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Linear stability analysis of a Newtonian
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We investigate the stability of a Newtonian ferrofluid cylinder under a steady magnetic
field. Linear stability analysis is performed by imposing a small-amplitude axisymmetric
disturbance to the basic state. Admissible magnetic field shapes are found and dispersion
relations are obtained for two general shapes: axial and non-axial. For the latter, a wire is
needed to avoid a singularity at the cylinder centre. Solutions are plotted for two particular
shapes previously discussed in the literature for an inviscid ferrofluid: axial and azimuthal.
The applicability of the developed theory to cylinder and jet experiments using a solenoid
and a wire carrying a current to create the axial and azimuthal magnetic fields, respectively,
is studied. For both cases, results show that the magnetic field has a stabilising effect, as
already evidenced. In addition, by solving the equation for the cutoff wavenumber, we
show that, unlike the azimuthal case, the axial case cannot be stable for all wavenumbers.
Taking into account the ferrofluid viscosity better explains the experimental results on
ferrofluid cylinders in an azimuthal magnetic field. By choosing a specific admissible
magnetic fields shape, the range of wavenumbers in which the cylinder is unstable can
be controlled. A radial magnetic field is one example studied here without providing any
details on the means to create the field. This latter case reveals the potential of magnetic
fields to control the drop size during the ferrofluid jet breakup. These results may be of
interest for applications in the printing and medical fields.

Key words: magnetic fluids, jets

1. Introduction

Magnetic liquids are used in different fields such as computer science, medicine, robotics
and aeronautics with a diversity of applications such as loudspeakers, seals, brakes,
dampers and measuring devices (Charles & Popplewell 1982; Charles 1987; Raj &
Boulton 1987; Raj & Moskowitz 1990; Raj, Moskowitz & Casciari 1995; Scherer &
Figueiredo Neto 2005). Because ferromagnetic materials in a liquid state lose their
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magnetic properties, magnetic liquids do not exist in nature and thus need to be
synthesised. They comprise relatively small magnetic particles of ferromagnetic materials
suspended in a carrier liquid phase (Shliomis 1974) and are not electrically conductive.
Dispersants prevent the agglomeration of particles. Three kinds of magnetic fluids can
be distinguished with respect to magnetic particle size and magnetic behaviour in the
presence of a magnetic field (Nguyen 2012): ferrofluids, magnetorheological fluids and
magnetophoretic fluids. Here, we focus on ferrofluids for which the magnetic particles
measure approximately 10 nanometres in size, allowing us to consider a single liquid
phase (instead of a liquid–solid two-phase system) that is water or oil based. Viscosity
is independent of the magnetic field and is usually an order of magnitude greater than that
of pure water. Oil-based ferrofluids are often more viscous than water-based ferrofluids,
dependent on the magnetic particle concentration. The present study deals with jets of
ferrofluid in magnetic fields. These jets may be capillary unstable, leading to jet breakup
and drop formation, as observed in the case of non-magnetic liquid jets (e.g. the seminal
work of Yarin 1993). Ferrofluid jets are used in medicine (Pankhurst et al. 2003) or in
printing fields (Charles 1987; Abdel Fattah, Ghosh & Puri 2016; Ahmed et al. 2018; Löwa
et al. 2019). In medicine, ferrofluids can be employed as contrast agents or in drug targeting
with the injected drug contained in the ferrofluid jet being delivered to a specific location
using a magnetic field (Lübbe et al. 1996; Pulfer, Ciccotto & Gallo 1999; Alexiou et al.
2011). In the printing domain, ferrofluids can also be employed as magnetic inks and the
drops formed during the ink jet breakup are directed to a surface using a magnetic field.

For most applications, the main characteristics of capillary jet instability, namely the
mean size of the drops and the time scale for their formation, need to be predicted. This
can be achieved with linear stability analysis, which involves perturbing the basic flow with
a small-amplitude disturbance localised in time or space. The evolution equations of the
perturbation are linearised, and the solutions are searched in the form of normal modes
with α the coefficient for the time variable and k the coefficient for a space variable.
Solving these equations results in a dispersion relation linking the two coefficients, which
determines the stable/unstable regimes. Drop formation is linked to the dominant unstable
mode with the associated growth rate. The nature of the perturbation, whether spatially
or temporally localised, determines the use of spatial or temporal analysis. These two
approaches are illustrated for a cylindrical liquid jet in figure 1. In spatial stability analysis,
k is a complex number, and α is real. The perturbation is imposed at z = 0 and grows along
the z direction of the jet. A point on the interface moves with velocity Vjet in this direction.
On the contrary, for temporal stability analysis, k is a real number and α is complex. In
this case, the jet is represented by a doubly infinite cylinder, i.e. without any dissymmetry
in the shape due to the injection. The analysis is conducted in a frame that moves with
the cylinder, while a point on the interface stays at the same z location. The perturbation is
imposed at time t = 0 along the liquid cylinder and grows over time. Keller, Rubinow & Tu
(1973), and more recently Guerrero, González & García (2012) in a detailed study on all
the modes of the spatial dispersion relation, showed a correspondence between these two
points of view regarding the unstable solution of the dispersion relation for dimensionless
jet velocities (made dimensionless with the capillary velocity) that exceeded 1. For this
reason, temporal stability analysis is often used to represent liquid jets.

Several studies have conducted a temporal stability analysis of ferrofluid jets in a
magnetic field while ignoring the viscosity of the ferrofluid (figure 2). In most cases,
a specific magnetic field is chosen in the direction of the jet axis or in the azimuthal
direction. For the axial magnetic field, Chandrasekhar (1961) studied the case of a
cylindrical magnetic liquid jet in a uniform field but without specifying the method used to

915 A137-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.171


Stability of a ferrofluid cylinder under a magnetic field

O z

r

r

Vjet

Spatial stability analysis

Temporal stability analysis

Figure 1. Representation of a cylindrical liquid jet deformed by a varicose perturbation for spatial and
temporal stability analyses in the r–z plane.
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Chandrasekhar (1961), Taktarov (1975),
Rosensweig (1985), Weinstein (1988),
Radwan (1988, 1990a, b), Yakubenko & Shugai (1996)

Rosensweig (1985), Arkhipenko et al. (1981),
Rannacher & Engel (2006), Blyth & Părău (2014),
Doak & Vanden-Broeck (2019)

Bashtovoi & Krakov (1978), Zakinyan (2017)

Bashtovoi & Krakov (1978), Fabian et al. (2017)

Arkhipenko et al. (1981), Bourdin et al. (2010)

Lübbe et al. (1996), Pulfer et al. (1999),
Sudo et al. (1999), Sudo & Ise (2004),
Sudo et al. (2010), Alexiou et al. (2011),
Fabian et al. (2017), Favakeh et al. (2020)

Figure 2. Studies on ferrofluid jets.

