 4.6 3 2 1 2.1558 2.6 3 1 2.2073 55 2 2 2 2.1811 4.6 3 2 1.21558 2.6 3 1 1.9402 5 2 1 3 1.9312 1.8 3 3 0 1.9252 95 5 0 1.9078 17 3 2 2 1.8706 14 3 0 3 1.8423 2.14 4 1 1.8073 9 5 1 0 1.7622 30 3 1 1.5636 7 4 1 1.6641 1 4 1.6172 101 3 2	1
25767 35 3 1 1 2.5352 144 2 1 2 2.8874 348 3 0 2.3543 134 4 0 1 2.3021 20 3 2 0 2.1558 26 3 1 2.0848 71 4 1 1 2.0699 21 2 0 3 2.0204 183 4 0 1.9492 5 2 1 3 1.9178 17 3 2 2 1.8796 14 3 0 3 1.8423 214 4 1 1.8270 40 4 2 1 1.8024 64 3 0 1.8423 21.042 6 0 0 1.6325 161 6 0 3 1.6602 64 3 3 2.0.16497 8 4 3 1 1.6344 5 2 1 1.5545 2.8 2 1 4 1.153 67 3 0 1.5443 3 <td>2</td>	2
2.3543 134 4 0 1 2.3021 20 3 2 0 2.2162 89 1 0 2.2073 55 2 2 2 2.1814 46 3 2 0 3 2.1258 26 3 1 1.9492 5 2 1 3 1.9312 18 3 3 0 1.9252 95 5 0 1.9078 17 3 2 2 1.8796 14 3 0 3 1.4823 214 4 1 1.8270 40 4 2 1 1.8023 26 5 1 0 1.7602 30 3 1 1.8270 40 4 2 1 1.6802 64 3 3 2 1.6497 8 4 3 3 1 1.6304 3 2 1.6497 8 4 3 3 1 1.5643 3 2 1.6497 8 4 3 3 1 1.5543<	2
2.2073 55 2 2 2.1811 46 3 2 1 2.1588 26 3 1 2.0488 71 4 1 1 2.0699 21 2 0 3 2.0204 183 4 0 1.4922 5 2 1 3 1.9312 18 3 0 1.9252 2.95 5 0 1.9078 17 3 2 2 1.8706 14 3 0 3 1.8423 2.14 4 1 1.7424 14 5 1 1 1.7294 81 5 0 2 1.6497 8 4 3 1.6530 64 1 1 4 1.6172 101 3 2 1.6497 7 4 1 1.6034 68 5 2 1 1.5545 28 2 1 4 1.5168 67 3 0 1.5042 14 5 0 3 1.5014 30 6	3
2.0848 71 4 1 1 2.0699 21 2 0 3 2.024 183 4 0 1.9492 5 2 1 3 1.9312 18 3 3 0 1.9252 95 5 0 1.0708 17 3 2 2 1.8766 14 3 0 3 1.8423 214 4 1 1.8727 40 4 2 1 1.8726 64 3 3 2.01 1.7042 6 0 0 1.6481 8 4 0 3 1.6802 64 3 3 2.01 1.6802 64 1 0 1.6350 66 1 1 4 1.572 10 3 2 1.6137 7 4 1 1.6540 68 5 2 1 1.5545 2.8 2 1 4.836 7 0 1.4335 21 7 1 1.4543 85 3 2	2
19492 5 2 1 3 19312 18 3 3 0 19252 95 5 0 19078 17 3 2 2 18706 14 3 0 3 18423 214 4 1 1.8270 40 4 2 1 18023 26 5 1 0 1.7602 30 3 1 1.641 8 4 0 3 1.6802 64 3 2 1.6497 8 4 3 1.6341 6 0 0 1.6572 91 4 2 2 1.6497 8 4 1 1.634 56 4 3 1 1.5933 9 5 1 2 1.5768 7 4 1 1.540 68 5 2 1 1.5545 28 2 1 4.450 9 4 2 1.4849 55 4 3 2 1.4684 122 4 4	2
$ 1.9078 17 3 2 2 1.8796 14 3 0 3 1.8423 214 4 1 \\ 1.8270 40 4 2 1 1.8023 26 5 1 0 1.7602 30 3 1 \\ 1.7424 14 5 1 1 1.7294 81 5 0 2 1.7042 6 0 0 \\ 1.6841 8 4 0 3 1.6802 64 3 3 2 M 1.6802 64 1 0 \\ 1.6751 84 1 1 4 1.6172 101 3 2 3 1.6137 125 2 0 \\ 1.6034 56 4 3 1 1.5933 9 5 1 2 1.5768 7 4 1 \\ 1.5640 68 5 2 1 1.5545 28 2 1 4 4 1.5185 67 3 0 \\ 1.5042 14 5 0 3 1.5014 30 6 0 2 2 1.4931 5 6 1 \\ 1.4849 55 4 3 2 1.4689 33 2 2 4 4 0 1.4355 21 7 0 \\ 1.4334 88 5 2 2 1.4484 122 4 4 0 1.4356 9 4 2 \\ 1.4334 88 5 2 2 1.4484 122 4 4 0 1.4356 9 4 2 \\ 1.4334 88 5 3 2 1.3157 17 2 0 5 1.3120 12 5 2 \\ 1.2990 28 5 0 4 1.2883 19 6 2 2 1.2848 12 5 4 \\ 1.2778 17 3 3 4 1.2033 25 6 1 3 1.2283 41 7 1 \\ 1.2336 20 8 0 1 1 1.2124 46 7 0 3 1 1.2383 41 7 1 \\ 1.2336 20 8 0 1 1 1.2124 46 7 0 3 1 1.2383 41 7 1 \\ 1.2336 20 8 0 1 1 1.2124 46 7 0 3 1 1.2383 41 7 1 \\ 1.2336 20 8 0 1 1 1.2124 46 7 