
Math. Struct. in Comp. Science (2000), vol. 10, pp. 617–663. Printed in the United Kingdom

c© 2000 Cambridge University Press

Elementary structures in process theory (1):

Sets with renaming

K O H E I H O N D A

Department of Computer Science, Queen Mary and Westfield College, University of London,

E1 4NS, London, U.K.

Received 7 April 1997; revised 31 May 1999

We study a general algebraic framework that underlies a wide range of computational

formalisms that use the notion of names, notably process calculi. The algebraic framework

gives a rigorous basis for describing and reasoning about processes semantically, as well as

offering new insights into existing constructions. The formal status of the theory is elucidated

by introducing its alternative presentation, which is geometric in nature and is based on

explicit manipulation of connections among nameless processes. Nameless processes and

their relational theory form a coherent universe in their own right, which underlies existing

graphical formalisms such as proof nets. We establish the formal equivalence between these

two presentations, and illustrate how they can be used complementarily for the precise and

effective description of diverse algebras and the dynamics of processes through examples.

1. Introduction

This paper studies a general algebraic framework that underlies a wide range of com-

putational formalisms that use names. The notion of names is one of the fundamental

elements in formalisms of computing. In logical and functional calculi, variables are used

to denote unknown objects (holes) in formulae, and thus for quantification. In imperative

programming languages, variables again play an essential role, though one variable may

denote different values during computation. In the study of concurrent computing, process

calculi (Milner 1980; Hoare 1985; Hennessy 1989; Baeton and Wejland 1990; Milner et

al. 1989) pervasively use the idea of port names, which represent points of composition

and interaction. Here the use of names bears a paramount importance that cannot be

compared with the preceding situations, for the following reasons.

First of all, while semantic discussions of functional calculi can be carried out without

variables just by taking closed terms, the same idea is far from applicable to process

calculi (notice that ‘closed terms’ in this context, in the sense that no names occur free,

are effectively equivalent to inactions in many behavioural equivalences), indicating that

the semantics of processes crucially depends on names. Indeed, the idea of interacting

processes itself leads to the notion of points of interaction, and it is names in processes

that represent these entities. We also observe that the use of names is closely related

to one of the basic aspects of concurrent computation, that is, non-determinism, in at
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least two ways. First, names can represent the sharing of interaction points, which is a

common phenomenon in real-life computing. Secondly, names serve to maintain identity

despite possible changes of meaning during computation. A bank account yesterday and

today might be two different objects with different behaviours, but are still considered to

be the same account, because we can trace its identity using its name. Thus, any serious

semantic discussion of concurrent computing may not be able to neglect the functionalities

of names. Notice that these two points pertain not only to process calculi, but also to

general computational phenomena that involve sharing or non-determinism. We may

also note that, even though the semantics of sequential computation can sometimes

dispense with names (in the form of variables), their use is pervasive in diverse functional

calculi and programming languages, playing a key role for their tractable formalisation.

Moreover a few recent embedding results of various calculi and languages into π-calculus

(Milner et al. 1989; Milner 1990; Milner 1992; Sangiorgi 1992; Walker 1994) suggest that

the manipulation of names is a basic, if so far hidden, mechanism even in functional

computation.

The preceding discussion indicates that names are one of the most essential ingredients

of theories of processes. Indeed, we use them when describing processes, we use them

when reasoning about their behaviours, and we use them when we define behavioural

equivalences. If names are thus important for processes, it would be useful to clarify

the precise formal status of names in processes in a general setting. More concretely,

we wish to articulate a common abstract stratum that underlies the usage of names in

diverse name-based formalisms. If such a common stratum can be identified and its nature

becomes clarified, the resulting theory would serve as a guiding principle for the description

of, and for reasoning about, interacting processes at both syntactic and semantic levels,

offering new insights into existing and potential constructions. This, then, is our aim in

the present paper: to articulate the common abstract structures of processes with names

in diverse process formalisms. To this end, we introduce a simple algebraic framework

where each element in a collection is equipped with a set of free names, just as in the usual

process calculi, and the renaming operations relate these elements. Despite its simplicity,

the construction induces a non-trivial algebraic universe that offers a new insight into,

and a rigorous basis for, the algebraic manipulation of processes. The formal status of

the theory is further clarified by an alternative presentation, which is derived from an

analysis of fine structures of the original theory. The alternative presentation is based on

processes without names, but with the notion of explicit connection. Processes now arise as

geometric objects, and such notions as reduction, transition and behavioural equivalences

are given as certain geometric relationship between these objects. While this feature

makes the theory less amenable to syntactic description, it leads to a mathematically lean

construction in which the geometric aspect of processes is lucidly represented. It is notable

that existing graphical formalisms such as proof nets and interaction nets (Girard 1987;

Lafont 1990; Lafont 1995) offer significant instances of this theory. Nameless processes

induce a self-contained set-like universe when equipped with analogues of relations and

functions on them (which correspond to relations and homomorphisms in the name-based

theory), offering an elucidation of the algebraic status of basic notions in process theories,

such as operations and equations on interacting processes.
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As a main technical result, we establish the formal equivalence between these two

presentations, which offers a firm footing to move between a name-based formalism, such

as π-calculus (Milner et al. 1989), and a nameless formalism, such as proof nets (Girard

1987; Lafont 1995), without losing any information, as well as providing a common

technical basis for their understanding. Two different presentations offer different and

complementary roles in the study of interaction-based computation: the name-based pre-

sentation offers a tractable and precise way for describing and reasoning about processes,

which would, in particular, be suited for algebraic manipulation; while the nameless

presentation would shed light on geometric nature of various constructions, which may

not be apparent from the name-based presentation, and offers a rigorous framework to

articulate graphical description of processes. We exhibit these complementary uses, which

are ensured to commute with each other by the equivalence theorem, by applying the

theory to a simple but non-trivial problem: the comparison of the expressive power of

open process connection (as in CCS) and those based on closed connection (as in proof

nets). We show, in a general setting, that these two are faithfully embeddable in each

other. In this and other examples, we extensively use various notions of wires (which

are agents that function as links between different locations), for whose description and

manipulation the distinct roles of two presentations mentioned above are particularly

apparent. In this way the notion of processes with names is rigorously positioned in two

equivalent presentations; and distinct uses of these presentations are illustrated through

examples. It is hoped that the constructions and insights obtained will be useful for further

study into the theory of processes.

One basic reservation concerning the present theory should be noted. Names not only

appear in formal systems but also in real computing. We then find that, in reality, names

are often hierarchically organised, the relationship between names and their referents

may not always be unique and fixed, and names may be carried as data and lost during

communication. These subtle aspects of names, which clearly deserve close theoretical

scrutiny, are not addressed in the present theory: the notion of names we shall treat

is restricted to the most basic one, even though it does encompass the usage of names

in so-called name passing calculi. Our belief in this context is that the present theory

may serve as a useful cornerstone even for the study of those aspects of names that go

beyond what the present framework addresses, at least for the purpose of articulating

points of departures from, and similarities with, the simpler setting that the present theory

addresses.

There have been many attempts to use category theory to represent semantically pro-

cesses and their algebra, using both name-based and name-less presentations. We may

even observe that an analogue of the translation from the name-based presentation to

the nameless presentation is already found in the well-known practice of ‘forgetting free

variables’ in the categorical semantics of functional calculi (for example, x : α ` x : α and

y : α ` y : α become the same identity arrow even if x and y occur free). One may thus

wonder whether the use of some suitable categories would serve our present purpose. The

answer to this question is not simple: we may first observe that, while it is possible to

formalise semantics of processes using categories in some cases, it may not be obvious

that the semantics of existing and potential formalisms of processes would always be
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cleanly representable in a categorical format in a way functional calculi found their basic

semantic description in suitable categories, cf. Asperti and Longo (1991). In particular, we

suspect that subtle notions of typed composition in concurrent processes may not always

conform to categorical structures, unlike the case of typed function calculi. In contrast,

the present study offers a framework in which we can directly capture the algebra and

dynamics of processes as found in process calculi, as well as in graphical formalisms such

as proof nets. At the same time, category theory offers rich algebraic tools for organising

semantic constructions, which would be useful both for a direct description of processes

(as in certain symmetric monoidal structures) and for meta-theoretical treatment (as we

ourselves will use it in our equivalence result). We believe that the present work will

be able to interact fruitfully with various categorical constructions for the semantics of

concurrency, complementing existing approaches and offering new insights.

Related work

One of the key elements of the present theory is to treat processes as structured objects

and build a relational theory based on them. An early precursor in this line of studies is

the theory of composita (Nerode 1959; Aczel 1990; Aczel 1991), which studies structured

objects with operations including substitution. Their theory differs in that they treat

variables for structured objects rather than names, and that a variable-less presentation

is not studied (hence there is no analogue of the equivalence theorem).

In the context of process theories, action structures (Milner 1993; Milner 1995a; Mif-

sud 1996; Mifsud et al. 1996; Gardner 1995) present and are used to study a common

algebraic framework for diverse calculi of computation based on names and connections,

which has been influential on the present work. There are a number of topics treated

in this context that are closely related to the present work. As a general comparison,

the aim of the present work lies in the articulation of a common abstract structure of

names and processes that are common in varied formalisms and calculi, while action

structures are aimed at offering a general setting and tools by which both statics and

dynamics can be comprehensively described. A few technical aspects that relate directly

to the present work are discussed in Section 7, where we shall also give comparisons

between the present work with other general frameworks for the semantics of concur-

rency.

Another closely related area, interaction-based computation based on graphical pre-

sentation, has been extensively studied in the context of Linear Logic, cf. Girard (1987),

Girard (1989), Girard et al. (1995), Lafont (1990) and Lafont (1995), and has given an

important impetus to the present work. As we have noted, these formalisms arise as non-

trivial instances of the nameless presentation of the present theory. In this context, our

theory offers a rigorous account of basic features of their constructions, including algebra

and dynamics, thus positioning them in a wider context, which may eventually lead to

their exploitation in wider settings than those for which they were originally developed.

Further discussion of related studies can be found in Section 7.
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Outline of the paper

Section 2 introduces the name-based theory. Section 3 studies a fine structure of the name-

based processes that eventually leads to its nameless counterpart. Section 4 develops the

theory of nameless processes. Section 5 establishes the main result of the paper, the

categorical equivalence between the two theories. Section 6 presents a small but non-

trivial application of the present theory. Section 7 discusses further issues and gives

comparisons with related work. Supplementary material is relegated to appendices for

readability.

2. Processes with names (1): basic theory

2.1. Rooted process sets

The idea of processes is inherently associated with the notion of names. Let us take a

familiar process calculus, such as CCS, CSP or ACP. We start from a set of terms, say P,

on which we have a few operations such as parallel composition and hiding, and a notion

of dynamics is given by a reduction relation or a labelled transition relation over P. On

top of these constructions we stipulate an equivalence over terms based on some notion

of interactive behaviour. Here each process (given as a term) owns a set of free names,

and all involved operations and relations are closed under injective renaming: so is the

reduction, so is the parallel composition, and so are the behavioural equivalences such as

bisimilarity. The following definition extracts this common trait into a simple algebraic

scheme. Below we write Fin(X) for the set of finite subsets of X.

Definition 2.1. (Rooted p-sets) Given a countable set N of names, ranged over by

a, b, c, . . ., an N-rooted process set, which is often just called a rooted p-set, is given by a

set P of rooted processes, ranged over by P ,Q, R, . . ., together with the following data:

(i) An operation [σ] : P → P, written postfix, for each injection σ over N. [σ] is called

a name permutation by σ, or renaming by σ.

(ii) A function FN : P → Fin(N). FN(P ) is called the free names of P .

(iii) Equations:

1. P [σ][σ′] = P [σ′ ◦ σ] (here ◦ is the functional composition).

2. If (∀a ∈ FN(P ).σ(a) = a), then P [σ] = P .

3. FN(P [σ]) = σ(FN(P )).

Given a rooted p-set, we write P
N∼ Q when P = Q[σ] for some σ. Immediately,

N∼ is an

equivalence relation. Hereafter we fix some N. A rooted process is often denoted by the

underlying set of processes, provided no confusion arises.

Note that P [idN] = P by (iii)-2. A rooted process P denotes an entity having several

interface points, which are represented by (or rooted to) its free names. The injective

renaming acts on processes and relate them by name correspondence. The free name

function makes defnite the range of names that a process owns and which, therefore,

bijective renaming has real effects on.
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Remarks 2.2. The actual significance of setting FN(P ) to be finite lies in making it of

strictly less cardinality than N, so that the complement of FN(P ) in N has again the

same cardinality as N. Under this condition, we can set FN(P ) to be infinite and all the

main results in this paper hold using essentially the same proof method.

We now offer a few examples of rooted p-sets.

Examples 2.3. (Rooted p-sets)

(i) The simplest rooted p-set is the empty set. A singleton set is also a rooted p-set,

whose unique process has no free names, so each renaming acts as identity. In this

way any set can be considered as being a rooted p-set.

(ii) A simple, but important, example is the setN of names itself. Each name is regarded

as a rooted process with FN(a) = {a}, and the renaming operation is just taken

literally. Note there is only one
N∼-equivalence class in this case. A similar example is

Fin(N), the set of finite subsets ofN, which has a countable number of
N∼-equivalence

classes, one for each finite cardinal. Notice that any permutation on A ∈ Fin(N)

leaves A unchanged.

(iii) Diverse process calculi induce such structures: we take terms as rooted processes

(modulo α-convertibility if there is a binding; or even modulo a so-called structural

congruence), augmented with [σ] and FN(P ) defined in a natural way (if names and

co-names are present as in CCS, it is best to consider, say, a.P and a.Q, as being

distinct constructors with the same name a). Then they form a rooted p-set. Other

important examples are various typed process calculi, where we regard Γ ` P as a

rooted process whose free names are those of Γ. Furthermore, typed and untyped λ-

calculi can be regarded as inducing such structures where free variables are regarded

as free names. Later we show how synchronisation trees (Milner 1980; Winskel 1984),

a basic semantic representation of processes, also induce rooted p-set.

We note some immediate consequences of Definition 2.1. The stated logical equivalences

will often be used implicitly from now on. In the proof below and henceforth, we often

write, for example,
(
abc
cba

)
to denote a permutation on N, understanding it acts as identity

on names that are not mentioned.

Proposition 2.4. Assume A ⊂N. Then the following three conditions are equivalent.

(i) A ⊃ FN(P ).

(ii) ∀a ∈ A.σ(a) = a implies P [σ] = P .

(iii) σ1 � A = σ2 � A implies P [σ1] = P [σ2].