create this field. Taktarov (1975) added the presence of a solenoid as an external boundary
condition, which experimentally creates an axial magnetic field. However, he assumed that
its radius was much larger than the jet radius, while he did not discuss its potential effect
on jet stability. Contrary to Chandrasekhar (1961), he also considered non-axisymmetric
perturbations, showing that the axial magnetic field has a stabilising effect on the jet
and that all non-axisymmetric perturbations are stable. Rosensweig (1985) derived this
case but only for axisymmetric perturbations. Weinstein (1988) considered the effect of
surrounding liquid with a different velocity than the jet. He retrieved the stabilising effect
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of the axial magnetic field, although this effect was moderated by the destabilising velocity
gradient between two fluids. Radwan also considered non-axisymmetric perturbations in
different studies on the effect of the surrounding fluid (Radwan 1990a), the stability of
a ferrofluid jet around gas (Radwan 1988) and the stability of a ferrofluid jet around
a solid cylindrical structure (Radwan 1990b). He confirmed the destabilising effect of
velocity gradient between two fluids, even for non-axisymmetric perturbations. He also
showed a stabilising effect when the density ratio between the surrounding fluid and
jet increases. Yakubenko & Shugai (1996) examined the absolute or convective aspect
of instability. Experimentally, the stability of ferrofluid jet and drop formation under an
axial magnetic field were respectively investigated by Bashtovoi & Krakov (1978) and
Fabian et al. (2017); the latter used Helmholtz coils to create the field. Regarding the
azimuthal field, Arkhipenko et al. (1981) and Rosensweig (1985) obtained the dispersion
relation for a cylinder around a wire surrounded by fluid. Indeed, an azimuthal field
can be generated by a wire carrying an electric current. In addition to their theoretical
study, Arkhipenko et al. (1981) also experimentally highlighted the stabilising effect of
this field with stability for all wavelengths for a sufficiently large field intensity. While
exploring solitary waves on a ferrofluid jet, Blyth & Părău (2014) treated this case without
considering the surrounding fluid and resolved the fully nonlinear regime of travelling
solitary waves with a numerical model. In the same context, Doak & Vanden-Broeck
(2019) considered a ferrofluid jet surrounded by another fluid with a solid cylindrical
structure as the boundary condition. Contrary to the aforementioned studies, Rannacher
& Engel (2006) studied non-axisymmetric perturbations but without finite wire thickness
or an external fluid. These solitary waves were first observed by Bourdin, Bacri & Falcon
(2010) on a ferrofluid cylinder subjected to an azimuthal magnetic field. Finally, Bashtovoi
& Krakov (1978) and Zakinyan (2017) examined multicomponent magnetic fields with
non-axisymmetric perturbations. Zakinyan (2017) considered a uniform magnetic field
but, unlike the other studies, the field was non-axisymmetric. He showed that the growth
rate of the perturbation depends on the angle in the azimuthal direction and that a
transverse magnetic field decreases the undisturbed jet length. Experimentally, more
complex magnetic fields were also applied to ferrofluid jets using coils, electromagnets
or permanent magnets, to investigate the effect on drop formation (Sudo et al. 1999;
Fabian et al. 2017; Favakeh, Bijarchi & Shafii 2020). An elongation of the created drops
is observed in the presence of a magnetic field. Sudo & Ise (2004) and Sudo, Wakuda &
Asano (2010) also studied the influence of a magnetic field on ferrofluid jets and drops.
However, the jets and drops did not come from an injector but were generated using
vibrations applied to a ferrofluid container.

To our knowledge, the aforementioned theoretical studies on the stability of ferrofluid
jets only focus on specific applied magnetic fields with inviscid ferrofluids. As said
previously, the viscosity of ferrofluids can be relatively important, which highlights the
need for a theory that considers viscosity. A study on the magnetic field shape could also
help control the drop formation during the ferrofluid jet breakup.

In this work, we perform a linear stability analysis of a Newtonian ferrofluid cylinder
under a steady magnetic field of general shape. The bulk equations for the ferrofluid
and jump conditions across the interface will be derived in a dimensionless form and
linearised. The different possible shapes for the magnetic field will then be determined
based on the basic state, and the linearised equations will be solved to obtain dispersion
relations and equations for the cutoff wavenumber adapted to each shape. The applicability
of our theory to a jet description will also be discussed. Finally, the solutions to the
dispersion relation will be studied for different magnetic fields with a discussion of the
experimental practicality of such configurations.
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2. Formulation

We consider an incompressible Newtonian ferrofluid cylinder of infinite length under a
steady axisymmetric magnetic field of general shape. The ferrofluid response to the applied
magnetic field is supposed to be linear, homogeneous and isotropic. Isothermal conditions
are considered, and gravity is ignored. The surrounding fluid has no velocity, with
negligible density and viscosity compared to the ferrofluid. An illustration of this basic
state is shown in figure 3. The notations used in this figure will be progressively introduced
into this section. The basic state, subjected to magnetic field H0, is characterised by the
following conditions: zero velocity in each phase; an interface position at r = R0 in a
cylindrical coordinate system with R0 the radius of the ferrofluid cylinder; a constant
modified pressure Π01 in the magnetic phase (1); and a constant pressure P02 in the
non-magnetic phase (2); Π01 is related to P02 by a surface tension contribution of
magnitude σ/R0, with σ the surface tension, as well as by a constant magnetic contribution
that will be specified below. We perturb this state by imposing a small-amplitude
axisymmetric disturbance and we investigate whether the induced flow is linearly stable or
unstable. The induced flow is characterised by its velocity Ui in each phase i, its modified
pressure Πi, its magnetic field Hi and the position of the interface at r = rs. The vector
fields are in the form A = (Ar,Aθ ,Az), where Ar, Aθ and Az are the radial, azimuthal and
axial components of the vector, respectively. The different physical quantities are only
dependent on coordinates r, z and time t due to the axisymmetry of the perturbation. The
governing equations of this flow are described in the next subsections.

2.1. Bulk equations
The equations, valid for the ferrofluid, are first presented. The mass balance and
momentum balance equations can be expressed as

∇ · U1 = 0, (2.1)

ρ1

(
∂U1

∂t
+ U1 · ∇U1

)
= −∇Π1 + ∇ · τ 1, (2.2)

with ρ1 the density, τ 1 = η1(∇U1 + ∇Ut
1) the viscous stress tensor, η1 the dynamic

viscosity and Π1 defined by Π1 = P1 + Ps, where P1 refers to thermodynamic pressure
and Ps = μ0

∫ H
0 υ(∂M1/∂υ) dH to the magnetostrictive pressure. In this last term, μ0 is

the permeability of free space, υ the specific volume and M1 the magnetisation.
A ferrofluid is not electrically conductive by nature, so Maxwell’s equations are

∇ · B1 = 0, (2.3)

∇ × H1 = 0, (2.4)

with B1 the magnetic induction field which can be expressed as

B1 = μ0 (H1 + M1) = μ1H1, (2.5)

with μ1 the magnetic permeability of the ferrofluid, which is constant due to the
linear, homogeneous and isotropic response of the medium. The equations valid for the
surrounding fluid are (2.1) to (2.5) but with μ2 = μ0 and negligible viscosity η2 and
density ρ2.
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R0

(1)

(2)
S = 0 σ

μ0

ρ1, η1, μ1

n

H01

H02

r

z

Figure 3. Representation of the basic state.

2.2. Jump conditions across the interface
For jump conditions across the interface, the unit normal vector is introduced. It is defined
at a point on the interface, pointing from the ferrofluid to the surrounding fluid, and is given
by n = ∇S/||∇S|| = 1/

√
1 + (∂rs/∂z)2er − (∂rs/∂z)/

√
1 + (∂rs/∂z)2ez, where S = r −

rs is introduced to localise the position of the interface S = 0. The first jump condition
is obtained by writing the mass balance equation at the interface without mass exchange
between two phases

U1 · n = − 1
||∇S||

∂S
∂t

at r = rs. (2.6)

Regarding the jump conditions for momentum, there is continuity in the tangential
component of stress acting on the interface

[(n · T )× n] = 0 at r = rs, (2.7)

with the convention [A] = A2 − A1 and where T is the stress tensor such that T i = −(P∗
i +

(1/2)μ0H2
i )I + BiHi + τ i , I the identity matrix, P∗

i = Πi + Pmi and Pmi = μ0
∫ H

0 Mi dH
the magnetic pressure. The jump of the normal component of the stress acting on the
interface involves surface tension

[(n · T ) · n] = σκ at r = rs, (2.8)

with κ = ∇ · n the total curvature.
The jump conditions for the magnetic field imply the continuity of the normal

component of B and the tangential component of H across the interface. Replacing B
by expression (2.5), one finds

μ1H1 · n = μ0H2 · n at r = rs, (2.9)

H1 × n = H2 × n at r = rs. (2.10)

By using n · I × n = 0, (2.5), (2.9) and (2.10), (2.7) and (2.8) are reduced to

(n · τ 1)× n = 0 at r = rs, (2.11)

P∗
1 + Pn − (n · τ 1) · n = P2 + σ∇ · n at r = rs, (2.12)

with Pn = (1/2)μ0M2
1n ; the n index referring to the normal component.

2.3. Basic state and linearised dimensionless equations
The bulk equations for ferrofluid (2.1) and (2.2) and the jump conditions across the

interface (2.6), (2.9)–(2.12) are made dimensionless by using the Rayleigh time
√
ρ1R3

0/σ ,
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R0, σ/R0, an arbitrary magnetic field intensity H0 and μ0 as characteristic time, length,
pressure, magnetic field and magnetic permeability, respectively. The characteristic scales
of the Rayleigh problem are chosen to enable the comparison of solutions with a magnetic
field to those of the non-magnetic problem.

