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We define a variant of the crossing number for an embedding of a graph G into R
3, and

prove a lower bound on it which almost implies the classical crossing lemma. We also give

sharp bounds on the rectilinear space crossing numbers of pseudo-random graphs.

1. Introduction

All the graphs in this paper are simple, i.e., they contain no loops or multiple edges.

The crossing number of a graph G = (V , E) is the minimum number of crossings between

edges of G among all the ways to draw G in the plane. It is denoted cr(G). The edges in

a drawing of G need not be line segments: they are allowed to be arbitrary continuous

curves. If one restricts to the straight-line drawings, then one obtains the rectilinear

crossing number lin-cr(G). It is clear that cr(G) � lin-cr(G), and there are examples where

cr(G) = 4, but lin-cr(G) is unbounded [5]. The principal result on crossing numbers is the

crossing lemma of Ajtai, Chvátal, Newborn and Szemerédi [2] and Leighton [17], which

states that

cr(G) � c
|E|3
|V |2 whenever |E| � C|V |. (1.1)

The inequality is sharp apart from the values of c and C (see [20] for the best-known

estimate on c). The most famous applications of the crossing lemma are the short and

elegant proofs by Székely [23] of the Szemerédi–Trotter theorem on point–line incidences

and of the Spencer–Szemerédi–Trotter theorem on unit distances. Another remarkable

application is the bound on the number of halving lines by Dey [10]. In this paper we
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propose an extension of the crossing number to R
3, in such a way that the corresponding

‘space crossing lemma’ (Theorem 1.2 below) implies (1.1) (up to a logarithmic factor).

A spatial drawing of a graph G is representation of vertices of G by points in R
3, and

edges of G by continuous curves. A space crossing consists of a quadruple of vertex-

disjoint edges (e1, . . . , e4) and a line l that meets these four edges. The space crossing

number of G, denoted cr4(G), is the least number of crossings in any spatial drawing of

G. As in the planar case, the spatial rectilinear crossing number lin-cr4(G) is obtained by

restricting to straight-line spatial drawings.

For a graph G pick a drawing of G in the plane with the fewest crossings. By perturbing

the drawing slightly, we may assume that there are no points where three vertex-disjoint

edges meet. The drawing can be lifted to a drawing G on a large sphere without changing

any of the crossings. Since no line meets the sphere in more than two points, every space

crossing in the resulting spatial drawing comes from a pair of crossings in the planar

drawing. Thus,

cr4(G) �
(

cr(G)

2

)
. (1.2)

Let us note that the space crossing number is not the usual crossing number in disguise,

for the inequality in the reverse direction does not hold.

Proposition 1.1.For every natural number n there is a graph G with cr4(G) = 0 and

cr(G) � n.

The principal result that justifies the introduction of the space crossing number is the

following generalization of the crossing lemma.

Theorem 1.2. Let G = (V , E) be an arbitrary graph. Then

cr4(G) � |E|6

4179|V |4 log2
2|V |

,

whenever |E| � 441|V |.

Since (1.1) is sharp, in the light of the argument that led to (1.2) there are graphs on

the sphere for which the bound in Theorem 1.2 is tight up to the logarithmic factor. In

the drawings of these graphs, the edges are of course not straight. It turns out that there

are also straight-line spatial drawings for which Theorem 1.2 is tight.

Theorem 1.3. For all positive integers m and n satisfying m �
(
n
2

)
there is a graph G with

n vertices and m edges, and rectilinear space crossing number at most 6720m6/n4.

The construction in the proof of Theorem 1.3 uses the idea of stair-convexity introduced

in [8]. We shall briefly review the necessary background before the proof of Theorem 1.3.

(Note added to proof: Géza Tóth noticed a very simple proof of Theorem 1.3: In his proof

the graph G is a union of T = n2/2m cliques with n/T vertices each. In the embedding

of G, the points from the same clique form a small cluster, and the clusters are placed in
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u

v

Figure 1. A large 3-regular 3-connected graph.

general position. Since each space crossing consists of edges from at most two clusters, the

number of space crossings in this construction is at most
(
T+1

2

)(
n/T
2

)4
= (n2/m)2(m/n)8 =

Θ(m6/n4)).

Our final result is the lower bound on the space crossing number of (possibly sparse)

pseudo-random graphs.

Theorem 1.4. There is an absolute constant ε > 0 such that the following holds. Let G =

(V , E) be a graph such that whenever V1, V2 are any two subsets of V of size ε|V |, the

number of edges between V1 and V2 is at least N. Then lin-cr4(G) � N4.

The condition of the theorem holds for several models of random graphs, as well as

for (n, d, λ)-graphs (see for example [15, Theorem 2.11]).

2. Separation between crossing numbers and space crossing numbers

To construct graphs with cr4(G) = 0 and unbounded cr(G), we shall use the lower bound

on crossing numbers due to Riskin. Recall that a 3-connected planar graph has a unique

planar drawing [11, Theorem 4.3.1].

