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When surface tension is included in the classical formulation of a steadily travelling
gravity wave (a Stokes wave), it is possible to obtain solutions that exhibit parasitic ripples:
small capillary waves riding on the surface of steep gravity waves. However, it is not clear
whether the singular small surface tension limit is well posed. That is, is it possible for
an appropriate travelling gravity-capillary wave to be continuously deformed to the classic
Stokes wave in the limit of vanishing surface tension? The work of Chen & Saffman (Stud.
Appl. Maths, vol. 62, issue 1, 1980, pp. 1–21) had suggested smooth continuation was
not possible, while the numerical study of Schwartz & Vanden-Broeck (J. Fluid Mech.,
vol. 95, issue 1, 1979, pp. 119–139) used an amplitude parameter that made it difficult
to understand the structure of solutions for small values of the surface tension. In this
paper we numerically explore the low surface tension limit of the steep gravity-capillary
travelling-wave problem. Our results allow for a classification of the bifurcation structure
that arises, and serve to unify a number of previous numerical studies. Crucially, we
demonstrate that different choices of solution amplitude can lead to subtle restrictions
on the continuation procedure. When wave energy is used as a continuation parameter,
solution branches can be continuously deformed to the zero surface tension limit of a
travelling Stokes wave.

Key words: capillary waves, surface gravity waves

1. Introduction

In this paper we consider the two-dimensional formulation of a travelling gravity-capillary
wave on a fluid of infinite depth. When posed in a travelling frame, the steady
non-dimensionalised problem is to determine a velocity potential, φ(x, y), which is
harmonic in a periodic domain, −1

2 � x � 1
2 and −∞ < y � η(x). On the unknown free
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surface, y = η(x), Bernoulli’s condition requires that

F2

2
|∇φ|2 + η − Bκ = const. (1.1)

Here, the Froude number, F, characterises the balance between inertia and gravity, and the
inverse Bond number, B, characterises the balance between gravity and surface tension;
with this latter effect depending on the surface curvature, κ . These non-dimensional
constants are given by

F = c/
√

gLλ and B = σ/ρgL2
λ, (1.2a,b)

where c is the wave speed, g is the gravitational constant, Lλ is the wavelength, ρ is the
fluid density and σ is the coefficient of surface tension.

Typically, a wave energy or amplitude parameter, E , is fixed and prescribes the
degree of nonlinearity. Solutions are then characterised by bifurcation curves in (B,F)
or (B,F,E )-solution space. The small surface tension limit corresponds to B → 0.

Extensive results are known for the case with B = 0 when surface tension is neglected,
and this originates from the seminal work of Stokes (1847); cf. the reviews by Okamoto &
Shõji (2001) and Toland (1996). Intuitively, we might expect that the inclusion of a small
amount of surface tension results in a small change in the profile of the pure gravity wave.
However, since the limit of B → 0 is singularly perturbed, this is not necessarily the case,
and it is known that the introduction of surface tension has a significant impact on the
existence and uniqueness of solutions, their bifurcations and their profiles.

The goal of this paper is to present a numerical study of nonlinear solutions in the
singular limit of B → 0, for which we know one solution to be the Stokes wave. We
demonstrate the numerical existence of a cohesive structure of branches of solutions
existing under this limit. Importantly this suggests that, with fixed wave energy, E , only
one of a family of solutions approaches the classical Stokes wave as B → 0.

We firstly discuss the analytical and numerical difficulties of the B → 0 limit.

1.1. Longuet-Higgins and parasitic ripples
It is well-known observationally that under the action of both gravity and surface tension,
ripples of small wavelength form on the forward face of a propagating wave. As shown
by the experimental results of Cox (1958) and Ebuchi et al. (1987) for instance, the
amplitude of these parasitic capillary ripples increases when the overall amplitude of the
wave (measured by crest to trough displacement) increases. An example of such parasitic
ripples, as photographed by Ebuchi et al. (1987), is shown in figure 1, where it is seen
that these ripples are asymmetric about the wave crest and unsteady in the frame of the
propagating wave. Note that in this paper we shall refer to solutions exhibiting parasitic
capillary ripples as those where a short wavelength and small amplitude wave is present
on what appears to be a gravity-dominated water wave.

A seminal advance in the modelling of these parasitic capillary waves arose from the
methodology of Longuet-Higgins (1963), who predicted that for small surface tension
these parasitic ripples would be exponentially small in both amplitude and wavelength. In
this simplest steady framework one assumes that the parasitic ripples are fixed to the same
travelling frame of reference as the underlying gravity wave. However, it was noted by
Perlin, Lin & Ting (1993) that these analytical predictions produced poor agreement with
both experimental wave profiles and numerical solutions of the steady nonlinear equations,
a result of asymptotic inconsistencies in his method. We shall provide a preliminary
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Parasitic gravity-capillary waves

Figure 1. Experimental picture showing parasitic ripples located near the crests of steep gravity waves from
Ebuchi, Kawamura & Toba (1987) (reproduced with permission).

discussion of these issues in § 7, in which we comment that the Longuet-Higgins
approximation can be improved through the use of exponential asymptotics.

Nevertheless, it remains an open question as to whether parasitic capillary ripples
similar to those shown in figure 1 may be found as either symmetric or asymmetric
solutions of the steady framework of (1.1). In this work we present clear numerical
evidence that steady symmetric parasitic ripples do exist within the solution space of the
classical potential framework in the B → 0 limit.

1.2. Schwartz & Vanden-Broeck and the complexity of (B,F)-space
In their seminal work Schwartz & Vanden-Broeck (1979) developed a numerical scheme
using a series truncation method to compute periodic gravity-capillary waves of the exact
nonlinear equations. Imposing symmetry at x = 0 and an amplitude condition on the
crest-to-trough displacement, they presented a preliminary classification of solutions in
(B,F)-space of types 1, 2, 3 and 4. Each type number was associated with a distinct branch
of solutions, and corresponded to the number of observed ‘dimples’ or inflexion points on
a (half) wave profile.

A reproduction of their original bifurcation diagram, which is computed at fixed
crest-to-trough amplitude, is shown in figure 2(b). Our intention in reproducing this figure
is to convince the reader that indeed the bifurcation space of the gravity-capillary problem
is certainly non-trivial, and it is difficult to observe any clear structure. We also show the
computed (Schwartz & Vanden-Broeck 1979) bifurcation curves in figure 2 alongside our
solutions of fixed energy.

One of their solutions, Schwartz & Vanden-Broeck (1979, figure 10), is of particular
interest in the context of parasitic ripples. This profile, similar to that shown in figure 3,
appears to contain small-scale capillary ripples as a perturbation to the main Stokes wave.
This is one of the types of solution that we will be expanding upon in this work. Note
in addition that the type 1 to 4 branches, as shown in their figure, have a non-trivial and
unstructured shape in the bifurcation diagram; it is not obvious if a more consistent pattern
emerges upon increasing the type number, or whether these solution curves can be taken
as B → 0. We shall explain the reason for these issues in this work.