0 3 1 1.2383 41 7 1 \\ 1.2336 20 8 0 1 1 1.2124 46 7 0 3 1 1.2383 41 7 1 \\ 1.236 20 8 0 1 1 1.2124 46 7 0 3 1 1.2383 41 7 1 \\ 1.236 20 7 5 4 4 1 1.2431 11 6 3 1 1 1.2383 41 7 1 \\ 1.236 20 8 0 1 1 1.1979 18 4 0 5 1 1.1977 23 6 0 0 \\ 1.1677 11 8 7 2 1 1.1977 23 0 1 1.1774 18 8 1 1 1.1004 20 9 0 \\ 1.1774 18 4 1 5 5 1 1.1853 61 6 3 2 1 1.1974 18 8 1 1 \\ 1.1774 18 4 1 5 5 1 1.1853 61 6 5 4 1 1 1.1004 20 9 9 \\ 1 1.1774 18 8 1 1 1.1004 $	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2
1,7424 14 5 1 1 1,7294 81 5 0 2 1,7042 6 0 0 1,6841 8 4 0 3 1,6802 64 3 0 2 1,7042 6 0 0 1,6802 64 1 0 1,6725 161 6 0 0 1,6572 91 4 2 2 1,6497 8 4 3 1,6350 64 1 1 4 4 1,6172 101 3 2 3 1,6137 125 2 0 1,6034 56 4 3 1 1,5933 9 5 1 2 1,5768 7 4 1 1,540 68 5 2 1 1,5545 28 2 1 4 1,5185 67 3 0 0 1,5042 14 5 0 3 1,5014 30 6 0 0 2 1,4931 5 6 1 1 1,4849 55 4 3 2 1,4689 33 2 2 4 4 1,4560 9 4 2 1 1,4334 88 5 2 2 2 1,4484 122 4 4 0 1,4335 21 7 0 0 1,4335 21 5 3 0 M 1,4097 59 4 0 4 1,3634 11 6 2 2 1 1,3214 8 5 3 2 1,3157 17 2 0 5 1,3120 12 5 2 1 1,324 8 5 3 2 1,3157 17 2 0 5 1,3120 12 5 2 1 1,2990 28 5 0 4 1,2883 19 6 2 2 1,2848 12 5 4 1 1,2778 17 3 3 4 1,2693 25 6 1 3 1,22783 41 7 1 1 1,2326 7 5 4 1 1,22431 11 6 3 3 1,22676 49 4 2 2 1 1,290 28 5 0 4 1,2843 19 6 2 2 1,2848 12 5 4 1 1,2778 17 3 3 4 1,2693 25 6 1 3 1,22783 41 7 1 1 1,2326 20 8 0 1 1,2124 46 7 0 3 M 1,2124 46 5 3 1 1,2066 29 7 2 1 1,1979 18 4 0 5 1,1937 23 6 0 1,2066 29 7 2 1 1,1979 18 4 0 5 1,1937 23 6 0 1,1873 61 6 3 2 M 1,1853 61 4 3 3 1 1,278 41 7 1 1 1,236 20 8 0 1 1,12124 46 7 0 3 M 1,1853 61 4 3 3 1 1,1772 11 8 0 2 1,1745 10 8 1 0 1,1731 21 3 2 1 1,091 44 5 2 4 1,1587 14 5 5 0 0 1,1574 18 8 1 1 1,1774 11 8 0 2 1,1745 10 8 1 0 1,1731 21 3 2 1 1,070 12 7 3 3 1 1,174 18 4 1 5 M 1,1587 14 5 5 0 0 1,1574 18 8 1 1 1,1374 12 5 0 5 1,1184 46 5 4 4 3 1,1104 13 8 1 1 1,1070 12 7 3 2 1 1,090 12 7 3 9 0 0 1,077 14 5 1 0 8 1 0 0,1731 21 3 2 1 3 2 1 1,0789 10 7 2 2 1 1,0789 10 7 2 1 1,0789 10 7 2 1 1,0789 10 7 2 1 1,0789 10 7 2 1 1,	3
1.6841 8 4 0 3 1.6802 64 3 3 2 M 1.6802 64 1 0 1.6725 161 6 0 0 1.6572 91 4 2 2 1.6497 8 4 3 1.6137 125 2 0 1 1.6034 56 4 3 1 1.5913 9 5 1 2 1.5768 7 4 1 1.5404 55 2 1 1.5545 28 2 1 4 1.5185 67 3 0 0 1.5042 14 5 0 3 1.5014 30 6 0 2 1.4931 5 6 1 1 1.4849 55 4 3 2 1.4689 33 2 2 4 4 0 1.4355 21 7 0 0 1.4334 88 5 2 2 1 4.4848 122 4 4 0 1.4355 21 7 0 0 1.4335 21 5 3 0 M 1.4097 59 4 0 4 1.3634 11 6 2 1 1.3214 88 5 3 2 2 1.41844 122 4 4 0 1.4335 21 7 0 0 1.3314 7 1 1 6 2 2 1.2848 12 5 4 1 .225 2 1 1.3494 58 4 1 4 1.3330 23 4 4 2 1.3291 13 7 1 1 6 2 2 1 1.3214 8 5 3 3 2 1.3157 17 2 0 5 1.3120 12 5 2 1 1.2990 28 5 0 4 1.2883 19 6 2 2 1.2848 12 5 4 1 .2778 17 3 3 4 1.2693 25 6 1 3 1.2676 49 4 2 2 1 .2848 12 5 4 1 .2778 17 3 3 4 1.2693 25 6 1 3 1.2676 49 4 2 2 1 .2848 12 5 4 1 .2778 17 3 3 4 1.2693 25 6 1 3 1.2676 49 4 2 2 1 .2848 12 5 4 1 .2778 17 3 3 4 1.2693 