Lemma 2.1 (Theorem 4 in [21]). Suppose e is an edge in a graph G such that H = G \ e

is a 3-regular 3-connected planar graph. Then there is a drawing of G in the plane with

cr(G) crossings that is obtained from the unique planar drawing of H by adding the edge e.

Proof of Proposition 1.1. Let H be the truncated n-by-n hexagonal grid drawn as in

Figure 1. The graph H is clearly a 3-connected 3-regular planar graph. Pick two vertices

u, v ∈ H that are separated from one another by at least n/4 faces (the outer region is also

a face). Then by the preceding lemma the graph G = H ∪ {uv} has crossing number at

least n/4. On the other hand, there is a spatial drawing of G without any spatial crossings.

Let H be drawn on the surface of the sphere without crossings, and represent the edge uv

by a straight-line segment. Since every line meets the sphere in at most two vertex-disjoint

edges, there are indeed no space crossings.
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3. Lower bounds on the space crossing number

The naive strategy to prove Theorem 1.2 is to show that a graph without space crossing

can have only O(|V |) edges, derive from this a lower bound on the space crossing number

of the form c1|E| − c2|V |, and then use random sampling to ‘boost’ this to a stronger

bound on cr4. Whereas it is true that a space-crossing-free graph has only O(|V |) edges (it

follows from [26, Corollary 3.5] that a graph with a K6,6-minor has a space crossing), this

approach yields only cr4(G) � c|E|7/|V |6. The reason is that to get cr4 � c|E|6/|V |4 one

needs to boost a stronger inequality cr4(G) � c1|E|2 − c2|V |2. To obtain such an inequality

we shall break the graph G into many small pieces, so that for each pair of pieces there is

a space crossing that involves two edges from each piece. For that we need several known

results, which we now state.

Recall that a subdivision of a graph G is a graph obtained from G by subdividing each

edge of G into paths [11, p. 20].

Lemma 3.1 ([14]). Let ε > 0 be arbitrary. Then every graph G = (V , E) with 4t
2 |V |1+ε

edges contains a subdivision of Kt on at most 7t2 log t/ε vertices.

Corollary 3.2. Let C � 3. Suppose G = (V , E) is a graph with at least |E| � C4t
2 |V | edges.

Then G contains at least |E|/(16t2 log t logC/2|V |) edge-disjoint subdivisions of Kt.

Proof. Define a nested sequence of graphs G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gs on the vertex

set V as follows. As long as E(Gi) � (C/2)4t
2 |V |, it follows by Lemma 3.1 with ε =

1/ logC/2|V | that Gi contains a subgraph Hi, which is a subdivision of Kt with |V (Hi)| �
7t2 log t logC/2|V |. Let Gi+1 be the result of removing the edges of Hi from Gi. The sequence

terminates once the number of edges in the graph falls below (C/2)4t
2 |V |. As

|E(Gi)| − |E(Gi+1)| = |E(Hi)| � |E(Kt)| + |V (Hi)| � 8t2 log t logC/2|V |,

the number of terms in the sequence is at least (|E|/2)/(8t2 log t logC/2|V |). Since the

graphs {Hi} are edge-disjoint subgraphs of G, the corollary follows.

The following is a version of [6, Theorem 3].

Lemma 3.3. The vertex set of every graph G = (V , E) can be partitioned into two classes

V = V1 ∪ V2 so that the number of edges in each of the induced subgraphs Gi = G|Vi
is at

least |E|/4 −
√

|V ||E|.

Proof. For each vertex v place v into V1 or V2 with equal probability independently of

the other vertices. Let Xi = |E(Gi)|. Then E[Xi] = 1
4
|E| and

E[X2
i ] =

∑
e1 ,e2∈E

Pr[e1 ∈ Ei ∧ e2 ∈ Ei]

= 1
4
|E| + 1

8
|{(e1, e2) ∈ E2 : |e1 ∩ e2| = 1}| + 1

16
|{(e1, e2) ∈ E2 : e1 ∩ e2 = ∅}|

� |E|2/16 + 1
4

∑
v∈V

deg(v)2 � |E|2/16 + 1
4
|V ||E|.
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Hence E
[
(Xi − |E|/4)2

]
� 1

4
|V ||E|, implying Pr[|Xi − |E|/4| >

√
|V ||E|] < 1/4. Therefore,

the conclusion of the lemma holds for the random partition with probability at least

1/2.

To find lines through four edges, we use two results from knot theory. We first recall

the standard definitions. Two continuous injective maps f1, f2 : S
1 → R

2 whose images are

disjoint define a (two-component) link in R
3. The sets C1 = f1(S

1) and C2 = f2(S
1) are a

pair of continuous closed curves (knots) in R
3. The linking number lk(C1, C2) of the two

curves is the degree1 of the Gauss map:

g : S
1 × S

1 → S
2,

g : (x, y) 
→ f1(x) − f2(y)

‖f1(x) − f2(y)‖
.