Later, in seeking to compare new experimental data with the previous analytical
approximations of Longuet-Higgins (1963) and numerical solutions of Schwartz &
Vanden-Broeck (1979), Perlin et al. (1993) made extensive remarks on the challenges of
navigating the solution space of the full nonlinear problem, noting that ‘there is no known
method for determining the number of solutions to the numerical formulation. . . ’ (p. 618).
Indeed, they state that (p. 598),

Surprisingly little information is available on these waves of disparate scales,
presumably due to the analytical/numerical, as well as experimental, difficulties
involved. Perlin et al. (1993)
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Figure 2. Our solutions of fixed energy from § 5 are shown in (a). Panel (b) shows a reproduction of the fixed
amplitude results previously published in Schwartz & Vanden-Broeck (1979) (reproduced with permission).
These branches of fixed amplitude are shown in the (κ, μ)-plane, where the boxed type number indicates the
number of observed ‘dimples’ or inflexion points on a (half) wave profile. In (c) we show the type-11 fixed
amplitude branch.
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Figure 3. A numerical solution of (4.1a) and (4.1b) is displayed in physical (x, y)-space, with non-dimensional
parameters F = 0.4299, B = 0.002270 and energy E = 0.3804. This has been computed using the scheme
described in § 4. The periodic solution has been repeated three times.
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1.3. Chen & Saffman and the impossibility of the B → 0 limit
Nearly in parallel with the work by Schwartz & Vanden-Broeck (1979), Chen & Saffman
(1979, 1980a,b) produced a series of works where they examined the Stokes wave problem,
largely from the perspective of weakly nonlinear theory (and its numerical consequences
on the full nonlinear problem).

In Chen & Saffman (1979) they considered weakly nonlinear solutions of (1.1) in powers
of a small wave amplitude, ε. Expressing the solution, y = η(x), as a Fourier series, this
permits analytical solutions for the Fourier coefficients, An. They discovered that in fixing
the point of symmetry of the wave profile to be at x = 0, the branches of solutions in
the (κ,An)-bifurcation space (where κ = 4π2B) are discontinuous either side of the point
κ = 1/n. Due to this discontinuity and the analytical criterion, they commented (p. 204):

The gravity wave (κ = 0) is therefore a singular limit which cannot be reached smoothly
by applying the limit κ → 0 to a gravity capillary wave. Chen & Saffman (1979)

In our work we will note how this statement is misleading since their non-smoothness
is a consequence of their initial assumption of a fixed point of symmetry at x = 0. We
demonstrate this in § 6.4, noting that this is due to the presence of a symmetry shifting
bifurcation. Thus, if their enforced symmetry at x = 0 were to be relaxed, the branches of
solutions in (κ,An)-space either side of the point κ = 1/n would be continuous.

In a second work by Chen & Saffman (1980b), the numerical solution space was
explored for waves of finite amplitude. Their choice of amplitude was a linear combination
of Fourier coefficients, typically chosen to be that of the fundamental mode, A1, or the nth
mode An. Nonlinear solutions were computed. However, the resultant branches of solutions
in their bifurcation diagram did not connect, from which they concluded:

These results confirm the impossibility of going continuously from a pure capillary-
gravity wave to a gravity wave by letting κ → 0. Chen & Saffman (1980b)

We later note in § 6.2 that if the wave energy instead is fixed as an amplitude parameter
then the continuous set of solutions as B → 0, discovered within this paper, bifurcate from
solutions with fundamental mode A1 = 0. Hence, if A1 is fixed to be a non-zero constant,
as in the numerical work of Chen & Saffman (1980b), this bifurcation point would remain
undiscovered. We shall conclude that in order to achieve a continuous transition as B → 0,
the first Fourier coefficient should not be fixed.

1.4. Outline of the paper
In this work we shall consider the numerical behaviour of steady symmetric parasitic
ripples for small values of the Bond number, B. Starting in § 2, we introduce the governing
equations for the gravity-capillary wave problem, which we transform to depend on the
velocity potential, φ, alone. In § 3 the well-known linear solutions are derived. These form
a starting point for our numerical method of § 4. Solutions are presented in § 5, which we
use to demonstrate that as B → 0 for fixed energy, E , this bifurcation structure appears to
form a countably infinite number of connecting branches of solutions in the (B,F)-plane.
Each branch forms a ‘finger’ in the solution space, which is connected continuously to
the proceeding branch. These branches then accumulate in the limit of B → 0 such that
solutions are conjectured to exist in an O(1) interval in the Froude number, F. These
branches of solutions are connected at the point where they bifurcate from a wave with
smaller fundamental wavelength, resulting in numerical evidence for the B → 0 limit of
the steep gravity-capillary wave problem having a continuous set of solutions.
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This allows us to show why previous authors have failed to reveal this underlying
structure, which we comment upon in §§ 6 and 6.5. Lastly, in § 7 we comment upon
the asymptotic properties as B → 0 of our discovered solutions, and how this uncovered
structure is likely to be present in other numerical problems for small values of the Bond
number, B.

2. Mathematical formulation

Consider a two-dimensional free surface flow of an inviscid, irrotational and
incompressible fluid of infinite depth. The velocity potential, φ, is defined by u = ∇φ.
We assume that, in the lab frame, the free surface, y = η(x, t), is periodic in x with
wavelength Lλ, and moves to the right with wave speed c. We non-dimensionalise with unit
length, Lλ, and velocity, c. We consider steady travelling-wave solutions by introducing a
subflow of unit horizontal velocity in the opposite direction of wave propagation. This
negates the movement of the free surface. Then ηt = 0 = φt yields the steady governing
equations (compare with Vanden-Broeck 2010, (2.48)–(2.55) for example),

φxx + φyy = 0 for y � η, (2.1a)

φy = ηxφx at y = η, (2.1b)

F2

2
(φ2

x + φ2
y )+ y − B

ηxx

(1 + η2
x)

3/2 = 0 at y = η, (2.1c)

φy → 0 and φx → −1 as y → −∞, (2.1d)

for the travelling wave now in x ∈ [−1
2 ,

1
2 ). Thus, the system is governed by Laplace’s

equation (2.1a) within the fluid, kinematic and dynamic conditions on the free surface
(2.1b) and (2.1c), and uniform flow conditions in the deep-water limit (2.1d). The
horizontal velocity condition (2.1d), our subflow, indicates a uniform flow moving towards
the left. The spatial subscripts in (2.1) correspond to partial differentiation.

Remark on terminology: note that in the mathematical formulation above, we have
non-dimensionalised lengths by a fixed physical wavelength, Lλ, and, hence, we shall
seek solutions that are 1-periodic in the non-dimensional travelling frame. However, these
solutions may have a smaller wavelength which is less than unity. We thus define λ to be
the non-dimensional fundamental wavelength (the smallest such wavelength). Moreover,
in this work we shall refer to a wave with fundamental wavenumber k = 1/λ as a pure
k-wave. Thus, a pure k-wave has a dimensional wavelength of λLλ.