25 6 1 3 1.2676 49 4 2 2 1 .2848 12 5 4 1 .2778 17 3 3 4 1.2693 25 6 1 3 1.2676 49 4 2 2 1 .2848 12 5 4 1 .12736 20 8 0 1 1 .12124 46 7 0 3 3 M 1.2124 46 5 3 1 .2666 29 7 2 2 1 .11853 61 6 3 2 M 1.1853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 3 .1.853 61 4 3 .3 .1.853 61 4 3 .3 .1.857 14 5 5 0 0 .1.1574 18 8 1 1 .1.104 13 8 1 1 .1.1070 12 7 3 .3 .1.857 14 5 5 0 0 .1.1574 18 8 1 .4 .1.858 61 4 3 .2 .1.1853 61 6 .3 .2 M 1.1853 61 4 3 .3 .1.1074 13 8 .1 .1.1070 12 7 .3 .3 .1.1077 14 8 5 5 .2 M 1.0970 18 5 .3 .4 M 1.0999 10 7 .2 .1.1367 14 .2 .2 .1.1587 14 4 .3 .2 .1.1587 14 .5 .5 .0 .1.1574 18 8 1 .1 .1.109 0 12 .7 .3 .3 .1.1077 14 .2 .2 .5 .1.1037 15 4 4 4 .1 .1.1090 12 .7 .3 .3 .1.1077 14 .2 .2 .6 .1.1350 15 6 .4 .1 .1.104 13 8 .1 .2 .1.1079 10 .7 .2 .1.1079 10 .2 .4 .1.0717 8 7 .3 .2 .1.0597 2.3 .9 .0 .1.0577 14 .2 .4	4
$ 1.6725 161 \qquad 6 \qquad 0 \qquad 0 \qquad 1.6572 \qquad 91 \qquad 4 \qquad 2 \qquad 2 \qquad 1.6497 \qquad 8 \qquad 4 \qquad 3 \\ 1.6330 \qquad 64 \qquad 1 \qquad 1 \qquad 4 \qquad 1.6172 \qquad 101 \qquad 3 \qquad 2 \qquad 3 \qquad 1.6137 \qquad 125 \qquad 2 \qquad 0 \\ 1.6034 \qquad 56 \qquad 4 \qquad 3 \qquad 1 \qquad 1.5933 \qquad 9 \qquad 5 \qquad 1 \qquad 2 \qquad 1.5768 \qquad 7 \qquad 4 \qquad 1 \\ 1.5640 \qquad 68 \qquad 5 \qquad 2 \qquad 1 \qquad 1 \qquad 1.5545 \qquad 28 \qquad 2 \qquad 1 \qquad 4 \qquad 1.5185 \qquad 67 \qquad 3 \qquad 0 \\ 1.5042 \qquad 14 \qquad 5 \qquad 0 \qquad 3 \qquad 1.5014 \qquad 30 \qquad 6 \qquad 0 \qquad 2 \qquad 1.4931 \qquad 5 \qquad 6 \qquad 1 \\ 1.4849 \qquad 55 \qquad 4 \qquad 3 \qquad 2 \qquad 1.4689 \qquad 33 \qquad 2 \qquad 2 \qquad 4 \qquad 1.4560 \qquad 9 \qquad 4 \qquad 2 \\ 1.4354 \qquad 88 \qquad 5 \qquad 2 \qquad 2 \qquad 1.4484 \qquad 122 \qquad 4 \qquad 4 \qquad 0 \qquad 1.4355 \qquad 21 \qquad 7 \qquad 0 \\ 1.4335 \qquad 21 \qquad 5 \qquad 3 \qquad 0 \qquad M \qquad 1.4097 \qquad 59 \qquad 4 \qquad 0 \qquad 4 \qquad 1.3634 \qquad 11 \qquad 6 \qquad 2 \\ 1.3349 \qquad 58 \qquad 4 \qquad 1 \qquad 4 \qquad 1.330 \qquad 23 \qquad 4 \qquad 4 \qquad 2 \qquad 1.3291 \qquad 13 \qquad 7 \qquad 1 \\ 1.3214 \qquad 8 \qquad 5 \qquad 3 \qquad 2 \qquad 1.3157 \qquad 17 \qquad 2 \qquad 0 \qquad 5 \qquad 1.3120 \qquad 12 \qquad 5 \qquad 2 \\ 1.2990 \qquad 28 \qquad 5 \qquad 0 \qquad 4 \qquad 1.2883 \qquad 19 \qquad 6 \qquad 2 \qquad 2 \qquad 1.2848 \qquad 12 \qquad 5 \qquad 4 \\ 1.2778 \qquad 17 \qquad 3 \qquad 3 \qquad 4 \qquad 1.2693 \qquad 25 \qquad 6 \qquad 1 \qquad 3 \qquad 1.2676 \qquad 49 \qquad 4 \qquad 2 \\ 1.2626 \qquad 7 \qquad 5 \qquad 4 \qquad 1 \qquad 1.2431 \qquad 11 \qquad 6 \qquad 3 \qquad 1 \qquad 1.2383 \qquad 41 \qquad 7 \qquad 1 \\ 1.2336 \qquad 20 \qquad 8 \qquad 0 \qquad 1 \qquad 1.2124 \qquad 46 \qquad 7 \qquad 0 \qquad 3 \qquad M \qquad 1.1853 \qquad 61 \qquad 4 \qquad 3 \\ 1.1772 \qquad 11 \qquad 8 \qquad 0 \qquad 