(3.3)

The linking number is an invariant of knots, and if the functions f1, f2 are sufficiently

nice, then it can also be defined by counting the number of signed crossings between C1

and C2 in a projection to a generic plane.

Lemma 3.4 (Theorem 1 in [9] and independently in [22]). In every spatial drawing of K6

there is a pair of vertex-disjoint triangles whose linking number is odd.

Lemma 3.5. If C1, C2, C3, C4 ⊂ R
3 are four disjoint continuous closed curves, and lk(C1, C2)

and lk(C3, C4) are non-zero, then there is at least one line that intersects all the four curves.

This lemma is similar to Corollary 1 of Theorem 2 in [24]. That corollary asserts

that if the four curves are in addition smooth, and satisfy an appropriate general

position requirement, then the number of lines through all four of them is at least

|lk(C1, C2) lk(C3, C4)|. It is possible to derive Lemma 3.5 from the result in [24], by a

limiting argument. For completeness we include a short proof of Lemma 3.5, which uses

a different idea.

Proof of Lemma 3.5. Let TS
2 be the tangent bundle of S

2. An element (p, v) ∈ TS
2

consists of a point p ∈ S
2 and a tangent vector v to p. We shall think of (p, v) ∈ TS

2 as

a directed line in R
3 in direction p which intersects the hyperplane {x : 〈x, p〉 = 0} in the

point v.

For each i = 1, . . . , 4, let fi : S
1 → R

3 be a continuous injective map such that fi(S
1) = Ci.

Consider the pair f1, f2, and for x, y ∈ S
1 let h12(x, y) ∈ TS

2 be the directed line that goes

from f2(y) to f1(x). The result of composition of h12 : S
1 × S

1 → TS
2 with the projection

map π : TS
2 → S

2 is the Gauss map g12 = π ◦ h12 as defined in (3.3). By the assumption

the degree of g12 is non-zero. Since S
2 is a deformation retract of TS

2, the projection map

π induces isomorphism between the homology groups of TS
2 and S

2, and hence the map

on H2 induced by h12 is a multiplication by lk(C1, C2).

1Implicit in the definition of the degree is the group of the coefficients for the homology. We use Z coefficients

throughout the paper.
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Let T = T (TS
2) be the Thom space of TS

2. It is a bundle over S
2 obtained from TS

2

replacing each fibre by its one-point compactification, and identifying all the new points

into a single point (see p. 367 of [7] for the motivation and properties). Let σ : TS
2 → T

be the inclusion map. Let A12
def
= (σ ◦ h12)(S

1 × S
1) be the image of h12 in T .

In the same way as we used f1 and f2 to define h12 and A12, we define h34 and A34 using

f3 and f4. We shall exhibit two homology classes α12 ∈ H2(A12,Z) and α34 ∈ H2(A34,Z)

whose intersection product in T is non-zero. It will then follow by Theorem VI.11.10 from

[7] that A12 ∩ A34 �= ∅.

Since π induces an isomorphism between H2(TS
2,Z) and H2(S

2,Z), the definition of the

linking number implies that the pushforward of the homology class [S1 × S
1] ∈ H2(S

1 ×
S

1,Z) by h12 is the homology class lk(C1, C2)[S
2] ∈ H2(TS

2,Z). Let D : Hk(M,Z) →
HdimM−k(M,Z) be the Poincaré duality isomorphism on an orientable manifold M.

The homology class σ∗([S
2]) is the D−1(τ), where τ ∈ H2(T ) is the Thom class of T .

The homology class α12
def
= (σ ◦ h12)∗([S

1 × S
1]) is supported on A12, and the similarly

defined class α34 is supported on A34. The intersection product of α12 and α34 is then

lk(C1, C2) lk(C3, C4)D
−1(τ2). By the calculation on p. 382 of [7], (τ2) ∩ [TS

2] = i∗(χ ∩ [S2]),

where χ is the Euler class of the bundle TS
2 → S

2 and i : S
2 → TS

2 is the zero section.

Thus τ2 is non-zero, and hence the intersection product of α12 and α34 is non-zero too, as

claimed.

The following lemma is analogous to the inequality cr(G) � |E| − 3|V | + 6 that is used

in the proof of the usual crossing lemma.

Lemma 3.6. Let G = (V , E) be a graph with at least |E| � 439|V | edges. Then cr4(G) �
|E|2/228 log2

2|V |.

Proof. With foresight set J = �|E|/214 log2|V |�. By Lemma 3.3, the graph splits into

two vertex-disjoint graphs G1, G2 that have at least |E|/4 −
√

|V ||E| � |E|(1/4 − 1/419) �
|E|/8 edges each. By Corollary 3.2 each of Gi contains a family of |E|/(8 · 16 · 62 log 6 log2

|V |) � J edge-disjoint subdivisions of K6. Thus, by Lemma 3.4 we obtain a family of J

pairs of cycles (Ci,j , C
′
i,j)

J
j=1 in Gi, such that Ci,j and C ′

i,j are vertex-disjoint, all the cycles

are edge-disjoint, and lk(Ci,j , C
′
i,j) � 1. By Lemma 3.5, for every 1 � j1, j2 � J there is a

line that intersects C1,j1 , C
′
1,j1

, C2,j2 , C
′
2,j2

. Furthermore, the four cycles are vertex-disjoint.