Proof. (i)⇒(ii) is immediate. If (ii) holds, σ1 � A = σ2 � A implies ∀a ∈ A. σ−1
2 ◦σ1(a) = a,

hence P [σ1][σ−1
2 ] = P , that is, P [σ1] = P [σ2], thus (iii) holds. If (iii) holds but (i) does

not, take any a ∈ FN(P )\A and e fresh, then
(
ae
ea

)
� A = idN � A, hence P [

(
ae
ea

)
] = P ,

which is a contradiction.
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2.2. Algebra of rooted process sets

As with any study of algebraic structures, our study of rooted p-sets start from relations

and maps over them.

Definition 2.5. (compatible relations and homomorphisms)

(i) A compatible relation R from P to P′ is a relation from P to P′ such that, for each

renaming σ, PRQ⇒P [σ]RQ[σ]

(ii) A homomorphism is a compatible relation that is also a function. Isomorphisms are

bijective homomorphisms. We write P ' P′ if there is an isomorphism between P
and P′.

Proposition 2.6. A compatible relation R is a homomorphism iff R is total on its domain

and, moreover, PRQ and P [σ]RQ′ imply Q′ = Q[σ].

Proof. Both directions are immediate from the definition.

Note that the compatibility only requires closure under renamings, without mentioning the

free name function. Relations and maps closed under name permutations are ubiquitous

in process theories. This is because, intuitively speaking, the essential use of names

in relating processes lies in the specification of structural correspondence on interfaces

between processes. Take an example of CCS, a.b.0 + b.a.0 ∼ a.0|b.0, with ∼ being the

strong bisimilarity. Here a and b are significant precisely because they specify how these

two processes are structurally related. So provided the same correspondence is maintained,

we can permute names freely, for example l.m.0 + m.l.0 ∼ l.0|m.0 again. We may also

note that ∼ is not closed under non-bijective renaming (which is often true in other

process calculi (Milner et al. 1989; Boreale and Sangiorgi 1996)). This suggests that,

for our framework to be inclusive enough, it will be better to start from injective

renaming.

We write R1R2 or R2 ◦ R1 for the standard relational composition of two compatible

relations. It is easy to see that homomorphisms and compatible relations are each closed

under the composition (and that, in addition, the union, intersection and difference of

two compatible relations are again compatible). We thus obtain categories, which may

be considered as general universes where theories of name-based processes are carried

out.

Definition 2.7. RPS denotes the category of rooted process sets and homomorphisms,

while RPSrel denotes the category of rooted process sets and compatible relations.

As discussed in Appendix A, RPS is a topos (a category-theoretic generalisation of the

category of sets), so it is equipped with all standard set-theoretic operations, including

relational manipulations and algebras. Moreover, the standard method of deriving a

relational universe from a topos gives us precisely RPSrel , clarifying a basic categorical

status of these universes.

We proceed with our study of concrete constructions on rooted processes. We first note
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the following fact, which shows that, while Definition 2.5 does not mention the free name

function when defining a homomorphism, we can recover the information a posteriori.

Proposition 2.8. Given a homomorphism F, suppose Q is in its image. Then FN(Q) =⋂
Q=F(P ′)FN(P ′). In particular, if F is an isomorphism, FN(P ) =FN(F(P )).

Proof. Suppose Q = F(P ). If a ∈ FN(Q)\FN(P ), then FN(Q[
(
af
fa

)
]) 6= FN(Q) (f

fresh) by Definition 2.1, but Q[
(
af
fa

)
] =F(P [

(
af
fa

)
]) =F(P ) = Q, which is a contradiction.

But if a ∈ FN(P )\FN(Q), then F(P [
(
af
fa

)
]) = Q[

(
af
fa

)
] = Q (f fresh) with a 6∈ P [

(
af
fa

)
],

and hence we are done.

The above result shows that simply having the closure under renaming nonetheless has a

non-trivial algebraic outcome. It also shows that isomorphisms determine not only how

a renaming operates on processes, but also the free names processes own (thus in effect

determining another essential internal structure of rooted processes called symmetries,

see Section 3 later). So, in most imaginable circumstances, treating rooted process sets

modulo isomorphisms is enough; and it is technically convenient that this is automatically

ensured by having only closure under renaming.

Next we show how products, relations and quotients of rooted p-sets can again be

considered as rooted p-sets. These closure properties are the basis for the algebraic

manipulation of rooted p-sets. Appendix A shows how they correspond to standard

category-theoretic constructions, which in particular means they are determined up to

isomorphisms, once given their defining properties.

Definition 2.9.

(i) (Product) Given P and Q, the product of P and Q, written P × Q, is the set-

theoretic product of P × Q, on which we define: (a) 〈P , Q〉[σ]
def
= 〈P [σ], Q[σ]〉,

and (b) FN(〈P , Q〉) = FN(P ) ∪ FN(Q). Furthermore, for an arbitary family

{Pi}i∈I , their product
∏

i∈I Pi is given by {〈Pi〉i∈I |Pi ∈ P〉,⋃iFN(Pi) ∈ Fin(N)},
with FN(〈Pi〉 def

=
⋃FN(Pi)) and 〈Pi〉ρ def

= 〈Piρ〉.
(ii) (Relation) Any compatible relation can be viewed as a rooted p-set precisely as (i)

above.

(iii) (Quotient) Given any congruence (that is, compatible and equivalence) relation on

P, we construct P/ ∼, the quotient by ∼, as the set theoretic quotient with operations:

(a) [P ]∼[σ]
def
= [Pσ]∼ and (b)FN([P ]∼)

def
=
⋂
P ′∼P FN(P ′). A natural map associated

with ∼ on P is a surjective homomorphism from P to P/ ∼ defined in the standard

way, which always exists.

In addition, union and intersection of rooted p-sets are the obvious set-theoretic oper-

ations, inheriting the free names and the renaming from the original rooted p-sets. We

observe that each operation in process algebras, such as prefix and parallel composition,
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is nothing but a homomorphism from a product rooted p-set to a rooted p-set, so they

follow the construction in (i)†.
Further examples of the constructions in Definition 2.9 are given in the next subsection.

2.3. Examples

The first example shows how the quotient in Definition 2.9 indeed underlies the well-known

semantic construction in process theories.

Examples 2.10. (Synchronisation trees) We assume a basic knowledge of CCS (Milner

1989). A synchronisation tree representing a CCS process is a tree whose edges are

labelled from CCS actions. We restrict our attention to those synchronisation trees where

two occurrences of the same action from each node never lead to strongly bisimilar

trees as derivatives. Then each equivalence class of CCS terms with respect to the

strong bisimilarity on terms (which we write ∼) can be assigned a unique corresponding

synchronisation tree. Note that CCS terms form a rooted p-set, while ∼ is a compatible

equivalence relation on them. We now observe:

(i) (Quotient) Let T be a synchronisation tree corresponding to [P ]∼. Writing s for a

series of actions, we have T
s−→ iff ∃Q ∈ [P ]∼. Q

s−→. Taking FN(T ) = {a | T sα−→
∧ a ∈ FN(α)} (FN(α) is taken syntactically), we immediately know FN(Q) ⊃
FN(T ) and, for any name a ∈ FN(Q)\FN(T ), we can find P ′ ∼ P such that

a 6∈ FN(P ′) (which is proved by induction on the structure of terms). This shows

FN(T ) = ∩P ′∼PFN(P ′), which conforms to the description in Definition 2.9 (iii).

Thus these synchronisation trees give a concrete presentation of the quotient of CCS

terms modulo ∼.

(ii) (Homomorphism) The semantic function from CCS-terms to the set of synchroni-

sation trees gives the natural map associated with ∼ in the sense of Definition 2.9

(iii).

(iii) (Transition relation as a compatible relation) Let us analyse the transitions in a

synchronisation tree in more detail. They induce a transition relation T
α−→ T ′, and,

observing the set of labels induce a rooted p-set, gives a ternary compatible relation.

Note that whenever T
α−→ T ′ we have FN(α) ⊂ FN(T ) ⊃ FN(T ′).

Similarly, synchronisation trees for other process calculi give examples of the constructions

in Definition 2.9, with possible adaptations as necessary. One interesting case is when name

passing is involved, as in π-calculus (Milner et al. 1989; Milner 1992). Here each node

is explicitly equipped with free names so that they always contain free names in their

immediate actions but are disjoint with ‘new’ names, and the free names of its derivative

is given by the original names plus those newly introduced (if any) by the action, the latter

binding their subsequent occurrences. This gives a coherent way of capturing the behaviour

† During the proof-reading of the present manuscript, we learned about Fraenkel–Mostowski’s work in which

a set-theoretic universe is formed analogously to Godel’s constructible sets, albeit starting from infinite atoms

(with a powerset operation along the line of arbitrary products in Definition 2.9 (i) above). It is notable that

the above operations directly correspond to set-theoretic operations in their universe, as well as to categorical

constructions given in Appendix A. See Section 7.2 for further discussions. I would like to thank Andrew

Pitts for communicating to me about the work by Fraenkel and Mostowski.
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of name passing processes. As a further ramification, some other behavioural equivalences

that give rise to concrete semantic representations, cf. Hennessy (1989), also conform to

the present notion of quotient. Furthermore, the construction in Proposition 2.9 (iii) is

also applicable when we do not (yet) know a concrete semantic representation of the

quotient by a given behavioural equivalence, as in so-called reduction-based behavioural

equivalences (Milner and Sangiorgi 1992; Honda and Yoshida 1993), so that quotients

are equipped with more structures than simple set-theoretic quotients.

Next we present another basic example, to which we shall often refer later. It is a basic

form of π-calculus, originally given in the context of action structures (Milner 1995a). The

example is also interesting in that it indicates how the notion of non-injective substitution

can be seamlessly incorporated into the present framework.

Examples 2.11. (Essential π-calculus) Define the set of terms by

P ::= ab | ab | P |Q | (νa)P | [a = b] | [a] | 0

where in each of the first, second and fifth expressions we assume a 6= b. We call [a = b]

a wire, while [a] is a degenerate wire. In the standard way, we assume (νa)P induces a

binding, and the notion of α-conversion ≡α is defined accordingly. The set of terms, always

considered modulo ≡α, clearly gives a rooted process set, taking free names syntactically.

We then quotient the terms by the congruence generated by the following rules:

(i) P ≡ Q when P ≡α Q.

(ii) P |0 ≡ P , P |Q ≡ Q|P , (P |Q)|R ≡ P |(Q|R).

(iii) (νa)P ≡ P if a 6∈ FN(P ), (νab)P ≡ (νba)P , and (νa)P |Q ≡ (νa)(P |Q) when a 6∈
FN(Q).

(iv) [a = b] ≡ [b = a], [a = b]|[a = b] ≡ [a = b],

[a = b]|P ≡ [a = b]|(P [
(
ab
ba

)
]), (νa)[a = b] ≡ [b], (νa)[a] ≡ 0.

(v) [a]|P ≡ P a ∈ FN(P ).

Note the use of renaming in (iv). The induced equality is closed under renaming and two

operations: thus the quotient again assumes the rooted process set with two renaming-

closed operations inherited from the original algebra. The dynamics is given by the

reduction relation on the quotient, closing the following rule by two operations:

ab | ac → [b = c]. (1)

Thus a receptor ab and a message ac interact to generate an open substitution (note

that this can be applied to the case when b = c by setting ab above as (νe)(ae|[e = c]),

resulting in (νe)([e = c]|[e = c]) ≡ [c]). Clearly the relation is again renaming-closed. We

can further consider a reduction-based behavioural congruence based on input/output

predicates in the manner of Milner and Sangiorgi (1992) and Honda and Yoshida (1993).

The resulting equality is again closed under renaming and induces a quotient algebra.

Furthermore, if we assume reduction-closure in the sense of Honda and Yoshida (1993),

the reduction relation is also carried over to this algebra.

Now write P {b/a} for (νa)(P |[a = b]), and a(x)P for (νx)(ax|P ). Then we easily deduce

that Rule (1) gives us the following reduction:

a(x)P | ab → P {b/x} (2)
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capturing the usual notion of reduction in π-calculus (except P above can interact with the

outside even before substitution, which is because we lack the synchronisation machinery

given by prefix (Milner 1980; Girard 1987; Milner 1995a), but this can be introduced easily

by adding prefix operators for input and output without binding). Note the crucial use

of a wire that represents name substitution: it is notable that, as reported in Honda and

Yoshida (1993), such wires are indeed semantically existent in a fully expressive fragment

of the π-calculus. We shall see in Section 6 that the nameless version of the essential

π-calculus can be derived from the above construction, illuminating the geometric content

of the original construction.

3. Processes with names (2): symmetries

3.1. Symmetry presentation of rooted process sets

In this subsection we study a fine structure of rooted processes induced by renaming,

which will eventually lead to a name-less presentation of processes. The structure is called

symmetries, and its definition is simply given as follows (we fix some rooted process set).

Definition 3.1. (Symmetries) A symmetry of P is a permutation, say σ, of FN(P ) that,

seen as a permutation overN by extension, is such that P [σ] = P . The set of symmetries

of P and their functional composition form a group, denoted sym(P ).

Symmetries arise inevitably in processes.

Examples 3.2. (Symmetries)

(i) In 6 there is no process so there is no symmetry. In N each process has only one

name so there is only a trivial symmetry (that is, the identity). In Fin(P), however,

each process has full symmetries, that is, for each ‘process’ A ∈ Fin(P), the set of all

permutations on A is the symmetries of A.

(ii) In CCS, a permutation
(
ab
ba

)
is a symmetry of a process ‘a.0|b.0’, seen modulo strong

bisimilarity. Similarly, ‘a(x).(b̄x|c̄x)’ in π-calculus modulo structural equality has a

symmetry
(
abc
acb

)
. As can be seen, symmetry in processes typically emerges when an

agent contains a subterm of the form P |(Pσ) modulo commutative monoid law

(Berry and Boudol 1990). We also note that, by considering terms modulo various

equivalences, we may gain more symmetries: for example ‘a.0|τ.b.0’ owns a non-

trivial symmetry up to the weak bisimilarity. Such symmetries will be called abstract

symmetry, and can be considered as a semantic property of a process. In contrast, λ-

terms (viewed as processes with variables as names) only own trivial symmetry under

any standard equalities; this comes from the non-commutative nature of applicative

structure.

(iii) Symmetries are also used in Milner (1989, Section 4) to reduce the size of a bisimula-

tion. Another example of their use in proving properties of processes is a separation

result due to Palamidessi (Palamidessi 1997), in which the invariance of symme-

tries under the progression of dynamics is used to prove that mobile processes with

mixed sums cannot be embedded into those without sums. These examples show how

symmetries can play a useful role in proving semantic properties of processes.
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By combining the abstract symmetries we noted in (ii) above and possible ramifications

of Palamidessi’s development, we may consider a general use of symmetries to calculate

the semantic difference between two processes. By showing one process behaviourally (say

at the transition level) does not own certain symmetries that the other process has, we

can immediately establish they are semantically incompatible. It would be an interesting

subject of study whether there is some method by which such a calculation can be done

mechanically.