2 \qquad 1.11873 \qquad 61 \qquad 6 \qquad 3 \qquad 2 \qquad 1.11873 \qquad 61 \qquad 4 \qquad 3 \\ 1.1772 \qquad 11 \qquad 8 \qquad 0 \qquad 2 \qquad 1.11853 \qquad 61 \qquad 6 \qquad 3 \qquad 2 \qquad 1.11833 \qquad 61 \qquad 4 \qquad 3 \\ 1.1771 \qquad 11 \qquad 8 \qquad 0 \qquad 2 \qquad 1.11853 \qquad 61 \qquad 6 \qquad 3 \qquad 2 \qquad 1.11833 \qquad 61 \qquad 4 \qquad 3 \\ 1.1771 \qquad 11 \qquad 8 \qquad 0 \qquad 2 \qquad 1.11853 \qquad 61 \qquad 6 \qquad 3 \qquad 2 \qquad 1.11833 \qquad 61 \qquad 4 \qquad 3 \\ 1.1774 \qquad 18 \qquad 4 \qquad 1 \qquad 5 \qquad M \qquad 1.1536 \qquad 51 \qquad 7 \qquad 2 \qquad 2 \qquad 1.1511 \qquad 9 \qquad 6 \qquad 4 \\ 1.1362 \qquad 42 \qquad 0 \qquad 0 \qquad 6 \qquad 6 \qquad 1.11857 \qquad 14 \qquad 5 \qquad 5 \qquad 0 \qquad 1.1574 \qquad 18 \qquad 8 \qquad 1 \\ 1.1574 \qquad 18 \qquad 4 \qquad 1 \qquad 1 \qquad 5 \qquad M \qquad 1.0850 \qquad 1 \qquad 1.114 \qquad 4 \qquad 4 \qquad 1.1004 \qquad 20 \qquad 9 \qquad 0 \\ 1.0970 \qquad 18 \qquad 5 \qquad 5 \qquad 1.1087 \qquad 1.0906 \qquad 5 \qquad 1 \qquad 1.0979 \qquad 9 \qquad 7 \qquad 3 \qquad 4 \qquad 1.0906 \qquad 2 \qquad 2 \qquad 1.0178 \qquad 10 \qquad 7 \qquad 3 \qquad 3 \qquad 4 \qquad 1.0850 \qquad 2 \qquad 2 \\ 1.0779 \qquad 14 \qquad 6 \qquad 2 \qquad 2 \qquad 0 \qquad 0 \qquad 6 \qquad 1.1184 \qquad 4 \qquad 4 \qquad 1.1004 \qquad 20 \qquad 9 \qquad 0 \\ 0 \\ 1.0970 \qquad 18 \qquad 5 \qquad 5 \qquad 1.0080 \qquad 1 \qquad 4 \qquad 1.09952 \qquad 78 \qquad 7 \qquad 2 \\ 2 \qquad 1.098$	4 M
$ 1.6350 64 1 1 4 1.6172 101 3 2 3 1.6137 125 2 0 \\ 1.6034 56 4 3 1 1.5933 9 5 1 2 1.5768 7 4 1 \\ 1.5640 68 5 2 1 1.5545 28 2 1 4 1.5185 67 3 0 \\ 1.5042 14 5 0 3 1.5014 30 6 0 2 1.4931 5 6 1 \\ 1.4849 55 4 3 2 1.4689 33 2 2 4 1.4560 9 4 2 \\ 1.4334 88 5 2 2 2 1.4484 122 4 4 0 1.4335 211 7 0 \\ 1.4335 211 5 3 0 M 1.4097 59 4 0 4 1.3634 111 6 2 \\ 1.3214 8 5 3 2 1.3157 17 2 0 5 1.3120 12 5 2 \\ 1.2990 28 5 0 4 1.2883 19 6 2 2 1.2848 12 5 4 \\ 1.2778 17 3 3 4 1.2693 25 6 1 3 1.2766 49 4 2 \\ 1.2366 20 8 0 1 1.2124 46 7 0 3 M 1.2483 411 7 1 \\ 1.2366 20 8 0 1 1.2124 46 7 0 3 M 1.2124 46 5 3 \\ 1.2066 29 7 2 1 1.1979 18 4 0 5 1.1937 2.3 6 0 \\ 1.1853 61 6 3 2 M 1.1853 61 4 3 2 \\ 1.1651 6 4 1 1.1243 11 6 5 4 1 1.1243 46 5 3 \\ 1.1667 12 6 2 3 1.1853 61 6 3 2 M 1.1853 61 4 3 \\ 1.1671 18 8 1 1.174 18 8 1 \\ 1.1772 11 8 0 2 1.1745 10 8 1 0 1.1574 18 8 1 \\ 1.1691 44 5 2 4 1.1587 14 5 5 0 1.1574 18 8 1 \\ 1.1691 44 5 2 4 1.1587 14 5 5 0 1.1574 18 8 1 \\ 1.1691 44 5 2 0 5 1.1184 46 5 4 3 1.1104 13 8 1 \\ 1.1671 18 8 1 1.0079 18 5 3 4 M 1.0049 37 8 2 \\ 1.0076 9 6 4 2 1.0037 15 4 4 4 4 1.0049 20 9 0 \\ 1.0779 14 6 2 4 1.0717 8 7 3 2 1.0079 23 9 0 \\ 1.0577 14 4 2 2 6 1.0509 11 4 3 5 1 M 1.0396 25 5 2 \\$	0