For the basic state, denoted by subscript 0 such that H01 is the basic state of H1 for
example, the dimensionless equations become

∂Π01

∂r
= 0, (2.13)

∂Π01

∂z
= 0, (2.14)

Π01 + 1
2 NBo,mH2

01 + 1
2 (μr − 1)NBo,mH2

01r = P02 + 1 at r = 1, (2.15)

μrH01r = H02r at r = 1, (2.16)

H01θ = H02θ at r = 1, (2.17)

H01z = H02z at r = 1, (2.18)

with NBo,m = μ0(μr − 1)H2
0R0/σ the magnetic Bond number, and μr = μ1/μ0 the

relative permeability; NBo,m can be expressed as the product of two numbers (μr − 1) and
Γm = μ0H2

0R0/σ , with Γm a magnetic parameter that does not depend on μr. In (2.15),
M01 was replaced by (μr − 1)H01 using relation (2.5) with H01 corresponding to the norm
of the vector H01. From this equation, it emerges that the magnetic field has an equivalent
effect on pressure jump as occurs with surface tension.

The induced flow is decomposed around the basic state, as follows: Ui = ui,Πi = Π0i +
πi, Hi = H0i + hi and rs = 1 + ζ with ui, πi, hi the perturbed quantities in phase i and ζ
the surface perturbation. The dimensionless equations are linearised, and we thus obtain
the equations for the perturbed quantities

1
r
∂ru1r

∂r
+ ∂u1z

∂z
= 0, (2.19)

∂u1r

∂t
+ ∂π1

∂r
− Oh

(
1
r
∂2ru1r

∂r2 − 1
r2
∂ru1r

∂r
+ ∂2u1r

∂z2

)
= 0, (2.20)

∂u1z

∂t
+ ∂π1

∂z
− Oh

⎛
⎜⎝1

r

∂r
∂u1z

∂r
∂r

+ ∂2u1z

∂z2

⎞
⎟⎠ = 0, (2.21)

u1r − ∂ζ

∂t
= 0 at r = 1, (2.22)

∂u1r

∂z
+ ∂u1z

∂r
= 0 at r = 1, (2.23)

π1 + NBo,m

(
H01

∂H01

∂r
ζ + H01rh1r + H01zh1z + (μr − 1)

(
H01r

∂H01r

∂r
ζ

+H01rh1r − H01rH01z
∂ζ

∂z

))
− 2Oh

∂u1r

∂r
+ ζ + ∂2ζ

∂z2 = 0 at r = 1, (2.24)
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h2r − μrh1r + (μr − 1)H01z
∂ζ

∂z
= 0 at r = 1, (2.25)

h1θ − h2θ = 0 at r = 1, (2.26)

h2z − h1z + (μr − 1)H01r
∂ζ

∂z
= 0 at r = 1, (2.27)

with Oh = η1/
√
ρ1σR0 the Ohnesorge number. The last three equations were simplified

using (2.16)–(2.18).
In these equations, the magnetic field interferes with the hydrodynamic problem in the

pressure term and the pressure jump across the interface.
The system of equations is linear with respect to t and z, and nonlinear with respect

to r. Hence, we seek solutions in the form A(r) exp(ikz + αt), where A(r) is an unknown
function of r. Since this study explores temporal stability, we take k to be real, and α =
αr + iαi to be complex, such that k, αr and αi are respectively the wavenumber, growth
rate and oscillation frequency of the perturbation.

3. Solution

In this section, we first determine the admissible magnetic field shapes. Then, a dispersion
relation and a cutoff wavenumber equation adapted to each shape are derived.

3.1. Admissible magnetic fields
Based on the assumptions made in this paper, the magnetic field cannot have an arbitrary
shape. It is supposed to be axisymmetric and must satisfy Maxwell equations (2.3) and
(2.4), which were developed after considering a steady magnetic field and fluid that is not
electrically conductive. Thus, the admissible magnetic fields must satisfy

∂H01θ

∂z
= 0, (3.1)

∂H01r

∂z
− ∂H01z

∂r
= 0, (3.2)

H01θ + r
∂H01θ

∂r
= 0, (3.3)

∂H01r

∂r
+ H01r

r
+ ∂H01z

∂z
= 0. (3.4)

From (3.1) and (3.3), the azimuthal component must be in the form H01θ = B/r, with B
a constant. From the basic state, it is visible that the different components of H01 must
be independent of z. Equations (2.13) and (2.14) show that Π01 is constant. Moreover,
it can be shown that P02 follows the same equations and is also a constant, hence the z
independence of H01 seen in relation (2.15). From relations (3.2) and (3.4), it follows that
H01z is a constant and that component H01r must be in the form A/r, with A a constant.
Therefore, only the shape H01 = (A/r,B/r,C) with C a constant is admissible.

Two cases can be distinguished: axial magnetic fields (A = 0,B = 0,C /= 0) and
non-axial magnetic fields (A /= 0 or B /= 0). For this last case, a solid cylindrical structure
(which can be a hollow or solid wire) is necessary at r = 0 to overcome the singularity.
These two cases have different boundary conditions and are thus solved separately in the
following. The methodology used to solve the equations will be detailed for the axial case.
For the other case, only what differs from the axial case will be specified.
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3.2. Axial magnetic fields

3.2.1. Dispersion relation
To solve the linearised equations and obtain the dispersion relation, the methodology used
by Renoult et al. (2018) for the case of a non-magnetic liquid jet is followed. Because
the velocity is divergence free, it can be expressed with a Stokes streamfunction ψ in the
form u1r = −(1/r)(∂ψ1/∂z) and u1z = (1/r)(∂ψ1/∂r). Furthermore, the magnetic field
h is curl free, and thus there exists a magnetic perturbation potential φ for each phase
such that h1 = −∇φ1 and h2 = −∇φ2. The equations to be solved can be written in the
following form:

∂π1

∂r
= 1

r
∂2ψ1

∂z∂t
+ Oh

r

(
1
r
∂2ψ1

∂r∂z
− ∂3ψ1

∂r2∂z
− ∂3ψ1

∂z3

)
, (3.5)

∂π1

∂z
= −1

r
∂2ψ1

∂r∂t
+ Oh

r

(
∂3ψ1

∂r3 − 1
r
∂2ψ1

∂r2 + 1
r2
∂ψ1

∂r
+ ∂3ψ1

∂z2∂r

)
, (3.6)

−∂ψ1

∂z
= ∂ζ

∂t
at r = 1, (3.7)

∂2ψ1

∂r2 − ∂ψ1

∂r
− ∂2ψ1

∂z2 = 0 at r = 1, (3.8)

π1 = NBo,m
∂φ1

∂z
+ 2Oh

(
∂ψ1

∂z
− ∂2ψ1

∂r∂z

)
− ζ − ∂2ζ

∂z2 at r = 1, (3.9)

μr
∂φ1

∂r
− ∂φ2

∂r
+ (μr − 1)

∂ζ

∂z
= 0 at r = 1, (3.10)

∂φ1

∂z
− ∂φ2

∂z
= 0 at r = 1. (3.11)

Differentiating (3.5) with respect to z and (3.6) with respect to r, it can be shown that(
∂2

∂r2 − 1
r
∂

∂r
+ ∂2

∂z2 − 1
Oh

∂

∂t

)(
∂2

∂r2 − 1
r
∂

∂r
+ ∂2

∂z2

)
ψ1 = 0. (3.12)

The solution ψ1 is the sum of two contributions and has the form

ψ1 = r(ÂI1(kr)+ ǍI1(lr)+ B̂K1(kr)+ B̌K1(lr)) exp(ikz + αt), (3.13)

with I1 and K1 the modified Bessel functions of the first and second kinds, and l2 = k2 +
(α/Oh) a modified wavenumber. The streamfunction must be finite at r = 0 so B̂ = 0 and
B̌ = 0. Furthermore, by using (3.8), we find that

ψ1 = rÂ
[

I1(kr)− 2k2

k2 + l2
I1(k)
I1(l)

I1(lr)
]

exp(ikz + αt). (3.14)

Integrating (3.7) in time, it follows that

ζ = i
k
α

ÂI1(k)
[

k2 − l2

k2 + l2

]
exp(ikz + αt). (3.15)

The constant of integration in relation (3.15) is zero by definition of ζ . Then, π1 is obtained
by integrating (3.6) with respect to z and using (3.5) to find the constant of integration

π1 = iαÂI0(kr) exp(ikz + αt). (3.16)
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R. Canu and M.-C. Renoult

The next step is to determine φ in each phase. With (2.3) and (2.5), we see that�φ = 0 in
each phase leading to

φ1 = (a1I0(kr)+ b1K0(kr)) exp(ikz + αt), (3.17)

