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In this paper, we develop a phase-field model for binary incompressible (quasi-
incompressible) fluid with thermocapillary effects, which allows for the different
properties (densities, viscosities and heat conductivities) of each component while
maintaining thermodynamic consistency. The governing equations of the model
including the Navier–Stokes equations with additional stress term, Cahn–Hilliard
equations and energy balance equation are derived within a thermodynamic framework
based on entropy generation, which guarantees thermodynamic consistency. A
sharp-interface limit analysis is carried out to show that the interfacial conditions
of the classical sharp-interface models can be recovered from our phase-field model.
Moreover, some numerical examples including thermocapillary convections in a
two-layer fluid system and thermocapillary migration of a drop are computed using a
continuous finite element method. The results are compared with the corresponding
analytical solutions and the existing numerical results as validations for our model.
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1. Introduction

When the interface separating two fluids is exposed to a temperature gradient,
the variations of surface tension along the interface lead to shear stresses that act
on the fluid through viscous forces, and thus induce a motion of the fluids in the
direction of the temperature gradient. For most fluids, the surface tension generally
decreases with increasing temperature. The non-uniformity of surface tension then
drives the fluids to move from the region with higher temperature to that with lower
temperature. This effect is known as the thermocapillary (Marangoni) effect (Levich
1962), and it plays an important role in various industrial applications involving
microgravity (Subramanian & Balasubramaniam 2001) or microdevices (Darhuber &
Troian 2005), where the surface forces become dominant. One famous example of
thermocapillary effects is the thermocapillary migration of drops, where the drops
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are set in a liquid possessing a temperature gradient, and will move towards the
hot region due to the thermocapillary effects. The thermocapillary migration of
a drop was first examined experimentally by Young, Goldstein & Block (1959),
who derived an analytical expression for the terminal velocity of a single spherical
drop in a constant temperature gradient by assuming that the convective transport
of momentum and energy are negligible. Since then, extensive works have been
carried out experimentally, analytically and numerically in order to investigate this
phenomenon; many of them are summarized by Subramanian & Balasubramaniam
(2001). Another example of thermocapillary effects is the thermocapillary convection
in a two-layer fluid system (thermocapillary instabilities), where the system is typically
confined between two parallel plates and subjected to a temperature gradient. Due to
the perturbations in the temperature and velocity field as well as the interface position,
surface tension gradients will occur at the interface and drive the fluid to motion.
Instabilities then set in and lead to convective motion, where a typical convection
pattern is the hexagonal cell formation found by Bénard (1900). Thermocapillary
instabilities are widely studied, which can be traced back to some pioneering works
performed by Block (1956), Pearson (1958), Sternling & Scriven (1959) and Scriven
& Sternling (1964). Literature reviews of recent experimental and analytical work on
instabilities in thermocapillary convection are provided by Davis (1987), Andereck
et al. (1998) and Schatz & Neitzel (2001).

The problem described above is the multiphase flow problem, and the available
numerical methods can roughly be divided into two categories: interface tracking and
interface capturing methods. In interface tracking methods, the position of the interface
is explicitly tracked, which requires meshes that track the interfaces and are updated
as the flow evolves. Boundary-integral methods (see the review by Hou, Lowengrub
& Shelley 2001), front-tracking methods (see the reviews by Tryggvason et al. 2001
and Hua, Stene & Lin 2008) and immersed-boundary methods (see the review by
Mittal & Iaccarino 2005) are examples of this type. In the context of thermocapillary
(Marangoni) effects, e.g. thermocapillary migration and thermocapillary instabilities,
several works have been performed by using interface tracking methods. Here, we
refer to the work of Zhou & Davis (1996), Berejnov, Lavrenteva & Nir (2001)
and Rother, Zinchenko & Davis (2002) as examples for boundary-integral methods,
Tavener & Cliffe (2002), Nas & Tryggvason (2003), Nas, Muradoglu & Tryggvason
(2006) and Yin et al. (2008) for front-tracking methods and Blyth & Pozrikidis
(2004) and Pozrikidis (2004) for immersed-boundary methods. In interface capturing
methods, on the other hand, the interface is not tracked explicitly, but instead is
implicitly defined through an interface function (e.g. level-set, colour or phase-field
function). This means that the computations are based on fixed spatial domains and
thus eliminate the problem of updating the meshes encountered in interface tracking
methods. For example, volume-of-fluid (VOF) methods (see Scardovelli & Zaleski
(1999) for a review, and Gambaryan-Roisman, Alexeev & Stephan 2005 and Ma &
Bothe 2013 as examples for thermocapillary effects) and level-set methods (see Osher
& Fedkiw 2001 and Sethian & Smereka 2003 for reviews, and Haj-Hariri, Shi &
Borhan 1997 and Herrmann et al. 2008 as examples for thermocapillary effects) are
of this type.

Another interface capturing method is the phase-field method, or diffuse-interface
method (see, for reviews, Anderson, McFadden & Wheeler 1998, Emmerich 2008 and
Kim 2012), which has now emerged as a powerful method to simulate many types
of multiphase flows, including drop coalescence, breakup, rising and deformations
in shear flows (Jacqmin 1999; Boyer 2002; Lee, Lowengrub & Goodman 2002a,b;
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Liu & Shen 2002; Baldalassi, Ceniceros & Banerjee 2004; Yue et al. 2004; Kim &
Lowengrub 2005; Yue et al. 2006; Ding, Spelt & Shu 2007; Shen & Yang 2009;
Hua et al. 2011; Guo, Lin & Lowengrub 2014a), phase separation (Baldalassi et al.
2004; Kim, Kang & Lowengrub 2004; Kim 2005), contact line dynamics (Jacqmin
2000; Qian, Wang & Sheng 2006; He, Glowinski & Ping 2011; Bao et al. 2012;
Gao & Wang 2012; Yue & Feng 2012; Jiang & Lin 2014), dynamics of interfaces
with surfactant adsorption (van der Sman & van der Graaf 2006; Teigen et al. 2011)
and thermocapillary effects (Jasnow & Vinals 1996; Borcia & Bestehorn 2003;
Borcia, Merkt & Bestehorn 2004; Sun, Liu & Xu 2009; Guo, Lin & Wang 2014b).
Phase-field methods are based on models of fluid free energy, which goes back to the
work of Gibbs (1875), Cahn & Hilliard (1958), Cahn & Allen (1978) and van der
Waals (1979). The basic idea of the phase-field method is to treat the multiphase
fluid as one fluid with variable material properties. An order parameter is employed
to characterize the different phases, which varies continuously over thin interfacial
layers and is mostly uniform in the bulk phases. Sharp interfaces are then replaced
by thin but non-zero-thickness transition regions, where the interfacial forces are
smoothly distributed. One set of governing equations for the mixture can be derived
variationally from its energy density field, where the order parameter fields satisfy
an advection–diffusion equation (usually the advective Cahn–Hilliard equations) and
are coupled to the Navier–Stokes equations through extra reactive stresses that mimic
surface tension.

The classical phase-field model, in the case of two incompressible viscous
Newtonian fluids, is the so-called model H (Hohenberg & Halperin 1977), which
couples fluid flow with Cahn–Hilliard diffusion with a conserved parameter. It
has been successfully used to simulate complicated mixing flows involving binary
incompressible fluid with the same densities for both components (see, for example,
Chella & Vinals 1996). Gurtin, Poligone & Vinale (1996) rederived this model in the
framework of classical continuum mechanics and showed that it is consistent with the
second law of thermodynamics in a mechanical version based on a local dissipation
inequality.

One of the fundamental assumptions when deriving model H is that the binary
fluid is incompressible; more precisely, its total density and the densities of each
component are constant. Therefore, this model is restricted to the density matched case
and cannot be used for the case where the two incompressible fluids have different
densities. To treat problems with small density ratios, a Boussinesq approximation is
often used, where the small density difference is neglected except in the gravitational
force. The model achieved maintains thermodynamic consistency (see, for example,
Hua et al. 2011). This approach, however, is no longer valid for large density ratios.
Several generalizations of model H for the case of different densities have been
presented and discussed by Lowengrub & Truskinovsky (1998), Boyer (2002), Ding
et al. (2007), Shen & Yang (2010) and most recently by Abels, Garcke & Grün
(2012). Thermodynamic consistency, however, could only be shown for the models
proposed by Lowengrub & Truskinovsky (1998) and Abels et al. (2012). Benchmark
computations for three of them, namely the models of Boyer (2002), Ding et al.
(2007) and Abels et al. (2012), were carried out by Aland & Voigt (2012). Moreover,
several works have been performed to study the model of Abels et al. (2012). Grun
& Klingbeil (2014) presented a numerical method, where the mixed finite element
formulation was employed in order that the discrete energy law of the numerical
method could be obtained. The convergence of the method was presented in Grun
(2013). Garcke, Hinze & Kahle (2014) presented a numerical method that satisfied
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an energy inequality. Antanovskii (1995) derived a quasi-incompressible phase-field
model for two-phase flow with different densities. The extended model was presented
by Lowengrub & Truskinovsky (1998), where the pressure rather than the density
was employed as an independent variable, and worked through the Gibbs free energy.
In their model, the two fluids of different densities are assumed to be mixed
and compressible along the interfacial region (introducing quasi-incompressibility
into the model). The flow in the interfacial region is in general non-solenoidal
(∇ · v 6= 0), resulting in an expansion or contraction flow. Thermodynamic consistency
is maintained within the resulting system (quasi-incompressible NSCH), where the
Navier–Stokes equations are coupled with the Cahn–Hilliard equations, and the
kinetic fluid pressure and variable density are introduced into the chemical potential.
Very recently, a numerical method for the quasi-incompressible NSCH system with
a discrete thermodynamic law (energy law) was presented by Guo et al. (2014a),
where the quasi-incompressibility (the non-solenoidal velocity) near interfaces was
captured. Namely, the numerical results reveal that away from interfaces the fluid is
incompressible, while near interfaces waves of expansion and contraction are observed.
Very recently, another model of quasi-incompressible fluids for phase transition
simulation was developed by Giesselmann & Pryer (2013), where a discontinuous
Galerkin finite element method was used and studied in Aki et al. (2014). The
model considered differs from the quasi-incompressible NSCH system developed in
Lowengrub & Truskinovsky (1998) in that the volume fraction, rather than the mass
concentration, is used as the phase variable. In addition, the two models are derived
with different energy functionals.

Another assumption for model H is that the fluid flow is isothermal. However,
for the case that considers thermocapillary (Marangoni) effects, the surface tension
gradient is produced by the non-uniform distribution of the temperature, so that the
system cannot be assumed to be isothermal and the transport of the temperature
field cannot be ignored. The extension of model H in the non-isothermal case was
presented by Jasnow & Vinals (1996), where, to study the thermocapillary motion of
droplets, a constant externally imposed temperature gradient was considered. Several
other works, as mentioned above, have also been devoted to the use of the phase-field
method to simulate the dynamics of an interface with thermocapillary effects (Borcia
& Bestehorn 2003; Borcia et al. 2004; Sun et al. 2009; Guo et al. 2014b). For most
of these models, the system equations of the flow field (the Navier–Stokes equations
with extra stress) and phase field (the advective Cahn–Hilliard equations) are usually
derived from the free energy functional that depends on temperature. The energy
equations, however, are not derived together with the system equations. Instead, either
the classical energy transport equations are incorporated into the system directly, or
the temperature fields are fixed and the energy equations are not needed. Therefore,
thermodynamic consistency can hardly be maintained. It turns out that the concept
of thermodynamic consistency plays an important role in phase-field modelling. As
the phase-field model can be derived through variational procedures, thermodynamic
consistency of the model equations can serve as a justification of the model. In
addition, it ensures that the model is compatible with the laws of thermodynamics,
and that it has a strict relaxational behaviour of the free energy; hence the models
are more than a phenomenological description of an interfacial problem. Antanovskii
(1995) presented a phase-field model to study the thermocapillary flow in a gap, where
to obtain a free energy that depended on the temperature, the Cahn–Hilliard gradient
term associated with the phase field was introduced into the entropy functional of the
system, which led to a corresponding extra term appearing in the energy equation.
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The resulting system of equations was derived together through the local balance
laws and thermodynamic relations, which maintained thermodynamic consistency.
A similar gradient entropy term was considered by Anderson & McFadden (1996)
to study a single compressible fluid with different phases near its critical point. In
their work, the phase-field model was derived through a thermodynamic formalism
(Sekerka 1993) based on entropy generation. Through a similar thermodynamic
framework, Verschueren, van de Vosse & Meijer (2001) presented a phase-field
model for two-phase flow with thermocapillary effects in a Hele-Shaw cell. The
system of equations maintained thermodynamic consistency, in which the energy
equation contained an extra term associated with the variations of the phase field.