The following results show that symmetries also give basic insights into the algebraic

constructions we have already presented.

Proposition 3.3.

(i) Let R be a compatible relation seen as a rooted process set. Suppose 〈P , Q〉 ∈ R.

Then sym(〈P , Q〉) = {σ �FN(〈P , Q〉) | σ(P ) = P ∧ σ(Q) = Q}.
(ii) Let ∼ be a congruence. Then the symmetries of a rooted process [P ]∼ ∈ P/ ∼ are

given by sym([P ]∼)
def
= {σ �FN([P ]∼) | σ(P ) ∼ P }.

(iii) Let F be a homomorphism. Then Q =F(P ) and ρ ∈ sym(P ) implies ρ �FN(Q) ∈
sym(Q). If, moreover, F is an isomorphism, we have sym(P ) = sym(Q).

Proof. (i) and (ii) are easy. For (iii),FN(Q) ⊂ FN(P ) by Proposition 2.8. If ρ ∈ sym(P ),

Q[ρ] = F(P [ρ]) = F(P ) = Q, hence (formally by Lemma 3.8 later) ρ � FN(Q) ∈ Q. If

F is an isomorphism, FN(P ) =FN(Q), hence sym(P ) ⊃ sym(Q). Taking F−1 gives the

converse.

Note that:

— In (i), a symmetry of 〈P , Q〉 should come from one symmetry of P and another of Q

whose values coincide atFN(P )∩FN(Q). In this case, therefore, symmetries decrease

in general.

— In contrast, in (ii) above, we only require P and P [σ] to be equal up to the congruence.

So even if no symmetry except identity exists originally, a new symmetry would arise

after quotienting. Thus a quotient in general increases symmetries of processes (it should

be noted that a quotient may ‘cut off’ unrelated names, for example, when some name

is semantically insignificant in a process, so that the actual number of symmetries may

decrease; however, the original symmetries are all inherited within the reduced set of

names).

— In (iii), we know homomorphisms generally increase symmetries (in accordance with

their close connection to quotient constructions). Further, isomorphisms completely

characterise symmetries in addition to free names.

We now show that, in a rooted p-set, symmetries characterise everything. More precisely, if

we pick up one symmetry group from each
N∼-equivalence class, we have all the essential

information about the rooted p-set, up to isomorphism. Thus, not only do symmetries

offer significant information on algebraic structures of processes, but they are in effect all

we need to determine a rooted p-set. The construction follows. The proof uses elementary

notions from the theory of group actions and is relegated to the next subsection.
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Proposition 3.4. (Representation of a rooted p-set by symmetries) Given P and I = P/ N∼,

a symmetry presentation of P, written α, β, and so on, is an I-indexed family of symmetries,

say {sym(Pi)}i∈I , such that Pi ∈ i for all i ∈ I . Then α and β, possibly from two different

rooted p-sets, are isomorphic, written α ↔ β, when there is a bijection F between them

such that: F(αi) = σ · αi · σ−1, where αi denotes the i’th member of α. Then ↔ is an

equivalence. Moreover:

(i) If α and β come from the same rooted process set, then α↔ β always.

(ii) By (i), write P ↔ P′ when a pair of symmetry presentations of P and P′ are

isomorphic. Then we have P ↔ P′ if and only if P ' P′.
Proposition 3.4 shows that each object in RPS, and hence in RPSrel , allows a representation

by a family of its symmetries. This representation is concise: all name variants of a process,

which are in general countably many, are represented by a single symmetry group. The

symmetry presentations are even equipped with an idea of isomorphism, but that is all,

so we have not much other than the object part of the corresponding categories. We may

then ask ‘What notions correspond to the arrow parts of RPSrel and RPS?’ That is, what

are the relations and maps for these symmetry presentations? Sections 4 and 5 will answer

these questions.

3.2. A group-theoretic perspective on rooted process sets

This subsection proves Proposition 3.4 using a few elementary notions from the theory of

group actions. Those readers who are not interested in technical details can safely skip

the present subsection. We note that, nevertheless, there may be some interests in the

technical development, since it presents an alternative viewpoint on rooted p-sets from a

group theoretic perspective. We use the following notions from theory of group actions,

cf. Lang (1993).

Definition 3.5. In the following, let G be a group and X be a set, and consider a group

action of G on X. We write gx for the action of g on x.

(i) (Morphism) Given two G-sets X and Y , a morphism from X to Y is a function

F : X → Y such that F(gx) = g(Fx) for any g ∈ G and x ∈ X. A morphism is an

isomorphism if it is bijective.

(ii) (Orbits) A maximal subset Y of X such that, for any y1, y2 ∈ Y , we have y2 = gy1

for some g, is called an orbit of X. Orbits partition X and thus induce an equivalence

relation.

(iii) (Transitive G-set) A G-set X is transitive if for any x1, x2 ∈ X, we can write x2 = gx1.

So, in (ii), each orbit is a transitive G-set, and X as a whole is a disjoint union of

these transitive G-sets.

(iv) (Conjugate) Given a subgroup G′ of G, we have G′′ = gG′g−1 (= {gg′g−1|g′ ∈ G′})
is another subgroup of G. Then we say G′ and G′′ are conjugate. Note conjugate

subgroups are isomorphic.

(v) (Isotropy) Let Gx be {g | g ∈ G such that gx = x}. Then Gx forms a subgroup

for each x ∈ X, called the isotropy subgroup of x. Note that if y = gx, we have

Gy = gGxg
−1, that is, Gx and Ggx are always conjugate.
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Notation 3.6. SN denotes the group of all permutations over N, with the function

composition as the multiplication. We write SN〈P 〉 for the isotropy group of P under SN.

Using the above terminology, we observe that a rooted p-set is nothing but a group action

of SN over processes (because P [σ ◦ σ′] = P [σ′][σ] and P [id] = P ), augmented with an

extra functionFN(·) that relates the permutations and elements of the set. Also note that

P
N∼ Q precisely means P and Q are in the same orbit (so given some P, the equivalence

classes from
N∼ are orbits in P under SN). We observe that, by (iv) above, SN〈P [ρ]〉 is given

by ρ · SN〈P 〉 ·ρ−1, which is isomorphic (in the above sense) to SN〈P 〉. We now observe that

any G-set can be represented by the group structures of each orbit as follows.

Proposition 3.7. Two G-sets X and Y are isomorphic if and only if there is a bijective

correspondence between their orbits and, moreover, in each pair of orbits 〈Xi, Yj〉 under

this correspondence, we have Gx = gGyg
−1 for some x ∈ Xi, y ∈ Yj and g ∈ G.

The proof is given in Appendix A. We also have the following lemma.

Lemma 3.8.

(i) Given any isotropy ρ ∈ SN〈P 〉, its restriction (of the domain) to FN(P ) gives a

permutation of FN(P ), which is indeed a symmetry of P .

(ii) (Representation of isotropy) SN〈P 〉 = SN〈Q〉 if and only if sym(P ) = sym(Q).

Proof. For (i), if ρ is not a bijection over FN(P ), then ρ(FN(P )) 6= FN(P ), which is

a contradiction. Then use Proposition 2.4 (iii). This already shows that the ‘if ’ direction

of (ii) is immediate. For the ‘only if’ direction, if we know that SN〈P 〉 = SN〈Q〉 implies

FN(P ) = FN(Q), we get sym(P ) = sym(Q), again by Proposition 3.8. But suppose this

is not the case, that is, for some a we have, for example, a ∈ FN(P )\FN(Q), assuming

SN〈P 〉 = SN〈Q〉. Take f fresh, then
(
af
fa

)
is in SN〈Q〉 but not in SN〈P 〉 by Definition 2.1 (iii)-3,

which is a contradiction.

We can now establish Proposition 3.4. Since P
N∼ Q implies SN〈P 〉 and SN〈Q〉 are

conjugate, and, by Lemma 3.8, this implies the conjugacy of sym(P ) and sym(Q) again, (i)

follows. For (ii), the ‘only if’ direction follows from Proposition 3.7 and Lemma 3.8. For

the ‘if ’ direction, suppose P ' P′, that is, there is an isomorphism F : P → P′. Clearly

each orbit in P is one-one mapped to an orbit in P′, and, by Proposition 3.3 (iii), this

map preserves symmetries, hence we are done.

4. Nameless processes

4.1. Process sets

In this section we present a theory that is essentially equivalent to what we have seen

in the preceding sections, but is based on a more geometric representation, and exposes

functionalities of names in relations and algebras of processes from a different perspective.

Though this has a close relationship with our development so far, and remembering the

question posed at the end of Section 3.1, we prefer to start by presenting the theory

without referring to the preceding development, to make the basic ideas come out as
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P

Fig. 1. A Process

succinctly and clearly as possible. Later we will come back to the question of how the

two theories are related.

The following is the primary object of study in this and the next section.

Definition 4.1. (Process sets) A (non-rooted) process set, which we will often simply call

a p-set, is a triple 〈P, H, S〉 where:

(i) P is the set of (non-rooted) processes, ranged over by p, q, r, . . ..

(ii) H assigns, to each p, a set of handles of p. A handle is denoted by h, h′, . . ..
(iii) S assigns, to each p, a subgroup of the group of permutations over H(p), called

symmetries on p.

A substructure of a p-set is a subset of processes together with two assignments inherited

from the original structure. The arity of a process, written ar(p), is given by the cardinality

of H(p), which we assume finite. Often the underlying set P denotes a p-set, in which

case we write P to denote the set of processes.

More concisely, a p-set is a set-indexed family of concrete permutation groups, each

over a finite set. We may think of a process as a simple geometric object with multiple

discrete points of connection and interaction.

Such structures are abundant in the theory of computing, either implicitly or explicitly.

Examples 4.2.

(i) Any set is a p-set, considering each element as a handleless process. In particular, we

write I for a (distinguished) singleton set seen as a p-set.

(ii) Another simple example is a p-set with only one process that has only one handle.

This p-set is written 1. Similarly, 2 denotes a p-set with one process, which has two

handles with trivial symmetry (that is, only identity).

(iii) As a different example, we can take a collection of hypergraphs as a p-set, whose nodes

are considered to be handles, with graph-theoretic symmetries. The next example can

be considered as a refinement of this example.

(iv) Girard’s Proof Nets (Girard 1987; Girard 1996) form a p-set, where we regard the

end points of nets as handles. Later we shall see how operations and dynamics on

nets can be formulated in the present setting. The natural graph-theoretic symmetries

induce symmetries. Similarly, Lafont’s Interaction Nets (Lafont 1990; Lafont 1995;

Lafont 1996) form a p-set, where we regard nets as processes. As Lafont discussed

in Lafont (1995), there are natural symmetries in some nets beyond simple graph-

theoretic ones. Related examples are graphical formalisms representing reduction of

λ-calculi (Lamping 1990; Gonthier et al. 1992) and process graphs in Yoshida (1994).
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p q

Fig. 2. A correspondence

(v) The set of arrows in a category gives p-sets. Each arrow is considered as a process

having two handles with no symmetries.

(vi) Finally, we give a somewhat abstract, yet basic, example: the set of all pairs of form

〈n, G〉, where n is a natural number considered as a finite set {0, 1, . . . , n − 1} (with

0 = 6), and G is a permutation group on n, gives a p-set. For convenience, we

assume that if 〈n, G〉 and 〈n, G′〉 are isomorphic as group actions (cf. Definition 3.5

(iii)), then we take only one. The resulting p-set is denoted ω. Notice the exact image

of any process in any p-set can be found in ω. It has a substructure ωfull by taking

all and only 〈n, G〉 such that G is the group of all permutations on n.

In many senses, a p-set can be considered as a generalisation of a set: instead of a

collection of elements, we have a collection of processes, where each process is inherently

equipped with its own ‘interface structure’, that is, its handles and symmetries. This

interface structure captures what has been accomplished by names in the name-based

theory, that is, the place of connection and interaction of computing agents.

Discussion 4.3. (On size) We can relax two restrictions on size from Definition 4.1. First,

we may as well take the number of handles to be a set of any size. Second, the collection

of processes themselves may form a proper class (such is the case when, for example, we

regard a locally small category as a p-set). With these two extensions, we can still develop

the theory in this section without any change, even though we shall stick to the present

simple framework, which will be enough for many applications.

4.2. Correspondence and p-relations

Our study of algebra of (non-rooted) process sets starts from a basic way of relating two

processes, called correspondence.

Definition 4.4.

(i) A correspondence is a triple 〈p1, δ, p2〉 in which δ is an injective partial function

fromH(p1) toH(p2) (see Figure 2). The domain of 〈p, δ, q〉, written dom(〈p, δ, q〉),
is p and its codomain, written cod(〈p, δ, q〉), is q. The inverse of a correspondence

〈p, δ, q〉, written 〈p, δ, q〉−1, is 〈q, δ−1, p〉.
(ii) A correspondence 〈p, δ, q〉 is surjective (respectively, total) if δ is surjective (re-

spectively, total). It is symmetry preserving when, for each ρ ∈ S(p), there is some

ρ′ ∈ S(q) such that δ ◦ ρ = ρ′ ◦ δ. It is symmetry reflecting if its inverse is symmetry
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q rp

rp

Fig. 3. Composition of correspondences

preserving. A correspondence that is surjective and symmetry preserving is often

written with the symbols f, g, . . ..

(iii) We say 〈p, δ, q〉 and 〈p, δ′, q〉 are equivalent, written δ ∼ δ′, if, for some

ρ ∈ S(p) and ρ′ ∈ S(q), we have ρ′ ◦ δ ◦ ρ = δ′.
(iv) Given 〈p, δ1, q〉 and 〈p, δ2, q〉, we write 〈p, δ1, q〉 6 〈p, δ2, q〉 when δ1 ⊂ δ2.

(v) Let 〈p, δ1, q〉 and 〈q, δ2, r〉 be correspondences. Then their composition is another

correspondence 〈p, δ2 ◦ δ1, r〉 (see Figure 3).

By abuse of notation, we often write δ, δ′, . . . for correspondences. In this case, we write

δ for the component injective partial function of δ. We note the following proposition.

Proposition 4.5.

(i) If δ1 : p → q and δ2 : q → r are both surjective (symmetry preserving or symmetry

reflecting), then δ2◦δ1 is again surjective (symmetry preserving, or symmetry reflecting,

respectively).

(ii) If δ1 ∼ δ2, then δ1 is surjective (total, symmetry preserving or symmetry reflecting,

respectively) iff δ2 is also.

(iii) Write idp for the identity correspondence on p. Then δ ∼ idp iff δ is total, surjective

and symmetry preserving/reflecting.

We may regard correspondences as an analogue of tuples in the present setting: then their

collections form what may be regarded as relations in the present setting.

Definition 4.6.