As all the cycles are edge-disjoint, the J2 space crossings obtained in this manner are

distinct.

Corollary 3.7. If G is any graph, and B � |V |, then cr4(G) � |E|2−480|V |2
228 log2

2 B
.

Proof of Theorem 1.2. Given a graph G = (V , E) with |E| � 441|V | edges, let p =

441|V |/|E|. Let V ′ ⊂ V be obtained by choosing each element of V independently with

probability p. Let the G′ = (V ′, E ′) be the induced subgraph G on V ′. By the preceding

corollary with B = |V | we have

cr4(G
′) � |E ′|2 − 480|V ′|2

226 log2
2|V |

.

https://doi.org/10.1017/S096354831100040X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831100040X


364 B. Bukh and A. Hubard

We shall estimate the expectation of both sides. On one hand, E[cr4(G
′)] � p8 cr4(G)

since a space crossing in a fixed drawing survives with probability p8. On the other hand,

E[|E ′|2] � p4|E|2, as every pair of edges survives with probability at least p4 (the probability

is higher if the two edges overlap). Furthermore, E[|V ′|2] = p2|V |2 + (p − p2)|V | � 4p2|V |2
by the choice of p. Hence,

p8 cr4(G) � p4|E|2 − 481p2|V |2

228 log2
2|V |

,

and

cr4(G) � 481|V |2

228(441|V |/|E|)6 log2
2|V |

=
|E|6

4179|V |4 log2
2|V |

.

Remark. By using Lemma 3.6 instead of its corollary, and invoking large deviation

inequalities, the above can be improved to cr4(G) � c
|E|6

|V |4 log2
2(|V |2/|E|) . As the logarithmic

factors are almost certainly superfluous, we chose the more transparent argument instead.

4. Rectilinear space crossing numbers of pseudo-random graphs

To prove Theorem 1.4 we shall need the same type of lemma for semi-algebraic relations.

It is inspired by a similar lemma of Bárány and Valtr [3, Theorem 2], and by the

Szemerédi-type result from [12]. In the final version of [12], a more general result is

proved independently. Our proof technique is borrowed from the previous results, with

only minor pretence at novelty.

For a real number x its sign sgn x is −1, 0,+1 according to whether x is negative, zero,

or positive, respectively. A semi-algebraic relation on k-tuples of vectors x1, . . . , xk is an

arbitrary logical formula (in the language of ordered fields) of the form

Q1t1 ∈ RQ2t2 ∈ R · · ·Qltl ∈ R (I1 ∧ · · · ∧ Im),

where each of Q1, . . . , Ql is either ∃ or ∀ and each of I1, . . . , Im is of the form

sgn f(x1, . . . , xk, t1, . . . , tl) = s ∈ {−1, 0,+1},

where f is a polynomial.

Lemma 4.1 (Proof in Section 6). If R is a semi-algebraic relation in k variables, then there

is a constant ε = ε(R) > 0 such that the following holds. For every collection of k finite sets

F1, . . . ,Fk , there are subsets F ′
i ⊂ Fi such that we have the following.

(1) F ′
i are large: |F ′

i | � ε|Fi|.
(2) R is constant on F ′

1 × · · · × F ′
k: either for all (x1, . . . , xk) ∈ F ′

1 × · · · × F ′
k the relation

R(x1, . . . , xk) holds, or for all (x1, . . . , xk) ∈ F ′
1 × · · · × F ′

k the relation R(x1, . . . , xk) does

not hold.

Proof of Theorem 1.4. Let the graph G with a rectilinear spatial drawing be given. Let

R be the relation on 8-tuples x1, . . . , x8 ∈ R
3 given by ‘the straight-line segments x1x2,
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x3x4, x5x6, x7x8 form a space crossing’. The relation is semi-algebraic. Indeed, it is given

by

R(x1, . . . , x8) = ∃t1, t2, t3, t4, λ1, λ2, λ3, λ4 ∈ R, ∃y, v ∈ R
3

(0 < t1, t2, t3, t4 < 1)∧
(t1x1 + (1 − t1)x2 = y + λ1v) ∧ (t2x3 + (1 − t2)x4 = y + λ2v)∧
(t3x5 + (1 − t3)x6 = y + λ3v) ∧ (t4x7 + (1 − t4)x8 = y + λ4v).

By the preceding lemma applied 8!
(
12
8

)
times there are 12 subsets V1, . . . , V12 of V (G)

such that |Vi| � ε|V | for i = 1, . . . , 12 and R is constant on all the product sets of the

form Vσ(1) × · · · × Vσ(8) for any injective map σ : [8] → [12]. Pick any twelve points x1 ∈
V1, . . . , x12 ∈ V12. Since graph K12 contains K6,6, which has a positive space crossing by

[26, Corollary 3.5], there is a map σ : [8] → [12] such that R(xσ(1), . . . , xσ(8)) holds. Since

R is constant on Vσ(1) × · · · × Vσ(8), we obtain at least as many space crossings as the

number of quadruples of edges of the form e1, e2, e3, e4, where ei is between Vσ(2i−1) and

Vσ(2i).