In the present paper, we develop a thermodynamically consistent phase-field
model for two-phase flows with thermocapillary effects, which allows the binary
incompressible fluid (quasi-incompressible fluid) to have different densities, viscosities
and thermal conductivities for each component. By employing the thermodynamic
framework used by Anderson & McFadden (1996), we first derive a phase-field
model for binary compressible flows with thermocapillary effects, where the mass
concentration is chosen as the phase variable to label the phases, and the Helmholtz
free energy is chosen as the fluid free energy. We then derive the model for binary
incompressible flows with thermocapillary effects. Following the work of Lowengrub
& Truskinovsky (1998), we employ the pressure rather than the density as the
independent variable and thus work with the Gibbs free energy. The equations of
both models, including the Navier–Stokes equations with extra stress, an advective
Cahn–Hilliard equation and an energy equation, are derived under a thermodynamic
framework. To the best of our knowledge, such a thermodynamically consistent
phase-field model for binary incompressible fluid with thermocapillary effects, which
allows for different physical properties of each component, is new. To validate our
model, we first show that thermodynamic consistency is maintained in both models,
where the first and second laws of thermodynamics are derived from the model
equations. We also show that the system equations of our model satisfy Onsager’s
reciprocal relation and Galilean invariance, which can be critical for phase-field
modelling. We then analyse the model in the sharp-interface limit to show that the
governing equations and interfacial conditions of the classical sharp-interface model
can be recovered from our phase-field models. This further reveals the underlying
physical mechanisms of the phase-field model. In the jump condition of momentum
balance, we relate the surface tension term of our phase-field model to that of
the classical sharp-interface model by introducing a ratio parameter, where the
value of the parameter can be determined through the provided relation. As another
validation of our model, three examples are computed by using a continuous finite
element method, including thermocapillary convection in two-layer fluid system and
thermocapillary migration of a drop in a medium fluid. The numerical results for the
first two examples are consistent with the corresponding analytical solutions (Pendse
& Esmaeeli 2010) and the existing numerical solutions (Herrmann et al. 2008). It
should be noted that for all the examples computed in this paper, we assume that
the interface has no contact with the boundary of the domain. In the case that
the interface contacts the boundary of the domain, extra difficulties would arise
from complicated interface/boundary interacting conditions and should be dealt with
separately (e.g. Qian et al. 2006; Eck et al. 2009; Gao & Wang 2012).

The paper is organized as follows. In § 2, we introduce the variable density and
mass-averaged velocity of the binary fluid. We then present the derivations of the
phase-field model for binary compressible fluid with thermocapillary effects in § 3, and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.696


A thermodynamically consistent phase-field model for thermocapillary effects 231

the corresponding derivations for binary incompressible (quasi-incompressible) fluid
in § 4. The sharp-interface limit analysis of our phase-field model is carried out in
§ 5. Section 6 shows some numerical results as validations of our model. Finally, the
conclusion and future work are discussed in § 7.

2. Variable density and mass-averaged velocity

In phase-field modelling, an order parameter (phase variable) is normally
introduced to distinguish different phases and the intervening interface. Lowengrub
& Truskinovsky (1998) have argued for the advantage of using a physically realistic
scalar field instead of an artificial smoothing function for the interface. Several
physically realistic scalar fields have been suggested as the order parameters for
phase-field modelling, e.g. the mass density ρ for the case of a single compressible
fluid with different phases (Anderson & McFadden 1996), the mass concentration c
of one of the constituents for the case of compressible and incompressible binary
fluid (Lowengrub & Truskinovsky 1998; Abels et al. 2012) or an alternative phase
variable, the volume fraction φ, for the case of incompressible binary fluid (Liu &
Shen 2002) and solidification of single materials (Wang et al. 1993). Here, we choose
the mass concentration c of one of the constituents as the phase variable, and begin
by introducing the variable density of the mixture. We consider a mixture of two
fluids in a domain Ω , and take a sufficient small material volume V ∈Ω . We then
have the following theorem (e.g. Mase & Mase 1999).

THEOREM 1. For a smooth function f (x, t) in the Eulerian coordinate,

d
dt

∫
V(t)

f (x, t)dV =
∫

V(t)

(
Df
Dt
+ f (∇ · v)

)
dV =

∫
V(t)

(
∂f
∂t
+∇ · (f v)

)
dV, (2.1)

where D/Dt = ∂/∂t + v · ∇ is the material derivative and v is the velocity of the
moving volume V(t).

In the control volume, the two fluids are labelled by i = 1, 2 and they fill the
volumes Vi separately. We then introduce the volume fraction γi for the ith fluid such
that γi=Vi/V . Further, we assume that two fluids can mix along the interfacial region
and the volume occupied by a given amount of mass of the single fluid does not
change after mixing. Then, within the material volume V , the γi satisfy the condition
γ1 + γ2 = 1. Let M = M1 + M2 be the total mass of the mixture, and Mi be the
mass of the ith fluid in the volume. We now introduce the local volume-averaged
mass density taken over the sufficient small volume V for each fluid ρ̃i =Mi/V , and
the actual local mass density for each fluid ρi = Mi/Vi. It should be noted that for
incompressible components, we assume that the ρi are uniform constants. Having in
mind the definition of volume fraction, we obtain the relation between the volume-
averaged mass densities and the local mass densities,

γi = ρ̃i

ρi
and

ρ̃1

ρ1
+ ρ̃2

ρ2
= 1. (2.2a,b)

We then define the volume-averaged mass density for the mixture as

ρ = ρ̃1 + ρ̃2 = M1 +M2

V
= M

V
. (2.3)
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Let ci be the mass concentration for the ith fluid, such that

ci = Mi

M
= ρ̃i

ρ
and c1 + c2 = 1. (2.4a,b)

Using (2.2) and (2.4), we obtain the variable density for the mixture of two fluids,

1
ρ(c)
= c
ρ1
+ 1− c

ρ2
. (2.5)

Here, we chose the mass concentration of fluid 1 as the phase variable for our phase-
field model, such that c = c1 = 1 − c2. It can be seen that, for two incompressible
components of different densities, the variable density ρ(c) for the mixture is constant
almost everywhere except near the interfacial region. For simplicity, we write the
variable density ρ(c) as ρ in all the following derivations.

Now we suppose that the two fluids move with different velocities vi(x, t). The
equation of mass balance for each fluid within the material volume V can then be
written in the form (Lowengrub & Truskinovsky 1998; Boyer 2002; Abels et al. 2012)

∂ρ̃i

∂t
+∇ · (ρ̃ivi)= 0. (2.6)

We then introduce the mass-averaged velocity for the mixture as

ρv = ρ̃1v1 + ρ̃2v2 or v = c1v1 + c2v2. (2.7a,b)

Substituting the density (2.3) and mass-averaged velocity (2.7) into (2.6), we obtain
the mass balance for the mixture of two fluids,

∂ρ

∂t
+∇ · (ρv)= 0. (2.8)

In the following derivations, we consider the mixture as a single fluid moving
with velocity v. It should be noted that if we consider a binary incompressible
fluid (assuming that the two fluids of the mixture are incompressible, and that the
temperature effects on the densities of both fluids are negligible), then ρ1 and ρ2 are
constants, and the above (2.8) can be further written as

∇ · v =− 1
ρ

Dρ
Dt
=− 1

ρ

dρ
dc

Dc
Dt
= αρDc

Dt
, (2.9)

where α = (ρ2 − ρ1)/ρ2ρ1 is constant. We note that, due to the variations of the
phase variable c, the mass-averaged velocity for the mixture is non-solenoidal
(∇ · v 6= 0) near the interfacial region, which introduces compressibility effects into
the model. Such a binary incompressible fluid is termed as a quasi-incompressible
fluid (e.g. Antanovskii 1995, Lowengrub & Truskinovsky 1998).

We remark that apart from this mass-averaged velocity v, another velocity for
the mixture, the volume-averaged velocity ṽ, was considered by Abels et al. (2012),
Boyer (2002) and Ding et al. (2007), where the volume fraction γ instead of the
mass concentration c was employed as the phase variable, and further used to relate
the velocities of the single fluids and mixture. This volume-averaged velocity of
binary incompressible fluid is solenoidal (∇ · ṽ = 0) over the whole domain, where
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an extra term that accounts for the mass flux relative to the volume-averaged velocity
appears in the Navier–Stokes equations (see, for details, Abels et al. 2012).

3. Phase-field model for binary compressible fluid with thermocapillary effects

In this section, we develop a system of equations for a binary fluid with
thermocapillary effects, in which both components are compressible and Cahn–Hilliard
diffusion is coupled with fluid motion.

3.1. Derivation of the model

We first consider a mixture of two fluids in a domain Ω , and we take an arbitrary
material volume V ∈Ω that moves with the mixture. Within the material volume, we
define the properties of the binary compressible fluid as

M =
∫

V(t)
ρdV, (3.1)

P =
∫

V(t)
ρvdV, (3.2)

E=
∫

V(t)

(
1
2
ρ|v|2 + ρgz+ ρû

)
dV, (3.3)

S=
∫

V(t)
ρ ŝdV, (3.4)

C=
∫

V(t)
ρcdV, (3.5)

where M, P, E and S are the total mass, momentum, energy and entropy of the
mixture, ρ(c) is the variable density of the mixture, v is the mass-averaged velocity of
the mixture, |v|2/2 is the kinetic energy per unit mass, gz is the gravitational potential
energy per unit mass, z is the z-coordinate, û (ŝ) is the internal energy (entropy) per
unit mass and c is the phase variable. Substitution of the mass concentration (2.4)
into (3.5) gives

C=
∫

V(t)
ρcdV =

∫
V(t)
ρc1dV =

∫
V(t)
ρ̃1dV, (3.6)

where C stands for the constituent mass of fluid 1 within the material volume V(t).
In phase-field modelling, apart from the classical free energy density for bulk phases,
an extra gradient term is typically added into the model to account for the free energy
of the diffuse interface (Cahn & Hilliard 1958). Several ways have been suggested
to introduce the gradient term into the phase-field model, e.g. by introducing it into
the entropy functional (Wang et al. 1993; Antanovskii 1995), free energy functional
(Lowengrub & Truskinovsky 1998) or internal energy functional (Anderson et al.
1998; Verschueren et al. 2001). In the present work, as the thermocapillary effects
along the interface are investigated, we expect the surface free energy (serving as
the surface tension (see § 5.4)) of our phase-field model to be temperature-dependent.
Therefore, according to the thermodynamic relations, we introduce the gradient term
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into both the internal energy and the entropy of our model, such that

û(s, ρ, c,∇c)= u(s, ρ, c)+ ugrad(∇c), ugrad = λu
1
2 |∇c|2, (3.7)

ŝ(T, ρ, c,∇c)= s(T, ρ, c)+ sgrad(∇c), sgrad = λs
1
2 |∇c|2, (3.8)

f̂ (T, ρ, c,∇c)= f (T, ρ, c)+ f grad(T,∇c), f grad = λf (T) 1
2 |∇c|2, (3.9)

where u, s and f stand for the classical parts of the specific internal energy, entropy
and free energy separately. Here, f is the Helmholtz free energy. The parts ugrad,
sgrad and f grad are the gradient terms analogous to the Landau–Ginzburg (Ginzburg
& Landau 1950) or Cahn–Hilliard (Cahn & Hilliard 1958) gradient energy. It should
be noted that these parts are termed as the ‘non-classical’ terms by Anderson &
McFadden (1996), who used a phase-field model to study a single compressible
fluid with different phases near its critical point. In addition, λu and λs are constant
parameters, and λf (T) is a parameter depending on the temperature and will lead to
thermocapillary effects along the interface. It should be noted that λu, λs and λf (T)
can be further used to relate the surface tension of the phase-field model to that of
the sharp-interface model when the phase-field model reduces to its sharp-interface
limit (see § 5.4 for details). As u(ρ, s, c) is the classical contribution to the specific
internal energy û, we have the thermodynamic relation

du(s, ρ, c)= ∂u
∂s

∣∣∣∣
ρ,c

ds+ ∂u
∂ρ

∣∣∣∣
s,c

dρ + ∂u
∂c

∣∣∣∣
s,ρ

dc= Tds+ p
ρ2

dρ + ∂u
∂c

∣∣∣∣
s,ρ

dc, (3.10)

where the subscripts indicate which variables are held constant when the various
partial derivatives are taken. This relation states that the heat transfer (Tds),
pressure–volume work (p/ρ2dρ) and chemical work ((∂u/∂c)dc) all contribute to
the changes in the internal energy. Further, we have the thermodynamic relation for
the Helmholtz free energy,

f = u− Ts. (3.11)

Having in mind the relation (3.10), we obtain

df = du− d(Ts)= du− sdT − Tds= p
ρ2

dρ − sdT + ∂u
∂c

∣∣∣∣
s,ρ

dc, (3.12)

such that

∂f
∂ρ

∣∣∣∣
T,c

= p
ρ2
,

∂f
∂T

∣∣∣∣
ρ,c

=−s and
∂f
∂c

∣∣∣∣
T,ρ

= ∂u
∂c

∣∣∣∣
s,ρ

. (3.13a,b)

Similarly, we assume that the same thermodynamic relations that hold for the classical
terms also hold for the general terms, such that

f̂ = û− Tŝ and
∂ f̂
∂T

∣∣∣∣∣
s,ρ,c,∇c

=−ŝ. (3.14a,b)

With the relations (3.11) and (3.13), we must also have the relations for the gradient
terms,

f grad = ugrad − Tsgrad and
∂f grad

∂T

∣∣∣∣
∇c

=−sgrad, (3.15a,b)
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and for the corresponding coefficients,

λf (T)= λu − Tλs and
dλf (T)

dT
=−λs. (3.16a,b)

For simplicity, we omit all the subscripts in the following derivations. Under the
assumptions above, the general forms of the physical balance associated with M, P,
E, S and C can be given as follows:

dM
dt
= 0, (3.17)

dP
dt
=
∫
∂V(t)

m · n̂dA−
∫

V(t)
ρgẑdV, (3.18)

dE
dt
=
∫
∂V(t)

(v ·m · n̂− qE · n̂− qnc
E · n̂)dA, (3.19)

dS
dt
=−

∫
∂V(t)

(
qE

T
· n̂+ qnc

S · n̂
)

dA+
∫

V(t)
SgendV (Sgen > 0), (3.20)

dC
dt
=−

∫
∂V(t)

qC · n̂dA, (3.21)

where n̂ is the unit outward normal vector of the boundary and ẑ is the vertical
component of the unit normal vector. Equation (3.17) represents the mass balance of
the mixture within the volume. Equation (3.18) represents the momentum balance,
stating that the rate of change in total momentum equals the force (surface forces m
and body forces ρgẑ) acting on the volume. Here, only the gravitational forces are
considered. The energy balance equation (3.19) states that the change in total energy
equals the rate of work done by the forces (m) on the boundary plus the energy flux
(classical qE and non-classical qnc

E internal energy flux) through the boundary. The
entropy balance (3.20) states that the rate of change of entropy in the control volume
during the process equals the net entropy transfer through the boundary (classical
qE/T and non-classical qnc

S entropy flux) plus the local entropy generation (Sgen > 0)
within the control volume (e.g. Moran et al. 2010). Based on the second law of
thermodynamics, the local entropy generation is non-negative for a dissipative system
(or, say, for an irreversible process), which is key to the thermodynamic frame that
we used for the derivations. For the constituent mass balance (3.21), we use (3.6)
and Theorem 1 to obtain

dC
dt
= d

dt

∫
V(t)
ρ̃1dV =

∫
V(t)

(
∂ρ̃1

∂t
+∇ · (ρ̃1v)

)
dV =−

∫
∂V(t)

qC · n̂dA. (3.22)

Substituting (2.6) into (3.22), we obtain qC = ρ̃1(v1 − v), where qC stands for the
mass flux of fluid 1 with velocity (v1 − v) through the boundary of the control
volume. It should be noted that in the following derivations qC will be related to the
chemical potential of the phase field, which is analogous to the standard derivations
of the Cahn–Hilliard equations (see, for example, Anderson et al. 1998; Lowengrub
& Truskinovsky 1998).

