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This paper examines the velocity distribution function and cyclotron resonance
conditions for a beam of electrons moving in a magnetic field which gradually
changes with time. A spatial gradient of magnetic field is known to result in an
unstable horseshoe distribution of electrons. The field gradient in time adds additional
effects due to an induced electric field. The resultant anisotropic velocity distribution
function, which we call a Luvdisk distribution, has some distinctive properties when
compared to the horseshoe. Fitting the cyclotron resonance condition circle shows that
the frequency of the resultant emission is under the local cyclotron frequency. While
the spatial gradient results in the emission coming almost perpendicularly to the field,
the direction of the radiation under a time-changing field has more variability. The
Luvdisk distribution also arises when the magnetic field has a gradient both in space
and time. The beam can be unstable if those gradients are added or subtracted from
each other (if the gradients are of equal or different sign), which occurs even when
the total change of magnetic field is negative. While the frequency of the emission
is related to the final magnetic field value, its direction is indicative of the field’s
history which produced the instability.
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1. Introduction

The cyclotron instability in a beam of charged particles occurs when the beam’s
kinetic distribution comes into a resonance with the local cyclotron resonance
condition circle. This is a collective instability driven by a gradient of the kinetic
distribution function. The distribution function must be anisotropic to provide a
substantial interaction of the cyclotron resonance condition with the high-gradient
region of the distribution.

We are interested here in the cyclotron kinetic instability with perpendicular drive
(i.e. driven by a gradient of the velocity distribution function perpendicular to the
beam direction). Examples of anisotropic distribution functions responsible for such an
instability include a ring distribution (Cairns et al. 2011), an even perpendicular spread

† Email address for correspondence: iv4@st-andrews.ac.uk

https://doi.org/10.1017/S002237782000046X Published online by Cambridge University Press

https://orcid.org/0000-0002-7335-047X
https://orcid.org/0000-0003-1789-8665
https://orcid.org/0000-0002-5706-2128
https://orcid.org/0000-0003-1492-7264
https://orcid.org/0000-0002-4613-7470
https://orcid.org/0000-0003-4392-0678
mailto:iv4@st-andrews.ac.uk
https://doi.org/10.1017/S002237782000046X
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(Gary et al. 1994) and a horseshoe distribution (Bingham & Cairns 2000; Vorgul et al.
2011). Such instabilities are important in astrophysical and laboratory plasma.

The horseshoe distribution is formed from an initial drifting Maxwellian when
the beam is moving along a rising gradient of magnetic field. Energy and magnetic
momentum conservation cause the beam in spreading in velocity space, perpendicular
to the beam direction and curling backward (Bingham, Cairns & Kellett 2001;
Vorgul, Cairns & Bingham 2005; Speirs et al. 2014). This distribution is responsible
for periodic radio emission from many astrophysical bodies, including the Earth
(auroral kilometric radiation, e.g. Ergun et al. (2000)) and other terrestrial planets
(e.g. Lamy et al. 2018), stars (e.g. Kellett et al. 2007 and Trigilio et al. 2008)
and brown dwarfs (e.g. Harding et al. 2013). The periodicity is due to the rotation
of the source and to a high directivity of the emission. The radiation is detected
when directly pointing towards the Earth, hence being seen as periodic pulsations in
observations. The emission happens when the anisotropic distribution couples with
the local cyclotron resonance condition. This means that the cyclotron resonance
condition circle1 intersects an extensive area of high gradient of the distribution
function in velocity space. The wave of the resonant frequency will then grow, and
radiation with distinct properties is produced.

For the horseshoe-distribution instability, the radiation has a narrow spectrum
peaking just below the local electron cyclotron frequency; is emitted as an X-mode
(corresponding to TE (transverse-electric) mode in laboratory experiments) and its
direction is slightly backward with respect to the beam, but almost perpendicular to
it (Speirs et al. 2014). The resultant radiation from an astrophysical body can have
the direction changed by refraction while propagating through its magnetosphere,
and the bandwidth of the spectrum can be affected by dispersion of the medium of
propagation.