2.1. The conformal mapping to the (φ, ψ)-plane
We now formulate the governing equations (2.1) in the potential (φ, ψ)-plane, as shown
in figure 4. We assume that the free surface is located along ψ = 0, and introduce the
notation of X and Y for the fluid quantities evaluated on the free surface. Thus,

X(φ) ≡ x(φ, 0) and Y(φ) ≡ η(x(φ, 0)). (2.2a,b)

We may now obtain expressions for the surface derivative and curvature by differentiating
(2.2a,b). This yields

ηx = Yφ
Xφ

and ηxx = XφYφφ − YφXφφ
X3
φ

. (2.3a,b)
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x φ

y ψ

z (φ, ψ) = x + iy

x = x (φ, ψ)

y = y (φ, ψ)

Figure 4. The conformal mapping from (x, y) to (φ, ψ) is shown.

We now seek to rewrite the kinematic (2.1b) and dynamic (2.1c) boundary conditions on
the surface in terms of the conformal variables X and Y . First, the velocities, φx and φy,
may be inverted, yielding

φx = xφ
x2
φ + y2

φ

and φy = yφ
x2
φ + y2

φ

. (2.4a,b)

Finally, substitution of (2.4a,b) for φx and φy, (2.3a,b) for ηx and ηxx, and Y(φ) =
η(x(φ, 0)) into Bernoulli’s equation (2.1c) and setting ψ = 0 yields our governing
equation (compare with (6.12) of Vanden-Broeck 2010)

F2

2J
+ Y + B

(YφXφφ − XφYφφ)
J3/2 = 0. (2.5)

Above we have introduced the surface Jacobian, J, via

J(φ) = X2
φ + Y2

φ. (2.6)

Note that in the conformal formulation, the kinematic condition (2.1b) can be verified to
be satisfied identically once (2.3a,b) and (2.4a,b) are used on the streamline ψ = 0.

In addition to Bernoulli’s equation (2.5), in order to close the system, we require a
harmonic relationship between X and Y . Note that within the fluid, y(φ, ψ) can be written
as a Fourier series of the form

y(φ, ψ) = ψ + A0 +
∞∑

n=1

e2nπψ [An cos (2nπφ)+ Bn sin (2nπφ)] , (2.7)

where An and Bn are real-valued for all n. Indeed, the above ansatz satisfies yφφ + yψψ = 0
along with the depth condition y ∼ ψ as ψ → −∞.

We define the Hilbert transform on Y by

H [Y](φ′) = −
∫ ∞

−∞
Y(φ)
φ − φ

′ dφ, (2.8)

where the integral is of principal-value type. Then by the assumed periodicity of the
solution, this implies that

H [Y](φ′) = −
∫ 1/2

−1/2
Y(φ) cot [π(φ − φ′)] dφ. (2.9)

We can then verify that the individual Fourier modes can be related using
H [sin(2nπφ)] = cos(2nπφ) and H [cos(2nπφ)] = − sin(2nπφ). From using the
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Cauchy–Riemann relations of xφ = yψ and xψ = −yφ , we obtain the harmonic
relationships between X and Y on the free surface via

Xφ(φ) = 1 − H [Yφ(φ)] and Yφ(φ) = H [Xφ(φ)− 1]. (2.10a,b)

A choice of any one of the relations in (2.10a,b), combined with Bernoulli’s equation (2.5)
allows X and Y to be solved.

2.2. The energy constraint
In order to fully close the formulation, we shall impose an energy constraint on the
solution, which can be viewed as equivalent to a measurement of the wave amplitude.
We define the wave energy, E, to be

E = F2

2

∫ 1/2

−1/2
Y(Xφ − 1) dφ + B

∫ 1/2

−1/2
(
√

J − Xφ) dφ + 1
2

∫ 1/2

−1/2
Y2Xφ dφ, (2.11)

where the first integral on the right-hand side corresponds to the kinetic energy, the second
to the capillary potential energy and the third to the gravitational potential energy. The
derivation of (2.11) from the bulk energy is given in Appendix A.

For comparison purposes, it will be convenient for us to rescale the energy in (2.11) by
the energy of the highest (fundamental) gravity wave, Ehw. Thus, we write

E = E
Ehw

, (2.12)

where Ehw ≈ 0.00184 (to 5 decimal places) is calculated using the numerical scheme of
§ 4 applied to the pure gravity wave using n = 4096 Fourier coefficients.

The choice of how to define an amplitude or energy condition for the wave is a subtle
one. In this paper we shall comment on the following three choices of amplitude:

A =

⎧⎪⎨
⎪⎩

E [energy definition from (2.11)],
A1 [first Fourier coefficient from (2.7)],
Y(0)− Y(1/2) [crest-to-trough displacement].

(2.13)

The second choice of A1, as used in Chen & Saffman (1980b), designates the amplitude
to be the first Fourier coefficient, while the third choice of Y(0)− Y(1/2), as used by
Schwartz & Vanden-Broeck (1979), is a sensible choice to measure the physical wave
height of the fundamental Stokes wave.

Note that both definitions of amplitude, A1 and Y(0)− Y(1/2), have the problem that
strongly nonlinear waves (as measured by a lack of decay in the Fourier coefficients)
can occur, even at small amplitude values. This is particularly affected by the fact that
gravity-capillary waves may take a variety of shapes beyond the simple fundamental wave
considered by Stokes (1847). Similar difficulties were encountered by Chen & Saffman
(1979, 1980b), who chose A = A1 but commented that:

We found from experience that none of these parameters were universally useful for
describing the bifurcation phenomenon to be described in this work, and in fact we have
been unable to construct a parameter which characterized the magnitude of the wave for
all the phenomena in a satisfactory way. Chen & Saffman (1979)

It may be that using the energetic definition of amplitude with A = E is the modification
required to fix these issues; indeed within the context of our numerical investigations this
does seem to be the case in the small surface tension limit.
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3. Linear theory, Wilton ripples and type (n, m)-waves

It will be useful for us to review linear solutions in the notation of § 2.1. The results
of linear theory are found from the first two terms of a Stokes expansion in powers
of a small amplitude parameter, ε (see, e.g. Vanden-Broeck 2010, § 2.4.2). Thus, we
shall consider equations (4.1a) and (4.1b) and take X ∼ X0 + εX1 and Y ∼ Y0 + εY1.
Solving the resultant equations yields X0 = φ and Y0 = 0 at leading order. At O(ε), we
write X1 and Y1 as Fourier series and assume that the two solutions are respectively odd
and even about φ = 0. This yields the necessary equation that

∞∑
k=1

[
F2(2kπ)− 1 − (2kπ)2B

]
ak cos (2kπφ) = 0. (3.1)

In order to obtain non-trivial solutions, we require the linear dispersion relation of

2kπF2 − 1 − 4k2π2B = 0, (3.2)

and obtain X1 = ak sin(2kπφ) and Y1 = ak cos (2kπφ). Thus, the linear solution, a pure-k
wave, is approximated by

X ∼ φ + ε [ak sin(2kπφ)] and Y ∼ ε [ak cos(2kπφ)] , (3.3a,b)

to the first two orders. Substitution into the energy expression (2.12) yields

E ∼ ε2 2K2π2Ba2
k

Ehw
. (3.4)

The linear solution (3.3a,b) was assumed to satisfy the single dispersion relation (3.2)
for the kth Fourier mode only. Note that other solutions may be constructed that satisfy the
dispersion relation for more than one mode. For instance, if the modes with k = 1 and k =
n are assumed to be non-degenerate, then we require that both 2πF2 − 1 − 4π2B = 0 and
2nπF2 − 1 − 4n2π2B = 0. This yields the so-called Wilton ripples predicted by Wilton
(1915), located wherever

Bwilton = 1
4π2n

and F2
wilton = (1 + n)

2πn
, (3.5a,b)

with n ∈ Z
+. The Wilton ripples are then given by

X1 = a1 sin(2πφ)+ an sin(2nπφ) and Y1 = a1 cos(2πφ)+ an cos(2nπφ). (3.6a,b)

In the numerics of § 4, we shall often initialise the numerical continuation method with
the linear solution (3.3a,b) using a small value of εak. Crucially, since this linear solution
is invalid near points (3.5a,b), we must ensure that our initial choice lies away from the
critical numbers of Bwilton and/or Fwilton.