(i) (p-relation) A p-relation R from P1 to P2 is a set of correspondences with domains in

P1 and codomains in P2 such that if δ ∈ R and δ′ ∼ δ, then δ′ ∈ R again. We write

pRδq to mean p is related to q in R by δ.

(ii) (Composition) Given R1 from P to Q and R2 from Q to R, their composition R2 ◦R1

is a p-relation from P to R given as: { δ | for some δ1 ∈ R1 and δ2 ∈ R2 such that

dom(δ2) = cod(δ1) we have δ > δ2 ◦ δ1, δ1 > δ−1
2 ◦ δ, and δ2 > δ ◦ δ−1

1 }.
(iii) (Product, identity, equivalence) The product of P1 and P2, written P1 × P2, is the set

of all correspondences between P1 and P2. The identity p-relation on P is the set of

all symmetries (as correspondences) on processes of P, written IDP. A p-relation R
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on P (that is, from P to P) is reflexive if IDP ⊂ R, transitive if R ◦ R ⊂ R, and

symmetric if R−1 = R. If the three hold together, R is an equivalence p-relation.

Observe that we can take the union, intersection, and inverse of a family of p-relations

just as we manipulate set-theoretic relations. The composition in Definition 4.6 (ii) says

that, in relational composition, we arbitrarily connect those handles of processes not

touched in the component connections. As we shall see later, this is the exact counterpart

of relational composition of compatible relations in the name-based theory in the present

setting. By the definition, we can write any correspondence in <2 ◦ <1 as (δ2 ◦ δ1) ] δ′,
where ] is the disjoint union. Using this, we can readily check that ◦ is associative. Finally,

because any p-relation is closed under symmetries on both sides, ID acts as the left and

right identity. Significant examples of p-relations are given in Section 4.5.

One remark concerning the presentation of p-relations should be made. As can be seen

from the definition, the basic building block of a p-relation is a correspondence modulo

∼, which we shall call an abstract correspondence, rather than a concrete correspondence.

Moreover, it is an abstract correspondence that faithfully captures a single geometric

situation of connection between two processes. However, abstract correspondences are

sometimes more difficult to handle than the concrete ones. For example, composition of

two abstract correspondences may not form another (single) abstract correspondence. To

see this, given p[h], q[i1, i2], and r[j] (here [h] etc. shows the handles a process owns)

with S(q) = {(i1i2
i2i1

)
,
(
i1i2
i1i2

)}. Now, if we compose {〈p, {h 7→ i1}, q〉, 〈p, {h 7→ i2}, q〉}
and {〈q, {i1 7→ j}, r〉, 〈q, {i2 7→ j}, r〉}, both being abstract correspondences, we get

{〈p, {h 7→ j}, q〉, 〈p, 6, q〉}, which is the union of two abstract correspondences.

However, to view a p-relation as an aggregate of abstract correspondences will often be

useful for a conceptual understanding of the various notions in the subsequent technical

development.

Discussion 4.7. Concerning the relational composition, it is worth noting that the fol-

lowing simpler way of composing relations, where we take straightforward elementwise

composition

R2 ◦′ R2
def
= {δ2 ◦ δ1 | δ1 ∈ R1 ∧ δ2 ∈ R2 ∧ dom(δ2) = cod(δ1)} (3)

does not yield the counterpart of the relational composition in the name-based theory (this

corrects our erroneous statement in Honda (1995a), which says the contrary). Nevertheless,

the composition in (3) above induces a coherent relational theory, and for some important

classes of p-relations these two notions coincide (cf. Proposition 4.10 (i)).

4.3. P-maps

In this section we introduce some p-relations that act as functions in the present setting.

Definition 4.8. (p-map) A p-map is a p-relation R such that: (1) R contains, for each

process, say p, in the source, a correspondence whose domain is p, (2) If δ, δ′ ∈ R and,

moreover, their domain coincides, then δ ∼ δ′, and (3) δ ∈ R implies δ is surjective and

symmetry preserving. A p-map whose inverse is also a p-map is called an isomorphism.
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A partial p-map is a p-relation that satisfies (2) and (3) of the above, but not necssarily

(1). Both partial and total p-maps are ranged over by F, G, etc.

Note that a p-map consists of a collection of abstract correspondences, one for each

process in the domain. Note also our definition of isomorphisms is stronger than bijec-

tive p-maps: each component injection should become a symmetry-preserving/reflecting

bijection. Clearly, identities are isomorphisms in this sense. Some examples of p-maps

follow.

Examples 4.9. (p-maps)

(i) Between sets (seen as p-sets), p-maps are precisely set-theoretic functions. Also, there

is a unique p-map from 6 to each p-set. Similarly, there is a unique p-map from

each p-set to I .

(ii) There is a unique p-map from any p-set to ω such that each component correspon-

dence is bijective, symmetry-preserving and reflecting. If we take ωfull, we again

have a unique injective p-map from each process structure such that each component

correspondence is bijective but may not be symmetry reflecting.

(iii) A functor is not only a p-relation but is also a p-map, even if most p-maps between

categories are not functors.

Other prominent examples of p-maps are operations on processes in graphical formalisms

such as proof nets, see Section 4.5. The basic properties of p-maps and isomorphisms

follow.

Proposition 4.10.

(i) Given two p-maps composable as p-relations, their composition is again a p-map.

Moreover, in this case the composition coincides with the relational composition

given by Equation (3) in Discussion 4.7.

(ii) Let I be an isomorphism. Then I is bijective on processes. If 〈p, δ, q〉 ∈ I, then δ

is also bijective. Moreover, S(p) and S(q) are isomorphic in the following way:

S(q) = δ · S(p) · δ−1. (4)

Conversely, P and Q are isomorphic iff there is a bijection between P and Q such

that, for each pair 〈p, q〉, there is a bijection δ on handles for which Equation (4)

holds.

Proof. For (i), the only non-trivial part is the uniqueness modulo ∼. Suppose δ′2 ◦ δ′1
and δ2 ◦ δ1 are in composed p-maps that share the same domain. By definition, δ1 ∼ δ′1,

hence (the domains coincide and) δ2 ∼ δ′2, hence we can write δ′1 = ρ2 ◦ δ1 ◦ ρ1 and

δ′2 = π3 ◦ δ1 ◦ π2, where ρ1,2 and π1,2 are symmetries of the respective processes. We now

calculate (using the symmetry preservation)

δ′2 ◦ δ′1 def
= π3 ◦ δ2 ◦ π2 ◦ ρ2 ◦ δ1 ◦ ρ1

= π3 ◦ π′3 ◦ δ2 ◦ δ1 ◦ ρ1 ∼ δ2 ◦ δ1
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where πi are appropriate symmetries, and hence we are done. The simpler presentation

of the composition follows because if δ 6 δ′ and δ′ is surjective, then δ = δ′. (ii) is

immediate.

Thus we have the categories for the theory of name-free processes.

Definition 4.11. PS denotes the category of p-sets and p-maps, while PSrel denotes the

category of p-sets and p-relations.

In Section 5 we shall show that PS (respectively, PSrel) is categorically equivalent

to RPS (respectively, RPSrel). In particular, this means that PS is also a topos with

infinitary products, which ensures our understanding of the theory of p-set as an analogue

of set theory. Other basic facts on PS include: categorical isomorphisms are precisely

isomorphisms in the sense of Definition 4.8; epimorphisms are p-maps that cover the

whole set of processes in the target; and monomorphisms are those that are injective on

processes and, moreover, each component correspondence is surjective.

4.4. Products, quotient and algebra

The analogue of the constructions in Definition 2.9 looks like the following in the present

setting. They offer fundamental strata for algebraic manipulation of non-rooted processes.

They again correspond to respective categorical counterpart in PS, see Appendix A.

Note that, in particular, this means the constructions are unique up to isomorphism.

It also indicates that the operation of the product is commutative and associative up

to isomorphism. Below we write im(δ) (respectively, pre(δ)) for the image (respectively,

pre-image) of δ as a partial function.

Definition 4.12.

(i) (Product) Define a p-set P×Q by the following data: the set of processes are given

by representative elements of the quotient set P×Q/ ∼, handles of each 〈p, δ, q〉 in

the set are given by (H(p)\im(δ−1))] δ ] (H(q)\im(δ)), and the symmetries are given

by {〈ρ1, ρ2〉 | ρ−1
2 ◦ δ ◦ ρ1 = δ, ρ1 ∈ S(p1) ∧ ρ2 ∈ S(p2)}, where 〈ρ1, ρ2〉 acts as

〈ρ1, ρ2〉(h1) = ρ1(h1) (h1 ∈ H(p)\pre(δ))

〈ρ1, ρ2〉(h1 7→ h2) = ρ1(h1) 7→ ρ2(h2).

〈ρ1, ρ2〉(h2) = ρ2(h2) (h2 ∈ H(q)\im(δ).

We call P×Q the product of P and Q.

(ii) (Quotient) Let ∼ be an equivalence p-relation. Define H(p) �∼ as {h ∈ H(p) |
p ∼δ p ⇒ h ∈ im(δ)}. Then the quotient of P by ∼, written H(p)/ ∼, is given

by the representative elements of the quotient set of P by ∼, for each of which,

say p, we assign handles using H(p) �∼ (taken in P) and assign symmetries using

{δ � (H(p) �∼) | p ∼δ p}, that is, we take the restriction of reflexive correspondences

to H(p)|R.

While the constructions in Definition 4.12 may look more complex than the corresponding

ones for rooted processes, they are actually quite simple geometrically. We first consider
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Fig. 4. A correspondence as a process

how a correspondence becomes a process in (i). Figure 4 describes a singleton correspon-

dence from p, which has five handles, to q, which has three. This is viewed as a process

which has: (1) four handles unconnected in p, (2) one handle as the result of the identifica-

tion, and (3) two handles left unconnected in q, so in total seven handles, as numbered in

Figure 4. A permutation on the new handles is a symmetry precisely when a combination

of a symmetry of p and that of q together leaves this whole object unchanged (in the

present case this means each symmetry should be identity on the respective connected

handle).
In the quotient construction in (ii), we are taking the part of handles of an arbitrary

representative process of each equivalence class, which is the image of all connections to

the process. Symmetries are given by all correspondences acting on that part. Both are

invariant (up to conjugation) regardless of the choice of processes. Because an equivalence

is reflexive, they include all original symmetries. In both (i) and (ii), the degenerate case,

that is when the relevant p-sets are just sets, describes precisely the set-theoretic product

and quotient. This also clarifies how the present theory generalises set-theoretic notions by

incorporating additional information for its ‘elements’. Note how this construction offers

an alternative understanding of the constructions in Definition 4.12.

As in the name-based theory, products and quotients play a basic role in the theoretical

treatment of processes: the former in the context of algebraic operations and the latter

in the context of equational reasoning. Below we write
∏

16i6n P for the repeated product

P1 × P2 × . . .× Pn.

Definition 4.13.

(i) An operation from {Pi}16i6n to P is a p-map from
∏

16i6n Pi to P. If Pi = P for each

i, then it is an n-ary operation on P.

(ii) Similarly, a partial operation from {Pi}16i6n is a partial p-map from
∏

i Pi to P. Again,

if Pi = P for each i, we say it is an n-ary partial operation on P.

Operations induce an algebra in the same way as in algebra over sets. Such an alge-

bra would be called p-algebras. Understanding the concrete content of this ‘operation’

elucidates the nature of such algebras, as well as that of their name-based counterpart.

Consider a binary operation, say � : P2 → P. In such an operation, we specify two

processes from P together with the way the handles of these processes should be con-

nected. Then � determines how this composition results in a new process of P, with each

handle of that process inherited from the original processes. If � is a partial operation,

then what we have is the situation where, for some ways of connecting processes, the

composition is not allowed (by being undefined). Thus partial operations can preclude
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Fig. 5. Proof nets: atoms and composition

certain configurations from being formed, which is the essence of typed composition of

processes in comparison with untyped ones (Honda 1996).

Finally, we observe that the key attributes of the present relational theory, including

the fact that PS becomes a topos, comes from certain algebraic properties of partial

injections between concrete permutation groups, which can be concisely axiomatised.

Such an axiomatic account helps us understand at what points the present theory enriches

the theory of sets.

4.5. Example

In this subsection we show how proof nets (Girard 1987) induce p-sets and associated

constructions. We also mention other known examples of p-sets at the end of the section.

For simplicity, we restrict our attention to the the multiplicative fragment of proof nets,

and do not consider types (which can be easily incorporated by using partial p-maps).

The construction makes it possible to articulate precisely the algebra and dynamics of

nets. The presentation follows that of Lafont (Lafont 1995).

Examples 4.14. Proof nets are constructed inductively, starting from atoms and composing

two nets. Figure 5 (1) gives atoms, where edges are considered as handles (of processes).

We assume the last atom, which is called a wire (cf. Example 2.11), has the full symmetries;

for the others we assume only trivial symmetries (that is, the identities). The incorporation

of the wire as an atom is important in order to clarify the algebraic status of the nets. In

(2) of Figure 5, we schematically depict how two processes get composed. Note that the

operation is ‘composition with hiding’, that is, the connected ends are no longer interfaces

to the outside. We assume that the composed nets own symmetries induced by obvious

geometric symmetries. It is easy to verify that these operations define p-maps, so that we

now have a p-algebra on the set of nets.

Building on the algebra, the dynamics is given by the closure of the rule in Figure 6

under the operation.

Finally, we observe that the equality on proof nets induced by the normalisation

procedure induces a quotient p-set that inherits the original algebraic operations. The

quotient adds symmetries (by definition), but does not drop any handles. Because a net
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Fig. 6. Proof nets: dynamics

always has a normal form, a congruence class corresponds essentially to a normal form

of all the nets that eventually reduce to it. One interesting question would be whether

such a normal form has no fewer symmetries than any net in the equivalence class or not

(this can be called the symmetry theorem for proof nets). Categorical and other semantics

of proof nets also induce such quotient constructions.

We can similarly formalise the dynamics and algebras of various graphical formalisms

representing the reduction in λ-calculus (Lamping 1990; Gonthier et al. 1992). Geometric

presentations of π-calculi, including those of its combinatory versions, as found in Mil-

ner (1994), Parrow (1993) and Yoshida (1994), can also be reformulated in the present

framework. In the latter examples, the composition of graphs becomes open, that is, the

original handles are inherited in the resulting process even after their connection. As a

different example, the composition of arrows in any category is a partial binary operation,

similarly n-ary functors are n-ary operations on categories as p-sets. Also, a quotient in

a category is a quotient in the present sense. To understand categorical constructions

in this way is still a long way from being able to explain the general significance of

these constructions; however, it does offer a basic viewpoint when categories are used for

representing semantics of interacting processes, for example as in game-based semantics

(Abramsky et al. 1994; Hyland and Ong 1994).