The magnetic field of many natural sources of cyclotron emission can be expected
to be variable, due to fast motion or rotation, or due to physical processes at the
field’s source. Laboratory plasma can also have unstable magnetic field, or the field’s
changing can be introduced purposefully for specific effects. Cyclotron emission is a
valuable non-invasive tool for assessing the local magnetic field both in the laboratory
and in distant observations. In this paper, we explore the possibility of an electron
cyclotron emission caused by a gradient of the magnetic field not in space, as for
the horseshoe instability, but in time. We consider a magnetic field varying (gradually
rising or falling) in time in a homogeneous medium, as well as in combination with
the field’s gradient in space.

The modelling is done by applying conservation laws to find a velocity distribution
function of an electron beam resulting from change in magnetic field. Fitting a
cyclotron resonance circle of a wave through its region of maximum gradient shows
characteristic properties of the related emission.

2. Derivation of velocity distribution function
Similarly to the case of an electron beam moving into a stronger magnetic field,

the resultant distribution function of the electrons can be found from an initial one
by applying conservation laws (Bingham & Cairns 2000). The difference from the
case when the beam’s propagation conditions are stationary (B= const.) comes from
an additional electric field induced by the change in magnetic flux. The additional

1A circle described by the resonant wave’s frequency being equal to the local cyclotron frequency with
relativistic correction, Doppler-shifted by parallel propagation.
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Beam instability in a time-changing magnetic field 3

field then accelerates/decelerates the electrons and contributes to the final energy in
conservation laws.

We consider the initial beam’s distribution function being a drifting Maxwellian in
velocity space, which in terms of parallel (v‖) and perpendicular (v⊥) velocities can
be written as

f0(v‖, v⊥)= A · exp
(
−

m
2kBT

((v‖ − v0)
2
+ v2

⊥
)

)
, (2.1)

where v0 is the drift velocity of the beam, m is the mass of an electron, T is an
average temperature, and kB is the Boltzman constant.

2.1. Effect of the induced electric field
Let the magnetic field change from the value B0 to B (B > B0) over the time 1t.
Assume the vector field B is uniform and directed along the z-axis over the length
where the time change is happening.

Changing magnetic flux induces an additional electric field, EB, according to∮
C

EB dl =−
∂

∂t

∫∫
S

B · n dS≈−
∂

∂t
Bπr2

L, (2.2)

where the normal to the surface, n, is in the z-direction, B= B · ẑ, rL is the Larmor
radius for the instantaneous B,

rL =
mv⊥
eB

, (2.3)

with v2
⊥
= v2

s + v
2
φ in cylindrical coordinates.

It is reasonable to assume EB to be in the azimuthal direction for a uniform
magnetic field along the z-axis, referring to the differential form of (2.2),

∇× EB =−
∂B
∂t
. (2.4)

Then, the induced electric field gives an additional kinetic energy to the beam,
1K=m(1vφ)2/2. It can be calculated as work done by the electric force, Fe=−eEB,
over the electrons’ path,

1K =−e
∫

EB dl. (2.5)

During the change of the magnetic field with time, the electrons move along a
conical spiral with decreasing radius, which corresponds to the Larmor radius at an
instantaneous local value of the magnetic field. The work done over this spiral path
can then be calculated by summing up the work done over closed circular loops
on that cylinder, and can be approximated by multiplying the work done over an
average-length loop by a number of the loops over the time of the field changing,
1t. Then, combining equation (2.5) with (2.2), the change in kinetic energy is

1K =−e ·N ·
∮

EB dl =−e ·N ·
∂B
∂t
·πr̃2

L, (2.6)

where r̃2
L is an average value of the square of the Larmor radius of the electrons along

the conical spiral. The sign in final result of (2.6) is found using the right-hand rule
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for the directions of EB and the azimuthal velocity and means that the induced field
is slowing down the electrons, with no effect on the electrons close to the beam’s axis
and the larger effect for the electrons with larger transverse velocity.

The derivative of the magnetic field in (2.6) can be approximated by

∂B
∂t
≈
1B
1t
=
(B− B0)

1t
(2.7)

if the magnetic field change can be considered linear with time. The number of loops,
N, can be calculated by dividing the total time over which the change occurred by the
average time it took the electrons to travel along one loop of an average radius r̃L (τ ),

N =
1t
τ
=

1t
2πr̃L

1
2

(√
v2
‖ + v

2
⊥ +

√
v2
‖0 + v

2
⊥0

) =
1t

4πr̃L

(√
v2
‖ + v

2
⊥ +

√
v2
‖0 + v

2
⊥0

)
, (2.8)

where the square roots are the velocities of the electrons at t = 0 and t = 1t,
correspondingly.