As introduced by Chen & Saffman (1979), linear solutions that consist of a combination
of pure n- and m-waves, and with fundamental wavelengths of λ = 1/n and 1/m,
respectively, are described as a type (n,m)-wave. Thus, under this terminology, Wilton’s
solution in (3.5a,b) is an example of a type (1, n)-wave. Our numerical results presented
in § 5 will contain solutions that are the nonlinear analogue of a type (1, n)-wave.
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4. The numerical method

In this section we describe the numerical procedure for solving Bernoulli’s equation (2.5)
and the harmonic relationship (2.10a,b) for X(φ) and Y(φ) subject to a given value of the
energy, E , from (2.11). Thus,

F2

2J
+ Y + B

(YφXφφ − XφYφφ)
J3/2 = 0, (4.1a)

Xφ(φ) = 1 − H [Yφ(φ)], (4.1b)

E = F2

2Ehw

∫ 1/2

−1/2
Y(Xφ − 1) dφ + B

Ehw

∫ 1/2

−1/2
(
√

J − Xφ) dφ + 1
2Ehw

∫ 1/2

−1/2
Y2Xφ dφ.

(4.1c)

Recall we define Ehw as the energy of the highest Stokes wave (Ehw ≈ 0.00184).
Solutions of the above problem are regarded as lying within (B,F,E )-space. We solve

these equations using Newton iteration on a truncated Fourier series using the fast Fourier
transform. The procedure is as follows.

(i) An initial guess for Y(φ) is carefully chosen using either linear theory (3.3a,b) or
from a previously computed solution (cf. § 5 for specific details).

(ii) Of the triplet (B,F,E ), we choose to fix two parameters and treat the last parameter
as an unknown.

(iii) The collocation variable, φ, is discretised using N grid points, with φk = −1/2 +
k	φ for k = 0, . . . ,N − 1 and 	φ = 1/N. We define the solution Y(φk) = Yk at
each of these points. Note that once Yk is known for all k, Xk can be calculated using
the harmonic relation (4.1b).

(iv) Combined with the unknown parameter (either B, F or E ), this yields N + 1
unknowns. Bernoulli’s equation (4.1a), evaluated at φk, provides N equations and the
system is closed with the additional energy constraint (4.1c). Newton iteration is then
used to solve the nonlinear system of equations until a certain tolerance (typically
10−11) on the norm of the residual is met.

In our numerical scheme we leverage the Fourier transform for efficient manipulation of
the solutions. In particular, note that the Hilbert transform, H , needed for the harmonic
relation (4.1b), can be evaluated via H [Y] = F−1[i · sgn(k)F [Y]], where F denotes the
Fourier transform and sgn is the signum function. Both the Fourier and inverse-Fourier
transforms are calculated with the fast Fourier transform algorithm. The derivatives of Y
are also computed in Fourier space using the relationship Y(n)(φ) = F−1[(2πik)nF [Y]].
In order to obtain the numerical results presented in § 5, we find it sufficient to use
N = 1024 mesh points. The computations are performed using a desktop computer and
individual solutions are typically computed in under a second.

In essence, our goal will be to study the (B,F,E )-solution space, particularly as B → 0.
We start from a low-energy solution, and increase the parameter E until the desired value
is reached. In order to initialise this continuation procedure at small values of E , we select
an initial Bond number which is chosen away from the Wilton ripples value of Bwilton in
(3.5a,b). Then the Froude number is approximated by the linear dispersion relation (3.2)
with k = 1, and we use the linear approximations of X and Y from (3.3a,b) with a small
arbitrary choice of εak (typically 10−5). For this linear solution, E is then calculated; the
above serves as the initialisation procedure for the Newton scheme which solves for values
of Yi and F.
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B

F

Sn + 1

Sn

Gn → n + 1

Figure 5. A typical component of the bifurcation diagram illustrated in (B,F)-space consisting of a single
finger, Gn→n+1, (shown bolded) and two side curves Sn and Sn+1. This is considered at a fixed value of the
energy, E .

Once solutions are found at desired values of E , we establish the (B,F)-bifurcation
space by continuation from a previously calculated solution. Note that in some cases, it
will be necessary to fix B or F and solve for the other value, depending on the gradient of
the bifurcation curves.

5. Numerical results for fixed energy, E

The numerical results we now present suggest that at a fixed value of E , certain solutions
in the (B,F)-bifurcation space can be classified according to ‘finger’-type structures and
‘side-branch’-type structures. An example of this structure, as drawn in the (B,F)-plane,
is shown in figure 5.

First, let us first define the side branch, Sn, as

Sn = {Bifurcation curve of solutions analogous to type (0, n)-waves}. (5.1)

Thus, Sn corresponds to those points in (B,F)-space associated with a certain type of
solution. These solutions are pure n-waves (1/n-periodic solutions in the interval); they
are the nonlinear analogue of the linear type (0, n)-waves introduced in § 3, i.e. a sine or
cosine wave with wavenumber n about a constant mean value.

In addition, adjacent side branches are connected by fingers, say Gn→n+1. We define
such a structure as

Gn→n+1 = {Bifurcation curve of solutions connecting Sn to Sn+1}. (5.2)

The finger can be interpreted as follows. Along Sn, solutions are pure (n)-waves; following
this set of solutions, there exists a bifurcation point where the 1-mode grows. Following
this new branch, which is labelled Gn→n+1, yields a solution analogous to a type
(1, n)-wave. Continuing along Gn→n+1, the solution transitions to type (1, n + 1) and
then finally to a pure-(n + 1) wave where it connects to Sn+1. An illustration of these
classifications is shown in figure 5.

In the following sections we present solutions along the side branches, Sn, and fingers,
Gn→n+1, for waves that are approximately half the height of the highest fundamental
gravity wave. For our choice of energy in (4.1c), this occurs at E = 0.3804. Starting in
§ 5.1, we describe the structure of solutions across a prototypical finger, G13→14, and then
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in § 5.2 we demonstrate how this finger bifurcates from side branches S13 and S14. Multiple
fingers are then shown in § 5.3 for n = 7 to 28, demonstrating their behaviour as B → 0.