5. From symmetries to nameless processes and back

5.1. Translations

In this section we establish the following main result of the present paper: that the

name-based theory and name-less theory are essentially equivalent.

Theorem 5.1. (Main Theorem: Equivalence) RPS and PS are categorically equivalent.

Similarly, RPSrel and PSrel are categorically equivalent.

We establish the theorem as follows. First, in this subsection, we present translations of one

theory into the other, in both directions. These translations offer concrete ways of moving

between a name-based theory and the corresponding name-less one. As illustration, we

present two significant examples of the translation. One is the name-free presentation of

the essential π-calculus in Section 2.3, while the other is the name-based presentation of

the fragment of proof nets in Section 4.5. Finally, we establish Theorem 5.1, by showing
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that those translations result in objects, relations and maps mediated by isomorphisms.

Throughout this section we fix some N.

We start with a formulation of the mutual translation at the level of objects. Let us first

go back to Proposition 3.4, where we proved that a symmetry presentation of a rooted

p-set maintains all essential information of the original structure, up to isomorphism.

However, we already know that such a presentation is nothing but a p-set.

Proposition 5.2. Suppose α is a symmetry presentation of some rooted p-set, that is, a

family {sym(Pi)}i∈I where I is the equivalence classes by
N∼ and Pi ∈ i for each i. Then this

defines a p-set, with the following data:

(i) Processes are given by I ,

(ii) Handles are given by H(i) =FN(Pi), and

(iii) Symmetries are given by S(i) = sym(Pi).

Moreover, we have α↔ β if and only if α ' β.

Proof. The ‘only if’ direction of the last statement follows from Proposition 4.10 (ii).

The others are straightforward.

Taken with Proposition 3.4, this shows that we always get isomorphic p-sets from isomor-

phic rooted p-sets by taking any of latter’s symmetry presentations. We will now illustrate

the translation with some simple examples; more complex examples are discussed in the

next subsection.

(i) Take any set as a rooted p-set, cf. Example 2.3 (i). Then each of its orbits (cf.

Definition 3.5 (ii)) is a singleton, so its symmetry presentation is itself, which is

indeed a p-set.

(ii) TakeN as a p-set. It has a single orbit, its element having only one name. Therefore

its symmetry presentation is nothing but 1, as given in Example 4.2 (ii), up to

isomorphism.

(iii) Next take {〈a, b〉|a 6= b, a, b ∈ N}, which again has a single orbit. One can easily

see that its symmetry presentation is 2.

(iv) Take Fin(N). This has an infinite number of orbits (an orbit for each finite cardinal-

ity), and the symmetries are full. Thus it exactly corresponds to ωfull.

Next we show how a p-set can be translated into the corresponding rooted p-set.

Definition 5.3. Given a p-set P, we define a rooted p-set by:

(i) Rooted processes: all pairs of form 〈p, Ψ〉 where p ∈ P and Ψ is an injection from

H(p) to N.

(ii) Operations: [σ] for each permutation σ onN given by 〈p, Ψ〉[ρ]
def
= 〈p, ρ ◦Ψ〉, and

FN(·) defined by FN(〈p, Ψ〉) def
= im(Ψ).

Next define ≈ so that 〈p, Ψ〉 ≈ 〈p, Ψ′〉 ⇔ Ψ′ = Ψ ◦ s for some s ∈ S(p). Then ≈ is a

congruence (a compatible equivalence), and we set [[P]]
def
= {〈p, Ψ〉}/ ≈, the quotient given

as in Definition 2.9 (iii).

In the above definition, ≈ assigns the necessary symmetries on the resulting quotient.

It is easy to check that ≈ does define a congruence, so that the quotient is a rooted p-set
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again. The map [[P]] acts on p-sets in the following way: [[X]] ' X for any set X, [[1]] 'N
(the latter seen as a rooted p-set following Example 2.3 (ii)), [[2]] ' {〈a, b〉|a 6= b}. These

examples suggest the function [[ ·]] does give the inverse of the translation of rooted p-sets

into their symmetry presentations, up to isomorphism.

We now move to the mapping at the level of morphisms. While it is enough to show

the construction for p-maps to establish Theorem 5.1, it is no more difficult to introduce

the translation at the level of general p-relations, which we give below.

Definition 5.4. (Relational mappings)

(i) Given R : P → P′, we define R◦ as the set of correspondences from 〈〈P〉〉 to 〈〈P′〉〉
generated by

〈P , Q〉 ∈ R ⇒ 〈p, π ◦ idFN(P )∩FN(Q) ◦ ρ−1, q〉 ∈ R◦,
where p = [P ]N∼ and q = [Q]N∼ , assuming that, from the

N∼-equivalence classes of P

and Q, 〈〈·〉〉 selects, respectively, sym(P [ρ]) and sym(Q[π]) as symmetry presentations.

(ii) Given R : P1 → P2, we define R? as the relation from [[P1]] to [[P2]] generated by

〈p, δ, q〉 ∈ R ∧ δ = Ψ−1
2 ◦Ψ1 ⇒ 〈[〈p, Ψ1〉]≈, [〈q, Ψ2〉]≈〉 ∈ R?,

where Ψ1 :H(p)→N Ψ2 :H(q)→N are injections.

In (i), we can easily check that a pair 〈P , Q〉 and its name variant 〈P [δ], Q[δ]〉 always

result in the identical abstract correspondence (observe that a tuple would generate

more than one correspondences if symmetries of P and Q are non-trivial: however, these

correspondences are always mutually equivalent). In (ii), we generate the tuples by labelling

each (non-rooted) process so that the coinciding names give the original correspondence

precisely. Notice that two equivalent correspondences necessarily give rise to the same set

of tuples. Thus it generates all name variants from a single abstract correspondence. It is

worthwhile at this stage to look at a couple of concrete examples of the translations.

5.2. Examples of translations

To illustrate how the translations work, we give two substantial examples in this sub-

section. First we show a translation of the essential π-calculus in Example 2.11 into the

corresponding nameless form. Following Definition 5.3, we start by taking the symmetry

presentation of involved rooted processes.

Examples 5.5. (The essential π-calculus: a nameless presentation) In Figure 7 we present

a presentation of the essential π-calculus in the name-less format. (1) gives a symmetry

presentation of atomic agents, while (2) and (3) show two operations by which we generate

a set of (hyper) graphs starting from those atomic agents. Here 0 denotes the empty graph.

Filled circles give handles (corresponding to free names in the original presentation), which

we may call open edges, while unfilled circles are not counted as handled (corresponding to

bound names), which we may call closed edges. Notice that, when performing composition

in (2), the collapsed edges are still open in the resulting configuration. It is only via the

hiding operation in (3), which is to be considered as an operation of type 1 × P→P
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Fig. 7. Essential π-calculus: atoms and composition
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Fig. 8. Essential π-calculus: dynamics

where P is a set of generated graphs, that an open edge gets closed. Since only open

edges are handles, these operations only mention open edges. For these composed graphs

to become symmetry presentations, we need to consider those symmetries induced by the

structural congruence in Example 2.11. Because they are (hyper) graphs, the equations

in (i), (ii) and (iii) of Examples 2.11 already hold, and similarly for the first equation of

(iv). Other equations should be explicitly stated – their graphical presentations are easy

to draw and hence are omitted. We can then capture the dynamics of the operation by

the p-relation generated by Rule (1) of Figure 8. Notice how the geometric content of the

dynamics is made clear in this presentation. (2) shows the dynamics corresponding to the

usual π-calculus in Equation (2) of Example 2.11 (assuming b in the equation is not in

FN(P ) and omitting obvious correspondences).

Other interesting examples of the translation of the name-based constructions into the

name-less ones can be found when we translate the synchronisation trees in Example 2.10

into their nameless counterpart. In particular, if we take the synchronisation trees of

the π-calculus modulo, say, the weak bisimilarity following Section 2.3, we obtain an

explicit representation of new name generation and reception as nameless correspondences,
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exposing some aspects of name passing interaction in a geometric form. This structure

has a further interest in that there is a certain simplification in the case of functional

computation that induces categories of games studied in games semantics (Abramsky et

al. 1994; Hyland and Ong 1994) – see Honda and Yoshida (1997) for an example of a

reverse translation.

As an example of the translation in the other direction, we show how the multiplicative

fragment of proof nets in Example 4.14 can be given a name-based presentation. The

result is a precise syntactic representation of proof nets, which we can use to reason about

their equalities etc. in a tractable way. For the translation, we use equations from Berry

and Boudol’s Chemical Abstract Machine (Berry and Boudol 1990) in the form given in

Milner (1990).

Examples 5.6. (Proof nets, the name-based presentation) In the following translation, we

first introduce terms that are the result of assigning names to a (non-rooted) p-set that

arises as a free algebra generated from the (non-rooted) atoms and operations in Example

4.14 (so we translate nameless ‘terms’ to name-based terms). We then quotient those terms

by the equations, which gives us the necessary abstraction, including symmetries. Terms

are given as follows:

P ::= ⊗(abc) | ℘(abc) | P ◦ Q | 0 | [a = b]

where we assume names in each of ⊗(abc), ℘(abc) and [a = b] are all pairwise distinct. The

set of free names for each term,FN(P ), is given byFN(⊗(abc)) =FN(℘(abc)) = {a, b, c},
FN([a = b]) = {a, b}, FN(0) = 6, and FN(P ◦ Q) = (FN(P ) ∪ FN(Q))\(FN(P ) ∩
FN(Q)). Terms are then considered modulo α-conversion ≡α, which is the congruence

generated from

P ◦ Q ≡α P [

(
ãc̃

c̃ã

)
] ◦ Q[

(
ãc̃

c̃ã

)
]

where {ã} ⊂ FN(P ) ∩FN(Q), and names in c̃ are all fresh. Names in FN(P ) ∩FN(Q)

are bound in P ◦ Q. Renaming operations, then, act syntactically, avoiding the capture

of names using ≡α. These data give a rooted process structure. We then further quotient

these terms by the congruence on terms (which by definition includes ≡α) generated by

(i) P ◦0 ≡ P , P ◦Q ≡ Q◦P , and (P ◦Q)◦R ≡ P ◦(Q◦R) whenFN(P )∩FN(Q)∩FN(R) =

6.

(ii) [a = b] ≡ [b = a] and P ◦ [a = b] ≡ P [
(
ab
ba

)
] when a ∈ FN(P ) and b 6∈ FN(P ).

We observe the last equation in (ii) gives the case when one side of a wire is connected

to an edge of a net; since we simply recover the original net, the equation follows. This

shows that the name-based presentation makes some of the implicit algebraic features

in the name-less presentation explicit. Also notice that, as in this case, renaming and

symmetries play a fundamental role in the definition. Finally, the dynamics is derived

from the compatible closure of

⊗(abc) ◦℘(aef) −→ [b = f] ◦ [c = e]

where we take the expressions modulo ≡.
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The name-based presentation enables us to do precise algebraic manipulation of pro-

cesses, for which we show a few examples. First, the following equation is easy to derive:

[a = b] ◦ [b = c] ◦ [c = a] ≡ [a = b] ◦ [b = a].

Observe that the right-hand side cannot be made simpler. This corresponds to the cyclic

wire discussed in Lafont (1995). Using this, we have

⊗(abc) ◦℘(abc) ≡ ⊗(abc) ◦℘(ab′c′) ◦ [b = b′] ◦ [c = c′] −→ [b = b′] ◦ [b′ = b],

which is another example discussed in Lafont (1995). As another interesting property, we

can show

P ◦ [a = b] ≡ P [

(
ab

ba

)
] ◦ [a = b].

Indeed, if neither a nor b occurs free in P , there is nothing to prove: if only a (or b)

occurs, we use the last rule of (iii) twice. If both occur free, we can use ≡α.

5.3. Proof of Theorem 5.1

We now prove Theorem 5.1, showing that these translations offer bi-directional bridges

between two theories. To do this, we should show that in each way of composing these

translations, we always return to the structure that is isomorphic to the original one. For

a smooth technical development, we fix a function 〈〈 · 〉〉 that, given any rooted p-set, gives

its distinguished symmetry presentation. We then have the following proposition.

Proposition 5.7.

(i) For any P and Q, P ' Q if and only if [[P]] ' [[Q]].

(ii) For any rooted p-set P, we have [[〈〈P〉〉]] ' P.

(iii) For any p-set P, we have 〈〈[[P]]〉〉 ' P.

Proof. For the ‘only if’ direction of (i), we translate the isomorphism in (non-rooted)

p-sets into that of rooted ones, which is easy. (ii) is trivial. For (iii), given p-sets P and

〈〈[[P]]〉〉, we first note that, by [[·]], each p ∈ P is translated into a single orbit of rooted

processes that includes P = [〈Ψ, p〉]≈, for which S(p) and sym(P ) are conjugate by Ψ.

Then 〈〈·〉〉 maps this to sym(P ′), where P and P ′ are in the same orbit, which is, hence,

conjugately isomorphic to sym(P ). Thus we have now constructed a bijection between

processes that induces a conjugate isomorphism for each pair. Finally, these together

imply the ‘if ’ direction of (i).

We observe the following key property of the translation in Definition 5.4.

Proposition 5.8. For a compatible relation R, we have F2 ◦R◦? ◦F1 = R where F1,2 are

isomorphisms. Similarly, for a p-relation R, we have R2 ◦R?◦ ◦R1 = R where R1,2 are

isomorphisms.

Proof. The mediating isomorphisms are given by those that relate the object-level

translations in Proposition 5.7. The statement is then verified by first showing that ( · )◦
and ( · )? inversely relate the compatible closure of a single tuple, on the one hand, and
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an abstract correspondence on the other hand, up to isomorphisms. The second stage is

then to verify that both maps are continuous with respect to the arbitrary join of (p-)

relations. The first part is easy when you notice that the composition with isomorphisms

can be presented by the composition given in Equation (3) of Discussion 4.7, while the

second part is direct from the definition of the translations.

We can now conclude the proof of Theorem 5.1 by the following results.

Proposition 5.9.

(i) If F is a homomorphism (of rooted p-sets), then F◦ is a p-map.

(ii) If F is a p-map, then F? is a homomorphism.

(iii) Given homomorphisms F1 : A → B and F2 : B → C , we have (F2 ◦F1)◦ =

F◦2 ◦F◦1. Similarly, given p-maps F1 : P→ Q and F2 : P→ Q, we have (F2 ◦ F1)? =

F?
2 ◦ F?

1.

The proof of the proposition, which is mechanical, is relegated to Appendix B. This in

particular shows that the three defining conditions for p-maps, cf. Definition 4.8, precisely

give rise to the properties of its translation being functions. The simpler presentation of

the composition in the case of p-maps, cf. Proposition 4.10 (i), makes the verification of

the translation of the categorical composition easier than the general case of p-relations.