$ 1.6034 56 4 3 1 1.5933 9 5 1 2 1.5768 7 4 1 \\ 1.5640 68 5 2 1 1.5545 28 2 1 4 1.5185 67 3 0 \\ 1.694 14 5 0 3 1.5014 30 6 0 2 1.4931 5 67 3 0 \\ 1.4849 55 4 3 2 1.4689 33 2 2 4 1.4560 9 4 2 \\ 1.4534 88 5 2 2 1.4484 122 4 4 0 1.4335 21 7 0 \\ 1.4335 21 5 3 0 M 1.4097 59 4 0 4 1.3634 11 6 2 \\ 1.3449 58 4 1 4 1.3330 23 4 4 2 1.3291 13 7 1 \\ 1.3214 8 5 3 2 1.3157 17 2 0 5 1.3120 12 5 2 \\ 1.2900 28 5 0 4 1.2883 19 6 2 2 2 1.2848 12 5 4 \\ 1.2778 17 3 3 4 1.2693 25 6 1 3 1.2676 49 4 2 \\ 1.2626 7 5 4 1 1.2431 11 6 3 1 1.2383 41 7 1 \\ 1.2366 20 8 0 1 1.2124 46 7 0 3 M 1.2124 46 5 3 \\ 1.2066 29 7 2 1 1.1979 18 4 0 5 1.1937 23 6 0 \\ 1.1867 12 6 2 3 1.1853 61 6 3 2 M 1.1853 61 4 3 \\ 1.0771 11 8 0 2 1.1745 10 8 1 0 1.1731 21 3 2 \\ 1.1772 11 8 0 2 1.1745 10 8 1 0 1.1731 21 3 2 \\ 1.1772 11 8 0 2 1.1745 10 8 1 0 1.1731 21 3 2 \\ 1.1771 11 8 0 2 1.1745 10 8 1 0 1.1731 21 3 2 \\ 1.1771 11 8 0 2 1.1745 10 8 1 0 1.1741 18 8 1 \\ 1.1691 44 5 2 4 1.1587 14 5 5 0 1.1574 18 8 1 \\ 1.1671 12 0 6 1.1350 15 6 4 1 1.1290 12 7 3 \\ 1.1278 12 5 0 5 1.1184 46 5 4 3 1.1104 20 9 0 \\ 0 0 0 0 0 0 0 0 0$	4
$ 1.5640 68 5 2 1 1 1.5545 28 2 1 4 1.5185 67 3 0 1 \\ 1.5042 14 5 0 3 1.5014 30 6 0 2 1.4931 5 6 1 \\ 1.4849 55 4 3 2 1.4484 122 4 4 0 1.4335 21 7 0 \\ 1.4335 21 5 3 0 M 1.4097 59 4 0 4 1.3634 11 6 2 \\ 1.3449 58 4 1 4 1.3330 23 4 4 2 1.3291 13 7 1 \\ 1.3214 8 5 3 2 1.3157 17 2 0 5 1.3120 12 5 2 \\ 1.2990 28 5 0 4 1.2883 19 6 2 2 2 1.2848 12 5 4 \\ 1.2778 17 3 3 4 1.2693 25 6 1 3 1.2676 49 4 2 \\ 1.2626 7 5 4 1 1.2431 11 6 3 1 1.2383 41 7 1 \\ 1.2336 20 8 0 1 1 1.2124 46 7 0 3 M 1.2124 46 5 3 \\ 1.2066 29 7 2 1 1 1.1979 18 4 0 5 1 1.937 23 6 0 \\ 1.1867 12 6 2 2 4 1 1.1853 61 4 3 \\ 1.1772 11 8 0 2 1 1.1745 10 8 1 0 1 1.1731 21 3 2 \\ 1.1691 44 5 2 4 1 1.587 14 5 5 0 1 1.574 18 8 1 \\ 1.1362 42 0 0 6 1 1.350 15 6 4 1 1 1.1290 12 7 3 \\ 1.1278 12 5 0 5 1 1.184 46 5 4 3 1 1.1004 13 8 1 \\ 1.1772 11 8 4 1 5 M 1.1536 51 7 2 2 1 1.574 18 8 1 \\ 1.1774 18 4 1 5 M 1.1536 51 7 2 2 1 1.574 18 8 1 \\ 1.1774 18 4 1 5 M 1.1536 51 7 2 2 1 1.574 18 8 1 \\ 1.1774 18 4 1 5 5 1 1.184 46 5 4 3 1 1.1004 13 8 1 \\ 1.1770 20 4 2 5 1 1.037 15 4 4 4 4 1 1.004 20 9 0 \\ 1.0577 114 2 2 6 1 0.509 11 4 3 5 1 1.0048 15 7 1 \\ 1.0424 34 8 2 2 1 0.059 11 4 3 5 1 0.0597 23 9 0 \\ 1.0577 114 2 2 6 1 0.0599 11 4 3 5 1 0.0597 23 9 0 \\ 0.0577 114 2 2 4 1 0.0599 2 78 7 4 2 1 0.0595 5 5 2 2 \\ 1.0286 15 7 4 1 1 0.059 2 5 5 5 1 $	3
1.5042 14 5 0 3 1.5014 30 6 0 2 1.4931 5 6 1 1.4849 55 4 3 2 1.4689 33 2 2 4 1.4560 9 4 2 1.4534 88 5 2 2 2 1.4484 122 4 4 0 1.43560 9 4 2 1.4335 21 5 3 0 M 1.4097 59 4 0 4 1.3634 11 6 2 1.3435 21 5 3 0 M 1.4097 59 4 0 4 1.3634 11 6 2 1.349 58 4 1 4 1.3330 23 4 4 2 2 1.3291 13 7 1 1.3214 8 5 3 2 1.3157 17 2 0 5 1.3120 12 5 2 1.2990 28 5 0 4 1.2883 19 6 2 2 1.2848 12 5 4 1.2978 17 3 3 4 1.2693 25 6 1 3 1.2676 49 4 2 1.2266 7 5 4 1 1.2431 11 6 3 1 1.2383 41 7 1 1.2336 20 8 0 1 1.2124 46 7 0 3 M 1.2124 46 5 3 1.2066 29 7 2 1 1.11979 18 4 0 5 1.1937 23 6 