5.1. Analysis of a single finger, Gn→n+1

The prototypical finger G13→14 is shown in figure 6 for a value of E = 0.3804. Note that
solutions near the ‘tip’ of the finger seem to correspond to the phenomena of parasitic
ripples discussed in § 1; that is, we observe a series of small-scale capillary-dominated
ripples riding on the surface of a steep gravity wave. This is shown in insets (c), (d)
and (e) in figure 6. Below, we will continue to refer to solutions as being separated into
capillary ripples and an underlying gravity wave, even though this classification may be
ambiguous.

As we move down either side of G13→14 by decreasing the Froude number, the amplitude
of the ripples increases while the amplitude of the underlying gravity wave decreases. This
is shown in figure 6 via the transitions (c) → (b) → (a) and (e) → ( f ) → (g). It becomes
extremely challenging to numerically compute solutions below (a) and (g).

Finally, as we travel from right to left across the finger, the wavelength of the ripples
decreases as an extra ripple is formed. This can be seen by comparing solutions in insets
(g) and (a), where (g) has 13 maxima and (a) has 14 maxima. The increase in the number
of ripples can be observed as occurring near the tip of the finger between insets (c) and
(e). We will discuss the structure of this process in § 7.

5.2. Analysis of side branches Sn and Sn+1

We now discuss the side branches. In the case of the prototypical finger, G13→14, displayed
in figure 6, we observe that this finger connects two side branches S13 and S14, as shown in
figure 7. The branch S13 contains pure (13)-waves, which have a fundamental wavelength
of λ = 1/13. The branch S14 consists of pure 14-solutions, which have λ = 1/14.

We next observe that at fixed energy, E = 0.3804, the solutions in S13 and S14 reach
a limiting configuration through the trapping of bubbles, shown by solutions (a) and (c).
These branches of solutions are the large amplitude analogue of those predicted by linear
theory in § 3, given by

F2 ∼ 1/(2nπ)+ (2nπ)B and F2 ∼ 1/(2π(n + 1))+ 2π(n + 1)B. (5.1a,b)

These were obtained by taking the values of k = n and k = n + 1 in the linear dispersion
relation (3.2).

In order to compute these branches numerically, an initial pure–n solution was taken
from linear theory with the dispersion relation (3.2) satisfied for k = n. This gives a cosine
profile with n peaks across the periodic domain. Slowly increasing the energy of this
solution across multiple runs yields a single solution for each branch at E = 0.3804, from
which these branches were calculated by continuation at fixed E .

The location along the branch for which solutions reach a limiting configuration through
a trapped bubble can be numerically predicted by the results of Appendix B. These points
are shown in figure 7 for n � 15.

We see that as the value of n for these limiting solutions increases, the value of F at
these points increases beyond that of the original finger. Thus, below a certain value of
the Bond number, we expect that each finger will instead bifurcate from self-intersecting
solutions. As we then proceed to increase the Froude number and transverse the side of
each of these fingers for B < Bcrit, we anticipate that the solutions will turn physical. This
would result in the tip of each finger consisting of purely physical solutions.
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(a) B = 0.0006468 F = 0.2046
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B = 0.0006720 F = 0.2022

(d ) B = 0.002266 F = 0.4278

a

b

c

d

Figure 7. The finger G13→14 is shown against the two side branches S13 and S14. The two side branches
terminate at points a and c (black circle) through the trapping of bubbles. Circles represent the locations where
solutions of Sn for n � 15, shown for every fifth point, become self-intersecting, found from the numerical
predictions of Appendix B. The (b)–(d) axis limits are the same as inset (c).

5.3. The unveiled structure for B → 0
This process of generating an individual finger may be repeated across different values
of the Bond number, resulting in a remarkable structure that holds in the limit of B → 0.
Many of these fingers are shown in figure 8 from n = 7 to n = 28; for clarity, the side
branches have been omitted from this figure. As the Bond number decreases over each
finger, the wavelength of the ripples decreases from 1/n to 1/(n + 1), resulting in the
formation of an additional crest. Consecutive fingers are connected at the point from
which they bifurcate from the side branches of pure n-waves, demonstrated previously in
§ 5.2 and shown by solutions (d1) and (d2) in figure 8. The solutions at these bifurcation
points display a phase shift of 1/n between them. Due to this phase shift, the nth Fourier
coefficient changes sign between these solutions at this bifurcation point. It is this phase
shift that led Chen & Saffman (1979) to misleadingly state (on p. 204) that the weakly
nonlinear solutions are discontinuous with respect to the nth Fourier coefficient at this
point.

From solutions (a1), (b) and (c), labelled at the top of the fingers in figure 8, we
observe that as B → 0, the amplitude of the ripples decreases and the overall solution
appears to tend towards the fundamental Stokes wave with energy E . Although the profile
in figure 8(a1) seems to indicate a pure gravity wave, the capillary ripples can be detected
under closer inspection. In order to quantify this, we isolate the pure gravity wave solution,
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Figure 9. (a) The corresponding kinetic (dotted), gravitational (dash–dotted) and capillary (solid) energies for
the solutions from figure 8. In the two lower figures, the kinetic, capillary and gravitational energies are also
shown for (b) B vs E and (c) branch arclength vs E for the solutions corresponding to the single finger G28→29.

y0, and plot y − y0 in figure 8(a2). This shows that the ripples are still present in the
solution, but with a very small amplitude. Moreover, one can verify that the profile norm,
|y − y0|, is of O(B) by repeating this procedure for multiple solutions along the top of the
fingers in figure 8. We shall comment on this algebraic error and the exponentially small
ripples in § 7.

We note that the presence of this bifurcation from the side branches Sn to the fingers
Gn→n+1 can be observed by a change in sign of the Jacobian along Sn as the bifurcation
point is passed. Solutions close to this bifurcation point are shown by (a) and (g) in figure 6
for Sn (dashed) and Gn→n+1 (solid). A further change of sign in the Jacobian occurs at
the top of each of the fingers. Since our numerical scheme permits asymmetric solutions
through the retention of the asymmetric coefficients in the Fourier series expression (2.7),
it may be that this additional bifurcation involves symmetry breaking. A brief overview
of gravity-capillary works containing asymmetry is provided in § 7. However, no such
solutions were found during our investigation.

Furthermore, the range of F between the tip of each finger and the bottom remains
of O(1) as B → 0 for the solutions calculated in figure 8. Consider, for instance, the
range between solutions (a1) and ( f ). This suggests the existence of an interval of
solutions holding under the B → 0 limit. The solution with the largest value of F is
expected to be the fundamental Stokes wave with B = 0 and E = 0.3804, shown by the
point y0 in figure 8. We predict that, as B → 0, the solutions with the smallest Froude
number in this interval will contain a self-intersecting free surface. This is because, for
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B < Bcrit, the pure n-solutions near the bifurcation point on the side branches are also
anticipated to self-intersect. The interval would then contain a range of solutions, which
transition from unphysical to physical as the Froude number increases. A further detail
of the structure of these solutions may be seen from figure 9, which shows the exchange
between the three components of kinetic, capillary and gravitational potential energies.
For the parasitic solutions at the top of each of the fingers, which resemble a perturbation
about a gravity-dominated wave, the capillary energy is small and appears to decrease to
zero as B → 0. Conversely, for the highly oscillatory solutions close to the bifurcation
point between adjacent fingers, the capillary and kinetic energies are seen to tend to an
O(1) constant while the gravitational potential energy tends to zero. Thus, these highly
oscillatory solutions of Gn→n+1, as well as those on the side branch Sn, appear to tend
towards a pure-capillary solution as B → 0. The asymptotic properties of the solutions on
Gn→n+1 and Sn will be discussed in § 7 for the limit of B → 0.