5. Straight-line spatial drawing with very few space crossings

5.1. Review of stair-convexity

To prove Theorem 1.3 we employ stair-convexity, which is a method to make constructions

in R
d in such a way that convex sets, which are geometric objects, are replaced by their

combinatorial cousins, stair-convex sets.

The basis for the connection between convexity and stair-convexity is the stretched

grid Gs = Gs(n), which is the Cartesian product X1 × X2 × · · · × Xd, where X1, X2, . . . , Xd

are ‘fast-growing’ sequences, with each Xi growing much faster than Xi−1. Let Xi =

{xi1, . . . , xin}. The actual choice of X1, X2, . . . , Xd is not important, as long as they grow

quickly enough.

More precisely, for each coordinate i = 1, . . . , d there is a relation ≺i, such that the

condition on the growth of Xi is that 1 = xi1 ≺i xi2 ≺i · · · ≺i xim. The relation ≺i is not a

linear relation, but it is transitive, and is compatible with the usual linear ordering on R

in the sense that A ≺i B implies A < B.

Since the coordinates in Gs grow very fast, to visualize and to work with the grid it is

convenient to rescale Gs. Let BB(Gs) = [1, x1m] × · · · × [1, xdm] be the ‘bounding box’ of

Gs. Let the uniform grid be

Gu = Gu(n)
def
=

{
0,

1

n − 1
,

2

n − 1
, . . . ,

n − 1

n − 1

}d

,

and pick a bijection π : BB(Gs) → [0, 1]d that maps Gs onto Gu and preserves ordering in

each coordinate.

Figure 2 shows the image under π of two straight-line segments connecting the

grid points for d = 2. As the uniform grid becomes finer, the straight-line segments

become closer to a piecewise linear curve, the stair-path. A stair-path joining points

a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) consists of at most d closed-line segments, each

https://doi.org/10.1017/S096354831100040X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831100040X


366 B. Bukh and A. Hubard

a

c

b

d

Figure 2. Image under π of line segments [a, b] and [c, d]

a

c

b

d

Figure 3. Image under π of stair-paths σ(a, b) and σ(c, d)

parallel to a different coordinate axis. The definition goes by induction on d. For d = 1,

σ(a, b) is simply the segment ab. For d � 2, after possibly interchanging a and b, assume

ad � bd. We set a′ = (a1, a2, . . . , ad−1, bd) and let σ(a, b) be the union of the segment aa′

and of the stair-path σ(a′, b), which is defined recursively after ‘forgetting’ the (common)

last coordinate of a′ and b. A set S ⊆ R
d is stair-convex if for every a, b ∈ S we have

σ(a, b) ⊆ S . Since the intersection of stair-convex sets is stair-convex, we can define the

stair-convex hull of a set S ⊂ R
d as the intersection of all stair-convex sets containing S .

Two points (a1, a2, . . . , ad) and (b1, b2, . . . , bd) in BB(Gs) are k-far apart in the ith

coordinate if there are k − 1 real numbers r1, . . . , rk−1 such that either ai ≺i r1 ≺ · · · rk−1 ≺i

bi or bi ≺i r1 ≺ · · · rk−1 ≺i ai. Otherwise, we say that a and b are k-close in the ith

coordinate. If a and b are k-close in every coordinate, then we say that a and b are k-close.

If a and b lie on Gs, then they are k-close if π(a) and π(b), which are points of Gu, are

separated by fewer than k points in each coordinate. In Figure 3, the points a and b are
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6-close, but not 5-close. For a, b ∈ BB(Gs) let dist(a, b) be the least integer k such that a and

b are k-close. Note that dist satisfies the triangle inequality dist(a, b) � dist(a, c) + dist(b, c).

Several results capture the intuition that the image of a convex set in BB(Gs) looks like

a stair-convex set. The following lemma of Nivasch [18] is the form that we need.

Lemma 5.1 (Lemma 2.11 in [18]). Let a, b be two points in BB(Gs), and let ab and σ(a, b)

be the line segment and the stair-path between a and b, respectively. Then every point in ab

is 1-close to some point of σ(a, b) and vice versa.

Corollary 5.2. Suppose a, b, a′, b′ are points in BB(Gs). If the segments ab and a′b′ intersect,

then there are points c ∈ σ(a, b) and c′ ∈ σ(a′, b′) that are 2-close.

Proof. Let c and c′ be 1-close to ab ∩ a′b′. Then dist(c, c′) � 2 holds by the triangle

inequality.