In what follows, we use the definitions (3.1)–(3.5) and the balance laws (3.17)–
(3.21) to obtain equations that are expressed in terms of the above unknowns,
including m, qE, qnc

E , qnc
S , qC and Sgen. We then specify these unknowns with respect
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to the second law of thermodynamics (ensuring Sgen > 0) and the concept of
thermodynamic consistency of the phase-field model.

For the mass balance (3.17), we use Theorem 1 to obtain

Dρ
Dt
=−ρ(∇ · v), (3.23)

based on which we have the following.

THEOREM 2 (Transport Theorem 2). For a smooth function f (x, t) in the Eulerian
coordinate,

d
dt

∫
V(t)
ρf (x, t)dV =

∫
V(t)
ρ

Df
Dt

dV =
∫

V(t)
ρ

(
∂f
∂t
+ (v · ∇)f

)
dV, (3.24)

where ρ is the density of the mixture defined in the volume V(t) and satisfies the mass
balance (3.23).

It should be noted that as Theorems 1 and 2 are frequently used, we will not refer
to them in the following derivations.

For momentum balance (3.18), we simply have

ρ
Dv

Dt
=∇ ·m− ρgẑ. (3.25)

For energy balance (3.19), we obtain

ρT
Ds
Dt
= −∇ ·

(
ρλu

Dc
Dt
∇c
)
+ (m− ρλu|∇c|2I + ρλu(∇c⊗∇c)) :∇v

+ λuρ1c
Dc
Dt
−∇ · qE −∇ · qnc

E − ρ
∂u
∂c

Dc
Dt
− p
ρ

Dρ
Dt
, (3.26)

where (3.10), (3.23) and (3.25) and the following identities are used:

d
dt

∫
V(t)
ρgzdV =

∫
V(t)
ρgv · ∇zdV =

∫
V(t)
ρgv · ẑdV (3.27)

and

ρ
D
Dt

(
1
2
λu|∇c|2

)
= ∇ ·

(
ρλu

Dc
Dt
∇c
)

+ (ρλu|∇c|2I − ρλu(∇c⊗∇c)) :∇v − ρλu1c
Dc
Dt
. (3.28)

Here, ‘:’ stands for the double dot product of the stress tensor (e.g. Mase & Mase
1999).

For entropy balance (3.20), we obtain

ρ
Ds
Dt
= −∇ ·

(
ρλs

Dc
Dt
∇c
)
+ (−ρλs|∇c|2I + ρλs(∇c⊗∇c)) :∇v

+ λsρ1c
Dc
Dt
−∇ ·

(
qE

T

)
+ Sgen −∇ · qnc

S , (3.29)
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where, similarly to (3.28), the following identity is used:

ρ
D
Dt

(
1
2
λs|∇c|2

)
= ∇ ·

(
ρλs

Dc
Dt
∇c
)

+ (ρλs|∇c|2I − ρλs(∇c⊗∇c)) :∇v − ρλs1c
Dc
Dt
. (3.30)

For constituent mass balance (3.21), we simply have

ρ
Dc
Dt
=−∇ · qC. (3.31)

We then use (3.29) and (3.31) to substitute the terms ρDs/Dt and ρDc/Dt in (3.26),
and use the relation (3.16) to obtain the expression for the entropy generation,

Sgen = 1
T
(m− ρλf (T)|∇c|2I + ρλf (T)T + pI) :∇v

+∇ 1
T
·
(
ρλu

Dc
Dt
∇c+ qE + qnc

E −µCqC

)
−∇ ·

[
1
T
ρλf (T)

Dc
Dt
∇c+ 1

T
qnc

E −
1
T
µCqC − qnc

S

]
− 1

T
qC · ∇µ. (3.32)

To ensure the non-negativity of the entropy generation Sgen > 0 (second law of
thermodynamics), we specify the unknown terms in the form

qE =−k(c)∇T, qnc
E =−ρλu

Dc
Dt
∇c+µCqC, (3.33)

qnc
S =−ρλs

Dc
Dt
∇c, m= ρλf (T)|∇c|2I − ρλf (T)T + σ , (3.34)

µC = ∂f
∂c
− λf (T)1c, qC =−mC∇µC, (3.35)

T =∇c⊗∇c, σ =−pI + τ , (3.36)

p= ρ2 ∂f
∂ρ
, τ =µ(c)(∇v +∇vT)− 2

3
µ(c)(∇ · v)I. (3.37)

It should be noted that τ is the deviatoric stress tensor from the classical Navier–
Stokes equations (e.g. Batchelor 2000). Here, we use the thermodynamic relation (3.13)
to obtain the chemical potential µC. The pressure p can be obtained immediately
through the thermodynamic relation (3.13). By substituting the above terms into (3.17)–
(3.21), we obtain the system of equations for the phase-field model governing binary
compressible flows with thermocapillary effects,

Dρ
Dt
=−ρ(∇ · v), (3.38)

ρ
Dv

Dt
=∇ ·m− ρgẑ, (3.39)

ρ
Du
Dt
= (σ − ρTλs|∇c|2I + ρTλsT ) :∇v + λu∇ · (ρ∇c)

Dc
Dt

+∇ · (k(c)∇T +mCµC∇µC), (3.40)
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ρ
Ds
Dt
= 1

T
(τ − ρTλs|∇c|2I + ρTλsT ) :∇v + λs∇ · (ρ∇c)

Dc
Dt

+ 1
T
∇ · (k(c)∇T), (3.41)

ρ
Dc
Dt
=mC1µC, (3.42)

µC = ∂f
∂c
− λf (T)1c. (3.43)

It should be noted that the second term in the stress tensor m is the extra reactive
stress (Ericksen’s stress) to mimic the surface tension. This stress term is associated
with the presence of concentration gradient energy (Cahn–Hilliard energy). We note
that the temperature-dependent coefficient in m is a linear function of temperature,
which leads to thermocapillary effects along the interface (see § 4.2 for details).
Here, mC is a positive constant standing for the mobility of the diffuse interface. It
should be noted that in the non-classical heat (or entropy) flux qnc

E (or qnc
S ), the term

ρλu∇c Dc/Dt (or ρλs∇c Dc/Dt) is associated with the gradient energy (or entropy
respectively) and is in the direction of the gradient of the phase variable. Similar
terms were obtained by Wang et al. (1993), who used a phase-field model to study
the solidification of single material, and by Anderson & McFadden (1996), who used
a phase-field model to study a single compressible fluid with different phases near its
critical point. In addition, a non-classical energy flux term mCµC∇µC appears in our
energy balance equation (3.40). The same energy flux term was obtained by Gurtin
et al. (1996) (see (28)), who re-derived the model H in the framework of classical
continuum mechanics. A ‘counterpart’ entropy flux term was identified by Lowengrub
& Truskinovsky (1998) when deriving a phase-field model for binary compressible
fluid, where this term is required to keep the model compatible with the second law of
thermodynamics. In the latter work, the isothermal fluid flow was studied, so that the
temperature T in the entropy flux was treated as constant, whereas in our work, the
temperature is not a constant as the thermocapillary effects are considered here. They
identified this non-classical term as the entropy flux transported through the boundary
by chemical diffusion. Our model agrees with these works well and therefore we
identify this non-classical energy flux term as the energy that is carried into the
control volume by the chemical diffusion. It should be noted that several phase-field
models (e.g. Blesgen 1999; Allaire, Clerc & Kokh 2002; Abels & Feireisl 2008)
have been presented to study binary compressible fluids, where the specifications of
the free energy (3.37) that contributes to the compressibility of binary compressible
fluids are discussed and provided.

Similarly to the approach that defines the variable density ρ(c) (2.5), we define the
variable viscosity µ(c) and the variable thermal diffusivity k(c) for the mixture in the
form of the harmonic average,

µ(c)= µ1µ2

(µ2 −µ1)c+µ1
, k(c)= k1k2

(k2 − k1)c+ k1
, (3.44a,b)

where µi and ki are the viscosity and thermal conductivity of the ith fluid.

3.2. Thermodynamic consistency and Galilean invariance
As our phase-field model (3.38)–(3.43) is derived within a thermodynamic framework,
it implies that the first and second thermodynamic laws are naturally underlying
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the model. However, from the numerical point of view, thermodynamic consistency
can further serve as a criterion to design the numerical methods. In our phase-field
model, the Navier–Stokes equations are coupled with the Cahn–Hilliard equations
and energy balance equation, which leads to a nonlinear system. Moreover, as rapid
variations in the solutions of the phase variable occur near the interfacial region, the
energy stability of the numerical method is critical. Recently, the preservation of the
thermodynamic laws at the discrete level has been reported to play an important role
in the design of numerical methods (e.g. Lin & Liu 2006; Lin, Liu & Zhang 2007
for liquid crystal models; Hua et al. 2011; Guo et al. 2014a for phase-field models),
which not only immediately implies the stability of the numerical scheme, but also
ensures the correctness of the solutions. Hence, in contrast to the derivations, we
now show that the first and second laws of thermodynamics can be derived from the
system of (3.38)–(3.43), which can be further used to design the numerical methods.
In addition, important modelling properties, Onsager reciprocal relations and Galilean
invariance will be verified as well.

3.2.1. The laws of thermodynamics
By multiplying (3.38), (3.39) and (3.41)–(3.43) by p/ρ + v · v/2+ u, v, T , µC and

ρDc/Dt, and summing them up, we can obtain the first law of thermodynamics (3.19)
that we used to derive the model. By substituting the terms m, qE, qnc

E , qnc
S and qC

into the entropy generation (3.32), we obtain the second law of thermodynamics,

Sgen = 1
T
τ :∇v − qE

∇T
T2
− qC

1
T
∇µC

= 1
T
τ :∇v + k(c)

∣∣∣∣∇T
T

∣∣∣∣2 + mC

T
|∇µC|2 > 0, (3.45)

where we see that the viscous dissipation, heat transfer and chemical potential (the
variation of the phase variable) all contribute to the entropy generation of our phase-
field model. It should be noted that the same entropy generation equation was obtained
by Lowengrub & Truskinovsky (1998) when deriving the phase-field model for binary
compressible fluid.

3.2.2. Onsager reciprocal relations
From (3.45), we observe that the entropy generation can be seen as the sum of

terms, each being a product of a flux (τ , qE, qC) and thermodynamic forces (∇v, ∇T ,
∇µC). The simplest model, based on the linear thermodynamics of non-equilibrium
processes (Groot & Mazur 1985), assumes linear relations between the fluxes and
thermodynamic forces, such that

τ = L11∇v + L12∇T + L13∇µC, (3.46)
qE = L21∇v + L22∇T + L23∇µC, (3.47)
qC = L31∇v + L32∇T + L33∇µC, (3.48)

where the coefficients Lij are chosen to guarantee the non-negativity of Sgen.
Moreover, microscopic reversibility requires the Onsager reciprocal relations Lij = Lji
(Groot & Mazur 1985, and see, for example, Qian et al. 2006; Eck et al. 2009).
From (3.37), (3.33) and (3.35), we see that our choices of τ , qE and qC satisfy
the linear relation (3.48) and also the reciprocal relations. Moreover, the entropy
generation (3.45) is zero when the thermodynamic equilibrium conditions are satisfied
within the system (i.e. thermodynamic forces are zero at equilibrium).
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3.2.3. Galilean invariance
Another requirement that the entropy generation (3.45) should satisfy is that it be

invariant under a Galilei transformation (Groot & Mazur 1985), since the notions of
reversible and irreversible behaviour must be invariant under such a transformation. It
can be seen that the entropy generation (3.45) satisfies this requirement automatically.
Moreover, the model equations must be Galilean invariant as well, where, according
to classical mechanics, the balance equations must be the same in the inertia frames.
It can be observed that our system equations satisfy this requirement. It should be
noted that, in another phase-field model (Abels, Garcke & Grun 2010), the volume-
averaged velocity is employed, which leads to a non-objective scalar term appearing in
the chemical potential equation. Therefore, a particular formulation for the convective
terms is needed to keep the Galilean invariance of their model equations. In our model
equations, on the other hand, the mass-averaged velocity is employed for the mixture;
therefore no non-objective terms are involved. The system equations satisfy Galilean
invariance automatically.