0 1.2066 29 7 2 1 1.11979 18 4 0 5 1.1937 23 6 0 1.2066 29 7 2 1 1.11979 18 4 0 5 1.1937 23 6 0 1.1867 12 6 2 3 1.1853 61 6 3 2 M 1.1853 61 4 3 1.1731 21 3 2 1.691 44 5 2 4 1.1587 14 5 5 0 1.11517 48 8 1 1.1574 18 4 1 5 M 1.1536 51 7 2 2 2 1.1511 9 6 4 1.1574 18 4 1 5 M 1.1536 51 7 2 2 2 1.1511 9 6 4 1.1574 18 4 1 5 M 1.1536 51 7 2 2 2 1.1511 9 6 4 1.1574 18 4 1 5 M 1.1536 51 7 2 2 2 1.1511 9 6 4 1.1574 18 4 1 5 M 1.1536 51 7 2 2 1.1511 9 6 4 1.1574 18 4 1 5 M 1.1536 51 7 2 2 2 1.1511 9 6 4 1.1574 18 4 1 5 M 1.1536 51 7 2 2 1.1511 9 6 4 1.1574 18 4 1 5 M 1.1536 51 7 2 2 2 1.1511 9 6 4 1.1574 18 4 1 5 M 1.1536 51 7 2 2 2 1.1511 9 6 4 1.0970 18 5 5 2 M 1.0970 18 5 3 4 4 1 1.00789 10 7 2 1.0970 18 5 5 2 M 1.0970 18 5 3 4 4 M 1.0949 37 8 2 1.0970 18 5 5 2 M 0.9950 11 4 3 3 5 1.04481 15 7 1 1 1.0789 10 7 2 2 1.0779 14 6 2 4 1.0717 8 7 3 2 1.05577 23 9 0 1.0779 14 6 2 4 1.0717 8 7 3 2 1.05577 23 9 0 1.0779 14 6 2 4 0.09650 16 5 5 1 M 1.0052 33 6 5 1.0052 33 9 1 2 M 0.9952 78 7 7 4 2 M 0.9952 78 7 2	4
	1
1.4534885221.44841224401.433521701.433521530M1.4097594041.363411621.3449584141.3330234421.329113711.321485321.3157172051.312012521.2990285041.2883196221.284812541.2778173341.2693256131.238341711.2336208011.212446703M1.212446531.2066297211.1979184051.193723601.167112621.1745108101.173121321.1691445241.1587145501.157418811.1671145501.1574185111.29012731.1691444151.1037154441.100420901.16741	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 M
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 N
1.20001.237211.1979184031.19572.3001.1867126231.185361632M1.185361431.1772118021.1745108101.173121321.1691445241.1587145501.157418811.157418415517221.15119641.1362420061.1350156411.129012731.1278125051.1184465431.110413811.070204251.1037154441.100420901.097018552M1.097018534M1.094937821.090696421.081068211.078910721.0779146241.071787321.059723901.05771142261.0509114351.048115711.	5 IV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
1.0779 14 6 2 4 1.0717 8 7 3 2 1.0597 23 9 0 1.0577 114 2 2 6 1.0509 11 4 3 5 1.0481 15 7 1 1.0424 34 8 2 2 1.0396 25 6 5 1 M 1.0396 25 5 2 1.0286 15 7 4 1 1.0154 19 6 3 4 1.0052 33 6 5 1.0052 33 9 1 2 M 0.9952 78 7 4 2 M 0.9952 78 7 2 0.9884 6 8 2 0 0.9879 9 7 0 5 0.9864 6 8 2 0.9739 18 6 2 5 0.9671 8 8 1 4 0.9656 16 6 6 6 6 6 6 6 6 <t< td=""><td>3</td></t<>	3
1.0577 114 2 2 6 1.0509 11 4 3 5 1.0481 15 7 1 1.0424 34 8 2 2 1.0396 25 6 5 1 M 1.0396 25 5 2 1.0286 15 7 4 1 1.0154 19 6 3 4 1.0052 33 6 5 1.0052 33 9 1 2 M 0.9952 78 7 4 2 M 0.9952 78 7 2 0.9888 8 9 2 0 0.9879 9 7 0 5 0.9864 6 8 2 0.9739 18 6 2 5 0.9671 8 8 1 4 0.9656 16 6 6	2
1.0424 34 8 2 2 1.0396 25 6 5 1 M 1.0396 25 5 2 1.0286 15 7 4 1 1.0154 19 6 3 4 1.0052 33 6 5 1.0052 33 9 1 2 M 0.9952 78 7 4 2 M 0.9952 78 7 2 0.9888 8 9 2 0 0.9879 9 7 0 5 0.9864 6 8 2 0.9739 18 6 2 5 0.9671 8 8 1 4 0.9656 16 6 6	4