φ2 = (a2I0(kr)+ b2K0(kr)) exp(ikz + αt). (3.18)

The potential should be finite at r = 0 and there is no perturbation when r tends to infinity,
so b1 = 0 and a2 = 0; a1 and b2 are determined using relations (3.10) and (3.11), thus
giving

φ1 =
[

k
α

ÂI1(k)
[

k2 − l2

k2 + l2

]
(μr − 1)K0(k)

μrI1(k)K0(k)+ I0(k)K1(k)

]
I0(kr) exp(ikz + αt). (3.19)

Finally, the dispersion relation is obtained with the jump condition (3.9)

α2 + 2αk2Oh
[

1 − I1(k)
I0(k)

(
1
k

+ 2kl
l2 + k2

(
I0(l)
I1(l)

− 1
l

))]

− k(1 − k2 + Pmag)
I1(k)
I0(k)

l2 − k2

l2 + k2 = 0, (3.20)

with

Pmag = −NBo,m (μr − 1) k
I0(k)K0(k)

μrI1(k)K0(k)+ I0(k)K1(k)
, (3.21)

the magnetic field contribution to the dispersion relation. This relation is a transcendental
equation due to the term I0(l)/I1(l), which depends on α. It tends towards the relation
of the Newtonian case in the absence of a magnetic field, so when NBo,m = 0, as
reported in García & González (2008) with a different representation (note that the two
representations are equivalent Brenn 2017). Because the magnetic contribution Pmag does
not depend on α, the same number of solutions as the non-magnetic case is expected.
Therefore, the dispersion relation (3.20) has a trivial solution α = 0, two capillary
solutions, and an infinite number of hydrodynamic solutions using the same terminology
as García & González (2008). The trivial and hydrodynamic solutions appear when
viscosity is taken into account. The hydrodynamic solutions come from the fact that l
is a complex number depending on α and that I1(l) has an infinite number of roots. By
taking the limit Oh → 0, the dispersion relation first obtained by Taktarov (1975) is found
(with a typographical error in the dispersion relation where a modified Bessel function I1
is replaced by I0).

3.2.2. Cutoff wavenumber
The cutoff wavenumber kc is the wavenumber for which αr changes from positive to
negative (or from negative to positive) values, corresponding to the transition from the
unstable to stable (or from the stable to unstable) regime. To determine it, the dispersion
relation is written to eliminate the trivial solution. Simplifying by α

α + 2k2Oh
[

1 − I1(k)
I0(k)

(
1
k

+ 2kl
l2 + k2

(
I0(l)
I1(l)

− 1
l

))]

− k(1 − k2 + Pmag)
I1(k)
I0(k)

1
Oh

(
l2 + k2

) = 0. (3.22)
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Stability of a ferrofluid cylinder under a magnetic field

R0

Rs

Figure 4. Representation of a ferrofluid cylinder enclosed by a solenoid.

Then, kc corresponds to the wavenumber for which α = 0. By taking α = 0, we have
l2 = k2

c and relation (3.22) becomes

− kc(1 − k2
c + Pmag)

I1(kc)

I0(kc)

1
2Ohk2

c
= 0. (3.23)

Only (1 − k2
c + Pmag) can be cancelled, so relation (3.23) is verified when

k2
c + kc

I0(kc)K0(kc)

μrI1(kc)K0(kc)+ I0(kc)K1(kc)
(μr − 1)NBo,m − 1 = 0. (3.24)

From this equation, it is shown that kc is independent of Oh.

3.2.3. Presence of a solenoid
Experimentally, one way to create an axial magnetic field is to use a solenoid (figure 4). It
consists in a solid cylindrical structure enclosing the ferrofluid cylinder in the surrounding
fluid. Therefore, the presence of a solenoid with a radius Rs leads to a supplementary
boundary condition for the magnetic perturbation potential

φ2 = 0 at r = δs, (3.25)

with δs = Rs/R0 the dimensionless solenoid radius. Thus, constant a2 in relation (3.18) is
no longer zero but is expressed as a function of b2, leading to a new expression for φ1.
Only the expression of φ1 (and obviously φ2) is modified by the presence of the solenoid.
Hence, the dispersion relation has the same form as relation (3.20) but with a different
expression for Pmag given by

Pmag = −NBo,m (μr − 1) k
I0(k)As

μrI1(k)As + I0(k)Bs
, (3.26)

with As = I0(kδs)K0(k)− I0(k)K0(kδs) and Bs = I1(k)K0(kδs)+ I0(kδs)K1(k).
The cutoff wavenumber for an axial magnetic field with a solenoid can also be predicted

by solving the following equation:

k2
c + kc

I0(kc)As

μrI1(kc)As + I0(kc)Bs
(μr − 1)NBo,m − 1 = 0, (3.27)

derived from the cancellation of (1 − k2
c + Pmag). This equation tends to (3.24) for a high

value of δs.
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R0 Rw

Figure 5. Representation of a ferrofluid cylinder with a wire.

3.3. Non-axial magnetic fields

3.3.1. Dispersion relation
For this kind of magnetic field, the constants A, B and C in H01 = (A/r,B/r,C) are all
susceptible to having a non-zero value. Therefore, (3.9)–(3.11) have the following more
general form:

π1 = −NBo,m

(
−

(
A2 + B2

)
ζ − A

∂φ1

∂r
− C

∂φ1

∂z
+ (μr − 1)

(
− A2ζ

−A
∂φ1

∂r
− AC

∂ζ

∂z

))
+ 2Oh

(
∂ψ1

∂z
− ∂2ψ1

∂r∂z

)
− ζ − ∂2ζ

∂z2 at r = 1, (3.28)

μr
∂φ1

∂r
− ∂φ2

∂r
+ (μr − 1)C

∂ζ

∂z
= 0 at r = 1, (3.29)

∂φ1

∂z
− ∂φ2

∂z
+ (μr − 1)A

∂ζ

∂z
= 0 at r = 1. (3.30)

Then, due to the presence of a wire of radius Rw (figure 5), the dispersion relation no
longer has the same form. Indeed, the singularity at r = 0 is removed, and constants B̂
and B̌ are no longer equal to zero in relation (3.13). Two further boundary conditions
are needed: no penetration and no slip at the wire surface, which can be written into the
following form

−1
r
∂ψ1

∂z
= 0 and

1
r
∂ψ1

∂r
= 0 at r = δw, (3.31a,b)

with δw = Rw/R0 the dimensionless wire radius. Using relation (3.31a,b) and the same
methodology as in § 3.2.1, new expressions are found for ψ1, ζ and π1. The presence
of the wire also leads to an additional boundary condition for the magnetic perturbation
potential

φ1 = 0 at r = δw. (3.32)

Thus, constant b1 in relation (3.18) is no longer zero but expressed as a function of a1, thus
modifying the expression of φ1. Finally, the new dispersion relation is obtained through
relation (3.28)

α2 + 2αk2Oh
[

1 − 1
k

(
I1(k)− dI1(l)−

(
cd − a

b

)
K1(k)+

(
cd − a

b

)
K1(kδw)

K1(lδw)
K1(l)

+ d
I1(lδw)

K1(lδw)
K1(l)− I1(kδw)

K1(lδw)
K1(l)+ dlI0(l)+

(
cd − a

b

)
K1(kδw)

K1(lδw)
K0(l)l

+ d
I1(lδw)

K1(lδw)
K0(l)l − I1(kδw)

K1(lδw)
K0(l)l

) ⎛
⎜⎜⎝ 1

I0(k)+
(

cd − a
b

)
K0(k)

⎞
⎟⎟⎠

⎤
⎥⎥⎦
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Stability of a ferrofluid cylinder under a magnetic field

− k(1 − k2 + Pmag)

(
I1(k)− dI1(l)−

(
cd − a

b

)
K1(k)+

(
cd − a

b

)
K1(kδw)

K1(lδw)
K1(l)

+ d
I1(lδw)

K1(lδw)
K1(l)− I1(kδw)

K1(lδw)
K1(l)

) ⎛
⎜⎜⎝ 1

I0(k)+
(

cd − a
b

)
K0(k)

⎞
⎟⎟⎠ = 0, (3.33)

with constants a, b, c, d and the magnetic field contribution Pmag defined as

a = kI0(kδw)K1(lδw)+ lI1(kδw)K0(lδw), (3.34)

b = kK0(kδw)K1(lδw)− lK1(kδw)K0(lδw), (3.35)

c = lI0(lδw)K1(lδw)+ lI1(lδw)K0(lδw), (3.36)

d = 2k2K1(lδw) (bI1(k)+ aK1(k))− (
k2 + l2

)
K1(l) (bI1(kδw)+ aK1(kδw))

2k2K1(lδw)cK1(k)− (
k2 + l2

)
(K1(l) (bI1(lδw)+ cK1(kδw))− bI1(l)K1(lδw))

,

(3.37)

Pmag = −NBo,m

[
μrA2 + B2 − (μr − 1) k

(
μrA2AwK1(k)− C2BwK0(k)

)
μrAwK0(k)+ BwK1(k)

]
, (3.38)

where Aw = I1(k)K0(kδw)+ I0(kδw)K1(k) and Bw = I0(k)K0(kδw)− I0(kδw)K0(k). The
dispersion relation is coherent with that obtained by Arkhipenko et al. (1981) in the
inviscid limit without surrounding fluid (with a typographical error in the dispersion
relation where the numerator and denominator were inverted, as well as the sign of one of
the terms).