The change of the magnetic field in time results then in the change in kinetic energy
of electrons equal to (combining (2.6) and (2.8))

1K = e ·
1t

4πr̃L
·

(√
v2
‖ + v

2
⊥ +

√
v2
‖0 + v

2
⊥0

)
·
1B
1t
·πr̃L

2

=
e
4

(√
v2
‖ + v

2
⊥ +

√
v2
‖0 + v

2
⊥0

)
·1B ·

mṽ⊥
eB

=
m
2
·
1B
4

(
v⊥

B
+
v⊥0

B0

)(√
v2
‖ + v

2
⊥ +

√
v2
‖0 + v

2
⊥0

)
, (2.9)

where at the last step the Larmor radius was substituted with r̃L = m/2(v⊥/B +
v⊥0/B0).

2.2. Magnetic momentum conservation
In order to find the transformed distribution function of the electrons after the change
of magnetic field with time, the initial transverse and parallel velocities in the initial
distribution function, equation (2.1), need to be expressed in terms of the final
velocities. Conservation laws can be used to find these correspondences.

It was shown in Qin & Davidson (2006) that, similarly to the case of a beam
moving in a non-uniform but stationary magnetic field, the magnetic momentum of
the electrons is adiabatically conserved for the case when magnetic field is changing
with time. Since the magnetic momentum can be written as

µ=−
e

2m
L=−

e
2m

mv⊥ ·
mv⊥

B
=

emv2
⊥

2B
, (2.10)

the magnetic momentum conservation yields the correspondence between the initial
and final transverse velocity as

v⊥0 = v⊥ ·
B0

B
. (2.11)
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2.3. Energy conservation
The electrons’ kinetic energy after the field’s change is equal to the energy before the
change plus 1K,

m
2
(v2
‖0 + v

2
⊥0)+1K =

m
2
(v2
‖
+ v2

⊥
)

=
m
2

(
v2
‖
+ v2

⊥
+
1B
4

(
v⊥

B
+
v⊥0

B0

)(√
v2
‖ + v

2
⊥ +

√
v2
‖0 + v

2
⊥0

))
. (2.12)

Substituting v2
⊥0 from (2.11), (2.12) can be used to express v‖0 in terms of the

velocity components after the field’s change,

v2
‖0 = v

2
‖
+ v2

⊥

1−
B0

B
+

(
1B
4B

(
1+

√
B0

B

))2
+ 1B

2B
v⊥

(
1+

√
B0

B

)√
v2
‖ + v

2
⊥.

(2.13)

2.4. Transformed distribution function
Substituting the initial velocities in terms of the final velocity components from (2.11)
and (2.13) into the initial velocity distribution function in (2.1) the transformed
distribution function is equal to

f (v‖, v⊥) = A · exp
(
−(m/2kBT)

((
v2
‖
+ v2

⊥

[
1− B0/B+ (1B/4B(1+

√
B0/B))2

]
+1B/2Bv⊥(1+

√
B0/B)

√
v2
‖ + v

2
⊥ − v0

)2
+ B0/Bv2

⊥

))
. (2.14)

The final value of the magnetic field B in (2.13) determines the final Larmor radius,
while the change of the field, 1B, comes from the time derivative of the field and is
a factor in the term accounting for the additional energy from the induced electric
field 1K in (2.9). There are no requirements for the final B to be only a result of
the change in time, and (2.13) can describe the distribution function as a result of
propagation under a combination of gradients of magnetic field in space (by B−B0−

1B) and in time (by 1B), resulting in the final field being equal to B. It is easy to see
that for 1B→ 0 this distribution function tends to the horseshoe distribution arising
when a beam of electrons moves into a spatial gradient of magnetic field (Bingham
& Cairns 2000; Vorgul et al. 2005),

f (v‖, v⊥)= A · exp

(
−

m
2kT

((√
v2
‖ + (1− B0/B) · v2

⊥ − v0

)2

+ B0/B · v2
⊥

))
. (2.15)

Typical plots of the distribution are shown in figure 1.
This anisotropic distribution has regions with a positive gradient transverse to the

beam direction, which suggests the possibility of it being unstable to a cyclotron
instability. Since this distribution has instability properties distinct from those of a
conventional horseshoe distribution (more of which will be addressed in § 4) and to
reflect on its shape in velocity space, it was called a Luvdisk distribution.
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(a) (b)

FIGURE 1. Typical plots of the velocity distribution function resulting from a magnetic
field changing in time (Luvdisk distribution). (a) Magnetic field change with time B/B0=

7.5, (b) magnetic change B/B0= 3.5 combined with magnetic field gradient in space with
B/B0 = 10.