4. Phase-field model for quasi-incompressible fluid with thermocapillary effects

In this section, we develop a model of a binary Cahn–Hilliard fluid with
thermocapillary effects in which both components are incompressible.

4.1. Derivation of the model
In order to study situations in which the density in each phase is uniform, it is
convenient to adopt a thermodynamic formulation which does not employ the density
as an independent variable, as in the model of quasi-incompressible flow considered
by Lowengrub & Truskinovsky (1998). Following their work, we choose the pressure
and temperature as independent variables, and work with the Gibbs free energy. In
addition, for a binary incompressible fluid system, the free energy density can appear
as the ‘per unit mass’ quantity or ‘per unit volume’ quantity. In most phase-field
models for two-phase flows (e.g. Hohenberg & Halperin 1977; Liu & Shen 2002), the
densities of the two components are assumed to be constant and equal, and the per
unit mass and per unit volume specifications of the free energy density are equivalent.
However, in the situation we study here, the densities of the two fluids of the mixture
may not be matched and thus the per unit mass and per unit volume forms are not
equivalent. As mentioned above, several models have been developed for binary
incompressible fluids with different densities, in which the per unit volume form of
the free energy density was employed by Boyer (2002), Ding et al. (2007), Shen &
Yang (2010) and Abels et al. (2012) and the per unit mass form by Lowengrub &
Truskinovsky (1998). Here, we concentrate on the Gibbs free energy density in the
per unit mass form, and denote it by ĝ(T, p, c,∇c). Again, similarly to the definition
of the free energy (3.9) for binary compressible fluid, we introduce the gradient terms
(gradient energy) into the Gibbs free energy of our model, which can then be given
in the form

ĝ(T, p, c,∇c)= g(T, p, c)+ ggrad(T,∇c), ggrad = f grad = λf (T) 1
2 |∇c|2,

(4.1a,b)

where g is the classical part of the Gibbs free energy density and λf (T) is a
temperature-dependent coefficient and will lead to thermocapillary effects along
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the interface (see § 4.3 for details). For the classical part of the internal energy
defined by (3.7), we have the following thermodynamic relation:

u(s, ρ, c)= g(T, p, c)+ Ts− p
ρ
. (4.2)

Use of the thermodynamic relation (3.10) leads to

dg(T, p, c)= du(s, ρ, c)− d(sT)+ d
(

p
ρ

)
=−sdT + 1

ρ
dp+ ∂u

∂c

∣∣∣∣
ρ,s

dc, (4.3)

where we note the relations
∂g(T, p, c)

∂T

∣∣∣∣
p,c

=−s,
∂g(T, p, c)

∂p

∣∣∣∣
T,c

= 1
ρ

and
∂g(T, p, c)

∂c

∣∣∣∣
T,p

= ∂u
∂c

∣∣∣∣
ρ,s

.

(4.4a−c)

Here, as we notice that the variable density is independent of temperature and pressure
(see (2.5)), the condition of incompressibility can then be written in the terms of the
Gibbs free energy,

∂2g(T, p, c)
∂2p

= 0, (4.5)

where the second condition in (4.4) is used. Condition (4.5) implies that the Gibbs
free energy is a linear function of pressure (e.g. Lowengrub & Truskinovsky 1998),

g(T, p, c)= g0(T, c)+ p
ρ(c)

. (4.6)

We then redefine the classical internal energy as a function of T , p and c,

ũ(T, p, c)= u(s, ρ, c)= g(T, p, c)+ Ts− p
ρ(c)

, (4.7)

where the relations (4.3) and (4.4) still hold. Similarly to the definition of the internal
energy (3.7) and entropy (3.8) for the binary compressible fluid model, the specific
internal energy û and the specific entropy ŝ for binary incompressible fluids can be
redefined in the form

û(T, p, c,∇c)= ũ(T, p, c)+ ugrad(∇c), ugrad = λu
1
2 |∇c|2, (4.8)

ŝ(T, c,∇c)= s̃(T, c)+ sgrad(∇c), sgrad = λs
1
2 |∇c|2, (4.9)

where ũ and s̃ are the classical parts of the specific internal energy and entropy
associated with the Gibbs free energy, and λu and λs are constant. In addition to
these classical contributions, we assume that the same thermodynamic relations that
hold for the classical terms also hold for the total terms, such that

ĝ= û− Tŝ+ p
ρ
= f̂ + p

ρ
,

∂ ĝ
∂T

∣∣∣∣
p,c,∇c

=−ŝ. (4.10a,b)

Thus, from (4.1), (4.7)–(4.9), the relation for the coefficients (3.16) holds as well. The
specifications of these three coefficients will be discussed in § 4.2. It should be noted
that λu and λs together with λf (T) (in (4.1)) can be further used to relate the surface
tension of the phase-field model to that of the sharp-interface model when our phase-
field model reduces to its sharp-interface limit (see § 5.4 for details).

Now we derive the system of equations for the quasi-incompressible phase-field
model. We still use (3.1)–(3.5) to define the total properties, namely mass M,
momentum P, energy E, entropy S and mass constituent C in a material control
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volume V(t) of the domain Ω . We further assume that the corresponding general
balance laws (3.17)–(3.21) that hold for the binary compressible fluid also hold for
the quasi-incompressible fluid, which can then be written as

Dρ
Dt
=−ρ(∇ · v), (4.11)

ρ
Dv

Dt
=∇ ·m− ρgẑ, (4.12)

ρ
Dũ
Dt
= −∇ ·

(
ρλu

Dc
Dt
∇c
)
+ ρλu1c

Dc
Dt

+ (m− ρλu|∇c|2I + ρλuT ) :∇v −∇ · qE −∇ · qnc
E , (4.13)

ρ
Ds̃
Dt
= −∇ ·

(
ρλs

Dc
Dt
∇c
)
+ ρλs1c

Dc
Dt

− (ρλs|∇c|2I − ρλsT ) :∇v −∇ ·
(

qE

T

)
−∇ · qnc

S + Sgen, (4.14)

ρ
Dc
Dt
=−∇ · qC, (4.15)

where, as the pressure p is not defined in the traditional way, the general stress tensor
m is not defined explicitly.

It should be noted that, in contrast to the case of binary compressible fluid, the
classical part of the internal energy ũ we defined here does not depend on the entropy
s̃ directly. However, as the derivations are carried out within the thermodynamic
framework which is based on the entropy generation, a thermodynamic relation
between the internal energy and the entropy is still needed. Having in mind the
definition of the internal energy (4.7) and using the relations (4.3) and (4.4), we
obtain the following relation between the classical part of the internal energy ũ, the
Gibbs free energy g and the entropy s̃:

ρ
Dũ
Dt
= ρ ∂g0

∂c
Dc
Dt
+ ρT

Ds̃(T, c)
Dt

. (4.16)

Then similarly to the method used for the binary compressible fluid model, we use
the unknowns, including m, qE, qnc

E and qnc
S , to express the entropy generation in the

form

Sgen = 1
T
(m− ρλf (T)|∇c|2I + ρλf (T)T ) :∇v

+∇ 1
T
·
(
ρλu

Dc
Dt
∇c+ qE + qnc

E − µ̃CqC

)
−∇ ·

[
1
T

(
ρλf (T)

Dc
Dt
∇c+ qnc

E − µ̃CqC − Tqnc
S

)]
− 1

T
qC · ∇µ̃C, (4.17)

where we have used (4.11)–(4.16). Here, µ̃C= ∂g0(c)/∂c−λf (T)1c is a potential term.
As the pressure is no longer defined by the thermodynamic formulae in this model,
we now derive the pressure in an alternative way that was used by Lowengrub &
Truskinovsky (1998), where the pressure was obtained from the non-dissipated part of
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the general stress m. Considering a dissipative process, we denote the general stress
tensor by m=m0+ τ , in which τ is the deviatoric stress tensor with zero trace, and
m0 is the unknown part to be defined later. We then denote Dv=∇v− (∇ · v)I/3 as
the deviatoric part of ∇v (tr Dv= 0). The entropy expression (4.17) can be rewritten
as

Sgen = 1
T

(
m0 − ρλf (T)|∇c|2I + ρλf (T)T

)
: Dv+ 1

T
τ :∇v

+∇ 1
T
·
{
ρλu

Dc
Dt
∇c+ qE + qnc

E

−
(
µ̃C +

(
1
3

tr m0 − 2
3
ρλf (T)|∇c|2

)
1
ρ2

dρ
dc

)
qC

}
−∇ ·

{
1
T

[
ρλf (T)

Dc
Dt
∇c+ qnc

E

−
(
µ̃C +

(
1
3

tr m0 − 2
3
ρλf (T)|∇c|2

)
1
ρ2

dρ
dc

)
qC − Tqnc

S

]}
− 1

T
qC · ∇

(
µ̃C +

(
1
3

tr m0 − 2
3
ρλf (T)|∇c|2

)
1
ρ2

dρ
dc

)
, (4.18)

where we have used the mass balance (4.11) and the following identity:

(m0 − ρλf (T)|∇c|2I + ρλf (T)T ) : 1
3(∇ · v)I

= 1
3(tr m0 − ρλf (T)tr |∇c|2I + ρλf (T)tr T )(∇ · v)
= ( 1

3 tr m0 − 2
3ρλf (T)|∇c|2)(∇ · v). (4.19)

Now we assume that the first two terms on the right-hand side of (4.18) are non-
dissipative and define the pressure p by

−p= 1
3 tr m= 1

3 tr(m0 − ρλf (T)|∇c|2I + ρλf (T)T )= 1
3 tr m0 − 2

3ρλf (T)|∇c|2, (4.20)

such that

−pI =m0 − ρλf (T)|∇c|2I + ρλf (T)T , (4.21)

in which the way we use to define the pressure in (4.20) is analogous to the way
that defines the kinematic pressure for the classical Navier–Stokes equations (Batchelor
2000). To ensure that our model is consistent with the second law of thermodynamics
(Sgen > 0), we specify the unknown terms as follows:

qE =−k(c)∇T, qnc
E =−ρλu

Dc
Dt
+µCqC, (4.22)

qnc
S =−ρλs

Dc
Dt
∇c, m0 =−pI + ρλf (T)|∇c|2I − ρλf (T)T , (4.23)

µC = ∂g0

∂c
− p
ρ2

dρ
dc
− λf (T)1c, qC =−mC∇µC, (4.24)

T =∇c⊗∇c, τ =µ(c)(∇v +∇vT)− 2
3µ(c)(∇ · v)I. (4.25)
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Here, m =m0 + τ . It should be noted that, comparing with the model developed by
Lowengrub & Truskinovsky (1998), an extra term, ρλf (T)|∇c|2I , appears in the stress
tensor m0 (4.23). This term could be absorbed into the pressure for convenience (see
Hua et al. 2011; Liu & Shen 2002 for examples). However, we still keep this term in
order that the surface gradient of the surface tension in the sharp-interface limit can
be recovered (see § 5.4 for details). This treatment is similar to that used by Guo et al.
(2014b) and Garcke et al. (2014), where in Garcke et al. (2014) this term is also
required to recover the surface gradient term in the asymptotic analysis. Apart from
the momentum equation, the pressure appears in the chemical potential equation as
well, which is different from the chemical potential (3.43) for the binary compressible
fluid model. By substituting the above terms into (4.11)–(4.15), we obtain the system
of equations for the phase-field model governing the quasi-incompressible fluid with
thermocapillary effects,

Dρ
Dt
=−ρ(∇ · v), (4.26)

ρ
Dv

Dt
=∇ ·m− ρgẑ, (4.27)

ρ
Dũ
Dt
= λu∇ · (ρ∇c)

Dc
Dt
+ (−pI − ρTλs|∇c|2I + ρTλsT + τ ) :∇v

+∇ · ( k(c)∇T +mCµC∇µC), (4.28)

ρ
Ds̃
Dt
= λs∇ · (ρ∇c)

Dc
Dt
+ 1

T
(−ρTλs|∇c|2I

+ ρTλsT + τ ) :∇v + 1
T
∇ · (k(c)∇T), (4.29)

ρ
Dc
Dt
=mC1µC, (4.30)

µC = ∂g0

∂c
− p
ρ2

dρ
dc
− λf (T)1c. (4.31)

By multiplying (4.26), (4.27) and (4.29)–(4.31) by p/ρ + v · v/2 + u, v, T , µC and
ρDc/Dt, and summing them up, we can obtain the first law of thermodynamics (3.19)
that we used to derive the model. By substituting the terms, including m, qE,
qnc

E , qnc
S and qC, into the entropy generation (4.18), we obtain the second law of

thermodynamics for our phase-field model,

Sgen = 1
T
τ :∇v + k(c)

∣∣∣∣∇T
T

∣∣∣∣2 + mC

T
|∇µC|2 > 0. (4.32)

Similarly to the binary compressible model, the choices of the terms τ , qE and
qC satisfy the linear relation (3.48) and the Onsager reciprocal relations (§ 3.2.2).
Moreover, it can be observed that the entropy generation (4.32) and the system
equations are Galilean invariant.

As mentioned above, several phase-field models have been developed for two-phase
flows with thermocapillary effects. However, in most of these models, the classical
energy balance equation,

ρchc
DT
Dt
=∇ · (k∇T), (4.33)
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was incorporated directly into the phase-field model, where thermodynamic consistency
can hardly be maintained. Compared with the classical energy balance equation (4.33),
several extra terms appear in our energy balance equation (4.28), which guarantee
thermodynamic consistency (see § 4.2).

It should be noted that, if we define a new pressure as p̄ = p − ρλf (T)|∇c|2, and
substitute it into the system (4.26)–(4.31), our model, in the isothermal case, reduces
to the quasi-incompressible NSCH model developed by Lowengrub & Truskinovsky
(1998).