1.0286 15 7 4 1 1.0154 19 6 3 4 1.0052 33 6 5 1.0052 33 9 1 2 M 0.9952 78 7 4 2 M 0.9952 78 7 2 0.9888 8 9 2 0 0.9879 9 7 0 5 0.9864 6 8 2 0.9739 18 6 2 5 0.9671 8 8 1 4 0.9656 16 6 6	5 M
1.0052 33 9 1 2 M 0.9952 78 7 4 2 M 0.9952 78 7 2 0.9888 8 9 2 0 0.9879 9 7 0 5 0.9864 6 8 2 0.9739 18 6 2 5 0.9671 8 8 1 4 0.9656 16 6 6	2 M
0.9888 8 9 2 0 0.9879 9 7 0 5 0.9864 6 8 2 0.9739 18 6 2 5 0.9671 8 8 1 4 0.9656 16 6 6 6	4 M
0.9739 18 6 2 5 0.9671 8 8 1 4 0.9656 16 6 6	3
	0
0.9611 21 7 5 0 M 0.9611 21 5 1 6 M 0.9582 7 5 5	4
0.9560 6 2 0 7 0.9539 9 6 4 4 0.9525 6 10 1	0
0.9482 9 8 4 0 0.9432 16 2 1 7 0.9412 11 7 3	4
0.9398 61 6 0 6 0.9392 12 8 4 1 0.9350 15 5 4	5 M
0.9350 15 3 0 7 M 0.9330 16 9 0 4 0.9297 8 8 3	3
0.9290 14 6 6 2 0.9277 23 9 3 0 0.9270 6 6 3	5
0.9251 20 7 5 2 0.9231 6 8 0 5 0.9212 45 8 2	4
0.9176 27 10 0 3 M 0.9176 27 10 1 2 M 0.9116 21 7 2	5
0.9066 33 9 2 3 0.9012 16 10 2 0 0.8951 61 6 5	4 +
0.8938 77 4 4 6 M 0.8938 77 10 2 1 M 0.8904 17 7 0	6 +
0.8898 12 4 1 7 0.8881 34 7 4 4 0.8812 26 11 0	2
0.8795 16 6 4 5 0.8761 18 5 0 7 0.8751 13 8 4	3
0.8701 19 11 1 0 M 0.8701 19 9 4 0 M 0.8663 11 4 2	7
0.8636 12 7 1 6 0.8631 13 9 4 1 M 0.8631 13 9 0	5 M
0.8568 7 5 1 7 0.8552 29 8 5 2	

results of bond valence calculations show that Co atoms in both octahedral and tetrahedral sites are all of a 3+ valence instead of a 2+ valence. From R = La to R = Gd, all Co³⁺ sites experience tensile stress, or underbonding (in an over-

sized cage environment) as $V_{\rm b}$ values are all smaller than the ideal valence of 3+. However, the $V_{\rm b}$ values for the octahedral Co site in the Dy-analog are substantially greater than 3.0 (compressive strain). The $V_{\rm b}$ values for Ba₄Sr₂ R_2 Co₄O₁₅

and $Ba_5SrR_2Co_4O_{15}$ suggest that all Ba^{2+} and Sr^{2+} sites (except for Ba3) are under tensile stress. The $V_{\rm b}$ of Ba3 changes from 1.886 to 3.642 in $Ba_4Sr_2R_2Co_4O_{15}$ and from 1.883 to 3.031 in $Ba_5SrR_2Co_4O_{15}$ as the ionic radius decreases from La³⁺ to Dy³⁺ and from La³⁺ to Gd³⁺, respectively, the Ba3 cage changes from under tensile stress to compressive stress. In the R = Dy analog, the large compressive stress at Ba3 ($V_{\rm b}$ = 3.6) and at Co6 ($V_{\rm b}$ = 3.3) imply maximum strain or the last member (with the smallest lanthanide ion) that $Ba_4Sr_2R_2Co_4O_{15}$ can form. Note that most of the $V_{\rm b}$ values for R–O in Ba₄Sr₂R₂Co₄O₁₅ and $Ba_5SrR_2Co_4O_{15}$ are significantly greater than the ideal value for that site. Since all R sites are mixed with Sr or with Sr and Ba, the ideal $V_{\rm b}$ value is 2.666 (2/3 × 3 + 1/ $3 \times 2 = 2.666$), the values here, ranging from 2.842 to 3.144 are all greater than 2.666, representing a large compressive stress or overbonding for the R sites except for the phase with R = Dy. All V_b values for the cobalt sites are mostly less than 3.0, suggesting compressive stress.