3. Fitting the cyclotron resonance condition circle
An anisotropic distribution function in velocity space can be unstable, resulting

in a cyclotron emission of a wave whose frequency, ω, and propagation vector,
k= (k‖, k⊥), satisfy the cyclotron resonant condition of the frequency of the emission
being equal to the local cyclotron frequency (ωc = qB/m) Doppler-shifted by the
parallel propagation and corrected by the relativistic factor γ ,

ω− k‖v‖ =
ωc

γ
=ωc

√
1−

v2
‖
+ v2

⊥

c2
. (3.1)

The emission occurs when the cyclotron resonance ellipse in velocity space, as
described by (3.1), comes through a substantial region of a high gradient (∂f /∂v⊥> 0)
in the anisotropic distribution function (Bingham & Cairns 2000; Vorgul et al. 2005;
Cairns, Vorgul & Bingham 2008).

To explore the parameter space of the resultant emission, the cyclotron resonance
ellipse should fit through the high gradient of the Luvdisk distribution described
by (2.14). This resonance ellipse is extremely sensitive to the parameters of the wave,
ω and k‖, which means a sharp resonance with a narrow frequency spectrum and
high directivity. In order for this ellipse to pass through the area of a high gradient
of the distribution function, we derive constraints on the parameters to fit the velocity
coordinates of the unstable region of the distribution.

Rewriting the resonance condition (3.1) in dimensionless notation as

ω̃− k̃‖ṽ‖ =
√

1− ṽ‖
2
+ ṽ⊥

2
, (3.2)

where
ω̃=

ω

ωc
,

k̃‖ =
k‖c
ωc
,

˜v‖,⊥ =
v‖,⊥

c
, ṽ0 =

v0

c
,


(3.3)
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Beam instability in a time-changing magnetic field 7

and looking for the resonant ellipse to come through two points of the distribution’s
highest gradient, measured in terms of the fractions of the beam’s bulk velocity, v0,

ṽ‖ = α · v0, ṽ⊥ = β · v0, (3.4a,b)

the resultant frequency and parallel wavenumber of the wave can be found as

ω̃=
α1

√
1− α2

2 ṽ0
2
− α2

√
1− (α2

1 + β
2
1 )ṽ0

2

α1 − α2
,

k̃‖ =

√
1− α2

2 ṽ0
2
−

√
1− (α2

1 + β
2
1 )ṽ0

2

(α1 − α2)ṽ0
.


(3.5)

The indices 1 and 2 in (3.5) correspond to the coordinates of two points on the
maximum gradient curve of the velocity distribution function, choosing the second
point at its intersection with the v‖-axis (β2= 0). They can be found by equating the
second derivative of the distribution function to zero, ∂2f /∂v2

⊥
= 0, which we solve

using Mathematica.

4. Analysis of the emission features

Electron cyclotron instabilities result in radiation at a frequency close to a local
electron cyclotron one, with the horseshoe-type instability known to be emitted at a
frequency slightly below the cyclotron one. Equation (3.5) suggests that the frequency
of radiation is below the cyclotron frequency (i.e. ω̃ < 1) when α2

1 + β
2
1 > α2

2 , i.e.
when the transformed distribution curls along an ellipse with a vertical axis being
larger than a horizontal one, but it is above the cyclotron frequency otherwise. The
former case also yields a negative propagation constant v‖ (meaning the radiation
being emitted at some angle backward with respect to the beam’s direction), while the
latter corresponds to a positive parallel propagation constant, with the wave emitted
rather forward.

4.1. Emission in a spatially uniform field changing with time
If a beam was passing through a region without a spatial gradient of the field, and its
unstable distribution was formed due to the effect of a change of the local magnetic
field with time, the distributions curls towards lower velocities. A typical resulting
Luvdisk distribution is shown in figure 2(a). For comparison, figure 2(b) shows the
initial Maxwellian distribution, and figure 2(c) shows a horseshoe distribution formed
by a gradient of the magnetic field in space (with the same initial and final values as
for the time-changing field correspondent to figure 2a).