This gives the equivalence between RPS and PS. We then note, as shown in Appendix

A, that RPSrel and PSrel are the canonical relational universes corresponding to RPS and

PS, respectively, so that the equivalence between the latter two immediately leads to the

equivalence between RPSrel and PSrel . We have thus established Theorem 5.1, answering

the question we posed at the end of Section 3.

6. Rooted and non-rooted presentations at work

6.1. Relating two forms of parallel composition

In this section we give a small application of the present theory. In both theory and

practice, we can find several basic ways of composing processes in parallel. Amongst

others, two forms are widely used: one is based on ‘closed’ connection (for example, proof

nets), while the other is based on ‘open’ connection (for example, π-calculus). Now, it has

often been argued that each is representable in the other, that is, ‘private’ connection can

be represented by the combination of an ‘open’ connection and hiding, cf. Milner (1980),

and, conversely, we can represent the latter by the former by introducing ‘sharing’ agents,

cf. Kahn and MacQueen (1977) and Bawden (1986). However, there do not seem to be

any formal statements on such embeddings, and the suggested ideas always pertain to

concrete formalisms.

One difficulty in such discussions is that there is no common mathematical framework

in which we can even formulate the problem with sufficient generality, for example,

without referring to specific formalisms. Clearly we need to start by placing these two

forms of parallel composition in a general setting of algebra over processes, then relate

them via certain mappings. In the following we apply the theories we have developed in

the preceding sections just for this purpose. As we shall soon discuss, the problem can
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be elucidated using a geometric presentation, with a specific form of wires to represent

sharing. This aspect is best understood in the context of nameless processes, where the

idea of connection is exposed in an essential way. At the same time, the precise form of

embeddings and its correctness are best addressed in the name-based formalism, especially

the algebraic calculations that we need for the establishment of the result.

Before going into technical discussions, we will illustrate the basic ideas of the trans-

lations. First, the embedding of ‘closed connection’ into ‘open connection’ can already

be found in Milner (1980), and is relatively straightforward – we represent a closed

connection of P and Q, say P ◦ Q, by (νA)(P |Q), where (νA) is the name hiding (with

A = FN(P ) ∩FN(Q)) and | is the open composition. For the other direction, which is

a little more complex, we use an agent with three handles, written 3, for decomposing a

shared handle by open connection into a sharing agent together with closed connection

(see Kahn and MacQueen (1977), Bawden (1986) and Gardner (1995) for related ideas).

As an example, assume we have two (nameless) processes, one called M (with two handles)

and another called D (with three handles), for which we assume trivial symmetries and

that they share one handle by open composition (so the composed handle is still open to

further connection). The situation is depicted in the upper part of the following figure.

This composition is transformed into closed compositions as given in the lower part of

the figure.

Here the agent 3 is intended to equate the three places it is connected to, so that its

presence as in the second picture above is the same thing as collapsing three handles into

one, which is the situation in the first picture. This suggests that 3 induces non-trivial

symmetries. In the following we will formalise this construction. In the spirit of Section 5,

we shall often be guided by geometric insights gained by the name-less presentation, while

the exact description and reasoning will be done using the name-based presentation.

6.2. Two abstract algebras

We first define a general notion of ‘process algebra with open connections’. We incorporate

the wires that we have already encountered in the essential π-calculus. As we shall discuss
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soon, the incorporation of wires does not lose us any generality, since any process algebra

with open connection can be conservatively extended with wires.

Definition 6.1. (Basic open P-algebra) A basic open P-algebra, which we will often simply

call an o-algebra, is a rooted process set with some operations and a compatible relation

called dynamics, which is given as follows. First we define the set of terms by

P ::= αnii (a1 . . . ani) | P |Q | (νa)P | [a = b] | [a] | 0

where we assume the set {αnii } of atoms with arity ni, ai 6= aj for i 6= j. Terms of form

α(ã) as well as [a = b] and [a] are called atomic processes, which are together denoted

by α(ã), α′(b̃), . . .. The treatment of (νa)P and α-equality is the same as in Example 2.11.

Terms are always understood modulo ≡α. Next we introduce the relation ≡ over terms,

which is a congruence based on the rules and axioms of Example 2.11 (i). . . (v), possibly

with additional axioms of the form αi(ãi) ≡ αi(σ(ãi)) where σ is a non-trivial permutation

over ãi (additional axioms are for generating symmetries on atoms). The dynamics is a

binary compatible relation closed under the two operations given above, understood to

be defined on the quotient set, which should be generated by rules each of the form∏
i αi(ã) −→ R, where

∏
i αi(ãi) is the parallel composition of a finite number of atomic

processes by |, with conditions:

(i) FN(
∏

i αi(ãi)) ⊃ FN(R).

(ii)
∏

i αi(ãi) is connected, that is, for any non-trivial partition I1, I2 of I , there exists i ∈ I1

and j ∈ I2 such that FN(αi(ãi)) ∩FN(αj(ãj)) 6=6.

(iii)
∏

i αi(ãi) at least includes two atomic processes.

An o-algebra is often denoted by AP where P is the set of processes, that is, terms

modulo ≡. P ,Q, R, . . . denote either processes or terms, depending on contexts. A wireless

o-algebra is an o-algebra that may not have atoms [a = b] and [a] and that are without

the equations in (iv) and (v) of Examples 2.11, with the same notion of dynamics. To

emphasise, we often use the term a wired o-algebra to denote a standard o-algebra.

It is easy to see that any wireless o-algebra can be conservatively extended to a wired

one, in the sense that there is a base monomorphism going from the original algebra

to the extended one and that preserves and reflects all operations and dynamics. From

another perspective, wired o-algebras are a special case of wireless ones, if we extend the

latter by closing the present class under all possible quotienting. Another notable point

is that, if a formalism is equipped with non-injective substitutions, this can be precisely

captured by having wires, as in Example 2.11.

Examples 6.2.

(i) Immediately, the essential π-calculus in Example 2.11 is a (wired) o-algebra.

(ii) π-calculi without summation are (wireless) o-algebras, considering prefixed agents as

atoms in the former. The standard reduction relation gives dynamics. In the case

of the combinatory versions of π-calculi studied in Honda and Yoshida (1994a),

Honda and Yoshida (1994b), Yoshida (1998), and Raja and Shymasundar (1994),

their atomic agents precisely correspond to those in the present sense. We can further
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conservatively extend them to wired o-algebras, with the substitution represented as

in Example 2.11.

(iii) For calculi with summations, we can view each sum as an atomic process (thus

neglecting + as an operation), then the resulting structure is an o-algebra. Notice

that in this case the number of atoms is infinite. CCS, π-calculi with summation, and

ACP are thus o-algebras, taking τ actions as their dynamics. In addition, various

parallel programming languages often have, or can be reformulated to be, such

structures.

Some basic properties of wires in open connection are worth noting.

Proposition 6.3.

(i) [a = b]|[b = c] = [a = c]|[b = c] = [a = b]|[a = c].

(ii) If a ∈ FN(P ) and b 6∈ FN(P ), then (νa)(P |[a = b]) = P [
(
ab
ba

)
].

(iii) Let P1, P2, R be processes in o-algebra with wires, and suppose P1|P2 −→ R. Suppose

a ∈ FN(P1)\FN(P2) and b ∈ FN(P2)\FN(P1), and let c be fresh. Then we have

P1|P2[

(
ba

ab

)
] −→ (νb)(R | [a = b]).

Proof. (i) and (ii) are easy. Using (ii), we first note that

P1|P2[

(
ba

ab

)
] ≡ (νb)(P1 | P2 | [a = b]).

Then we apply the compatibility of −→ to get (iii).

We next introduce a class of algebras based on closed connection.

Definition 6.4. (Basic closed P-algebra) A basic closed P-algebra, which we will often just

call a c-algebra, is given by the following data. Terms are given by the grammar

P ::= αni (a1 . . . an) | P ◦ Q | 3(a1a2a3) | 2(a1a2) | 1(a) | 0
where we assume we are given the set {αnii } of atoms (ni of αnii is called its arity). In each

of αni (a1 . . . an), 3(a1a2a3), 2(a1a2) and 1(a), we assume ai 6= aj if i 6= j. The operation ◦
induces the binding as in Example 5.6. Processes of the form α(ã), including 1(a), 2(ab) and

3(abc), are called atomic processes. We quotient the terms by the congruence generated by

Example 5.6 (i) and (ii), together with:

(i) 1(a) ◦ 1(a) = 0, 1(a) ◦ 3(abc) = 3(bee′) ◦ 3(ee′c) = 2(bc), and 3(abc) ◦ 3(cde) =

3(adc) ◦ 3(cbe).

(ii) P ◦ 3(abc) = P [σ] ◦ 3(abc) where σ is a permutation on {a, b, c} ∩FN(P ).

(iii) P ◦ 2(ab) = P [
(
ab
ba

)
] where b 6∈ FN(P ),

as well as the additional axioms for atomic processes as in Definition 6.1. The dynamics is a

binary relation on the quotient processes generated by rules of the form
∏

i αi(ãi) −→ R,

where
∏

i αi(ãi) is the ◦-composition of a finite number of atomic processes, for which

we assume the same conditions as given in (i) (ii) (iii) of Definition 6.1. We use the term

wireless c-algebra to mean the algebra that may not have all of 1(a), 2(ab) and 3(abc),
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Fig. 10. c-algebra

and, accordingly, is without Equations (i). . . (iii) above. Again, to emphasise, we use the

expression wired c-algebras to denote standard c-algebras.

The key idea in the above construction is, as we noted at the beginning, to have an

agent that ‘equates three locations’, denoted 3(abc). 2(ab) equates two locations and acts

as a usual wire: 1(a), on the other hand, equates none and functions as the name restrictor

in the present setting. We shall see later how these constructs can faithfully embed the

operations of o-algebras in a coherent way. Figure 10 (1) gives the name-less presentation

of four basic atoms of a c-algebra, assuming the full symmetries in the case of 3 and 2.

The equations in (i) are given in the name-free form in Figure 10 (2), where we omit the

evident correspondences.

As in the case of o-algebras, we can always conservatively extend a wireless c-algebra

into a wired one. We observe, however, that having the agent 3(abc) means the original

possibly confluent reduction may become non-confluent, so that the property of dynamics

as a whole may change by its incorporation (even though the original agents have exactly

the same dynamics). Proof nets, interaction nets, and varied net-based presentations of

λ-calculi give c-algebras when augmented with 3 and 1. It is also notable that any

set-theoretic Ω-algebra can be presented using a partial counterpart of c-algebra.

We are now ready to state our main result of the present section. Below, and in the

rest of the paper, we use the expression base isomorphisms to denote isomorphisms at the

level of rooted process sets, to avoid confusion with the ones at the algebraic level.

Theorem 6.5. There is a bijection between the class of o-algebras and the class of c-

algebras such that there exists a base isomorphism between each pair of related algebras

that, moreover, preserves and reflects dynamics.

The theorem says there is a faithful embedding of one class of algebras in another

in both directions. Since the embeddings accompany base isomorphisms, we have that

the free names and symmetries of a source process and its translation coincide. Because

signatures are different, we cannot have the isomorphism at the level of algebras: with this

inevitable limitation, the above theorem states the strongest possible embedding result that

faithfully preserves all possible properties of processes, including the locality of dynamics.

Also note that the two embeddings are easily extended to the case in which the source

algebras are taken as their wireless counterpart, because such structures can always be

conservatively extended to wired ones, as we have already noted.
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6.3. The embedding and its correctness

In the rest of this section, we validate Theorem 6.5 by introducing the necessary construc-

tions one by one. We detail the proof for the translation from o-algebras to c-algebras,

which is more difficult, and briefly discuss the case of the translation in the other direc-

tion. Both the geometric insights from the nameless presentation and the precise algebraic

manipulation possible in the name-based presentation are indispensable. The notion of

symmetries plays a key role for the establishment of the result.

We start from a basic lemma.

Lemma 6.6. Given a c-algebra, write P |′Q for: P {c1 . . . cn/a1 . . . an} ◦ ∏i 3(ciaibi) ◦
Q{b1 . . . bn/a1 . . . an}, where {a1, . . . , an} = FN(P ) ∩ FN(Q) and bi, ci are all fresh and

distinct (thus P |′Q is determined uniquely up to ≡α). Also write (ν ′a)P for P if a 6∈ FN(P ),

else 1(a) ◦ P . Then we have:

(i) FN(P |′Q) =FN(P ) ∪FN(Q) and FN((ν ′a)P ) =FN(P )\{a}.
(ii) P |′0 ≡ P , P |′Q ≡ Q|′P , and (P |′Q)|′R ≡ P |′(Q|′R).

(iii) P ◦ Q ≡ (
∏

1(ai)) ◦ (P |′Q) where {a1 . . . an} =FN(P ) ∩FN(Q).

(iv) (ν ′ab)P ≡ (ν ′ba)P and (ν ′a)P |′Q ≡ (ν ′a)(P |′Q) if a 6∈ FN(Q).

(v) 2(ab)|′2(ab) ≡ 2(ab).

(vi) 2(ab)|′2(bc) ≡ 2(ac)|′2(bc) ≡ 2(bc)|′2(ab) ≡ 3(abc).

(vii) 2(ab)|′P ≡ 2(ab)|′P [
(
ab
ba

)
].

(viii) 1(a)|′P ≡ P when a ∈ FN(P ).

Proof. See Appendix B.

Notice that the operation |′ in the above Lemma gives the translation of open composition

into closed composition using 3, which we discussed in Section 6.1. Using this derived

operation, we can now introduce the embedding.

Definition 6.7. Given an o-algebra AP, let its set of atoms be {αnii } and its dynamics −→.

Then we form an algebra A′P′ by the following rules:

(i) Terms are formed from {αi} together with 1, 2, 3. We write P |′Q for the expression we

defined in Lemma 6.6. Then we define the function [[P ]] from terms of AP to those

of A′P′ , both taken modulo ≡α, as follows:

— [[0]] = 0, [[αi(ã)]] = αi(ã) where αi(ã) is not of form [a = b] or [a], [[[a = b]]] = 2(ab)

and [[[a]]] = 1(a).

— [[P |Q]] = [[P ]]|′[[Q]]. If a ∈ FN(P ), [[(νa)P ]] = 1(a) ◦ [[P ]]. Otherwise, [[(νa)P ]] =

[[P ]].

(ii) The equations are those of the c-algebras. The resulting quotient is written P′.
(iii) Dynamics is generated by, whenever

∏
αi −→ P is a rule in AP, we set [[

∏
αi]] −→

[[P ]].

Proposition 6.8.

(i) [[P [σ]]] ≡α [[P ]][σ].

(ii) FN(P ) =FN([[P ]]).
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(iii) A′P′ of Definition 6.7 (i) is a c-algebra.