5.2. Proof of Theorem 1.3

We shall now describe a straight-line drawing with few space crossings. From now on we

fix d = 3 and pick a particular choice of stretched grid Gs = Gs(5n) with (5n)3 points. We

shall also work with the subgrid G′
s ⊂ Gs that consists of points of the form (x1i1 , x2i2 , x3i3 )

with 5 | i1, i2, i3. The subgrid G′
s has n3 points. Let p(i) = (x1i, x2i, x3i) be the ith point on

the ‘diagonal’ of Gs.

Let G be the graph on the vertex set {1, 2, 3, . . . , n} with i and j forming an edge

if |i − j| � D, where D = 2m/n. The standard drawing of G is one in which the vertex

i ∈ V (G) is represented by the point p(5i), and all the edges are straight-line segments.

Note that in this drawing all the vertices lie on the subgrid G′
s, and thus no pair of them

is 5-close. Moreover, if the stair-paths σ(a1, b1) and σ(a2, b2) with a1, a2, b1, b2 ∈ G′
s do not

intersect, then no point of σ(a1, b1) is 5-close to a point of σ(a2, b2).

We say that four stair-paths form a space stair-crossing if there is another stair-path

that meets all four stair-paths. The standard stair-drawing of G is one in which vertex

i ∈ V (G) is represented by the point p(5i), and all edges are stair-paths.

The following two lemmas imply Theorem 1.3.

Lemma 5.3. Let s1, t1, . . . , s4, t4 ∈ V (G) be eight distinct vertices of G. Then the edges

s1t1, . . . , s4t4 form a space crossing in the standard drawing of G only if they form a space

stair-crossing in the standard stair-drawing of G.

Lemma 5.4. Let s1, t1, . . . , s4, t4 ∈ [0, 1] be distinct vertices of G. Let Ii = [si, ti] be the

interval spanned by si and ti. Then the four vertex-disjoint edges s1t1, . . . , s4t4 form a stair-

crossing in the standard stair-drawing of G only if, for each i = 1, . . . , 4, there is at least one

j �= i such that Ii ∩ Ij �= ∅

Proof that Lemmas 5.3 and 5.4 imply Theorem 1.3. The graph G has n vertices and

more than Dn/2 = m edges. The four vertex-disjoint edges s1t1, . . . , s4t4 ∈ E(G) form a
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space crossing only if the union of the four intervals [s1, t1], . . . , [s4, t4] has at most two

connected components.

There are 1
4!

(
2
2

)(
4
2

)(
6
2

)(
8
2

)
= 105 order types of four unlabelled endpoint-disjoint intervals

(each order type corresponds to a perfect matching on 8 labelled points). Each order type

that consists of r � 2 connected components gives rise to at most nrD8−r space crossings

in the standard drawing of G. Indeed, there are nr ways to choose the leftmost points of

the intervals, and once those are specified, it only suffices to specify the distances between

the consecutive points in a connected component, and these distances are bounded by D.

Thus, there are at most 105n2D6 = 6720m6/n4 space crossings in the standard drawing

of G.

Proof of Lemma 5.3. Suppose s1t1, . . . , s4t4 are edges of G forming a space crossing, and

let l be the line that meets these four edges. Let r1 and r2 be the intersection points of

l with BB(G′
s). Then, by Corollary 5.2 the stair-path σ(r1, r2) is 2-close to the stair-paths

σ(s1, t1), . . . , σ(s4, t4).

Let r′
1 and r′

2 be the points of G′
s such that dist(r1, r

′
1) � 3 and dist(r2, r

′
2) � 3. Since

σ(r1, r2) is 2-close to σ(s1, t1), by the triangle inequality, σ(r′
1, r

′
2) is 5-close to σ(s1, t1). Since

r′
1, r

′
2, s1, t1 belong to G′

s, that means that σ(r′
1, r

′
2) and σ(s1, t1) intersect. Similarly, σ(r′

1, r
′
2)

intersects σ(si, ti) for i = 1, . . . , 4, and the edges s1t1, . . . , s4t4 form a stair-crossing.

Proof of Lemma 5.4. Every stair-path is a subset of one of the three types of sets

(1) L1(x0, y0, y1, z1)
def
= σ((x0, y0, 0), (+∞, y1, z1)),

(2) L2(x0, y0, y1, z1)
def
= σ((x0, y0, 0), (−∞, y1, z1)),

(3) L3(x0, y0, x1, z1)
def
= σ((x0, y0, 0), (x1,−∞, z1)).

We call L1, L2, L3 stair-lines. The numbers x0, y0, . . . are the coordinates of stair-lines.

Let L be a line that meets the four edges s1t1, . . . , s4t4. We say that L shares the

coordinate with the edge siti if that coordinate is equal to either si or ti. Note that since

the edges are vertex-disjoint, no coordinate of L can be shared with two distinct edges.

Since the edge siti is represented by the stair-path σ((si, si, si), (ti, ti, ti)), it meets L only if

it shares a coordinate with L. It follows that each of the four coordinates of L is shared

with a unique edge.