6. Relation to previous numerical attempts

A key challenge is to understand the relationship between our solutions of fixed energy, E ,
and those of previous authors with a different amplitude condition, say A . In this section
we demonstrate that a key limitation of previous choices of amplitude is the existence
of highly energetic (and subsequently nonlinear) solutions at small values of A . Thus,
somewhat surprisingly, alternative choices of the amplitude measure may admit nonlinear
solutions in the naive linear limit of A → 0 – this occurs due to the singular nature of
B → 0 and, in particular, the nature of the solutions between adjacent fingers.

6.1. Solutions at different values of the energy E

In the previous section we demonstrated the structure of the bifurcation diagram and
associated solutions at fixed energy E = 0.3804. In fact, this bifurcation structure is only
perturbed in a regular fashion as the energy changes near this value. Thus, the full structure
of solutions, which holds as B → 0, can be computed for different values of E in a
straightforward manner.

We show an example of this in figure 10, where we display the finger G11→12 and the
side branches S11 and S12 for three different values of E . In the figure the value of E
decreases from E = 0.67 in (a) to E = 0.3804 in (b) to E = 0.046 in (c). The following
three changes to either the solution or branch structure are noticeable as E decreases:

(i) the amplitude of the ripples decreases;
(ii) the range of F between the top and bottom of the finger decreases; and

(iii) the finger becomes more rectangular.

In (c) the amplitude of the ripples has decreased to the point at which they are no longer
observable visually.

6.2. Choice of amplitude parameters in previous works
We now revisit the alternative choices of the amplitude or energy parameter in (2.13). A
few of the solutions displayed in figure 8 are similar to those previously calculated by
Schwartz & Vanden-Broeck (1979), who plotted remnants of this figure at larger values of
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Figure 10. Shown in the left subplots are the fingers G11→12 and the side branches S11 and S12, plotted in
the (B,F)-plane, for (a) E = 0.67; (b) E = 0.3804; (c) E = 0.046. Example solutions, near the tops of the
fingers, are shown in the corresponding right subplots labelled (a1), (b1) and (c1).

B for a different amplitude parameter. Since their choice of amplitude,

A = A ≡ [y(0)− y(π)]/2π, (6.1)

relies on local values at the centre and edge of the periodic domain, they found these
branches to behave somewhat differently than how we have described them in our § 5.

Notice that according to their choice of norm (6.1), waves with an even number of crests
that are equally spaced throughout the domain will have y(0) = y(π) and, consequently,
A = 0. This corresponds to every other branch of solutions with a fundamental wavelength
smaller than the periodic domain, Sn with n even. Hence, for the branch of solutions
Gn→n+1 at fixed E , A grows smaller tending towards solutions near the bifurcation points
of Sn+1 and Sn – despite the high nonlinearity of these solutions. This is demonstrated
for n = 13 in figure 6 with solution (a), which approaches S14, and solution (g), which
approaches S13. Thus, the bifurcation from S14 connecting finger G14→15 to G13→14 will
occur from an amplitude value of A = 0. This is one reason why the full structure of
solutions was not revealed through smooth continuation at fixed A by the investigations of
Schwartz & Vanden-Broeck (1979).

Next, let us turn to the numerical investigation of the B → 0 limit performed by Chen
& Saffman (1980b), who fixed the first Fourier coefficient,

A = A1, (6.2)
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as an amplitude parameter. We now know that, since the bifurcation between distinct
fingers in the (B,F)-plane occurs via the side branches Sn, which have a first Fourier
coefficient of zero for n � 2, it is impossible to recover the structure shown in figure 8
with a fixed value of A1. Chen & Saffman (1980b) had indicated the impossibility of a
continuous deformation to the pure Stokes gravity wave as B → 0, but we now see that
this occurred as a direct consequence of their chosen amplitude parameter.

6.3. An insufficient number of Fourier coefficients
As we have noted, it is crucial to select the right continuation parameter in order to recover
the B → 0 limit. There are other possible reasons why others may have struggled to
reproduce an accurate structure of the parasitic ripple phenomena. In particular, a large
number of Fourier modes are required in order to capture the regions between adjacent
fingers, and this is primarily due to the bifurcation occurring from the side branches, Sn,
which contains solutions that approach pure n-waves. Thus, solutions within the finger
Gn→n+1, which are located near to side branches are then dominated by the nth Fourier
coefficient. If in our numerical scheme we consider a series truncation at the Nth Fourier
coefficient, then the main coefficients contributing to the capillary-dominated ripples will
be a multiple of n. Hence, an effective number of N/n Fourier coefficients will describe
the behaviour of the wave near to this bifurcation point.

For the computation of the gravity-capillary wave with the parasitic ripples, Schwartz
& Vanden-Broeck (1979) (their figure 10) used N = 40 in order to capture a wave with
n = 11 ripples. Thus, in order to investigate the side branch bifurcation associated with this
solution, their Fourier expansions would have contained an effective number of N/n ≈ 4
Fourier coefficients – which is insufficient. Within this work, we have been using 1024
Fourier coefficients, which corresponds to 35 effective coefficients for solutions near the
bifurcation point of the finger with the smallest Bond number in figure 8.

6.4. The symmetry shifting bifurcation
In addition to the importance of selecting an appropriate amplitude measure, let us discuss
the relationship between the bifurcation structure presented earlier (e.g. in our figure 8)
with the constraint on the symmetry in the travelling-wave frame. For the solutions
displayed in figure 8, each finger is computed beginning with an initial solution that lies
on the finger and then, with a fixed E , solutions are obtained by continuation to either side
of the starting point until the entire finger is computed. As a result of this continuation
scheme, the solutions at the bottom of adjacent fingers are out of phase with one another;
this can be seen in solutions (d1) and (d2) in figure 8. This method of continuation is
depicted more clearly in figure 11(a), where (a1) and (a2) are two starting solutions, while
(a3) and (a4) are out of phase. Note also that this phase shift is observable between the
profiles (g) and (e) in figures 6 and 8, respectively, as these are solutions either side of the
same bifurcation point.