By using the variable mass density (2.5), the mass balance equation (4.26) can be
further rewritten as

∇ · v =− 1
ρ

Dρ
Dt
= αρDc

Dt
= αmC1µC, (4.34)

where we have used the Cahn–Hilliard equation (4.30) and let α = (ρ2 − ρ1)/ρ2ρ1.
The initial conditions are given by

v|t=0 = v0, c|t=0 = c0 and T|t=0 = T0. (4.35a−c)

For the velocity, the usual no-slip boundary conditions can be posed on ∂Ω ,

v = vb. (4.36)

For the phase field, it is normal to employ Neumann boundary conditions on ∂Ω ,

∇c · n̂= hc and ∇µC · n̂= hµ. (4.37a,b)

For the temperature, Dirichlet and Neumann boundary conditions can be posed on
∂Ω ,

T = Tb or ∇T · n̂= qb, (4.38a,b)

for the specified temperature and heat flux on the boundary ∂Ω respectively, and
Robin boundary conditions can be posed as well.

4.2. Specifications of the model
We now specify the properties including the Gibbs free energy, entropy and
internal energy for our phase-field model (4.26)–(4.31). In Anderson, McFadden
& Wheeler (2000), a phase-field model for the solidification of a pure material
that includes convection in the liquid phase was developed, in which the case of
quasi-incompressibility (assuming that the density in each phase is uniform) was
discussed. In their work, the Gibbs free energy was suggested in the form

ĝ(T, p, c,∇c)= g0(T, c)+ p
ρ(c)
+ λf (T)

1
2
|∇c|2, (4.39)

g0(T, c)= (u0 − chcT0)

(
1− T

T0

)
− chcT ln

(
T
T0

)
+ γf (T)h(c), (4.40)

which we have adopted for the present work. Here, chc is the heat capacity, T0 is
the reference temperature, ũ0 is the reference internal energy corresponding to T0 and
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γ (T) is a temperature-dependent parameter that will be discussed later in this section.
The free energy function h(c) is a double-well potential and is given by

h(c)= c2(c− 1)2

4
, (4.41)

where the wells define the phases, and lead to an interfacial layer with large variations
for c (e.g. Gurtin et al. 1996). It should be noted that the form for ĝ (4.39) is
consistent with the incompressible condition (4.6), which is a linear function of
pressure. Moreover, this form for ĝ is consistent with an internal energy û, which is
a linear function of temperature and leads to the classical heat equation in the bulk
liquid (Wang et al. 1993; Anderson, McFadden & Wheeler 2001). The corresponding
expressions for the entropy and internal energy are assumed in the form

ŝ= s̃+ snc = 1
T0

u0 + chc ln
(

T
T0

)
+ γsh(c)+ λs

1
2
|∇c|2, (4.42)

û= ũ+ unc = ũ0 + chc(T − T0)+ γuh(c)+ λu
1
2 |∇c|2, (4.43)

where ũ0 is the reference internal energy corresponding to T0.
We now specify those coefficients, including λf (T), λs, λu, γf (T), γs and γu, that are

used to define the internal energy, entropy and free energy of the system (4.39)–(4.43).
In the sharp-interface model for thermocapillary flow, the interface is usually
represented as a surface of zero thickness with the surface tension as its physical
property. An equation of state is required to relate the surface tension to the
temperature, where, for the sake of simplicity, we only consider a linear relation
in this study,

σ(T)= σ0 − σT(T − T0), (4.44)

where σ0 is the interfacial tension at the reference temperature T0, and σT is the rate
of change of interfacial tension with temperature, defined as σT = ∂σ(T)/∂T . In our
phase-field model, however, the interface has finite thickness and the extra reactive
stress (Ericksen’s stress) T (4.25) appears in the Navier–Stokes equation to mimic the
surface tension, where the coefficient of T ,

λf (T)= λu − Tλs, (4.45)

is a linear function of temperature. We then try to relate σ(T) and λ(T) by introducing
two parameters. The first parameter is ε with respect to the diffuse-interface thickness
and the second one is η, a ratio parameter that relates the two surface tensions. As the
interface thickness goes to zero, our phase-field model reduces to its sharp-interface
limit, and the value of η can then be determined (see § 5.4 for details). The
corresponding coefficients can then be given as

λf (T)= ηεσ(T)= ηεσ0 − ηεσT(T − T0), γf (T)= η
ε
σ(T)= η

ε
σ0 − η

ε
σT(T − T0),

(4.46a,b)

λs = ηεσT, γs = η
ε
σT, (4.47a,b)

λu = ηεσ0 + ηεσTT0, γu = η
ε
σ0 + η

ε
σTT0. (4.48a,b)
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Here, the coefficients λf (T), λs and λu for the gradient terms are of O(ε2) of the
coefficients γf (T), γs and γu for the corresponding classical terms, which agrees with
the definition of the Cahn–Hilliard free energy (e.g. Lowengrub & Truskinovsky 1998;
Liu & Shen 2002). With the specifications above, the total energy E of our phase-field
model can now be written as

E=
∫

V(t)

(
1
2
ρ|v|2 + ρgz+ ρũ0 + ρchc(T − T0)+ ργuh(c)+ ρλu

1
2
|∇c|2

)
dV. (4.49)

4.3. Non-dimensionalization
With the help of the specification in (4.8), we non-dimensionalize the phase-field
model (4.26)–(4.28), (4.30) and (4.31) as follows. We let L?, V? and T? denote
the characteristic scales of length, velocity and temperature. Then we introduce the
dimensionless variables x̄= x/L?, t̄=V?t/L?, and also ε̄= ε/L?, v̄= v/V?, p̄= pρ1µ

?
C,

µ̄C = µC/µ
?
C. For the variable density ρ(c), viscosity µ(c) and thermal conductivity

k(c), (2.5) and (3.44), we let ρi, µi and ki (i = 1, 2) denote the corresponding
properties of the ith fluid, and introduce the dimensionless variables ρ̄r = ρ(c)/ρ1,
µ̄r = µ(c)/µ1 and k̄r = k(c)/k1. Moreover, for the temperature field, we introduce a
new dimensionless variable T̄= (T−T0)/T?. The surface tension σ(T) (4.44) is scaled
by σ0 such that σ̄ (T)= σ(T)/σ0. Then σT is scaled by σ0/T?, such that σ̄T = σTT?/σ0.
Omitting the bar notation, our phase-field model can now be rewritten as

∇ · v =− 1
ρr

∂ρr

∂c
Dc
Dt
, (4.50)

ρr
Dv

Dt
=− 1

M
[∇p−Ca∇(ρrσ(T)|∇c|2)+Ca∇ · (ρrσ(T)T )]

+ 1
Re
∇ ·
(
µr(∇v +∇vT)− 2

3
µr(∇ · v)I

)
− ρr

Fr2
ẑ, (4.51)

ρ
Dc
Dt
= 1

Pe
1µC, (4.52)

µC = Ca
ε2
σ(T)

dh(c)
dc
− p
ρ2

r

dρr

dc
− Ca
ρr
σ(T)1c, (4.53)

ρrchc
DT
Dt
= EcCa

M
(1+ σTT0)∇ · (ρr∇c)

Dc
Dt

+ Ec
M

(
−pI −CaρrTσT |∇c|2I +CaρrTσTT + 1

Re
τ

)
:∇v

+∇ ·
(

1
Ma

kr∇T + Ec
MPe

µC∇µC

)
, (4.54)

where M=V2/µC is an analogue of the Mach number, Ca=ηεσ0/µCL is the capillary
number, which measures the thickness of the interface, Re=µ1/ρ1VL is the Reynolds
number, Fr= V2/gL is the Froude number, Pe= ρLV/mCµC is the diffusional Peclet
number, Ec = V2/cchT is the Eckert number, which characterizes energy dissipation,
and Ma = ρcchVL/k1 is the Marangoni number. It should be noted that these non-
dimensional system equations will be computed to study the effects of the Marangoni
number through the example of thermocapillary migration of a drop. See § 6.5 for
details.
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5. Sharp-interface limits
Theoretically, there are usually two ways to validate the phase-field model. The first,

as mentioned above, is to show thermodynamic consistency of the model. The second
is to relate the phase-field model to its sharp-interface counterpart. Based on the
assumption that a given sharp-interface formulation is the correct description of the
physics under consideration, the phase-field model can be justified by simply showing
that it is asymptotic to the classical sharp-interface description. In the isothermal
case, some sharp-interface limit analyses have been carried out for the phase-field
model of two-phase flow to show that the corresponding sharp-interface equations
and jump conditions across the interface can be recovered from the phase-field
model (e.g. Lowengrub & Truskinovsky 1998; Wang & Wang 2007; Abels et al.
2012). However, much less attention has been paid to the asymptotic analysis of the
phase-field model for two-phase flows in the non-isothermal case, (e.g. thermocapillary
flows, solidifications). Antanovskii (1995) presented a phase-field model to study the
thermocapillary flow, and showed that the hydrostatic equilibrium condition for the
case of a flat interface and the Laplace–Young condition for the case of a drop in
equilibrium can be recovered from his phase-field model. Jasnow & Vinals (1996)
extended model H to study thermocapillary flow, including the migration of a drop
and spinodal decomposition of a binary fluid under a constant temperature gradient.
In the corresponding sharp-interface limit, they showed that the additional stress
term in the Navier–Stokes equation of their phase-field model is equivalent to the
tangential and normal forces of the appropriate sharp-interface model. Anderson et al.
(2000) developed a phase-field model of solidification with convection in the melt, in
which the two phases are considered as viscous liquids. In the sharp-interface analysis
(Anderson et al. 2001), they used the matched asymptotic expansions to show that
the standard boundary conditions, including Young–Laplace and Stefan conditions,
can be recovered from their phase-field model.

5.1. Pillbox argument
In this section, we apply a pillbox argument to our phase-field model (4.26)–(4.31).
In contrast to the sharp-interface model, the interface of the phase-field model is
diffusive with finite thickness O(ε). The phase variable (here the mass concentration
c) is chosen to characterize the different phases, which take distinct values (here
c = 0, 1) for the different phases, and change rapidly through the interfacial region.
Within this interfacial region, we chose a contour line of c (here c= 0.5) to represent
the dividing surface Γ for the following derivations (see Gibbs 1928; Everett 1972;
Rowlinson & Widom 1982 for details of the dividing surface). Moreover, as the largest
variations of the phase variable occur in the direction normal to the interface, the side
faces of the pillbox need to be treated carefully. Figure 1 shows the pillbox-shaped
control volume designed for our phase-field model, where the surface is divided into
three parts, namely the top Stop, bottom Sbot and side Sside surfaces with their unit
normal vectors n̂T , n̂B and n̂S respectively. The volume of the pillbox is V = V1 + V2,
where Vi is the volume of a single component. The pillbox has a thickness of 2δ,
where the top of the pillbox is above the dividing surface Γ at a height ζ = δ and
the bottom is below Γ at a height ζ =−δ. Here, ζ is a local coordinate normal to
the interface Γ . In addition, the pillbox contains a portion of the diffuse interface
with thickness O(ε), in which Γ stands for the dividing surface with its normal
and tangent unit vectors n̂I and m̂I . The key limit in the pillbox argument is that
ε� δ� L, where L is a length scale associated with the outer flow. In this limit, the
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Fluid 2
n

n

n

n

m

Fluid 1

FIGURE 1. A schematic diagram showing a diffuse interface between two fluids
intersecting with a pillbox-shaped control volume. Here, n̂T , n̂B and n̂S stand for the unit
normal vector of the pillbox boundary on its top, bottom and side respectively. The dotted
lines represent the diffuse interface with thickness O(ε). The thickness of the pillbox is
2δ. In the limit ε � δ � L, the interface thickness goes to zero, and the interface has
constant density. Here, n̂I and m̂I stand for the unit normal and tangent vectors of the
interface.

volume of the pillbox becomes negligible on the outer scales, but the variations in the
concentration variable c that defines the interfacial region occur over a region fully
contained within the pillbox. Also in this limit, the top (Stop) and bottom surfaces
(Sbot) of the pillbox collapse onto the interface Γ , and have normal vectors with
opposite directions,

Stop = Sbot = Γ , n̂T = n̂I, n̂B =−n̂I and n̂S = m̂I. (5.1a−d)

Moreover, we assume that the dividing interface is moving with the velocity vI

(Anderson & McFadden 1996; Anderson et al. 1998).