3.3.2. Cutoff wavenumber
From the dispersion relation (3.33), it is possible to obtain the equation for the cutoff
wavenumber. It is not obvious a priori that α = 0 is a solution of relation (3.33) but it can
be proved by using Taylor series. It can also be shown that the cutoff wavenumber equation
is still obtained by the cancellation of (1 − k2

c + Pmag), leading to

k2
c + kc

C2BwK0(kc)− μrA2AwK1(kc)

μrAwK0(kc)+ BwK1(kc)
(μr − 1)NBo,m − (1 − NBo,m(μrA2 + B2)) = 0.

(3.39)

If kc = 0 is the solution of this equation, this means that the ferrofluid cylinder is stable
for all wavenumbers (for cases where only one positive cutoff wavenumber exists). This
total stability is obtained when the following condition is verified:

NBo,m(μrA2 + B2)− 1 = 0. (3.40)

3.4. Applicability to jet description
In this paper, we perform a temporal stability analysis of a doubly infinite liquid cylinder.
We examine the applicability of this analysis to a jet description. In fact, as explained
in the introduction, a spatial stability analysis is more appropriate. In this case, the
solutions are searched under the form As(r) exp(i(ksz − αst)), but this time, ks is a
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complex number and αs a real number. Consequently, the perturbation oscillates over
time and grows with distance z when ks has a negative imaginary part. Using the same
methodology as in Keller et al. (1973), the following dimensionless parameters are
introduced: x = ksR0, ω = αsR0/Vjet and β = Vjet

√
ρR0/σ with β the dimensionless jet

velocity. Dimensionless solutions can be expressed in a stationary coordinate system by
replacing z by z + βt, giving A(r) exp(i(xz − (ω − x)βt)). Comparing this solution to that
obtained from temporal analysis (i.e. A(r) exp(ikz + αt)), the dispersion relation of the
spatial analysis is obtained by replacing k by x and α by −iβ(ω − x) in the temporal
analysis. Keller et al. (1973) show a correspondence between the unstable spatial and
temporal solution for β � 1, so when the dimensionless jet velocity is relatively high.

In the following section, different cases corresponding to different magnetic field shapes
will be examined. For the axial case without solid core, we search the values of β for which
the unstable solution for the temporal analysis is also a solution for the spatial analysis.
Contrary to the work of Guerrero et al. (2012), where all spatial modes are studied, we
restrict here the β search to the most unstable mode. For the temporal analysis, it is
characterised by Re(α) = α∗

r , Im(α) = 0 and k = k∗. Comparing once again the form of
the solutions in temporal and spatial analyses, a link can be made between k and Re(x),
between Re(α) and −β Im(x), and between Im(α) and β(Re(x)− ω). Therefore, in the
dispersion relation of the spatial analysis, Re(x) = k∗, Im(x) = −α∗

r /β and ω = Re(x).
This dispersion relation becomes a function that is only dependent on β, f (β) = 0. We
thus search for values of β that give |f (β)| < ε, where ε is the set convergence criterion
and does not represent the difference between the dominant modes obtained with spatial
and temporal analyses. For example, applying this method to the inviscid non-magnetic
case and setting ε = 10−4 leads to a difference of 0.026 %.

4. Applications

This section considers magnetic fields investigated in the literature or presenting a special
interest. These magnetic fields can be written in the general form H01 = (A/r,B/r,C)
with the appropriate choice of constants A, B and C. Only this form of magnetic field shape
was previously shown to be admissible. The transcendental dispersion relations (3.20) and
(3.33) are solved using the method of Luck, Zdaniuk & Cho (2015) and the transcendental
cutoff wavenumber equations using a zero-search procedure. The effect of magnetic field
intensity and the type of ferrofluid are characterised by varying Γm and μr. Indeed, we
chose to vary Γm instead of NBo,m in order to have a parameter independent of μr. Finally,
the experimental applicability of the theory is studied. Previous experiments are reported
in table 1 with the typical values of magnetic fields.

4.1. Axial magnetic field
The first studied case is a constant axial magnetic field with the form H01 = (0, 0, 1),
which corresponds to the form H01 = (A/r,B/r,C) with {A = 0; B = 0 ; C = 1}. The
dispersion relation associated with this case is given by (3.20).

The growth rate and pulsation of the dispersion relation solutions are shown in
figure 6 as functions of the wavenumber for different Γm. Recall that NBo,m is defined
by NBo,m = (μr − 1)Γm. Oh and μr are set to 0.55 and 2, respectively. With this value of
μr, NBo,m = Γm. The solutions obtained by García & González (2008) are determined for
Γm = 0, namely a trivial solution α = 0, two capillary solutions and an infinite number of
hydrodynamic solutions. Only two hydrodynamic solutions are visible owing to the chosen
window for the values of α. Here, Γm depends on σ , R0 and H0; H0 is not necessarily
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Name Components ρ η σ μr
(kg m−3) (kg m−1 s−1) (N m−1) (–)

FF1 kerosene + magnetite 1220 6 × 10−3 9.2 × 10−3 2.2
+ oleic acid (with glycerine)

FF2 kerosene + magnetite 1157 6 × 10−3 1.1 × 10−2 3.5
+ oleic acid (with glycerine)

FF3 water + maghemite 1534 1.4 × 10−3 5.5 × 10−3 1.75
(with Freon)

FF4 • 1560 6 × 10−2 3.24 × 10−2 1.78
(with air)

EFH1 light hydrocarbon 1210 6 × 10−3 • 3.64
+ magnetite + oil

EMG-111 magnetite • • • •
W-35 water • • • •
HC-50 kerosene 1250 6 × 10−3 2.8 × 10−2 •

(with air)
W-40 water • • • •
FF5 water + magnetite • • • •
FF6 magnetite • • • •

+ stabiliser • • • •
Table 2. Ferrofluid properties under standard laboratory conditions. Unknown data are represented by the

symbol •.

defined as the applied magnetic field intensity even if it is the case here. If the same
ferrofluid cylinder is considered (same σ and R0), a modification of Γm thus implies a
modification of the magnetic field intensity H0. Thus, varying Γm shows the effect of H0 on
the stability of the liquid cylinder. In this figure, different behaviours can be distinguished:
an unstable regime without oscillation characterised by αr > 0 and αi = 0 delimited by
kc, a stable regime without oscillation characterised by αr < 0 and αi = 0 and a stable
oscillating regime characterised by αr < 0 and αi /= 0 delimited by two wavenumbers k1
and k2. Increasing Γm induces an extension of the stable oscillating regime with a higher
frequency of oscillation. It also reduces kc and αr in the unstable regime, hence increasing
the extension of the stable regime.

The behaviour of kc can be predicted with the help of (3.24). The solution of this
equation as a function of Γm is represented in figure 7. The stabilisation of the cylinder
when Γm increases is confirmed, and the cutoff wavenumbers visible in figure 6(b) are
identified. High values of Γm (or NBo,m), like those plotted here, can be encountered
experimentally as shown in table 1. However, the cylinder is never totally stable for an axial
magnetic field. The zero value for kc is an asymptotic value approached for Γm tending to
infinity.

To examine the influence of the magnetic fluid on the solutions of the dispersion
relation, μr is varied for a constant Γm = 1, and Oh is kept at 0.55 (figure 8). The same
behaviour, as in varying Γm, is observed: reduction in kc and αr, and extension of the
stable oscillating regime with a higher frequency of oscillation. This shows that, in this
case, having ferrofluid with a higher relative magnetic permeability has the same effect as
increasing the magnetic field intensity.