The horseshoe curls around an ellipse with the vertical axis being longer than the
horizontal one, resulting in the radiation being emitted at a frequency just below the
electron cyclotron frequency at the direction close to perpendicular to the beam one
but slightly backward (at approximately 4◦). The Luvdisk distribution curls inside the
horseshoe ellipse, and its frequency of radiation, suggested by the fitted ellipse, ranges
approximately from 0.9 ·ωc to ωc. The corresponding wavenumber, according to (3.5),
suggests the direction of radiation can be found by the tangent of the propagation
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(a) (b) (c)

FIGURE 2. (a) Typical plots of the Luvdisk distribution velocity distribution function
resulting from the magnetic field changing in time (magnetic field change with time
B/B0 = 7.5, v0 = c/3), with the cyclotron resonance ellipse fitted through its highest
gradient in the transverse direction (solid red line) and a resonance ellipse corresponding
to a horseshoe distribution (dashed green line, as in c); (b) initial beam’s Maxwellian
distribution; (c) horseshoe distribution as a result of a spatial gradient of a stationary
magnetic field (with B/B0 = 7.5, v0 = c/3) with a cyclotron resonant condition ellipse fit
(dashed green line).

vector’s angle with respect to the perpendicular direction, tan φ = k‖/ω/c (where ω/c
is a magnitude of the propagation vector) as

tan φ =
1
ṽ0α2
−

√
1− ṽ0

2
α2

2

ṽ0
2
√

1− ṽ0
2
β2

1

. (4.1)

The direction ranges from nearly perpendicular backward propagation to approximately
30◦ forward propagation for a beam with bulk velocity equal to v0 = c/3. The
backward-propagation angle is limited by the second term in (4.1), and with ṽ0 < 1
and the maximum-gradient-fit cyclotron resonance ellipse semi-axis constants α2 and
β1 being less than 1 but close to it, this angle is small. When the first term in (4.1)
dominates, meaning a forward propagation, the angle is limited by the causality
light cone corresponding to the position of the maximum traverse gradient of the
distribution function at the v‖ axis, which is determined by the beam’s velocity and
the distribution spread after the field’s change. For a non-relativistic beam it does not
exceed 30◦ forward from the perpendicular to the beam’s direction.

4.2. Effects of a space gradient of magnetic field combined with its change in time
When the electron beam is moving in a non-uniform magnetic field (e.g. towards
a magnetic pole of an astrophysical body) and the field’s change in time occurs,
different scenarios are possible. When the spatial gradient dominates, the transformed
distribution in velocity space is still a horseshoe distribution, with the corresponding
properties of the cyclotron instability. If the change in time dominates over the spatial
gradient, the Luvdisk distribution is formed with the emission properties as described
in the above subsection. If, however, the field is rising both in space and in time by
a comparable quantity, the perpendicular spread of the distribution function happens
without it curling towards lower or higher parallel velocities. Then, no positive
gradient of the distribution in the transverse direction is produced, and there is no
cyclotron maser instability with perpendicular drive.
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(a) (b) (c)

FIGURE 3. (a) Typical plots of the velocity Luvdisk distribution function resulting from
the magnetic field space gradient Bfinal/Binitial = 10 combined with the field changing
downwards with time (Binitial/Bfinal = 2.5), with the total change B/B0 = 7.5, v0 = c/3.
The solid red line shows the cyclotron resonance ellipse fitted through the highest
gradient in the transverse direction, and the dashed green line shows the resonance
ellipse corresponding to a horseshoe distribution (as in c); (b) initial beam’s Maxwellian
distribution; (c) horseshoe distribution as a result of a spatial gradient of a stationary
magnetic field (with B/B0 = 7.5, v0 = c/3) with a cyclotron resonant condition ellipse fit
(dashed green line).