Suppose the edge siti shares the coordinate c with L. Let pi be an intersection point of

L with siti. The point pi shares at least two coordinates with L, one of which is c. The

other coordinate c′ is between si and ti. Thus, if sjtj is the edge that shares the coordinate

c′ with L, then the intervals [si, ti] and [sj , tj] intersect.

6. The proof of Lemma 4.1

To simplify the proof we will need to work in slightly greater generality than subsets of a

fixed Euclidean space. First, we permit F1,F2, . . . to be multisets (this will come in handy

in the proof of Theorem 6.1), and we permit different multisets to belong to different

spaces. To keep track of these spaces, we introduce a bit of notation. For a k-tuple

d = (d1, . . . , dk) ∈ N
k we define R

d def
= R

d1 × · · · × R
dk . For simplicity of notation we adopt
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the convention that R
di denotes the ith component of R

d even if there are several i that

share the same value of di. The number of terms of a polynomial f on the ith component,

denoted ti(f), is the number of monomials of f when treated as a polynomial on R
di (with

other coordinates treated as fixed). For example, if d = (1, 1) and f : R
d → R is defined by

f(x1, x2) = 4 + 2x1x2 + 3x1x
2
2 + x1x

3
2 + 7x2

1x2, then t1(f) = 3, and t2(f) = 4, though f has

five terms. The sign of a number x ∈ R is +1 if x > 0, −1 if x < 0 and 0 if x = 0.

By the Tarski–Seidenberg theorem (see [4, Theorem 2.77]), every semi-algebraic relation

is equivalent to a quantifier-free semi-algebraic relation. Thus the next result implies

Lemma 4.1.

Theorem 6.1. Let f1, . . . , fJ : R
d → R be a family of polynomials. Suppose Fi ⊂ R

di for

i = 1, . . . , k are finite multisets of points. Then there are submultisets F ′
i ⊂ Fi such that:

(1) F ′
i are large: |F ′

i | � ε|Fi|, with ε =
∏J

j=1 3−3
t2(fj )+···+tk (fj )

.

(2) For each j the sign of fj(p1, . . . , pk) is the same for all choices of pi ∈ F ′
i .

(The fact that the expression for ε does not depend on t1(fj) is not a typo, but an

artifact of the proof.)

We use a version of the Yao–Yao lemma [25] due to Lehec [16]. Recall that a convex cone

of vectors v1, . . . , vr is the set of all non-negative linear combinations, conv-cone(v1, . . . , vr)
def
=∑

aivi with ai � 0.

Lemma 6.2 (Theorem 3 and Proposition 4 in [16]). Let μ be a probability Borel measure

on R
d such that μ(H) = 0 on every affine hyperplane H . Then there is a way to choose the

origin of the coordinates in R
d and 2d convex cones such that:

(1) The union of the cones is R
d, and the cones are disjoint apart from the boundaries.

(2) Each cone has measure 1/2d with respect to μ.

(3) Every closed half-space that contains the origin also contains one of the cones.

(4) Each cone is a convex cone of only d vectors.

By the standard approximation argument it follows that if F is any finite multiset

of points in R
d, then there is a partition of R

d as in the lemma above such that each

cone contains at least |F |/2d points of F . Furthermore, if conv-cone({v1, . . . , vd}) is one

of the convex cones, then for large enough t > 0 we have conv-cone({v1, . . . , vd}) ∩ P =

conv({0, tv1, . . . , tvd}) ∩ P . We thus obtain the following result.

Corollary 6.3. Suppose F is a finite multiset in R
d. Then there is a point p and 2d d-

dimensional closed simplices Δ1, . . . ,Δ2d ⊂ R
d such that:

(1) The interiors of the simplices Δ1, . . . ,Δ2d are disjoint.

(2) For each j = 1, . . . , 2d the number of points in the jth simplex is |F ∩ Δj | � |F |/2d.
(3) The point p is a vertex of each Δj for j = 1, . . . , 2d.

(4) Every closed half-space that contains p also contains one of Δj .
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The following lemma is a minor variation on the standard Veronese linearization

argument (see [1] for example).

Lemma 6.4. Let R be a commutative ring. Let f : Rd → R be a polynomial with t non-

constant terms. Then there is a map π : Rd → Rt and a linear polynomial f′ : Rt → R such

that f = f′ ◦ π.

Proof. Let 1 = g0, g1, . . . , gt be the set of all monomials appearing in f. Let f =
∑

αigi.

Define π(x) = (g1(x), . . . , gt(x)), and f′(z0, z1, . . . , zt) =
∑

αizi. The identity f = f′ ◦ π is

clear.

Proof of Theorem 6.1. The proof is by induction on k. The base case k = 1 is trivial

because, for at least one third of all the points x1 ∈ F1, the sign of fj(x1) is the same.

Suppose k � 2, and the theorem is known to hold for k − 1. It suffices to prove the result

for a single polynomial, which we shall call f. Think of f as a polynomial with tk(f)

terms on R
dk . By Lemma 6.4 there is map π : R

dk → R
tk(f) and a polynomial f′ : R

d′ → R,

which is linear on R
tk(f), such that

f(x1, x2, . . . , xk−1, xk) = f′(x1, x2, . . . , xk−1, π(xk)).