Alternatively, we could formulate a continuation scheme where the solutions in each
finger are connected to those in adjacent fingers in a continuous fashion, depicted in
figure 11(b). Thus, for example, the scheme is started with a single initial point, (b1),
shown in figure 11. This finger is then found via the typical continuation method. Having
located a solution, (b3), at the bifurcation point, the adjacent finger is completed by using
(b3) as a starting solution for continuation. This alternative method shown in figure 11(b)
results in solutions (b3) and (b4) at the bottom of consecutive fingers with no phase shift.
The result of this approach is a continuous set of solutions as B → 0.
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(a)

(b)

x

3.0 3.5 4.0

3.0 3.5 4.0

0.42

0.43

0.44

B

F

0.42

0.43

0.44

F

–0.5 0 0.5

–0.03

0

0.03

y

(a1) B = 0.003750
F = 0.4417

(a2) B = 0.003255
F = 0.4377

(a3) B = 0.003385
F = 0.4251

(a4) B = 0.003385
F = 0.4250

a1

a2

a3a4

(×10−3)

b1

b2

b3b4

(×10−3)

(b1) B = 0.003750
F = 0.4417

(b2) B = 0.003255
F = 0.4377

(b3) B = 0.003385
F = 0.4251

(b4) B = 0.003385
F = 0.4250

: Starting solution : Direction of continuation

Figure 11. Two methods for numerical continuation are depicted. The starting location for continuation is
denoted by a cross, and the arrows indicate the direction travelled by continuation.

In using this alternative method, solutions at the top of consecutive fingers have a shifted
point of symmetry, as demonstrated by comparing solutions (b1) and (b2) in figure 11.
This point of symmetry has been moved from x = 0 to x = −1/n for all solutions on the
new finger. We denote this to be a symmetry shifting bifurcation, which is unable to be
captured if the point of symmetry of the wave is prespecified. This assumption of a fixed
point of symmetry is often used in the two following methods.

(i) Numerical procedures that solve for the half-domain x = [0, 1/2] and enforce a
turning point at x = 0, such as that by Schwartz & Vanden-Broeck (1979).

(ii) The analytical work of Chen & Saffman (1979), who posit a weakly nonlinear
solution with assumed symmetry at x = 0.

Both of these methods will be unable to capture this B → 0 limit with continuous solutions
at the bifurcation point.

The relaxation of the fixed point of symmetry, in contrast to the assumption in Chen
& Saffman (1979), is the modification required to correct their earlier statement on the
validity of the B → 0 limit for gravity-capillary waves.
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6.5. Conclusions
We have studied the bifurcation structures derived in the previous works by Schwartz
& Vanden-Broeck (1979) and Chen & Saffman (1979, 1980b), and have highlighted the
following three core issues that are important for unifying and extending their diagrams to
the small Bond number regime.

(i) The chosen amplitude parameters, relying either on local values of the wave height
or specific Fourier coefficients (cf. § 6.2).

(ii) A small number of Fourier coefficients retained in the numerical schemes, the issues
for which become more prominent near the bifurcation points (cf. § 6.3).

(iii) Assumptions made on the point of symmetry of the wave profile (usually fixed to be
at x = 0), due to the symmetry shifting bifurcation connecting adjacent fingers (cf.
§ 6.4).

In being aware of these, we have introduced alternative methods, either by solving or
mitigating the issues. For instance, we have used the wave energy, E , as an amplitude
parameter. This has allowed us to be able to find a number of different types of solutions
to the steep gravity-capillary wave problem existing under the limit of B → 0. One of
these, the steady symmetric parasitic ripple, is similar to the asymmetric parasitic waves
encountered physically and will be the focus of our forthcoming analytical work.

7. Discussion

In § 5.3 we described the two types of solutions that are found as B → 0. The first of
these are found along the sides of the fingers and the side branches; they can be described
by a multiple-scales type expansion that captures the rapid oscillations about a slowly
varying mean. As they become increasingly oscillatory (with diminishing F), they reach
an unphysical configuration through the trapping of bubbles for B < Bcrit (cf. end of § 5.2).
These highly oscillatory solutions near the bifurcation point between adjacent fingers are
very interesting. This is because a multiple-scales ansatz yields Crapper’s pure-capillary
equation, that is, Bernoulli’s equation (2.1c) in the absence of gravity, at leading order
for the small-scale ripples. Since an exact solution for this is well known by the work
of Crapper (1970), it may be possible that once the boundary conditions of periodicity
and energy have been applied to the solvability condition (obtained at the next order) our
snaking structure of the fingers can be found analytically. This multiple-scales approach
will be the focus of future analytical work by the current authors. We note that this snaking
structure is very similar to that found by Chapman & Kozyreff (2009) for a version of the
Swift–Hohenberg equation appearing in nonlinear optics.

Our focus has been more on the second of these types of solutions – those which
correspond to waves with parasitic ripples lying on a gravity wave; these solutions are
found near the tops of each finger. In a forthcoming work, Shelton & Trinh (2021), we
shall present an asymptotic theory for the description of these parasitic ripples.

The essential details are as follows. For those solutions that correspond to parasitic
ripples on gravity waves, we may expand their form as a naive expansion in powers of the
Bond number,

y(x) =
∞∑

n=0

Bnyn(x), (7.1)

such that in the limit of B → 0 we recover the pure gravity wave, y0. However, as it turns
out, the magnitude of the short wavelength parasitic ripples is exponentially small in the
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Figure 12. The exponential scaling in (7.2) is shown (circles) for our numerical solutions by plotting 1/B
vs log( yripples). One numerical solution is chosen from each finger, corresponding to that of minimal ripple
amplitude. From our forthcoming work, the analytical prediction (line), which depends on the value of E ,
predicts a gradient of approximately −8.2 × 10−3.

Bond number, B. Thus,

|yripples| ∼ exp
(

−const.
B

)
. (7.2)

The above can be validated based on our numerical computations in the following way. For
each finger, Gn→n+1, a solution profile is calculated at the tip of the finger (i.e. the vertex
in the (B,F)-plane). At this point, the magnitude of the parasitic ripple is approximated by
examining y − y0 and measuring the crest-to-trough amplitude for the oscillation nearest
to the edge of the domain, x = 1/2 (a typical profile is shown in (a2) of figure 8). The
result of this numerical experiment is shown in figure 12; indeed, the ripple amplitude lies
approximately on a straight line in the semilog plot, confirming the exponential smallness
of the ripples as B → 0.

Thus, in light of (7.2) these parasitic ripples will fail to be captured by (7.1) and
must be found beyond-all-orders of the naive asymptotic expansion. Consequently, the
use of specialised tools in asymptotic analysis, known as exponential asymptotics, are
required (see, e.g. Chapman, King & Adams 1998; Chapman & Vanden-Broeck 2006;
Trinh & Chapman 2013). Here, the necessary theory for prediction of the parasitic
ripples is analogous, in spirit, to theories for the prediction of generalised solitary waves
(Boyd 1998), but there are a number of additional challenges due to the more involved
boundary-integral framework and the lack of a closed-form leading-order Stokes solution,
y0. Similar bifurcation structures have also been noted in the context of wave-structure
interactions of gravity waves, as seen in the works of , for example, Dias & Vanden-Broeck
(2004), Binder, Dias & Vanden-Broeck (2008), Holmes et al. (2013), Hocking, Holmes &
Forbes (2013); we would expect that our work here with freely propagating waves can be
related to more complex problems where the bottom topography has an appreciable effect.