Proof. (i) is mechanical. (ii) is by Lemma 6.6 (i) and by 1(a) ◦ P = FN(P )\{a} when

a ∈ FN(P ). For (iii) we only have to check dynamics. But it is easy to see that if
∏
αi

conforms to (i)(ii)(iii) of 6.1, then [[
∏
αi]] is again connected and cannot be a singleton,

and satisfies the free name condition, which comes from (i) of the present Proposition.

We now verify the key property of the mapping. In the proof, we use the translation in

the reverse direction.

Proposition 6.9. P ≡ Q iff [[P ]] ≡ [[Q]].

Proof. The ‘only if’ case is by rule induction, using Lemma 6.6. For the ‘if ’ direction,

we introduce the following translation from P′ to P.

— 0?
def
= 0, αi(ã)

? def
= αi(ã) (except αi is among 1, 2, 3), 3(abc)?

def
= [a = b][b = c], 2(ab)?

def
=

[a = b], and [[1(a)]]
def
= [a].

— (P ◦ Q)?
def
= (νFN(P ) ∩FN(Q))(P |Q).

We now show:

(i) (P [σ])? ≡α P ?[σ], FN(P ) =FN(P?), and P ≡ Q ⇒ P? ≡ Q?
(ii) [[P ]]? ≡ P
from which the statement is immediate. For (i), the first two are easy. For the embedding

of ≡, we show a few insightful cases. Below, we will often simply write P = Q for P ≡ Q.

For associativity assume FN(P ) ∩ FN(Q) ∩ FN(R) = 6, and ã = FN(P ) ∩ FN(Q)

and b̃ = (FN(P ) ∪FN(Q)) ∩FN(R). Notice that {ã} ∩ {b̃} =6. Then (P ◦ Q ◦ R)?
def
=

(νb̃)((νã)((P |Q)?)|R?) = (νãb̃)(P?|Q?|R?), and similarly for the right-hand side. For the

equations in Definition 6.4, we have

(1(a) ◦ 3(abc))?
def
= (νa)([a]|[a = b]|[b = c]) = (νa)[b = c] = [b = c]

(3(aef) ◦ 3(efb))?
def
= (νef)([a = e]|[e = f]|[e = f]|[f = b])

= (νef)([a = e]|[e = f]|[f = b])

= (νe)[a = b] = 2(ab)?.

We now give the name-free account of the second series of equations in Figure 11 (omitting

obvious correspondences). Notice how this analyses (or co-analyses) the original equation.

Finally, by Proposition 6.3 (i), we have P ◦ 2(ab) = P [
(
ab
ba

)
] with b 6∈ FN(P ), thus we
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know (i) holds. (ii) is by induction: the base cases are trivial and the inductive step is

verified by the following calculation:

[[(P |Q)]]?
def
= ([[P ]]{b̃/ã} ◦ [[Q]]{c̃/ã} ◦∏ 3(biciai))

?

= (νb̃c̃)(([[P ]]{b̃/ã})?|([[Q]]{c̃/ã})?|∏([bi = ai]|[ci = ai]))

= [[P ]]{b̃/ã}? = P |Q.
[[(νa)P ]]?

def
= 1(a) ◦ [[P ]]? = (νa)([a]|[[P ]]?) = (νa)(P ).

(in the latter we have assumed a ∈ FN(P ) – if not the result is trivial). This concludes

the proof.

Corollary 6.10. sym(P ) = sym([[P ]]) where P is considered modulo ≡.

Proof. The statement is equivalent to P [σ] ≡ P iff [[P [σ]]] ≡ [[P ]].

Proposition 6.11. P −→ Q iff [[P ]] −→ [[Q]].

Proof. Suppose P −→ Q. Then we can write P ≡ C[P0] and Q ≡ C[Q0] such that

P0 −→ Q0 is one of the rules. Thus [[P0]] −→ [[Q0]]. Observing that [[C[R]]] can be

written C ′[[[R]]] regardless of R, we know [[C[P0]]] −→ [[C[Q0]]], but by Proposition 6.9

this implies [[P ]] −→ [[Q]], as required. For the converse, we first show P −→ Q in the

c-algebra implies P? −→ Q?, using the same reasoning. Moreover, again using Proposition

6.9, we have [[−→]]? =−→, which shows [[P ]] −→ [[Q]] implies P −→ Q, and hence we are

done.

Because the above proof also shows that [[P ]] −→ P ′ implies P ′ ≡ [[Q]] for some Q, and

the proof of Proposition 6.9 presents the inverse translation ( · )? and shows in effect that

it satisfies the required properties, we have now established Theorem 6.5.

7. Discussion

7.1. Substitutions

One notion that often accompanies name-based formalisms, such as π-calculus, is sub-

stitution, or non-injective renaming. We first notice that semantic or syntactic structures

closed under name substitutions are by definition already closed under injective renaming,

thus inducing a rooted p-set. We also observe that the status of substitution and that

of injective renaming are quite different. First of all, name substitution is in general an

irreversible operation, in the sense that there is no inverse operation that cancels the effect

of the operation. Related to this is the fact that when we perform a name substitution on

a given process, we cannot tell what the symmetries of the resulting process will be just by

looking at those of the original process (for example, given ab|ac|ef|gh, the substitution

{e/g} increases a symmetry, while {e/h} does not). These points indicate that the substitu-

tion is not as semantically neutral as renaming: it is best thought to be a specific kind of

algebraic operation. Related to this is the fact that in many formalisms, substitutions are
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partial operations, as in typed π-calculi (Milner 1992; Pierce and Sangiorgi 1993; Honda

1996).

There are a few ways to incorporate the non-injective renaming in the name-free theory.

One of the ways, which is pioneered in the treatment of the π-calculus in action structures

(Milner 1993) and which we have used in preceding sections, is to incorporate wires, or

links, into the formalism, see Example 2.11 in Section 2.3. A drawback of this formulation

is that the original syntactic formalism, such as the π-calculus, is in general based on

direct substitution rather than such linking agents: we need to reformulate the notion just

as we did in Example 2.11. At the same time, even at the term level, the reformulation

does preserve the original algebra and dynamics modulo added equations, so we do not

lose any essential information. A merit of this construction is that, because the approach

represents substitutions just as standard process-theoretic operations (in the sense of the

present theories), it can be easily extended to a more refined setting, a representative

case being when processes are typed and thus we cannot collapse certain handles, cf.

Milner (1992), Pierce and Sangiorgi (1993) and Honda (1996). It would also be interesting

to see how the same scheme may apply to functional formalisms with name substitutions,

such as Pitts–Stark’s ν-calculus (Stark 1995).

7.2. Comparisons and further issues

Our work can be considered as offering a basic building block for diverse process theories.

As such, it relates to various proposals for the general semantic framework of concurrent

and interactive computing. We give some comparative discussions below.

(i) As we mentioned in the Introduction, Milner’s Action Structures, initially presented in

Milner (1993) and studied by him and by other researchers, cf. Mifsud (1996), Mifsud

et al. (1996) and Gardner (1995), gives a semantic framework for general concurrent

computation using a class of strict symmetric monoidal categories. Here arrows denote

both name-based and name-free processes (called actions), the tensor gives their name-

based ‘open’ composition (in the sense of Section 5), while arrow composition gives

‘closed’ parallel composition. The dynamics is treated by interaction rules inducing a

preorder in each homset, which is given a refined treatment by specifying ‘control’,

which determines the timing of activation of some processes. The resulting structures

are called control structures, and, through their study, many topics have arisen that

are closely related to the present work. In particular, a notion of interface of

processes (called surface) was studied in Mifsud et al. (1996) and Mifsud (1996), and

further generalised by Milner (Milner 1995b). An important aspect of the study in

Milner (1995b) is that, in the generalised framework, names can be composite entities

(like an address in the street), as long as certain algebraic conditions are satisfied.

It would be interesting to see whether the structure of an interface thus formulated

has a corresponding nameless representation as in Section 4. Another closely related

study in this context is Gardner’s work on a name-free reformulation of certain

syntactic concrete structures called action calculi (Gardner 1995), which reduces the

open connection of tensors into the closed connection of arrow composition. She

used a version of wires that are closely related to those we used in Section 6. Also,
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in Milner (1994), a graphical presentation of the π-calculus called π-nets is given

with the motivation of elucidating geometric aspects of the π-calculus. Among other

constructions, a ‘torpedo’ in π-nets corresponds to an n-ary sharing agent in terms of

our algebraic framework in Section 6, combined with information on data flow.

(ii) Abramsky et al. (1995) presents a framework of typed semantics for concurrent

processes called interaction categories, where the representation of processes is based

on nameless presentation, setting each process to be an arrow in a certain category.

Using synchronisation trees as the representation of processes, categorical structures of

various process specifications are studied, including trace-based ones and more refined

ones with liveness conditions. The abstraction of name-based processes as arrows in

interaction categories is to some extent parallel to the translation in Section 6, even

though the structures of nameless processes as such are not articulated. It would

be interesting to know how some notions elucidated in the present theory, such as

symmetries, can have significance in the fine categorical structures studied in their

framework. In Abramsky (1996), Abramsky also studied a class of categories based

on algebraic abstraction of Girard’s geometry of interaction (Girard 1988; Girard

1989; Girard 1995b), in which arrows are again essentially a nameless presentation

of interacting processes, particularly in those instances that are studied in so-called

game-based semantics (Abramsky et al. 1994; Hyland and Ong 1994) (see also

our discussions after Example 5.5). It is worth clarifying how various categorical

constructions can be re-interpreted in the framework of the ‘algebra of processes’

in the sense of Section 4. Related to this, Danos and Regnier (Danos and Regnier

1993; Danos and Regnier 1993) have studied algebras of information flow for the

dynamics of λ-calculus seen as interacting processes in a graphical format. Their

work uses injective partial maps as carriers of their algebra, even though the meaning

of their partial maps differs from ours (since theirs represent data on the abstract

information flow associated with each interface rather than correspondence between

interfaces). In spite of this difference, we may reformulate their constructions using the

framework of Section 4, which would offer a useful analysis of a basic setting of their

constructions.

(iii) Berry and Boudol (Berry and Boudol 1990) introduced chemical abstract machines

based on the metaphor of chemical solutions, to capture various concurrent computa-

tions. The essential idea is to regard processes as forming a multiset, or equivalently a

commutative monoid with a unit, which is often utilised in an equational form given

in Milner (1990). While the present theory captures the case when the processes may

not form a multiset, their constructions give the fundamental machinery in turning

many graphical formalisms into the name-based format, as we saw in Section 6.

(iv) Meseguer (Meseguer 1992) has studied conditional concurrent term rewriting systems,

which extend the standard algebraic semantics to non-deterministic computation.

Meseguer (1992) shows that diverse examples, such as Turing Machines, λ-calculi and

actors, can be treated in the framework. In particular, in the context of the embed-

ding of actors, Meseguer (1992) discusses how names are treated in his framework,

including the generation of new names. It would be possible to shed another light on
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the role of names in computation through such a representation. At the same time,

notions such as ‘wires’ may not be easily treatable in his framework.

Finally, in the footnote to Section 2.2, we referred to a work by Fraenkel and Mostowsky

early in this century that gives a construction of a set-theoretic universe starting from

atoms and their permutation (cf., for example, Kunen (1980, Chapter IV, Exercise 24)

or Jech (1977, Section 5)), communicated to us by Andrew Pitts at the proof reading

stage. Their sets with permutation are basic instances of rooted p-sets, and their set-

theoretic operations conform to those of rooted p-sets given in Section 2. The construction

indicates how a general set-theoretic universe can be formed purely starting from atoms

– or, in the present context, names – and their permutation. Pitts and Gabbay (1999)

used this construction for an analysis of binding, regarding the binding as a renaming-

closed operation (as we did in Section 2 of the present paper). As we discussed in the

Introduction, sets with renaming and their algebra naturally arise from the usage of

names and identifiers in theories of computing, most notably in theories of concurrent

processes where names are used to represent points of interaction, which is a vital element

of interacting processes. Combined with the alternative geometric theory developed in

Section 4, we hope that our constructions and results in the present work can be used

as cornerstones of the further study of the syntax and semantics of interacting processes,

and, more broadly, of general computing systems.

Appendix A. Basic properties of RPS and RPSrel

A.1. RPS is a topos

In this Appendix we give a basic categorical characterisation of RPS and RPSrel by

showing that it is a topos and that RPSrel is its corresponding relational universe. While

the development is rather technical, it is important to know that the present construction

induces a topos, since it means that the universe is automatically equipped with all

set-theoretic operations following the standard constructions. It is notable that all our

concrete operations in Section 2 conform to standard categorical constructions (which, in

particular, ensure the uniqueness of these constructions up to isomorphisms, as well as

that they all work with each other consistently). The technical development is also closely

related to our treatment of symmetries in Section 3.

We start from an alternative characterisation of named process sets. Given a topological

group G, a continuous G-set is a set X equipped with a continuous G-action on X: that is,

assuming the discrete topology on X, we want the action SN ×X → X to be continuous.

Proposition 1. View SN as a topological group induced by the subspace topology of∏
a∈NNa (the latter given the usual product topology) and let X be a continuous SN-set.

Then we have:

(i) If X is a continuous SN-set, any x ∈ X has the minimum finite support, where a

support of x is A ⊂ N such that ∀a ∈ A.σ(a) = a implies σ · x = x. Then X is a

named process set, taking the minimum support as FN(x).

(ii) Any rooted process set is a continuous SN-set with respect to the induced group

action.
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Proof. The characterisation by the minimum support property is well known (see, for

example, Stark (1995)), so we only show the outline here. The key observation is that a

base for open sets containing idN in SN can be given as the collection of sets each of form

OA
def
= {σ | ∀a ∈ A.σ(a) = a} for a finite subset of A, which is easy using the construction

of the product topology. Now continuity is the same thing as the isotropy group of each

x being open (notice the inverse image of x by the action consists of the isotropy group

and its conjugates, so if the isotropy group is open, then this image is also: conversely if

the image is open, then take its intersection with SN × {x}, which is clearly open). But

the isotropy group surely contains idN, and, by the closure under multiplication, if OA
and OB are in the isotropy group, then so is OA∩B , thus showing (i). Conversely if P has a

finite support A, then the isotropy group is nothing but OA, which is by definition open.

By a well-known result in topos theory, cf. Mac Lane and Moerdijk (1992, III-9), we

immediately get the following corollary.

Corollary 1. RPS is a topos.

By the corollary we have (a categorical analogue of) all basic set-like constructions in RPS.