The influence of Oh on the dispersion relation is described in the literature for the
non-magnetic cases (García & González 2008): reduction in growth rate and wavenumber
for the most unstable mode when Oh increases, independence of Oh on kc and dependence
of Oh on k1 and k2 with a disappearance of the stable oscillating regime for a sufficiently
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Figure 6. Solutions of the dispersion relation in an axial magnetic field for Oh = 0.55, μr = 2 and different
Γm; (a,b) αr as a function of k, (c,d) αi as a function of k. Panels (b,d) are blow-ups of (a,c); —— Γm = 0;
— - – Γm = 1; — — Γm = 5; - - - - - - - - Γm = 10. Black lines correspond to the capillary solutions and grey
lines to the hydrodynamic solutions. Vertical dotted lines represent the values of kc, k1 and k2 for Γm = 0.
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Figure 7. Value of kc as a function of Γm for μr = 2. The inset is a blow-up in the vicinity of low Γm.
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Figure 8. Solutions of the dispersion relation in an axial magnetic field for Oh = 0.55, Γm = 1 and different
μr; (a,b) αr as a function of k, (c,d) αi as a function of k. Panels (b,d) are blow-ups of (a,c); —— μr = 1; — —
μr = 3; - - - - - - - - μr = 5. Black lines correspond to the capillary solutions and grey lines to the hydrodynamic
solutions.

high value of Oh. The non-modification of kc with respect to Oh is visible in figure 9
(dotted lines) for different values of Γm. However, the evolution of k1 and k2 as a function
of Oh (solid lines) is modified with the magnetic field. As Γm increases, k1 becomes
increasingly independent of Oh, and for large values of Oh, k2 varies more slowly. For
lower values of Oh, the k2 values for the different Γm seem to converge, as k1 becomes
closer to kc. Moreover, the disappearance of the stable oscillating regime appears for higher
values of Oh as Γm increases.

Experimentally, an axial magnetic field can be created using a solenoid of radius Rs and
length Ls. We first assume that the length is infinite. Thus, the magnetic field created by
the solenoid is

H = ez, (4.1)

choosing H0 = In (characteristic magnetic field used to make H dimensionless) with
I the current intensity in the solenoid and n the number of turns by unit of length.
This expression is a classical result, which is found in books on electromagnetism: e.g.
Smythe (1950), Jackson (1962) and Pérez et al. (2009). The solenoid is in this case
considered as a stack of N loops. In reality, the solenoid is a winding of wire; nevertheless,
expression (4.1) is valid to within 1 % if the pitch of the winding does not exceed 1.35 Rs,
which is often the case. The solutions for relation (3.20), with expression (3.26) for
Pmag, are plotted in figure 10 for Oh = 0.55, μr = 2, Γm = 1 and different values of δs.
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Figure 9. Delimitation of the different stability regimes for any value of k and Oh, μr = 2 and different Γm.
From the darkest to the lightest, Γm = 0, Γm = 1, Γm = 3, Γm = 5 and Γm = 10. Vertical dotted lines represent
the corresponding value of kc, and solid lines separate the regimes with and without oscillations delimited by
k1 and k2 values.

The curves are very close to each other for different values of δs, and the largest offset
between them is for k around the cutoff wavenumber. This can be explained by the fact
that in the dispersion relation, δs only appears in Pmag, which is related to the cutoff
wavenumber. A blow-up around kc is shown in the inset, where a convergence to the
solution without a solenoid is observed by increasing the value of δs. The curve for
δs = 5 seems to coincide with the curve which corresponds to the case without a solenoid.
Consequently, for this case (Oh = 0.55, μr = 2 and Γm = 1), we can neglect the effect of
the solenoid if its radius is more than five times than that of the initial cylinder.

The cutoff wavenumber for an axial magnetic field with a solenoid is predicted
by solving (3.27). Figure 10 confirms that this equation tends to (3.24) for a high
value of δs. We thus search the value of δs for which the two relations converge.
To do this, we can divide the numerator and denominator of the second term in
(3.27) by I0(kδs), giving As/I0(kδs) = K0(k)− I0(k)K0(kδs)/I0(kδs) and Bs/I0(kδs) =
I1(k)K0(kδs)/I0(kδs)+ K1(k). To retrieve (3.24), As/I0(kδs) should tend to K0(k) and
Bs/I0(kδs) to K1(k). This leads to the two following conditions:

K0(kδs)

I0(kδs)
< ε

K0(k)
I0(k)

and
K0(kδs)

I0(kδs)
< ε

K1(k)
I1(k)

, (4.2a,b)

with ε a small parameter adapted according to the desired accuracy. Because K1(k)/I1(k) is
always greater than K0(k)/I0(k), the first condition is sufficient. The value of δs satisfying
this condition with ε = 0.01 is shown in figure 11 as a function of the asymptotic kc
value obtained for a solenoid with an infinite radius. This figure shows that for a value
kc = 0.8 corresponding to Γm = 1, δs = 4 is the value for which the solenoid effect can be
neglected at an accuracy ε. This is in good agreement with δs = 5 determined graphically
in figure 10. Furthermore, we can see that for lower kc, corresponding to greater Γm
(figure 7), a greater value of δs is required, which shows that a solenoid must have a high
radius when the magnetic field intensity is high. Otherwise, the effect of the presence of
the solenoid cannot be neglected.
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Figure 10. Solutions of the dispersion relation in an axial magnetic field created by a solenoid for Oh = 0.55,
Γm = 1, μr = 2 and different δs; (a,b) αr as a function of k, (c,d) αi as a function of k. Panels (b,d) are blow-ups
of (a,c); —— no solenoid; - - - - - - - - δs = 1.5; — — δs = 2; — - — δs = 3; - - - δs = 5. Black lines correspond
to the capillary solutions and grey lines to the hydrodynamic solutions. The inset is a blow-up around kc.
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Figure 11. Value of δs satisfying condition (4.2a,b) as a function of kc. The inset is a blow-up in the vicinity
of small δs.
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1.0

0.8

0.6

0.4

0.2

0 0.02 0.04 0.06 0.08 0.10

L ∞
/
L s

Λs

Figure 12. Portion of the solenoid where relation (4.1) is valid to within 1 % as a function of its aspect
ratio Λs.

Until now, we have assumed that the solenoid had an infinite length. However, if it has a
finite length (see for example Smythe 1950; Jackson 1962; Pérez et al. 2009), the magnetic
field on the z axis becomes

H = 1
2

⎛
⎜⎜⎜⎜⎝

δs

2Λs
+ z√

δ2
s +

(
δs

2Λs
+ z

)2
+

δs

2Λs
− z√

δ2
s +

(
δs

2Λs
− z

)2

⎞
⎟⎟⎟⎟⎠ ez, (4.3)

with Λs = Rs/Ls the solenoid aspect ratio and the centre of the solenoid corresponding
to the coordinate origin. Relation (4.3) tends toward relation (4.1) when the term in
parentheses tends to 2. This condition is satisfied when z and δs are small compared
to δs/2Λs, so for a small aspect ratio Λs and a value of z comparable to Ls/R0. For a
given ratio δs and Λs, the range of z, L∞, where relation (4.1) is valid within ε, can be
determined. Taking ε = 1 %, figure 12 shows that for Λs > 0.071, relation (4.1) is never
valid. On the contrary, with Λs = 0.02 for example relation (4.1) is reasonable for 80 %
of the length of the solenoid, showing that a small aspect ratio is necessary for using the
infinite length hypothesis. In the literature, there was no experimental example combining
a ferrofluid jet and a solenoid (table 1). To test the infinite length hypothesis, we rely on
the characteristic scales of the coil used by Sudo et al. (2010). A value Λs = 0.75 can
be calculated, and thus the infinite length hypothesis is never valid. Relation (4.3) was
obtained on the z axis and the conclusions drawn previously are therefore true on this
axis. Nevertheless, it was shown, e.g. by Callaghan & Maslen (1960), that relation (4.1)
is accurate to within 1 % across more than 60 % of the solenoid volume for Λs < 0.04,
which accords with the values shown in figure 12.