Apply Corollary 6.3 to the multiset π(Fk). Let Δ1, . . . ,Δ2
d′
k

⊂ R
tk(f) be the simplices whose

existence the corollary guarantees. They have a total of at most 1 + tk(f
′)2tk(f) � 3tk(f)

vertices, which we denote by v1, . . . , vM , where M � 3tk(f). Each of the simplices contains

at least2 |Fk|/2tk(f) points of π(Fk).

Since the polynomial f′ is linear in xk each choice of xi ∈ R
di (i = 1, . . . , k − 1) gives the

hyperplane in R
tk(f), namely the hyperplane

H(x1, . . . , xk−1) = {x ∈ R
d′
k : f′(x1, . . . , xk−1, x) = 0}.

Define H+(x1, . . . , xk−1) and H−(x1, . . . , xk−1) to be the two closed half-spaces bounded by

H(x1, . . . , xk−1) in the obvious way. By Corollary 6.3 either H− or H+ contains some Δj .

For each point vm define the polynomial gm by gm(x1, . . . , xk−1) = f′(x1, . . . , xk−1, vm).

Note that the indices j for which Δj is contained in H+(x1, . . . , xk−1) depend only on the

signs of gm(x1, . . . , xk−1), and similarly for the indices j for which Δj ⊂ H−(x1, . . . , xk−1).

Since ti(gm) � ti(f) for each i = 1, . . . , k − 1, by the induction hypothesis there are subsets

F ′
i ⊂ Fi for i = 1, . . . , k − 1 of size |F ′

i | � 3−M·3t2(f)+···+tk−1(f) |Fi| such that for all m = 1, . . . ,M

the sign of gm(x1, . . . , xk−1) does not depend on the choice of xi ∈ F ′
i . Denote this sign

by εm. Therefore there is a single j and a non-zero sign s such that Δj is contained in

Hs(x1, . . . , xk−1) for each choice xi ∈ F ′
i . Without loss of generality s = +1, which means

that εm � 0 for every vertex vm of Δj . Let σ be the face of Δ spanned by the vertices vm for

which εm = 0. Thus f′(x1, . . . , xk−1, xk) = 0 (xi ∈ F ′
i ) if xk ∈ σ and f′(x1, . . . , xk−1, xk) > 0 if

xk ∈ Δj \ σ. One of the two alternatives holds for at least half of the points in π(Fk) ∩ Δj ,

and since 2−tk(f)−1 � 3−3tk (f)
the theorem follows.

2It is here that we use the fact that Fk is a multiset. If Fk was defined to be a set, then π(Fk) might have

had fewer elements than Fk .
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7. Higher dimensions and other questions

Throughout the paper we spoke of ‘the’ space crossing number, but it is but one of

a family of similar quantities. In much the same way in which the crossing number

measures the complexity of planar embeddings, these quantities measure the complexity

of embeddings into higher-dimensional Euclidean spaces. We give some examples.

(1) For an embedding of graph G → R
3 one can count not the quadruples, but the triples

of edges crossed by a line. The methods in this paper easily adapt to show that the

corresponding crossing number cr3(G) satisfies cr3(G) � c(|E|4/|V |2 log2|V |), and there

are graphs G such that lin-cr3(G) � C(|E|4/|V |2).
(2) For an embedding of a graph G → R

4 there are at least two kinds of objects to

consider: the lines that pierce three edges of G, and 2-planes that pierce six edges of

G. Simple dimension-counting shows that, for generic embeddings, there are finitely

many such lines and 2-planes.

(3) More generally, one can count the number of (d − 2)-dimensional planes through

2(d − 1) edges of G → R
d. The case d = 2 is the classical crossing number, whereas

d = 3 is the space crossing number of the present paper. Theorem 3 from [13] can be

used to give lower bounds on these higher crossing numbers.

(4) One can consider representations of a 3-uniform hypergraph in R
4 by means of

(topological) triangles, and count the number of triples of triangles that meet at a

single point. However, it is an open problem even to show that in every 3-uniform

hypergraph with more than Cn2 edges there is a single pair of intersecting triangles!

There are several more questions about the crossing numbers we defined.

(1) A result on crossing numbers with many applications is the bisection width inequality

(proved independently in [19, Theorem 2.1], extending the proof in [17] for bounded

degree graphs). The bisection width inequality states that

cr(G)2 � c1b
2(G) − c2

∑
v∈V (G)

degG(v)2,

where b(G) is the bisection width of the graph G. Is there an analogous inequality for

the space crossing number that is of comparable strength to Theorem 1.4?

(2) Is the family of graphs with cr4(G) = 0 a minor-closed family?

(3) Is it true that cr4(G) = 0 if and only if lin-cr4(G) = 0?

We guess that the answers are (1) yes, (2) no, and (3) no.
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