5.2. Governing equations in the sharp-interface limit
We first derive the system of equations in bulk regions away from the interfacial
region. Here, we only concentrate on the equations of mass, momentum and energy
balance. The system of (4.26)–(4.28) reduces to the classical equations appropriate for
incompressible flows in bulk regions,

∇ · v = 0, (5.2)

ρi
Dv

Dt
=−∇p+∇ · (µi(∇v +∇vT))− ρigẑ, (5.3)

ρichc
DT
Dt
=∇ · (ki∇T)+µi(∇v +∇vT) :∇v, (5.4)

where ρi, µi and ki are the corresponding physical properties for the ith fluid. We now
seek to derive the jump conditions for (5.2)–(5.4) at the interface from our phase-field
model (4.26)–(4.31).
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5.3. Jump condition for mass balance
In the limit ε � δ � L, we have the properties (Anderson & McFadden 1996;
Anderson et al. 1998) ∫

V

∂ρ

∂t
dV ∼−

∫
S
ρvI · n̂dS, (5.5)∫

V

∂(ρv)

∂t
dV ∼−

∫
S
ρv⊗ vI · n̂dS. (5.6)

On substituting (5.5) into the integral of equation (4.11) and using the divergence
theorem we obtain ∫

S
ρ(v − vI) · n̂dS= 0. (5.7)

According to our pillbox argument, we break up the above surface integral into pieces
for the top, bottom and side surfaces to obtain∫

Stop

ρ(v − vI) · n̂TdS+
∫

Sbot

ρ(v − vI) · n̂BdS+
∮

C

∫ δ

−δ
ρ(v − vI) · n̂Sdζdl= 0. (5.8)

Here, the surface integral of the side portion is further written in terms of a line
integral on the surface and an integral in the normal direction n̂S, where the line is
a closed curve at the side of the control volume that parallel to the interface. For
viscous fluid under normal operating conditions, it is an experimentally observed fact
(like the no-slip boundary conditions at solid walls) that no slip takes place at the
interface (Tryggvason, Scardovelli & Zaleski 2011). Therefore, in the limit ε� δ� L,
we have

v · m̂I ∼ vI · m̂I. (5.9)

This condition implies that the third term on the left in (5.8) is bounded and does not
contribute to the integral. Equation (5.8) can be reduced to∫

Γ

[ρ(v − vI)] · n̂IdS= 0, (5.10)

where [χ ] =χ2−χ1 refers to the jump of the quantity χ across the singular interface.
Since the pillbox control volume V that contains a portion of the diffuse interface is
arbitrary, the integrand in (5.10) must be zero. This then yields the mass balance jump
condition at the interface in a two-phase fluid system,

[ρ(v − vI)] · n̂I = 0. (5.11)

Further, if we assume that there is no phase change (i.e. no flux) across the interface,
(5.11) reduces to the jump condition that

[v] · n̂I = 0. (5.12)
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5.4. Jump condition for momentum balance
By substituting (5.6) into the integral of momentum equation (4.27), we obtain∫

S

(
ρv⊗ (v − vI)+ pI − ηεσ(T)ρ|∇c|2I + ηεσ(T)ρT

−µ(∇v +∇vT)+ 2
3
µ(∇ · v)I

)
· n̂dS= 0, (5.13)

where we have used the mass balance equation (4.26), such that

ρ
Dv

Dt
= ρDv

Dt
+
(

Dρ
Dt
+ ρ(∇ · v)

)
v = ∂(ρv)

∂t
+∇ · (ρv⊗ v). (5.14)

Moreover, in the limit ε � δ � L, we assume that the gravitational term ρgẑ is
bounded and thus does not contribute to the volume integral. We then break up the
above surface integral into pieces for the top, bottom and sides of the pillbox to
obtain ∫

Stop

(
ρv⊗ (v − vI)+ pI − ηεσ(T)ρ|∇c|2I + ηεσ(T)ρT

−µ(∇v +∇vT)+ 2
3
µ(∇ · v)I

)
· n̂TdS

+
∫

Sbot

(
ρv⊗ (v − vI)+ pI − ηεσ(T)ρ|∇c|2I + ηεσ(T)ρT

−µ(∇v +∇vT)+ 2
3
µ(∇ · v)I

)
· n̂BdS

+
∮

C

∫ δ

−δ

(
ρv⊗ (v − vI)+ pI − ηεσ(T)ρ|∇c|2I + ηεσ(T)ρT

−µ(∇v +∇vT)+ 2
3
µ(∇ · v)I

)
· n̂Sdζdl= 0. (5.15)

We assume that the most rapid variations in the phase field take place across
the interfacial region with the direction normal to the interface Γ . In the limit
ε� δ� L, local to the interface we have (Anderson & McFadden 1996; Lowengrub
& Truskinovsky 1998)

∇∼ ∂

∂ζ
n̂I, ∇c∼ ∂c

∂ζ
n̂I and 1c∼ ∂

2c
∂ζ 2

, (5.16a−c)

such that

T =∇c⊗∇c∼ ∂c
∂ζ

n̂I
∂c
∂ζ

n̂I, T · n̂I ∼ ∂c
∂ζ

∂c
∂ζ

n̂I and T · m̂I ∼ 0. (5.17a−c)

Condition (5.9) implies that the fluid velocity term ρv⊗ (v− vI) · n̂S is bounded and
does not contribute to the integral over the side surface of the pillbox. The terms
−µ(∇v+∇vT) · n̂S are bounded and do not contribute to the side integral. We argue
that the term 2/3µ(∇ · v) is bounded across the interfacial region and thus does not
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contribute to the side integral. The pressure p is bounded and does not contribute to
the side integral. Further, the non-classical stress term T does not contribute to the
integral over the top and bottom surfaces. Equation (5.15) reduces to∫

Γ

([ρv(v − vI)] · n̂I + [pI] · n̂I + [−µ(∇v +∇vT)] · n̂I)dS

−
∮

C

∫ δ

−δ
ηεσ(T)ρ

(
∂c
∂ζ

)2

m̂Idζdl= 0, (5.18)

where the condition (5.1) is used. Here, for our pillbox argument to make sense, we
require that within the pillbox the temperature is continuous and the variations are
small over a small distance (of the order of the pillbox thickness δ). In the limit
ε � δ � L, the temperature T is approximately uniform along the direction normal
to the interface. It should be noted that a similar assumption for the temperature
was also suggested by Jasnow & Vinals (1996), where a surface tension term with
thermocapillary effects was identified from a phase-field model in its sharp-interface
limit. Denoting the surface tension by

σ̃ (T)= ησ(T) lim
ε→0

∫ δ

−δ

(
ερ

(
∂c
∂ζ

)2)
dζ , (5.19)

and substituting into (5.18), we obtain∫
Γ

([ρv(v − vI)] · n̂I + [pI] · n̂I + [−µ(∇v +∇vT)] · n̂I)dS−
∮

C
σ̃ m̂Idl= 0, (5.20)

where, in the limit ε � δ � L, we assume that the tangential unit vector m̂I is
independent of ζ and thus can be taken out of the line integral. Use of the surface
divergence theorem (Weatherburn 1939) leads to∮

C
σ̃ m̂Idl=

∫
Γ

∇sσ̃dS−
∫
Γ

(∇s · n̂I)σ̃ n̂IdS. (5.21)

By substituting (5.21) into (5.20), we obtain

[ρv(v − vI)] · n̂I + [pI] · n̂I + [−µ(∇v +∇vT)] · n̂I =∇sσ̃ + κσ̃ n̂I. (5.22)

Here, ∇s is the surface gradient and κ =−∇s · n̂I is the mean curvature of the surface
(e.g. Weatherburn 1939). The first term on the right is the tangential thermocapillary
(Marangoni) force that accounts for the non-uniform surface tension, while the second
is the normal surface tension force. Again, if we assume that there is no phase change
(i.e. no flux) across the interface, (5.22) reduces to the jump condition that

[pI] · n̂I + [−µ(∇v +∇vT)] · n̂I =∇sσ̃ + κσ̃ n̂I, (5.23)

which is the classical momentum balance jump condition at the interface for two-phase
incompressible fluid with thermocapillary effects.

It should be noted that we can relate the surface tension of our phase-field model
σ̃ (T) (identified in (5.19)) to that of the sharp-interface model σ(T) (defined in (4.44))
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 0.2

 0

0.4
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FIGURE 2. (Colour online) The stationary solution c0 (solid line) for the phase field. Here,
A is a point on the dividing surface Γ , and δ and −δ are the positions of the top and
bottom surfaces of the pillbox (dotted lines).

by letting

σ̃ (T)= ησ(T)
∫ +δ
−δ

ερ(c)
(

dc
dζ

)2

dζ = σ(T). (5.24)

The value of the ratio parameter η can then be determined through the following
equation:

η= 1∫ +δ
−δ

ερ(c)
(

dc
dζ

)2

dζ

. (5.25)

It has been argued by Chella & Vinals (1996) that in the limit of a gently curved
interface, and when the motion of the interface is slow, the phase variable c can
be approximated by its 1D stationary solution c0 along the direction normal to the
interface. For simplicity, we now assume that the local coordinate ζ coincides with
the y direction, and the position of the dividing surface is y0= 0. In the 1D case, we
have the following stationary solution c0 near the interfacial region:

c0(y)= 1
2
+ 1

2
tanh

(
y

2
√

2ε

)
, for y ∈ [−δ, δ], (5.26)

which is shown in figure 2. Here, y = δ and y = −δ are the positions of the top
and bottom surfaces of the pillbox separately. In the limit ε � δ � L, we note the
conditions

c=
{

0, for y= δ,
1, for y=−δ. (5.27)

By substituting (5.26) and the variable density (2.5) into (5.25) we obtain

η= 2
√

2(ρ2 − ρ1)
3

ρ1ρ2

[
ρ2

2 − ρ2
1 − 2ρ1ρ2 ln

(
ρ2

ρ1

)] , (5.28)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.696


254 Z. Guo and P. Lin

where the condition (5.27) is used. It should be noted that for the density matched
case (ρ1 = ρ2), (5.25) leads to a simpler expression for η, which is

η= 6
√

2. (5.29)

This agrees with the result obtained by Rowlinson & Widom (1982), Yue et al. (2004)
and Aland (2012). In § 6, we will compute some examples by using our phase-field
model for quasi-incompressible fluids (4.26)–(4.31).

5.5. Jump condition for energy balance
To derive the jump condition for the energy balance at the interface, we first substitute
the terms E, m, qE and qnc

E (3.3), (4.22), (4.23) and (4.25) into the energy balance
equation (3.19). In the integral form, we obtain∫

S

(
ρû(v − vI)+ ρ 1

2
|v|2(v − vI)+

(
pI − ηεσ(T)ρ|∇c|2I + ηεσ(T)ρT

−µ(∇v +∇vT)+ 2
3
µ(∇ · v)I

)
· v − λu

(
ρ∇c

Dc
Dt

)
− k∇T −mCµC∇µC

)
· n̂IdS= 0, (5.30)

where we have used the identities

ρ
Dû
Dt
= ∂(ρû)

∂t
+∇ · (ρûv), (5.31)

ρ
D
Dt

1
2
|v|2 = ∂

∂t

(
ρ

1
2
|v|2
)
+∇ ·

(
ρ

1
2
|v|2v

)
, (5.32)

and the following properties which are similar to (5.5) and (5.6):∫
V

∂(ρû)
∂t

dV ∼−
∫

S
ρûvI · n̂dS, (5.33)∫

V

∂

∂t

(
ρ

1
2
|v|2
)

dV ∼−
∫

S
ρ

1
2
|v|2vI · n̂dS. (5.34)

We then break up the above integral (5.30) into pieces for the top, bottom and sides
of the pillbox to obtain∫

Stop

(
ρû(v − vI)+ ρ 1

2
|v|2(v − vI)+

(
pI − ηεσ(T)ρ|∇c|2I + ηεσ(T)ρT

−µ(∇v +∇vT)+ 2
3
µ(∇ · v)I

)
· v − λu

(
ρ∇c

Dc
Dt

)
− k∇T −mCµC∇µC

)
· n̂TdS

+
∫

Sbot

(
ρû(v − vI)+ ρ 1

2
|v|2(v − vI)+

(
pI − ηεσ(T)ρ|∇c|2I + ηεσ(T)ρT

−µ(∇v +∇vT)+ 2
3
µ(∇ · v)I

)
· v − λu

(
ρ∇c

Dc
Dt

)
− k∇T −mCµC∇µC

)
· n̂BdS
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+
∮

C

∫ δ

−δ

(
ρû(v − vI)+ ρ 1

2
|v|2(v − vI)+

(
pI − ηεσ(T)ρ|∇c|2I + ηεσ(T)ρT

−µ(∇v +∇vT)+ 2
3
µ(∇ · v)I

)
· v − λu

(
ρ∇c

Dc
Dt

)
− k∇T

−mCµC∇µC

)
· n̂Sdζdl= 0, (5.35)

where we assume that the heat capacity chc is a constant. In the limit ε � δ � L,
the non-classical terms of the internal energy û (4.43), T , λu(ρ∇c(Dc/Dt)) and
mCµC∇µC, do not contribute to the top and the bottom surface integrals. The
non-classical term mCµC∇µC and the energy term k∇T are bounded in the tangential
direction and do not contribute to the side integral. Equation (5.35) then reduces to∫

Γ

(
[ρchcT(v − vI)] +

[
ρ

1
2
|v|2(v − vI)

]
+ [pI · v] − [µ(∇v +∇vT) · v]

− [k∇T]
)
· n̂IdS−

∮
C

(∫ δ

−δ
ηεσ(T)ρ

(
dc
dζ

)2

dζ
)

vI · m̂Idl= 0, (5.36)

where in the last term of (5.36), we argue that the interface velocity vI is independent
of the local coordinate ζ and thus can be taken out of the integral in the normal
direction. By using (5.19) and the surface divergence theorem, we obtain

[k∇T] · n̂I = ([ρchcT(v − vI)] + [ρ 1
2 |v|2(v − vI)] + [pI · v]

− [µ(∇v +∇vT) · v]) · n̂I −∇s · (σ̃vI)− κσ̃ n̂I · vI, (5.37)

where the energy spent by the interface deformation and the effects of the interface
curvature are taken into account in our jump condition for the energy balance at the
interface. Equation (5.37) agrees with the result obtained by Andrea (2011), where
the energy balance condition at the interface is derived by using a pillbox for the
sharp-interface model. Again if we assume that there is no phase change across the
interface, (5.37) then reduces to

[k∇T] · n̂I = ([pI · v] − [µ(∇v +∇vT) · v]) · n̂I −∇s · (σ̃vI)− κσ̃ n̂I · vI. (5.38)

If we further ignore the energy spent by the interface deformation and the effects
of interface curvature, we can obtain the classical jump condition for the energy
equation,

[k∇T] · n̂I = 0, (5.39)

which is widely used for the computations of the sharp-interface model (e.g. Tavener
& Cliffe 2002).