B. Reference X-ray diffraction patterns

An example of the reference patterns of $Ba_4Sr_2Gd_2Co_4O_{15}$ is given in Table V. In this pattern, the symbols "M" and "+" refer to peaks containing contributions from two and more than two reflections, respectively. The symbol * indicates that the particular peak has the strongest intensity of the entire pattern and has been designated a value of "999." The intensity values reported are integrated intensities rather than peak heights. All patterns have been submitted for inclusion in the Powder Diffraction File (PDF) (ICDD).

IV. SUMMARY

Crystal structure, reference patterns, and TE properties of $Ba_4Sr_2R_2Co_4O_{15}$ (R = La, Nd, Sm, Eu, Gd, and Dy), and $Ba_4Sr_2R_2Co_4O_{15}$ (R = La, Nd, Sm, Eu, and Gd) series of compounds have been determined. The small size of Sr (as compared to Ba) apparently gives rise to the stability of $Ba_4Sr_2Dy_2Co_4O_{15}$, whereas the corresponding $Ba_5SrDy_2Co_4O_{15}$ phase is not stable. Bond valence sum calculations indicated that all Co's adopt 3+ valence states in these compounds. In the $Ba_4Sr_2Dy_2Co_4O_{15}$ analog the large compressive stress at Ba3 ($V_b = 3.6$) and at Co6 ($V_b = 3.3$) imply maximum strain or the last member (with the smallest lanthanide ion) that $Ba_4Sr_2R_2Co_4O_{15}$ can form.

- Abe, K., Doi, Y., Hinatsu, Y., and Ohoyama, K. (2006). "Magnetic properties of the spin tetramer compound Ba₆Nd₂Fe₄O₁₅," Chem. Mater. 18, 785– 789.
- Brese, N. E. and O'Keeffe, M. (1991). "Bond-valence parameters for solids," Acta Crystallogr. B 47, 192–197.
- Brown, I. D., and Altermatt, D. (1985). "Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database," Acta Crystallogr. B 41, 244–247.
- Grebille, D., Lambert, S., Bouree, F., and Petricek, V. (2004). "Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides," J. Appl. Crystallogr. 37, 823–831.
- Hu, Y. F., Si, W. D., Sutter, E., and Li, Q. (2005). "In situ growth of c-axis-oriented Ca₃Co₄O₉ thin films on Si(100)," Appl. Phys. Lett. 86, 082103.
- Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86– 748, Los Alamos, USA.
- Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). "Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca₃Co₄O₉," Phys. Rev. B 62, 166–175.
- Mevs, H. and Müller-Buschbaum, H. (1990a). "Zur Kenntnis von Ba₆La₂Co₄O₁₅", Z. Anorg. Allg. Chem. 584, 114–118; ICSD collection code 69635.
- Mevs, H. and Müller-Buschbaum, H. (**1990b**). "Neue Verbindungen mit $Ba_6Ln_2M_4^{3+}O_{15}$ -Typ: $Ba_6Nd_2Fe_4O_{15}$, $Ba_5SrLa_2Fe_4O_{15}$ und $Ba_5SrNd_2Fe_4O_{15}$," J. Less-Common Metals **158**, 147–152.
- Mevs, H. and Müller-Buschbaum, H. (**1990c**). "Ba₆Nd₂Fe₄O₁₅: Ein oxometallat mit neuem strukturtyp," J. Less-Common Metals **157**, 173–178.
- Mikami, M. and Funahashi, R. (2005). "The effect of element substitution on high-temperature thermoelectric properties of Ca₃Co₂O₆ compounds", J. Solid State Chem. 178, 1670–1674.
- Mikami, M., Funashashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). "High-temperature thermoelectric properties of single-crystal Ca₃Co₂O₆," J. Appl. Phys. 94, 6579–6582.
- Minami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). "Rapid synthesis and characterization of (Ca_{1-x}Ba_x)₃Co₄O₉ thin films using combinatorial methods," Appl. Surface Sci. 197, 442–447.
- Müller-Buschbaum, H. and Martin, F. D. (1992). "Syntheses und kristallstruktur von Ba_{4.5}Ca_{1.5}La₂Fe₄O₁₅, Ba₅CaEu₂Fe₄O₁₅, and Ba₅CaNd₂Co₄O₁₅", Z. Anorg. Allg. Chem. 617, 84–88; ICSD collection code 72338.
- Müller-Buschbaum, H. and Uensal, H. (**1996**). "Zur Kenntnis $Ba_6Pr_2Co_4O_{15}$ und $Ba_5SrPr_2Co_4O_{15}$ ", Z. Naturf., Teil B: Anorg. Chem., Org. Chem. **51**, 453–455; ICSD collection codes 380091 and 380092.
- Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).
- Rietveld, H. M. (1969). "A profile refinement method for nuclear and magnetic structures," J. Appl. Cryst. 2, 65–71.
- Rüter, I. and Müller-Buschbaum, H. k. (1990). "Zur Krsitallchemie von oxometallaten der Zusammensetzung Ba₆Nd₂Al₄O₁₅ Neue Ergebnisse an Ba_{4.5}Ca_{1.5}Nd₂Fe₄O₁₅ und Ba₅CaSm₂Fe₄O₁₅," J. Less-Common Metals 162, 175–180.
- Shannon, R. D. (1976). "Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides," Acta Crystallogr. A 32, 751–767.
- Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). "Large thermoelectric power in NaCo₂O₄ single crystals", Phys. Rev. B 56, 12685–12687.