Another significance of the corollary is that it leads to the standard construction of RPSrel
from RPS. The following is from Freyd and Scedrov (1990) and McLarty (1992). Let C

be a topos. Then we can define a ‘relation’ in C as a monic pair. If f1 : R → A, f2 : R → B

and g1 : S → B, g2 : S → C are two such ‘relations’ (so R and S objectify relations), their

composition is given by:

(1) first take the pullback of f2 and g1, say e1 : T0 → R and e2 : T0 → S ,

(2) next let h be the universal arrow h = 〈f1 ◦ e1, f2 ◦ e2〉 : T0 → A× C , and

(3) epi-mono decompose h, say as q : T0 → T and i : T → A × C , the latter being the

smallest subobject of h and then q is automatically epi.

Then π1 ◦ i : T → A and π2 ◦ i : T → C give the required composition. In topos (and

more generally in regular categories) this operation is associative and diagonals give

identities: hence we have a ‘category of relations’ from the topos, on whose homsets we

can define relational operations based on the structures in C . Following op.cit., we write

such a universe Rel(C). Conversely, given such a category E of relations as above with

a suitable set of operations such as join and meet as well as inverse, an arrow R can

be considered to be a ‘map’ if it satisfies R ◦ R• ⊂ id and R• ◦ R ⊃ id where R• is the

operation corresponding to the relational inverse. Such ‘maps’ compose, so we obtain a

category Map(R). We can now state the following proposition.

Proposition 2. Map(RPSrel) ' RPS and Rel(RPS) ' RPSrel , where ' denotes categorical

equivalence.

The verification of the second part is easy by forming the relational universe from RPS

by the standard method outlined above, which in turn gives the first part by the general

result in (Freyd and Scedrov 1990). Thus we can concentrate on RPS for our algebraic

study of these two universes.

Finally, observe that PS is also a topos by the equivalence between PS and RPS. We
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can then apply the same construction to PS, obtaining PSrel in the end, so that we now

know PSrel gives the relational counterpart of PS.

A.2. Concrete constructions in RPS and PS

Here we show that the concrete constructions of products and quotients in Section 2 do

give corresponding categorical notions in RPS.

Proposition 3.

(i) P× Q (is a process set and) is a product of P and Q in RPS.

(ii) Given a compatible relation R seen as a rooted p-set as in Definition 2.9 (ii), there is

a monic pair F : R → P and G : R → Q in RPS such that F−1G = R. Conversely,

any monic pair gives rise to a compatible relation in this way, up to isomorphism.

(iii) Suppose ∼ is a congruence on P. Then if F,G :∼→ P is a monic pair tabulating ∼,

there is a unique epimorphism H : P → P/ ∼ for which F,G are projections in a

pullback of H along itself.

Proof. (i) is easy. For (ii), noticing monics are injective homomorphisms in RPS, we

know there is a monic from R to P × Q. Using this, we construct a monic pair that

does satisfy the properties. Finally, for (iii), without loss of generality we can take the

canonical projection from R (via its inclusion into P × P as above) as the monic pair.

Then H qua function is given as the natural map induced by R. Thus H : Q 7→ [P ]∼
iff Q ∼ P , but this means, by Proposition 2.8, that FN([P ]∼) should be given as⋂{Q | Q ∼ P }, and similarly for [P ]∼[σ]. Thus if we show P/ ∼ is a rooted process set,

we are done. Let A =
⋂{FN(P ′)|P ′ ∈ [P ]R}. Suppose σ1 � A = σ2 � A. Then we get

P [σ1] = P
∏

16i6n[
(
σ2(xi)σ1(bi)
σ1(bi)σ2(xi)

)
] ◦ [σ2] ◦ ∏16i6n[

(
bixi
xibi

)
] where {bi} = FN(P )\A and

{xi} are taken fresh such that σ2(xi) 6∈ σ1(FN(P )). If, now, {bi} is not empty, there is a

name b1 that is not inFN(P ′) for some P ′ ∈ [P ]R. By compatibility and because we have

P ′[
(
bixi
xibi

)
] = P ′ for such P ′, we have

P [ρ1] R P ′
∏

16i6n[
(
σ2(xi)σ1(bi)
σ1(bi)σ2(xi)

)
] ◦ [σ2] ◦ ∏16i6n[

(
bixi
xibi

)
]

= P ′
∏

26i6n[
(
σ2(xi)σ1(bi)
σ1(bi)σ2(xi)

)
] ◦ [σ2] ◦ ∏26i6n[

(
bixi
xibi

)
].

Repeating the procedure for each bi and using transitivity of R, we finally get that

P [σ1]RP [σ2], that is, [P ]R[σ1] = [P ]R[σ2], as a consequence of σ1 � A = σ2 � A.

Therefore, if for any a ∈ ⋂{FN(P ′)|P ′ ∈ [P ]R}, σ(a) = a holds, then the above discussions

show [P ]R[σ] = [P ]R[idN] = [P ]R. Regarding the third equation, it holds since

FN([P ]R[σ]) =
⋂{σ(FN(P ′))|P ′ ∈ [P ]R} = σ(FN([P ]R)),

and hence we are done.

The above result easily leads to the observation that the concrete constructions on

(non-rooted) p-sets given in Definition 4.12 give their categorical counterparts in PS. By

Theorem 5.1, it is enough to show that translations result in isomorphic structures. We only

sketch one example (for the case of products) of the translation in the following. Given

P and Q, [[P]] × [[Q]] includes all possible ‘connections’ between name-based processes,
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while rooted processes in [[P×Q]] are precisely all possible connections among name-less

processes whose handles are labelled by names. Since the fact that they are isomorphic to

each other is evident, we are done.

Appendix B. Proofs

B.1. Proof of Proposition 3.7

The ‘only if’ direction is easy. We will prove the ‘if ’ direction. We first suppose X ′ and

Y ′ are transitive G-sets, and for some x′ ∈ X ′ and y′ ∈ Y ′, we have Gx = g · Gy · g−1.

It is standard that if y′′ = gy′ ∈ Y ′, then Gy′′ = g · Gy · g−1 = Gx, so that, for any

g, we have Ggx′ = Ggy′′ by Definition 3.5 (iii). Now construct a function F such that

F(gx′) = g(Fx′) and F(x′) = y′′ for any g. This is well-defined, because if g1x
′ = g2x

′,
then g1x

′ = (g2g
−1
1 g1)x′, so g2g

−1
1 ∈ Gg1x′ = Gg1y′′ , and therefore F(g1x

′) = g1y
′′ =

(g2g
−1
1 g1)(y′′) = g2y

′′. So F defines a map, and indeed a morphism. But if F(g1x
′) = F(g2x

′),
then g2g

−1
1 ∈ Gg1y′′ = Gg1x′ , so g1x

′ = (g2g
−1
1 g1)(x′) = g2x

′, and therefore F is bijective,

and hence an isomorphism. Returning to the Proposition above, since each orbit is

transitive, the bijective correspondence in the statement of the above proposition induces

isomorphisms between respective orbits, which together form an isomorphism as a whole,

and hence we are done.

B.2. Proof of Proposition 5.9

For (i), let F be a homomorphism. It is obvious that F◦ sends one process to a unique

process, and that it is defined everywhere on the domain. We show each component of

F◦ is symmetry preserving. In doing so, the surjectivity in each correspondence as well as

the uniqueness of correspondences modulo ∼ will also be established. By definition and

also by Proposition 2.8, if F◦ : sym(P ) 7→f sym(Q) (here sym(P ) denotes a translated non-

rooted process making the underlying symmetries explicit, and similarly in the following),

we can write, for fixed Q and π : FN(Q) → N such that F(P ) = Q[π], f = τ ◦ π−1 ◦ ρ
where ρ ∈ sym(P ) and τ ∈ sym(Q). We now show that we do not need to mention ρ

above, and can write f = τ ◦ π−1 instead. Because of Proposition 2.8 again, we have

π = ρ ◦ π ◦ (π−1 ◦ ρ−1 ◦ π). But F(P [ρ−1]) = F(P ), and hence Q[π][ρ•] = Q[π], therefore

Q[ρ−1 ◦ π] = Q[π][π−1 ◦ ρ−1] = Q, so ρ−1 ◦ π is a symmetry of Q. Let the inverse of this

symmetry (which is by definition also a symmetry) be τ′. Now using the above equation,

we have τ ◦ π−1 ◦ ρ = τ ◦ τ′ ◦ π−1, and hence we have the result, as required. This also

shows uniqueness modulo ∼, and surjectivity is now obvious, and hence we are done.

For (ii), suppose F is a p-map. Let F : p 7→f′ q. Then by symmetry preservation of f′, we

can write f′ = ρi ◦f for a fixed f, with ρi ∈ S(q). We now show F? does define a function.

Since we already know it is compatible, this shows F? is a homomorphism. Regarding F?

as a map on equivalence classes, for each injection Ψ0 :H(p)→N we have its image by

F?, {〈Ψi, q〉}, such that F? : 〈Ψ0, p〉 7→ 〈Ψi, q〉 and Ψ−1
i ◦ Ψ0 = ρi ◦ f. Using surjectivity,

we can then write Ψi = Ψ0 ◦ f−1 ◦ ρ−1
i , which shows 〈Ψi, q〉 ≈ 〈Ψj , q〉. Moreover, if, for

τ ∈ S(p) we have F? : 〈Ψ0◦τ, p〉 7→ 〈Ψ, q〉, then by symmetry preservation we can permute

τ to the symmetry of q, and hence we are done.
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Finally, for (iii), observe that, from (i) above, whenever F◦ : sym(P ) 7→f sym(Q) we

have F : P 7→ Q[f•]. First F◦2 ◦ F◦1 ⊂ (F2 ◦ F1)◦ is easy because, if F◦1 : sym(P ) 7→f sym(Q)

F◦2 : sym(Q) 7→g sym(R) and F◦2 ◦ F◦1 : sym(P ) 7→g◦f sym(R), then F1 : P 7→ Q[f•] and F2 :

Q 7→ R[g•], which implies F2 ◦ F1 : P 7→ R[g•][f•], and therefore F2 ◦ F1 : P 7→ R[g•][f•],
that is, (F2 ◦ F1)◦ : sym(P ) 7→g◦f sym(Q), as required. To show that F◦2 ◦ F◦1 ⊃ (F2 ◦ F1)◦,
if (F2 ◦ F1)◦ : sym(P ) 7→h sym(Q), then F2 ◦ F1 : P 7→ R[h−1], and hence, for some Q′,
F1 : P 7→ Q′(= Q′[f][f−1]), which means F◦1 : sym(P ) 7→f sym(Q′[f]), as well as F2 :

Q′ 7→ R[h−1], that is F2 : Q′[f] 7→ R[h−1][f], which means F◦2 : sym(Q′[f]) 7→h◦f−1 sym(R),

but because of Proposition 2.8 we know that h = g ◦ f−1 ◦ f = g, as required. This

shows ( · )◦ commutes with the functional composition. To show the same for ( · )?, the

direction F?
2 ◦ F?

1 ⊃ (F2 ◦ F1)? is easy by using the presentation we gave in (ii) above.

We show the converse. Suppose F?
1 : 〈Ψ1, p〉≈ 7→ 〈Ψ′2, q〉≈, F?

2 : 〈Ψ′2, q〉≈ 7→ 〈Ψ′3, r〉≈, and

therefore F?
2 ◦ F?

1 : 〈Ψ1, p〉≈ 7→ 〈Ψ′3, r〉≈. Then for some Ψ2 ≈ Ψ′2 and Ψ′3 ≈ Ψ3, we have

F1 : p 7→Ψ−1
2 ◦Ψ1

q and F2 : q 7→Ψ−1
3 ◦Ψ2◦ρ q where ρ ∈ sym(q). By symmetry preservation, we

can write F2 : q 7→ρ′◦Ψ−1
3 ◦Ψ2

q, and hence by surjectivity, we know F2 ◦ F1 : p 7→ρ′◦Ψ−1
3 ◦Ψ1

r,

as required.

B.3. Proof of Lemma 6.6

(i) The proof is immediate.

(ii) For the associativity, define |′(P ,Q, R) as

P {ã′/ã} ◦ Q{b̃′/b̃} ◦ R{c̃′/c̃} ◦∏ 4(a′ib′ic′iei) ◦
∏

3(a′jb′jfj) ◦
∏

3(a′kc′kgk) ◦
∏

3(b′lc′lhl)

where 4(abcd) = 3(abe) ◦ 3(ecd) with e fresh, and ã . . . h̃ given by

{ã} =FN(P ) ∩ (FN(Q) ∪FN(R)),

{b̃} =FN(Q) ∩ (FN(P ) ∪FN(R)),

{c̃} =FN(R) ∩ (FN(P ) ∪FN(P )),

{ẽ} =FN(P ) ∩FN(Q) ∩FN(R),

{f̃} = (FN(P ) ∩FN(Q))\FN(R),

{g̃} = (FN(P ) ∩FN(R))\FN(Q),

{h̃} = (FN(Q) ∩FN(R))\FN(P ),

while a′i, b′i, c′i, . . . etc. are selected according to the above correspondence, for example,

a′i = ei{ã/ã′}, and so on. Notice that any three pairs of these agents have no common

names, so we can dispense with parentheses. It is routine to show that both sides of

the given equation are equal to |′(P ,Q, R).

(iii) We show a simple case where FN(P ) =FN(Q) = {a}. The general case is the same.

1(a) ◦ (P |′Q)
def
= 1(a) ◦ P {b/a} ◦ Q{c/a} ◦ 3(abc)

= 2(bc) ◦ P {b/a} ◦ Q{c/a}
= P {c/a} ◦ Q{c/a} ≡α P ◦ Q.

(iv) The proof is similar to (iii).
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(v) 2(ab)|′2(ab)
def
= 2(a′b′) ◦ 2(a′′b′′) ◦ 3(aa′a′′) ◦ 3(bb′b′′) = 3(ab′b′′) ◦ 3(b′b′′b) = 2(ab).

(vi) 2(ab)|′2(bc)
def
= 2(ae) ◦ 3(ebf) ◦ 2(fc) = 3(abf) ◦ 2(fc) = 3(abc).

(vii) If a, b 6∈ FN(P ), the result is trivial. If both are in FN(P ),

2(ab)|′P def
= 2(a′b′) ◦ P {a′′b′′/ab} ◦ 3(a′aa′′) ◦ 3(b′bb′′)
= P {a′′b′′/ab} ◦ 3(b′aa′′) ◦ 3(b′bb′′)
= P {a′′b′′/ab} ◦ 3(b′a′′b′′) ◦ 3(b′ab)

= P [

(
ab

ba

)
] ◦ 3(a′aa′′) ◦ 3(b′bb′′) = 2(ab)|′P [

(
ab

ba

)
].

The case where only either of a, b is in FN(P ) is simpler.

(viii) If a ∈ FN(P ), 1(a)|′P = 1(a′)◦P {a′′/a}◦3(a′aa′′) = P {a′′/a}◦2(aa′′) = P , as required.

Note that if a 6∈ FN(P ), we cannot get rid of 2(aa′′).
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