Finally, considering the experimental realisation of this case, as explained in § 3.4,
the ferrofluid jet may be represented by a ferrofluid cylinder of infinite length if the
dimensionless jet velocity β is sufficiently high. Let us determine for which β this
representation is valid for the case where the radius of the solenoid is high enough to
ignore the presence of the solenoid. Using the methodology explained in this subsection,

915 A137-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.171


R. Canu and M.-C. Renoult

7

6

5

4

3

2
100 20 30 40 50

β

Γm

Figure 13. Minimum value of β as a function of Γm in an axial magnetic field for Oh = 0.55, μr = 2 and
ε = 10−4.

this dispersion relation can be written in the following form:

− β2 (ω − x)2 − 2iβ (ω − x) x2Oh
[

1 − I1(x)
I0(x)

(
1
x

+ 2xl′

l′2 + x2

(
I0(l′)
I1(l′)

− 1
l′

))]

− x(1 − x2 + Pmag)
I1(x)
I0(x)

l′2 − x2

l′2 + x2 = 0, (4.4)

with l′2 = x2 − iβ(ω − x)/Oh. With this formalism, Pmag becomes

Pmag = −NBo,m (μr − 1) x
I0(x)K0(x)

μrI1(x)K0(x)+ I0(x)K1(x)
. (4.5)

By choosing Oh = 0.55, and μr = 2 and replacing ω and x by the values mentioned in
§ 3.4, the minimum value of β can be found for a given Γm. This is the value of β so
that the real and imaginary parts of relation (4.4) are less than ε in absolute value. Here,
the value ε = 10−4 was chosen. In figure 13, the minimum value of β for considering a
ferrofluid cylinder of infinite length is plotted for different values of Γm. To our knowledge,
this value was not indicated in previous studies. We can see that a value β � 7 is needed
without a magnetic field and that this value decreases when the magnetic field intensity
increases. Experimentally, this means that when the magnetic field intensity is strong, the
jet velocity does not need to be too high in order to use a temporal stability analysis instead
of spatial stability analysis. Our method for finding β was also applied to the non-magnetic
case presented in the work of Guerrero et al. (2012) with Oh = 0.03 (see their figure 2) and
we obtained β = 29.1. This result shows that β is dependent on Oh (since β > 7) and also
that our method is consistent. Indeed, there is a difference of 13 % between their value of
the dominant mode calculated with β = 4.47 and the one obtained with temporal analysis,
indicating that a higher value of β is required for using temporal stability analysis.

4.2. Azimuthal magnetic field
We now examine an azimuthal magnetic field with the dimensionless form H01 =
(0, 1/r, 0) corresponding to the form H01 = (A/r,B/r,C) with {A = 0; B = 1; C = 0}.
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Stability of a ferrofluid cylinder under a magnetic field

However, for this case, a wire is needed at the centre of the cylinder to overcome the
singularity at r = 0. This wire is first assumed to have an infinite length. So, the dispersion
relation (3.33) has to be used with Pmag = −NBo,m by adapting expression (3.38). The
cutoff wavenumber equation (3.39) is also simplified and becomes

kc = √
1 − NBo,m. (4.6)

From this equation, it can be seen that the ferrofluid cylinder is stable for all wavenumbers
when NBo,m � 1, which is confirmed by relation (3.40).

The total stability of the ferrofluid cylinder for NBo,m � 1 is visible in figure 14 where
the solutions of the dispersion relation (3.33) are represented for Oh = 0.55, μr = 2, δw =
0.1 and different Γm. Therefore, as with the axial magnetic field, increasing the magnetic
field intensity stabilises the ferrofluid cylinder. However, here the cylinder can be stable
for all wavenumbers, whereas in the axial case, total stability is an asymptotic limit. The
cutoff wavenumbers given by relation (4.6) are then retrieved (kc = 0.71 for Γm = 0.5
and kc = 0.45 for Γm = 0.8). Compared to the axial magnetic field, the hydrodynamic
solutions decrease more rapidly due to their higher negative values of αr. Two further
differences should be reported. The first relates to the second capillary solution, which is
no longer 0 for k = 0. The second concerns the stable oscillating regime characterised by
two complex conjugate solutions with αi /= 0. Like the axial case, increasing Γm increases
the oscillating regime and the oscillation frequency, although this regime disappears for
low values of Γm.

These latter observations are because of the presence of wire in the centre of the
ferrofluid cylinder, as shown in figure 15, which represents the solutions of the dispersion
relation (3.33) for Oh = 0.55, μr = 2, Γm = 0.5 and different δw. In this figure, we can
see that increasing the wire radius increases the negative values of the hydrodynamic
solutions and the second capillary solution (also for k = 0). Increasing δw also decreases
the maximum growth rate, with the maximum shifting towards higher wavenumber values.
Furthermore, for a given magnetic field, the stable oscillating regime can be removed for
a sufficiently high δw. The δw independency in the cutoff wavenumber equation (4.6) is
confirmed in this figure.

Experimentally, the wire used to overcome singularity at r = 0 can be used to generate
the azimuthal magnetic field by passing an electric current through it. When the wire is
supposed to have an infinite length, the magnetic field created outside the wire is

H = 1
r

eθ , (4.7)

choosing H0 = I/2πR0 (characteristic magnetic field used to make H dimensionless) with
I the current intensity of the wire, and r the radial distance from the centre of the wire.
However, if the wire has a finite length Lw (see for example Smythe 1950; Jackson 1962;
Pérez et al. 2009), the magnetic field becomes

H = 1
2r

⎛
⎜⎜⎜⎜⎝

δw

2Λw
+ z√

r2 +
(
δw

2Λw
+ z

)2
+

δw

2Λw
− z√

r2 +
(
δw

2Λw
− z

)2

⎞
⎟⎟⎟⎟⎠ eθ , (4.8)

with Λw = Rw/Lw, the wire aspect ratio and the centre of the wire corresponding to
the coordinate origin. The coefficient after 1/2r is the same as in expression (4.3) for
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Figure 14. Solutions of the dispersion relation in an azimuthal magnetic field for Oh = 0.55,μr = 2, δw = 0.1
and different Γm; Panels (b,d) are (a,b) αr as a function of k, (c,d) αi as a function of k. Panels (b,d) are
blow-ups of (a,c); —— Γm = 0; - - - Γm = 0.5; — - – Γm = 0.8; — — Γm = 1; - - - - - - - - Γm = 2. Black lines
correspond to the capillary solutions and grey lines to the hydrodynamic solutions.

a solenoid replacing Rs by r. Thus, the range of z, where the infinite length hypothesis
is valid to within 1 %, can be found in figure 12, while ensuring that the wire radius
is included in the radial distance r. The same conclusions as for the solenoid can be
drawn replacing Λs by Λw + d/Lw, with d the distance to the wire. However, this is less
restrictive for the wire becauseΛw + d/Lw is much smaller than the ratioΛs. For example,
the experiment of Arkhipenko et al. (1981) used a cylindrical conductor as a wire with
radius Rw = 1 mm and two lengths Lw1 = 180 and Lw2 = 500 mm (table 1). These values
give Λw1 = 5.6 × 10−3 and Λw2 = 2.0 × 10−3. The distance to the wire, corresponding
to the presence of ferrofluid, increases from d = 1.1 to d = 1.8 mm. Referring to figure 12,
it emerges in this experiment that the infinite length hypothesis of the wire is valid for 85 %
of the wire in the most unfavourable case (Lw1 = 180 and d = 1.8 mm) and 96 % in the
most favourable case (Lw2 = 500 and d = 1.1 mm). For the experiment of Bourdin et al.
(2010), this hypothesis is valid for 92 % of the wire by taking the valuesΛw = 3.0 × 10−3,
Lw = 500, and d = 2.3 mm.

A comparison with the experiments on ferrofluid cylinders of Arkhipenko et al. (1981)
and Bourdin et al. (2010) is presented in figures 16 and 17, respectively. We saw that in
these experiments the infinite length hypothesis is valid for at least 85 % of the wire. It
is therefore relevant to compare them with the present theory. Figure 16 shows that the
consideration of ferrofluid viscosity does not greatly influence the wavelength Λ∗ = 1/k∗
of the most unstable mode compared to the inviscid theory. Nevertheless, it improves
the prediction of the growth rate of this mode. The difference with the experimental
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Figure 15. Solutions of the dispersion relation in an azimuthal magnetic field for Oh = 0.55, μr = 2, Γm =
0.5 and different δw; (a,b) αr as a function of k, (c,d) αi as a function of k. Panels (b,d) are blow-ups of (a,c);
- - - - - - - - δw = 0.01; —— δw = 0.1; — — δw = 0.2. Black lines correspond to the capillary solutions and grey
lines to the hydrodynamic solutions.

data probably relates to the fact that in the experiment, the surrounding fluid does not
have a negligible viscosity or density. Figure 17, which compares the present theory to
the experimental data of Bourdin et al. (2010) using the quantity α2/(NBo,m − 1 + k2),
shows that the consideration of ferrofluid viscosity reduces the discrepancy between the
experiment and theory. Only the case of NBo,m = 6.51 is plotted here. All the curves are
overlapped for the different values of NBo,m.