The case when the space gradient of the magnetic field is positive along the
beam’s path while the field’s change in time is negative, or the other way round,
is significantly different. If the resultant change of magnetic field is still positive
(final value at the end point is larger than the initial value at the starting point of the
beam’s motion), the resultant velocity distribution is a mirrored Luvdisk distribution,
curling towards higher parallel velocities, as shown in figure 3(a). To fit a cyclotron
resonance ellipse through maximum positive gradient in transverse velocity direction,
the ellipse should be to the right of the beam, as shown by the solid red curve. The
fit ellipse parameters suggest the possible emission due to the cyclotron instability
happening at a frequency up to 25 % larger than the local electron cyclotron frequency
(ω/ωc= 1.128 for the parameters shown in figure 3a). The radiation is expected to be
emitted forward with respect to the beam’s propagation, forming an angle with respect
to the perpendicular to the beam direction which can reach up to approximately 45◦
(being equal to 30◦ for the parameters used in figure 3a). Figure 3(b,c) shows the
initial Maxwellian distribution and the horseshoe distribution for the same initial/final
values of magnetic field and other parameters as in figure 3(a) for comparison.

An anisotropic unstable distribution can be formed even when the field at the final
point is smaller than at the point where the beam started travelling, if this final
field is a result of a negative space gradient (e.g. when the beam travels outward
from a magnetic pole) and a positive (upward) change of the field in time, even
when the total field’s change over that path is still downwards. Figure 4(a) shows
a typical example of the resultant anisotropic distribution, with the fitted cyclotron
resonance condition fitted through the maximum transverse gradient of the distribution
shown by the solid red line. It supports an instability resulting in emitted radiation
which is similar to that of the horseshoe-distribution instability. It is emitted nearly
perpendicularly to the beam but slightly backward at a frequency just below the
electron cyclotron frequency at the final location. The horseshoe, however, is not
formed in the case when the same initial and final values of the field are a result of
only a spatial gradient, as shown in figure 4(c) for the same initial Maxwellian beam,
shown in figure 4(b).
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(a) (b) (c)

FIGURE 4. (a) Typical plots of the velocity Luvdisk distribution function resulting from
the magnetic field space gradient Bfinal/Binitial = −2 combined with the field changing
upwards with time (Bfinal/Binitial = 2.5), with the total change B/B0 = 0.5, v0 = c/3.
The solid red line shows the cyclotron resonance ellipse fitted through the highest
gradient in the transverse direction, and the dashed green line shows the resonance
ellipse corresponding to a horseshoe distribution (as in c); (b) initial beam’s Maxwellian
distribution; (c) the distribution as a result of a spatial gradient of a stationary magnetic
field (with B/B0 = 0.5, v0 = c/3) with a cyclotron resonant condition ellipse fit (dashed
green line).

5. Conclusions
The change of a magnetic field with time can result in an anisotropic Luvdisk

distribution of an electron beam in velocity space which can be unstable to a maser
cyclotron instability. The properties of this instability are distinct from those associated
with the horseshoe distribution, which is formed due to a gradient of magnetic field in
space. When happening on its own, the time change of the field can result a cyclotron
emission even if the field is homogeneous. The direction of the emission can vary
from slightly backward to up to 30◦ forward with respect to the beam’s direction.
When a spatial gradient of the field is accompanied by its time change, the emission
can happen even when the final value of the field is lower than the initial one, which
would not be possible if only a spatial gradient was present. When the total change of
the field from spatial and temporal gradients is upward, while the spatial and temporal
gradients are in opposite directions, a frequency above the local cyclotron frequency
can be expected, and the emission is radiated forward.

The analysis based on the distribution function does not allow us to explore the
growth rate and nonlinear effects of the instability saturation, for which kinetic
equations should be solved. The growth rate, however, could be expected to be
higher when the spread of the velocity distribution function along the cyclotron
resonance condition circle is larger, meaning higher electrons population in the
positive perpendicular gradient (∂f /∂v⊥> 0) areas (while purely perpendicular spread
of the velocity distribution function produces only a negative gradient in perpendicular
direction, which does not drive the instability). for larger perpendicular spread of the
distribution function. The distinct features of the instability can be useful in analysing
electron cyclotron emission from astrophysical objects or laboratory/tokamak plasmas,
helping to retrieve the magnetic field evolution by the change in direction and
frequency of the radiation.

REFERENCES

BINGHAM, R. & CAIRNS, R. A. 2000 Generation of auroral kilometric radiation by electron horseshoe
distributions. Phys. Plasmas 7, 3089.

https://doi.org/10.1017/S002237782000046X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782000046X


Beam instability in a time-changing magnetic field 11

BINGHAM, R., CAIRNS, R. A. & KELLETT, B. J. 2001 Coherent cyclotron maser radiation from
UV Ceti. Astron. Astrophys. 370, 1000.