6. Computational methods and results
In this section, we investigate our phase-field model numerically through three

examples. One is the thermocapillary convection in a microchannel with two-layer
superimposed fluid, and the second (third) one is the thermocapillary migration
of a drop with zero (finite respectively) Marangoni number. All examples will be
computed by using continuous finite element methods. The numerical results of the
first and second examples will be compared with the existing analytical solutions and
numerical results.
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6.1. Simplified model and the weak form
For the sake of simplicity, we assume that the densities of the two fluids are matched.
The system (4.26)–(4.31) can then be simplified in the form

∇ · v = 0, (6.1)
Dv

Dt
=−∇p+∇[λf (T)|∇c|2] −∇ · [λf (T)(∇c⊗∇c)] +∇ · (µ∇v), (6.2)

Dû
Dt
= λu∇ ·

(
∇c

Dc
Dt

)
+ (−pI + λf (T)|∇c|2I − λf (T)(∇c⊗∇c)

+µ∇v) :∇v +∇ · (k∇T +mCµC∇µC), (6.3)
Dc
Dt
=mC1µC, (6.4)

µC = γf (T)
dh(c)

dc
− λf (T)1c, (6.5)

where the variable thermal conductivity (3.44) is employed. Here, we employed
the energy balance equation (3.19) instead of (4.28). The reason is that in the
weak formulation of (4.28), the second-order derivative is involved, implying that
more reductive C1 finite elements are needed for the conformity. However, in the
weak formulation of (6.3) ((6.8) below) we find that only first-order derivatives
of c are involved, so that the C0 finite element method may be used for our
computations. The benefits of using C0 elements are obvious, in that the method
can have more choices of elements and many existing codes can be incorporated
to reduce various complications. It should be noted that (6.1)–(6.3) of the system
will be computed for the example of thermocapillary convection, (6.1)–(6.5) will
be computed for the example of thermocapillary migration with zero Marangoni
number, and the non-dimensional system (4.50)–(4.54) will be computed for the
example of thermocapillary migration with finite Marangoni number. For simplicity,
we only present the numerical scheme for the dimensional system (6.1)–(6.5). The
numerical method for the non-dimensional system (4.50)–(4.54) can be obtained
correspondingly. By multiplying the system (6.1)–(6.5) by the test functions q, u, χ ,
φ and ψ respectively and using integration by parts, the weak form can be derived
straightforwardly (where v, p, û, c, µ and the test functions u, q, χ , φ and ψ are in
appropriate spaces), ∫

Ω

(∇ · vq)dx= 0, (6.6)∫
Ω

( vt · u+ (v · ∇)v · u− p∇ · u+ λf (T)(∇c · ∇c)∇ · u
− λf (T)(∇c⊗∇c) :∇u+µ∇v :∇u)dx= 0, (6.7)∫
Ω

(
ûtχ + (v · ∇)ûχ + λu

Dc
Dt
∇c · ∇χ − λf (T)(∇c · ∇c)(∇ · v)χ

−µ∇v :∇vχ + λf (T)(∇c⊗∇c) :∇vχ + pI :∇vχ

+ k∇T · ∇χ +mCµC∇µC · ∇χ
)

dx= 0, (6.8)∫
Ω

(ctφ + (v · ∇)cφ +mC∇µC · ∇φ)dx= 0, (6.9)∫
Ω

(
µCψ − γf (T)

dh(c)
dc

ψ −∇λf (T) · ∇cψ − λf (T)∇c · ∇ψ
)

dx= 0. (6.10)
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6.2. Temporal schemes and implementation issues
The solution of the weak form (6.6)–(6.10) is approximated by a finite difference
scheme in time and a conformal C0 finite element method in space. To ensure the
stability of our numerical method, we adopt the fully implicit backward Euler scheme
to compute the problem.

We let 1t > 0 represent a time step size, and (vn
h, pn

h, ûn
h, cn

h, µC
n
h) (in a finite

dimensional space given by a finite element discretization of the computational
domain Ω) is an approximation of (v, p, û, c, µ) at time tn= n1t, where vn

h= v(n1t),
pn

h= p(n1t), ûn
h= û(n1t), cn

h= c(n1t) and µC
n
h=µC(n1t). Then the approximation at

time tn+1 is denoted as (vn+1
h , pn+1

h , ûn+1
h , cn+1

h , µC
n+1
h ) and computed by the following

finite element scheme: ∫
Ω

(∇ · vn+1
h q+ δpn+1

h q)dx= 0, (6.11)∫
Ω

( vn+1
t̄ · u+ (vn+1

h · ∇)vn+1
h · u− pn+1

h ∇ · u+ λf (Tn+1
h )(∇cn+1

h · ∇cn+1
h )∇ · u

− λf (Tn+1
h )(∇cn+1

h ⊗∇cn+1
h ) :∇u+µ∇vn+1

h :∇u)dx= 0, (6.12)∫
Ω

( ûn+1
t̄ χ + (vn+1

h · ∇)ûn+1
h χ + λu(cn+1

t̄ + (vn+1
h · ∇)cn+1

h )∇cn+1
h · ∇χ

− λf (Tn+1
h )(∇cn+1

h · ∇cn+1
h )(∇ · vn+1

h )χ + λf (Tn+1
h )(∇cn+1

h ⊗∇cn+1
h ) :∇vn+1

h χ

−µ∇vn+1
h :∇vn+1

h χ + k∇Tn+1
h · ∇χ +mCµC

n+1
h ∇µC

n+1
h · ∇χ)dx= 0, (6.13)∫

Ω

(cn+1
t̄ φ + (vn+1

h · ∇)cn+1
h φ +mC∇µC

n+1
h · ∇φ)dx= 0, (6.14)∫

Ω

( µC
n+1
h ψ − γf (Tn+1

h )h′(cn+1
h )ψ −∇λf (Tn+1

h ) · ∇cn+1
h ψ

− λf (Tn+1
h )∇cn+1

h · ∇ψ)dx= 0, (6.15)

where vn+1
t̄ = (vn+1

h − vn
h)/1t, ûn+1

t̄ = (ûn+1
h − ûn

h)/1t and cn+1
t̄ = (cn+1

h − cn
h)/1t. It

should be noted that the divergence-free equation needs to be treated carefully in
incompressible flow computations. Here, we rewrite (6.11) in the penalty formulation,
where δ is a relatively small parameter and is set to be δ = 10−6 for all the
computations. It should be noted that for every time step, Tn+1 can be obtained
by using (4.43), such that

chcTn+1
h = ûn+1

h − γuh(cn+1
h )− λu

1
2∇cn+1

h · ∇cn+1
h . (6.16)

Since the scheme is nonlinearly implicit we need to perform the linearization and then
solve a linear system iteratively at each time step. We follow the numerical methods
designed by Hua et al. (2011), where the linear system is symmetric and does not
depend on time. Therefore, we only need to perform the Cholesky factorization for
the symmetric linear system at the initial time step. After the initial time we do not
need to factorize the linear system again since the coefficient matrix is independent
of time.

For a phase-field model, it is sufficient to finely resolve only the interfacial region,
and a fixed grid meshing represents a waste of computational resources. Therefore, an
efficient adapting mesh that resolves the thin interfacial region is desirable. For the
examples of thermocapillary convection, we design a mesh that has relatively high-
resolution grids near the flat interface. For the example of thermocapillary migration,
since the interface moves as the drop rises, an adaptive mesh is designed, in which
there is a smaller frame that moves with the drop. Within the frame, the resolution
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Fluid A

Fluid B

x
b

a
y

FIGURE 3. Schematic diagram showing two immiscible fluids in a microchannel. The
temperatures of the lower and upper plates are Tb(x,−b)= Th+ T0 cos(kx) and Ta(x, a)=
Tc respectively, where Th > Tc > T0 and k= 2π/l is the wavenumber, and a and b are the
heights of the fluids A and B respectively.

of grids is much higher than those outside the moving frame, so that the moving
interface of the drop can be resolved purposely. Here, only the meshes for the example
of thermocapillary migration are shown.

6.3. Thermocapillary convection in a two-layer fluid system
We now investigate the thermocapillary convection in a heated microchannel with
two-layer superimposed fluids with a planar interface (Pendse & Esmaeeli 2010).
We consider two-layer fluids (figure 3), where the heights of fluid A (upper) and
fluid B (lower) are a and b respectively, and the fluids are of infinite extension
in the horizontal direction. The physical properties of the fluids are their densities,
viscosities and heat conductivities. The temperature variations in the present study are
considered to be small enough so that the thermophysical properties of each fluid are
assumed to remain constant, with the exception of surface tension. The temperatures
of the lower and upper plates are

Tb(x,−b)= Th + T0 cos(ωx) and Ta(x, a)= Tc (6.17a,b)

respectively, where Th > Tc > T0 > 0, and ω= 2π/l is a wavenumber with l being the
channel length. The above temperature boundary conditions establish a temperature
field that is periodic in the horizontal direction with a period of l. Therefore, it
is sufficient to only focus on the solution in one period, i.e. −l/2 < x < l/2. In
the limit of zero Marangoni number and small Reynolds number, it is possible to
ignore the convective transport of momentum and energy. In addition, we assume that
the interface is to remain flat. By solving the simplified sharp-interface governing
equations with the corresponding jump boundary conditions at the interface, Pendse
& Esmaeeli (2010) obtained the analytical solutions for the temperature field T̄(x, y)
and stream function ψ̄(x, y), where for the upper fluid

T̄A(x, y)= (Tc − Th)y+ k̃Tcb+ Tha

a+ k̃b
+ T0f (α, β, k̃) sinh(α −ωy) cos(ωx), (6.18)

ψ̄A(x, y) = Umax

ω

1
sinh2(α)− α2

{
ωy sinh2(α) cosh(ωy)

− 1
2
[2α2 +ωy(sinh(2α)− 2α)] sinh(ωy)

}
sin(ωx), (6.19)
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and for the lower fluid

T̄B(x, y) = k̃(Tc − Th)y+ k̃Tcb+ Tha

a+ k̃b
+ T0 f (α, β, k̃) [sinh(α) cosh(ωy)

− k̃ sinh(ωy) cosh(α)] cos(ωx), (6.20)

ψ̄B(x, y) = Umax

ω

1
sinh2(β)− β2

{
ωy sinh2(β) cosh(ωy)

− 1
2
[2β2 −ωy(sinh(2β)− 2β)] sinh(ωy)

}
sin(ωx). (6.21)

In the above equations the unknowns are defined by k̃ = kA/kB, α = aω, β = bω,
f (α, β, k̃)= 1/(k̃ sinh(β) cosh α + sinh(α) cosh β), g(α, β, k̃)= sinh(α)f (α, β, k̃) and

Umax =−
(

T0σT

µB

)
g(α, β, k̃)h(α, β, µ̃), (6.22)

h(α, β, µ̃)= (sinh2(α)− α2)(sinh2(β)− β2)

k̃(sinh2(β)− β2)(sinh(2α)− 2α)+ (sinh2(α)− α2)(sinh(2β)− 2β)
.

(6.23)

Based on their work, the simulations for our phase-field model are carried out in a
2D domain [−l/2, l/2] × [−b, a] with l = 1.6 × 10−4 and a = b = 4 × 10−5. As the
interface between the two fluids is assumed to be flat and rigid, the initial conditions
for the phase variable only depend on y, and can be given in the form

c(y)= 1
2
+ 1

2
tanh

(
y

2
√

2ε

)
, for y ∈ (−b, a). (6.24)

The periodic boundary conditions are applied on the left and right sides of the domain.
On the top and bottom walls, the no-slip boundary conditions are imposed such that

v = 0, for y= a,−b. (6.25)

Equations (6.17a,b) are used as the boundary conditions for temperature with Th= 20,
Tc = 10 and T0 = 4. We let the ratio parameter η = 6

√
2 (5.29). Moreover, the fluid

properties are shown in table 1. To show the influences of the thermal conductivity
ratio on the stream-function and temperature fields, the simulations are carried out
for two cases with different values of k̃, where k̃ = 0.1 for case 1 and k̃ = 0.5
for case 2. Here, the variable thermal conductivity k(c) (3.44) is employed, where
we fix kB(= 0.2), and change the value of kA for the two cases. The contours of
the temperature fields and stream functions for two cases at ε = 0.002 are shown
in figures 4 and 5 respectively. It can be seen that our numerical results are in
good agreement with the analytical solutions. In order to show that our phase-field
model approaches the sharp-interface model as the thickness of the diffuse interface
goes to zero, the computations are carried out by using five different values of ε
(= 0.02, 0.01, 0.005, 0.002, 0.001). The L2 norms of the relative differences between
the numerical results and analytical solutions are shown in table 2. We can observe
that as the value of ε decreases, the L2 norm of the relative differences decreases for
both the temperature field and the stream function. We also note that there are slight
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µA =µB = 0.2 kB = 0.2 σ0 = 2.5× 10−1

k̃= kA/kB (thermal conductivity ratio) σT =−5× 10−3 (at Tref = Tc)

TABLE 1. The physical properties of two fluids for the example of thermocapillary
convection (A and B stand for fluids A and B separately).