4.3. Destabilising magnetic field
For this final case, an inverse approach is used. Instead of imposing a shape on the
magnetic field, we searched for the shape to destabilise the ferrofluid cylinder compared
to the case without a magnetic field. We thus searched for a case in which the cutoff
wavenumber exceeds 1. We saw previously that axial magnetic fields cannot destabilise the
ferrofluid cylinder. So, the dispersion relation (3.33), which considers a solid cylindrical
structure, has to be used with expression (3.38) for Pmag. Equation (3.39), for the cutoff
wavenumber, can be written in a more convenient form to identify the magnetic field
shape coefficients(

μr − μr (μr − 1)AwK1(kc)kc

μrAwK0(kc)+ BwK1(kc)

)
A2 + B2 + (μr − 1)BwK0(kc)kc

μrAwK0(kc)+ BwK1(kc)
C2 = 1 − k2

c

NBo,m
.

(4.9)

915 A137-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.171


R. Canu and M.-C. Renoult

0.80.70.60.50.40.30.20.10
1.0

1.5

2.0

2.5Λ
∗  (

–
)

α
∗ r 

(s
–
1
)3.0

3.5

4.0

4.5 10

8

6

4

2

0.9 0.70.60.50.40.30.20.10

NBo,mNBo,m

(b)(a)

Figure 16. Comparison with the experimental data of Arkhipenko et al. (1981) in an azimuthal magnetic field.
(a) Value of Λ∗ as a function of NBo,m; �, experimental data with a column of 18 cm; ©, experimental data
with a column of 50 cm; grey line corresponds to the inviscid theory of Arkhipenko et al. (1981) and black line
to the present viscous theory. (b) Value of α∗

r as a function of NBo,m; dots correspond to the experimental data;
dashed lines to the inviscid theory of Arkhipenko et al. (1981) and solid lines to the present viscous theory.
Black corresponds to R0 = 2.1 mm and grey to R0 = 2.8 mm. Identical lines are plotted for the ferrofluids FF1
and FF2 of table 2.
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Figure 17. Comparison with the experimental data of Bourdin et al. (2010) in an azimuthal magnetic field.
Circles correspond to experimental data for different NBo,m from 1.85 to 11.57, the dashed line to the inviscid
theoretical prediction made in Bourdin et al. (2010) and the solid line to the present viscous theory plotted for
the ferrofluid FF3 of table 2 and NBo,m = 6.51.

A cutoff wavenumber greater than 1 is sought for this case. The right-hand side of (4.9)
must therefore be negative. Because A, B and C are the magnetic field components, they
are not complex, and A2, B2 and C2 are positive. Furthermore, the coefficient before C2

is always positive for δw < 1. Therefore, only the coefficient before A2 can be negative.
This means that, to have a cutoff wavenumber greater than 1, a magnetic field with a
radial component is necessary. It confirms the result that a magnetic field normal to a free
surface is destabilising (Melcher 1963; Rosensweig 1985). However, the coefficient before
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Figure 18. Solutions of the dispersion relation in a radial destabilising magnetic field for Oh = 0.55, μr = 5,
Γm = 0.425 and δw = 0.1; (a,b) αr as a function of k, (c,d) αi as a function of k. Panels (b,d) are blow-ups of
(a,c). Black lines correspond to the capillary solutions and the grey line to the hydrodynamic solution. Vertical
dotted lines represent the values of kc1 and kc2.

A2 is not always negative, and for a given μr and δw, there is a condition on the possible
cutoff wavenumbers. By taking the values μr = 2 and δw = 0.1, the coefficient before A2

is negative only for kc > 2.95. With μr = 5 and δw = 0.1, the condition becomes kc >
1.275. In the following, these latter values are chosen.

To determine the components of the destabilising magnetic field, the value of kc should
be imposed to verify the condition given by the values of μr and δw. If a value kc = 1.5 is
wanted for μr = 5 and δw = 0.1, (4.9) becomes

−0.735296A2 + B2 + 1.21732C2 = −1.25
NBo,m

. (4.10)

From relation (4.10), we can see that an infinite number of magnetic fields can destabilise
the ferrofluid cylinder. One possibility is the pure radial magnetic field {1/r, 0, 0}, which
leads to NBo,m = 1.7 (so Γm = 0.425).

In figure 18, the capillary and first hydrodynamic solutions are represented for the
purely radial magnetic field case with Oh = 0.55, μr = 5, δw = 0.1 and Γm = 0.425. One
specificity characterises this case compared to the previous ones; the unstable regime is
no longer found at the small k values between 0 and kc but rather at intermediate values of
k between two cutoff wavenumbers kc1 and kc2. As expected, kc1 = 1.5, while kc2 � 4.27.
For k < kc1 and k > kc2, the regime is stable with the oscillation part between k1 = 0.29
and k2 = 0.71. Furthermore, the values of α at k = 0 for the capillary solutions (including
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the trivial α = 0 solution) and the hydrodynamic solution are the same as those for the
azimuthal magnetic field case with δw = 0.1, which shows that these values depend on the
radius of the solid structure rather than μr or the magnetic field shape.

This case shows that it is theoretically possible to increase wavenumber values with
an unstable ferrofluid cylinder, although it is unknown whether this is experimentally
achievable.

5. Conclusion

We performed a linear stability analysis of a ferrofluid cylinder under a steady magnetic
field of general shape. The admissible shapes of the magnetic field were found in the
form (A/r,B/r,C) with three constants (A,B,C). We considered the viscosity of the
ferrofluid by assuming the Newtonian behaviour of the ferrofluid. A small-amplitude
axisymmetric disturbance was imposed on the basic state. We linearised the dimensionless
equations and obtained dispersion relations for axial and non-axial magnetic field shapes.
These relations depend on four dimensionless parameters: dimensionless wavenumber k,
Ohnesorge number Oh, relative magnetic permeability μr and magnetic parameter Γm.
For non-axial shapes, a fifth parameter appears: dimensionless wire radius δw owing to
the presence of wire to prevent singularity at r = 0. We formulated, for each shape, an
equation for the cutoff wavenumber delimiting the stable/unstable regime and a condition
for the total stability of the ferrofluid cylinder. Different shapes for the magnetic field
were studied. The first was an axial magnetic field (A = 0,B = 0,C = 1) in which the
ferrofluid cylinder becomes increasingly stable as the magnetic field intensity, through
Γm, or μr increases. We also examined the influence of the solenoid, commonly used in
prior experiments to create this magnetic field, showing that its effect is negligible for a
high solenoid radius. However, the required radius increases rapidly for high magnetic
field intensity. The solenoid should also be long enough to consider a homogeneous
magnetic field. For the axial magnetic field case, a link was made between the temporal
and spatial analyses of the ferrofluid liquid jet to determine from which jet velocity an
infinite ferrofluid cylinder can represent jet behaviour. For a high magnetic field intensity,
a lower velocity is needed. The second case was an azimuthal magnetic field (A = 0,B =
1,C = 0) in which wire was used to prevent singularity at r = 0. In this case, the ferrofluid
cylinder can be stabilised for all wavenumbers from a specific magnetic field intensity.
Our theory that takes into account ferrofluid viscosity better explains the experimental
results compared to the existing theories without ferrofluid viscosity. Finally, a case that
destabilises the ferrofluid cylinder was found. A magnetic field with a radial component
is necessary for this purpose, and the radial magnetic field shape (A = 1,B = 0,C = 0)
is such an example. The particularity observed here is that the unstable regime no longer
concerns small wavenumbers but intermediate wavenumbers. This behaviour could allow
us to control the drop size created during a ferrofluid jet breakup. The main results of this
work are summarised in figure 19. Future studies should consider the nonlinearities due to
the advection term in the momentum balance equation and the magnetic contributions
in order to predict satellite drops, which are undesirable in printing applications with
magnetic inks for example. Other effects could also be studied such as the influence of
the surrounding fluid viscosity. Indeed, when ferrofluids are used in medicine, they must
be injected in a viscous biological liquid.
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