CAIRNS, R. A., VORGUL, I. & BINGHAM, R. 2008 Cyclotron maser radiation from an inhomogeneous
plasma. Phys. Rev. Lett. 101, 215003.

CAIRNS, R. A., VORGUL, I., BINGHAM, R., RONALD, K., SPEIRS, D. C., MCCONVILLE, S. L.,
GILLESPIE, K. M., BRYSON, R., PHELPS, A. D. R., KELLETT, B. J. et al. 2011 Cyclotron
maser radiation from inhomogeneous plasmas. Phys. Plasmas 18 (2), 022902.

ERGUN, R. E., CARLSON, C. W., MCFADDEN, J. P., DELORY, G. T., STRANGEWAY, R. J. &
PRITCHETT, P. L. 2000 Electron-cyclotron maser driven by charged-particle acceleration from
magnetic field-aligned electric fields. Astrophys. J. 538, 456.

GARY, S. P., MCKEAN, M. E., WINSKE, D., ANDERSON, B. J., DENTON, R. E. & FUSELIER, S. A.
1994 The proton cyclotron instability and the anisotropy/β inverse correlation. J. Geophys.
Res. 99 (A4), 5903–5914.

HARDING, L. K., HALLINAN, G., BOYLE, R. P., GOLDEN, A., SINGH, N., SHEEHAN, B., ZAVALA,
R. T. & BUTLER, R. F. 2013 Periodic optical variability of radio-detected ultracool dwarfs.
Astrophys. J. 779, 101.

KELLETT, B. J., GRAFFAGNINO, V., BINGHAM, R., MUXLOW, T. W. B. & GUNN, A. G. 2007
CU virginis – the first stellar pulsar. Astrophys., e-prints, arXiv:astro-ph/0701214.

LAMY, L., ZARKA, P., CECCONI, B., PRANGÉ, R., KURTH, W. S., HOSPODARSKY, G., PERSOON, A.,
MOROOKA, M., WAHLUND, J.-E. & HUNT, G. J. 2018 The low-frequency source of Saturn’s
kilometric radiation. Science 362 (6410), eaat2027.

QIN, H. & DAVIDSON, R. C. 2006 An exact magnetic-moment invariant of charged-particle gyromotion.
Phys. Rev. Lett. 96, 085003.

SPEIRS, D. C., BINGHAM, R., CAIRNS, R. A., VORGUL, I., KELLETT, B. J., PHELPS, A. D. R. &
RONALD, K. 2014 Backward wave cyclotron-maser emission in the auroral magnetosphere.
Phys. Rev. Lett. 113 (15), 155002–155007.

TRIGILIO, C., LETO, P., UMANA, G., BUEMI, C. S. & LEONE, F. 2008 The radio lighthouse cu
virginis: the spin-down of a single main-sequence star. Mon. Not. R. Astron. Soc. 384 (4),
1437–1443.

VORGUL, I., CAIRNS, R. A. & BINGHAM, R. 2005 Radiation modes growth rate in cylindrical
geometry with application to space and laboratory plasmas with a horseshoe-type cyclotron
maser instability. Phys. Plasmas 12, 122903.

VORGUL, I., KELLET, B. J., CAIRNS, R. A., BINGHAM, R., RONALD, K., SPEIRS, D. C.,
MCCONVILLE, S. L., GILLESPIE, K. M. & PHELPS, A. D. R. 2011 Cyclotron maser emission:
stars, planets, and laboratory. Phys. Plasmas 18, 5.

https://doi.org/10.1017/S002237782000046X Published online by Cambridge University Press

http://www.arxiv.org/abs/astro-ph/0701214
https://doi.org/10.1017/S002237782000046X

	New kinetic cyclotron instability for electron beam in time-changing magnetic fields
	Introduction
	Derivation of velocity distribution function
	Effect of the induced electric field
	Magnetic momentum conservation
	Energy conservation
	Transformed distribution function

	Fitting the cyclotron resonance condition circle
	Analysis of the emission features
	Emission in a spatially uniform field changing with time
	Effects of a space gradient of magnetic field combined with its change in time

	Conclusions
	References