We remark, in addition, that the idea of exponentially small parasitic capillary ripples
in the classic Stokes wave problem is not a new one. Indeed, as we discussed in § 1.1,
Longuet-Higgins (1963) had proposed an analytical methodology for the derivation of
parasitic ripples (followed by a similar approach in Longuet-Higgins 1995). However,
both of these approaches are ad hoc in nature, and as noted by Perlin et al. (1993), fail
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to predict the correct magnitude of the ripples. Other theories, such as the averaged
Lagrangian methodology of Crapper (1970), exhibit similar difficulties in providing
rigorous comparison to numerical results – the latter author notes that ‘. . . [the theory]
is not very accurate, but at the timing of writing is probably the best available’ (p.
154). Consequently, the point we emphasise is that the systematic B → 0 results we
have presented in this paper are crucial for validation of the small surface tension limit.
The presentation of a complete exponential asymptotics treatment of B → 0 and the
importance of prior approaches in inspiring such a methodology will be the focus of our
forthcoming work.

Finally, we have only found symmetric solutions of the parasitic ripples problem in this
work. For general values of B and F, and not necessarily only for the regime of small B,
we note that there are extensive efforts to search for steady asymmetric solutions. See, for
instance, the works on gravity-capillary waves by Zufiria (1987b) for finite depth, Shimizu
& Shōji (2012) for infinite depth, and Zufiria (1987a) for pure gravity on infinite depth.
Indeed, many of the asymmetric profiles in the works of, for example, Shimizu & Shōji
(2012) exhibit similarities to the profiles shown in our work. Thus, it seems likely that
the bifurcation structures we have presented in this work form a subset of a much more
complicated structure that includes the potential for asymmetry. It remains to be seen if
this asymmetry of the steady system would account for that observed in the experimental
results, or whether it is necessary to consider unsteady flows, such as the time-dependent
Navier–Stokes formulation considered numerically by Mui & Dommermuth (1995) and
Hung & Tsai (2009). We further note that asymmetric wave profiles have also been found
with the unsteady potential flow formulation considered by Moreira & Peregrine (2010)
over a submerged cylinder.
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Appendix A. The wave energy

The non-dimensionalised bulk energy in the physical domain is given by

Ē = F2

2

∫ 1/2

−1/2

∫ η

−∞
(φ2

x + φ2
y ) dy dx + B

∫ 1/2

−1/2

(
[1 + η2

x ]1/2 − 1
)

dx +
∫ 1/2

−1/2

∫ η

−∞
y dy dx.

(A1)

On the right-hand side, the three groups correspond to the kinetic, capillary potential and
gravitational potential energies.

Note that due to our subflow (where φx → −1 as y → −∞), the first and third integrals
on the right-hand side of (A1) will be unbounded. We thus define the energy, E, to be the
difference between (A1) and ‘no-flow’, η = 0, energy, which yields a finite value. This is
then transformed to act on the free surface,ψ = 0, only by the method of Longuet-Higgins
(1989), with which we change variables from (x, y) to find the wave energy under the
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α

Y = αŶ

X = αX̂

φ = αφ̂

Ŷ

X̂

Figure 13. The rescaling used to produce another solution with a smaller fundamental wavelength is shown.

(φ, ψ) mapping,

E = F2

2

∫ 1/2

−1/2
Y(Xφ − 1) dφ + B

∫ 1/2

−1/2
(
√

J − Xφ) dφ + 1
2

∫ 1/2

−1/2
Y2Xφ dφ. (A2)

With this choice of amplitude parameter, Ehw ≈ 0.00184 corresponds to the fundamental
Stokes wave of maximum height. We rescale the energy by this value to obtain the
amplitude parameter, E , used within this report, given by E = E/Ehw, in (4.1c).

Appendix B. Limiting solutions of smaller fundamental wavelength

If one solution is known to the gravity-capillary wave problem with fundamental
wavelength λ = 1, another can be constructed with λ = 1/α, where α is a positive integer.
This is visualised in figure 13. Suppose we have a solution to Bernoulli’s equation (4.1a)
and the harmonic relation (4.1b). In rescaling Y = αŶ , X = αX̂ and φ = αφ̂, we repeat the
first solution α times to map the original domain from φ ∈ [−α/2, α/2) to the new domain
φ̂ ∈ [−1/2, 1/2). This new solution, X̂ and Ŷ , also satisfies the two governing equations
with rescaled Froude and Bond numbers F̂ and B̂, given by

F̂ = F√
α

and B̂ = B
α2 . (B1a,b)

The energy of this new solution can be found by substituting the rescaled variables X̂, Ŷ ,
F̂ and B̂ into (4.1c), yielding

Ê = E

α2 . (B1c)

Since α > 1, the energy of the new pure α-wave, Ê , will always be smaller than that of
the original wave, E .

This ability to construct new solutions with a fundamental wavelength shorter than the
periodic domain allows us to numerically predict the point at which solutions in the side
branches Sα begin to trap a bubble through a self-intersecting free surface. These locations
are shown in the bifurcation diagram of figure 7. As all of these side branch solutions have
the same energy, Ê = 0.3804, but different values of α, the energy of the original wave is
given by E = α2Ê .

The procedure to find the location at which solutions in Sα become self-intersecting is
as follows.

(i) First, we numerically calculate the (B,F)-solution space of pure 1-waves with a
single trapped bubble amplitude condition. The energy of these solutions will vary.
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F = 0.08982
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Figure 14. (a) The branch of pure-1 solutions displaying an enclosed bubble is shown in the
(B,F)-bifurcation diagram. Note that we have displayed the domain x ∈ [0, 1] to demonstrate this limiting
behaviour.

(ii) Second, we select the profile with E = α2Ê and obtain values for B and F.
(iii) Third, we rescale these by using (B1a) to find F̂ and B̂. This yields the location at

which solutions within the side branch, Sα , become self-intersecting.

Repeating this process for multiple values of α yields the predictions displayed with the
circles in figure 7. With this method we are able to calculate solutions with a large value
of α while keeping the number of Fourier coefficients used during Newton iteration fixed,
and, thus, do not encounter the issue discussed in § 6.3.

It would also be possible to use this method to compute all of the solutions along
the side branch Sα . However, this requires the entire sheet of pure 1-wave solutions
to be found in the three-dimensional (B,F,E )-solution space, which we consider to
be prohibitively expensive computationally. By restricting only to profiles displaying a
single trapped bubble, this solution space simplifies to a single branch throughout the
(B,F,E )-bifurcation diagram, which we projected to the (B,F)-plane for simplicity.

B.1. Limiting pure-1 solution space
This branch of limiting solutions is displayed in figure 14(a). These solutions were found
from the same numerical procedure as in § 4. An initial limiting solution, displaying one
trapped bubble, is found by increasing E . The energy constraint is then replaced by a
trapped bubble condition, which forces the second turning point of X(φ) to a value of
−0.5. We then explore the (B,F)-solution space by continuation.

We note that as B → ∞ along this branch, the wave profile approaches the limiting
pure-capillary solution found by Crapper (1957) (see their figure 1) with an amplitude of
0.730. Solution (b), with B = 4.050, is an example of this. As B → 0 along the same
branch, the solution approaches a depressive solitary wave, demonstrated by solution (d).
This is since the small B limit is related to the solitary wave limit of Lλ → ∞. The
solutions calculated by Schwartz & Vanden-Broeck (1979) (see their figure 2) form the
intermediate range between these two limits.
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