10.35
11.05
11.75
12.45
13.15
13.85
14.55
15.25
15.95
16.65
17.35
18.05
18.75
19.45
20.15
20.85
21.55
22.25
22.95
23.65

Isovalue

FIGURE 4. (Colour online) Isotherms of the numerical results and analytical solutions
for the example of thermocapillary convection in a two-layer fluid system with different
thermal diffusivity ratios k̃= 0.1 and k̃= 0.5.

differences between our numerical results and the analytical predictions. The reason
is twofold. First, and most importantly, the thickness of the interface of our model
is finite, and the thermal diffusivity changes across it. Second, the viscous heating
term is considered in our energy balance equation (6.3). As can be observed from
the isotherms in figure 4, the cosine-like boundary condition for temperature leads
to non-uniform distributions of the temperature along the interface. This results in a
shear force along the interface that is from the centre to both sides of the domain.
The fluids are set in motion by this shear force and move from the middle towards
both sides of the domain. These are then replaced by the fluid flowing downwards
(upward) from the top (bottom) boundary. Also, as the domain is periodic in the
horizontal direction, the velocities of fluids that move towards both sides decrease
and the fluids are forced to move upward (downward) to the top (bottom) of the
domain. This mechanism results in the formation of the circulation patterns that can
be observed in the stream-function fields (figure 5), where the fluid flow consists of
four counter-rotating circulations that divide the domain into four parts. Moreover, in
the context of the thermal conductivity ratio, we find that the decrease of k̃ leads to a
more non-uniform distribution of temperature along the interface, and thus strengthens
the thermocapillary convection. This result agrees with the recent result obtained by
Liu et al. (2014), where the same thermocapillary convection in a two-layer fluid
system was investigated numerically by using a lattice Boltzmann phase-field method.
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–2.305
–2.062
–1.819

–1.334
–1.577

–1.092
–0.849
–0.607
–0.364
–0.121
0.121
0.364
0.607
0.849
1.092
1.334
1.577
1.819
2.062
2.305

–2.313
–2.069
–1.826

–1.339
–1.582

–1.095
–0.852
–0.609
–0.365
–0.122
0.122
0.365
0.609
0.852
1.095
1.339
1.582
1.826
2.069
2.313

–3.172
–2.838
–2.504

–1.836
–2.170

–1.502
–1.168
–0.835
–0.501
–0.167
0.167
0.501
0.835
1.168
1.502
1.836
2.170
2.504
2.838
3.172

–3.154
–2.822
–2.490

–1.826
–2.158

–1.494
–1.162
–0.830
–0.498
–0.166
0.166
0.498
0.830
1.162
1.494
1.826
2.158
2.490
2.822
3.154

Isovalue 10–8

Numerical results Analytical solutions

FIGURE 5. (Colour online) Streamlines of the numerical results and analytical solutions
for the example of thermocapillary convection in a two-layer fluid system with different
thermal diffusivity ratios k̃ = 0.1 and k̃ = 0.5. Positive (negative) values of the stream
function indicate the clockwise (the counterclockwise) circulation.

6.4. Thermocapillary migration in the limit of zero Marangoni number
The thermocapillary migration of a drop was first examined experimentally by Young
et al. (1959), who derived an analytical expression for the terminal velocity (also
known as the YGB velocity) of the drop in an infinite domain. In this study, both
the Marangoni and Reynolds numbers are assumed to be infinitely small, such that
the convective transport of momentum and energy is negligible. Instead, the terminal
velocity of the drop is derived in an infinite domain with constant temperature gradient
fields, and can be given in the form

VYGB = 2U

(2+ k̃)(2+ 3µ̃)
, (6.26)

where U =−σTGTR/µB is chosen as the velocity scale, R is the radius of the drop,
GT stands for the constant temperature gradient, k̃= kA/kB is the thermal conductivity
ratio and µ̃=µA/µB is the viscosity ratio between the two fluids. In our simulation,
we consider a 2D domain Ω of size [0, 7.5R] × [0, 15R] where a planar 2D circular
drop of fluid A with radius R= 0.1 is placed inside the medium of fluid B, with the
centre of the drop located at the centre of the box (xc, yc)= (3.75R, 7.5R). We set the
initial condition for the phase field as

c(x, y)= 1
2

tanh
(

R− [(x− xc)
2 + (y− yc)

2]1/2
2
√

2ε

)
+ 1

2
. (6.27)

In figure 6 we present the initial condition (6.27) for the whole domain (left-hand
side), and for fixed x = 3.75R (right-hand side), where it can be observed that the
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ε = 0.02 ε = 0.01 ε = 0.005 ε = 0.002 ε = 0.001

k= 0.1
‖T − T̄‖L2

‖T̄‖L2
5.445× 10−3 2.503× 10−3 1.189× 10−3 4.551× 10−4 2.200× 10−4

‖ψ − ψ̄‖L2

‖ψ̄‖L2
4.309× 10−2 2.668× 10−2 1.614× 10−2 6.94× 10−3 6.44× 10−3

k= 0.5
‖T − T̄‖L2

‖T̄‖L2
1.585× 10−3 5.748× 10−4 2.098× 10−4 5.167× 10−5 1.815× 10−5

‖ψ − ψ̄‖L2

‖ψ̄‖L2
6.796× 10−2 2.208× 10−2 8.682× 10−3 3.688× 10−3 7.318× 10−4

TABLE 2. The L2 norm of the relative differences between the numerical results and the
analytical solutions for § 6.3.

σ0 = 5× 10−2, σT = 1.25× 10−3 (at Tref = Tb), µA =µB = 0.2, mC = 0.1ε.

TABLE 3. The physical properties of two fluids for the example of thermocapillary
migration (A and B stand for the fluids A and B separately).

area with c= 1 represents the drop (fluid A) and the area with c= 0 represents the
medium (fluid B), between which the value of c varies rapidly, resulting in a diffuse
interface with finite thickness. Within this transition layer, the dotted contour line is at
the level c= 0.5 representing the dividing surface Γ . No-slip boundary conditions are
imposed on the top and bottom walls, and periodic boundary conditions are imposed
in the horizontal direction. A linear temperature field is imposed in the y direction,

T(x, y)= Tb + Tt − Tb

15R
y= Tb +GTy, (6.28)

with Tb = 10 on the bottom wall and Tt = 25 on the top wall, resulting in a constant
temperature gradient, GT = 10. Again, we let the ratio parameter η = 6

√
2 (5.29).

Moreover, the fluid properties are shown in table 3. Using these values, the theoretical
terminal velocity of a spherical drop can be given as

VYGB = 8.333× 10−4. (6.29)

Numerically, we use the following equation to calculate the rise velocity vr of the
drop for our phase-field model:

vr =

∫
Ω

cv · ĵdV∫
Ω

cdV
, (6.30)

where ĵ is the component of the unit vector in the y direction.
Figure 7 shows the temporal evolution of the drop velocity normalized by VYGB

between two different interface capturing methods, the phase-field method and
level-set method (Herrmann et al. 2008). Similarly to the previous example in § 6.3,
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FIGURE 6. (Colour online) Initial condition of the phase variable c for the example of
the thermocapillary migration of a drop. The dotted line stands for the dividing surface.

we compute our model by using two different interfacial thicknesses corresponding
to ε = 0.002 and 0.001. Both the phase-field method and the level-set method seem
to converge to a value of vr/VYGB = 0.8, roughly 20 % different from the theoretical
prediction. The reason for this discrepancy is twofold. First, and most importantly,
the theoretical rise velocity is for an axisymmetric sphere, whereas our simulations
are carried out for a planar 2D drop. Second, the simulations include small blockage
effects from the finite computational domain size as well as minute deformations
of the drop, whereas the theoretical formula assumes an infinite domain and a
non-deformable drop. As the thickness of the diffuse interface decreases, our results
seem to coverage to the that obtained by the level-set method (Herrmann et al. 2008).
For the case ε= 0.001, we present the streamlines together with the moving interface
at t= 1 and t= 50 in figure 8, where we observe that the streamlines for both cases
exhibit similar patterns, with two asymmetric recirculations around the drop. Figure 8
shows the meshes together with the drop interface at t= 1 and t= 50. Here, the size
of the smaller frame is set to be [3R× 3R], in which we take the shortest edge of the
grids inside the frame as 15R/1000= ε, so that at least 7–9 grid cells (corresponding
to the definition of the interfacial thickness) are located across the interface to ensure
accuracy of our computations. In addition, the moving velocity of the frame is set
to be equal to the drop rising velocity vframe = vr, such that, through this relative
long-term behaviour, the rising drop is always kept inside the smaller moving frame.

6.5. Thermocapillary migration with finite Marangoni number
We now compute the example of the thermocapillary motion of a drop with finite
Marangoni number. Due to the finite Marangoni number, the energy equation (6.3) is
coupled with the momentum equation (6.2). This is expected to result in a reduction
of the tangential temperature gradients at the drop interface due to the interfacial flow
driven by the Marangoni stress, which in turn will also be reduced. In this simulation,
we consider a 2D domain Ω of size [0, 10R] × [0, 15R], where a planar 2D circular
drop of fluid A with radius R= 0.5 is placed inside the medium of fluid B, with the
centre of the drop located at the centre of the box (xc, yc)= (0, 1.5R). At t= 0, (6.27)
is employed as the initial condition for the phase variable, and a linear temperature
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FIGURE 7. (Colour online) The time evolution of the normalized migration velocity of
a drop. The dashed lines are our numerical results for a 2D planar drop (vr), while the
solid line represents the numerical results by using the level-set method.

distribution from Tb = 0 at the bottom to Tt = 1 at the top is imposed for the bulk
liquid, and we assume that the drop has the same initial linear temperature distribution
as the bulk liquid. Again, no-slip boundary conditions are imposed on the top and
bottom boundaries, and periodic boundary conditions are imposed in the horizontal
direction. The two fluids are assumed to have the same densities and viscosities. We
set the thermal conductivity k1= 0.1 for the drop and k2= 1 for the bulk fluid. In this
section, the non-dimensionalized system (4.50)–(4.54) is computed, where we set the
non-dimensional parameters as ε= 0.002, Re= 10, M= 1, Pe= 100/ε, Ca= 1, Ec= 1.
Five different values of the Marangoni number are employed for the computations,
namely Ma= 50, 100, 500, 1000, 1500.

Figure 9 shows the velocity of the drop versus time for the five cases. As the
time processes, the rise velocity reduces in all five cases, and we can observe that
an increase in Ma leads to a decrease in the rise velocity, which is consistent with
the simulations by Herrmann et al. (2008), Yin et al. (2008) and Zhao et al. (2010).

Figure 10 shows snapshots of the isotherms at four different times for the
corresponding three cases, where the dependence of the migration velocity on the
Marangoni number can be easily explained. Obviously, the enhanced convective
transport of momentum and heat with increase of the Marangoni number results
in more disturbances of the temperature field. Inside the drop, as we increase
the Marangoni number, larger variations can be observed, leading to a substantial
reduction in the surface temperature gradient and the corresponding rise velocities.

7. Conclusion and future work
In this paper, we present a thermodynamically consistent phase-field model for

two-phase flows with thermocapillary effects, which allows a binary incompressible
fluid (quasi-incompressible fluid) to have different physical properties for each
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–5.75167

–4.22054
–4.98611
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FIGURE 8. (Colour online) The drop interface (black) and the streamlines (grey-scale lines,
left), and the meshes (grey lines, right) at (a) t = 1 and (b) t = 50. Positive values of
the stream function indicate the clockwise circulation and negative values of the stream
function indicate the counterclockwise circulation.
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FIGURE 9. The time evolution of the rise velocity of a drop with different finite
Marangoni numbers.

component, including densities, viscosities and thermal conductivities. To the best
of our knowledge, such a phase-field model is new. We chose the mass concentration
as the phase variable, and the corresponding variable density and mass-averaged
velocity lead to a quasi-incompressible formulation for the binary incompressible
fluid. As the thermocapillary effects are produced by the non-homogenous distribution
of a temperature-dependent (linear) surface tension, we introduce the square-gradient
(Cahn–Hilliard) term into the internal energy and entropy of our phase-field model,
so that the interfacial free energy that is associated with the surface tension in our
model can be linearly dependent on the temperature. Our model equations, including
the mass balance equation, Navier–Stokes equation with extra stress term, advective
Cahn–Hilliard equation, energy balance equation and entropy balance equation, are
derived within a thermodynamic frame based on entropy generation. Compared with
the classical energy balance equation employed by other phase-field models, the
non-classical terms associated with the square-gradient term appear in our energy
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FIGURE 10. (Colour online) Snapshots of the drop interface (black) and isotherms (grey-
scale lines) for different times and different values of Ma as indicated.

balance equation (4.28) to account for the energy spent by the variations of the
phase field. In addition, we verify the first and second thermodynamic laws from
the system of equations to show that thermodynamic consistency is maintained in
our model. Moreover, we have also verified that our system equations satisfy the
important modelling properties, namely the Onsager reciprocal relations and Galilean
invariance.

In the sharp-interface analysis, we show that the system of equations and jump
conditions at the interface for the classical sharp-interface model are recovered from
our model, which reveals the underlying physical mechanisms of the phase-field
model, and provides a validation of our model. It is worth mentioning that, in the
jump condition of the momentum balance, we identify the square-gradient term of the
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free energy as the surface tension (5.19) of our phase-field model. We further relate
it to the physical surface tension through a ratio parameter, where a relation (5.25)
is provided to determine the value of this parameter.

We also compute three examples, including thermocapillary convection in a
two-layer fluid system and thermocapillary migration of a drop. The results for the
first two examples are in good agreement with the existing analytical and numerical
solutions quantitatively, which validates our phase-field model. Thus, on the whole,
we conclude that the phase-field model is very suitable for simulating multiphase
flows with thermocapillary effects.

In future work, apart from exploring various applications and extensions of the
model, we intend to provide an asymptotic analysis of the solution of the model, and
use it as a further validation of our model. For the phase-field model developed here,
we will present a thermodynamic consistency preserving numerical method with the
corresponding numerical results in a forthcoming work (Guo & Lin 2014).
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