
A classification and constraint-based framework
for configuration

DANIEL MAILHARRO
ILOG S.A., 9 rue de Verdun, BP 85, 94253 Gentilly Cedex, France

(Received October 31, 1997;Accepted February 5, 1998!

Abstract

One of the main difficulties with configuration problem solving lies in the representation of the domain knowledge
because many different aspects, such as taxonomy, topology, constraints, resource balancing, component generation,
etc., have to be captured in a single model. This model must be expressive, declarative, and structured enough to be
easy to maintain and to be easily used by many different kind of reasoning algorithms. This paper presents a new
framework where a configuration problem is considered both as a classification problem and as a constraint satisfaction
problem~CSP!. Our approach deeply blends concepts from the CSP and object-oriented paradigms to adopt the strengths
of both. We expose how we have integrated taxonomic reasoning in the constraint programming schema. We also
introduce new constrained variables with nonfinite domains to deal with the fact that the set of components is previ-
ously unknown and is constructed during the search for solution. Our work strongly focuses on the representation and
the structuring of the domain knowledge, because the most common drawback of previous works is the difficulty to
maintain the knowledge base that is due to a lack of structure and expressiveness of the knowledge representation
model. The main contribution of our work is to provide an object-oriented model completely integrated in the CSP
schema, with inheritance and classification mechanisms, and with specific arc consistency algorithms.

Keywords: Configuration; Knowledge Representation; Constraint Satisfaction Problem; Classification; Taxonomic
Reasoning; Nonfinite Domains; Resource Balancing

1. INTRODUCTION

1.1. Overview

A general definition of what we understand by “Configura-
tion” has been given in Mittal and Frayman, 1989. The con-
figuration of an artifact is a set of interconnected components
that are chosen from predefined set of component types, called
thecatalogof component types. Each component type is de-
fined by a set ofattributesthat describe its internal charac-
teristics~price, geometric dimensions, resource production0
consumption, etc.!, a set of connectionports that describe
its relations with other components, and a set of constraints
on these attributes and ports. The constraints describe com-
patibility restrictions on component connections~Type A
cannot be connected with type B!, limitations on resource
production0consumption, existential conditions~compo-
nent of type A needs component of type B!, etc.

The problem is completely defined by the catalog of com-
ponent types. During the search for solution, it is impossi-
ble to define a new type or to modify an existing type by
adding a constraint, an attribute, or a connection port. This
is the difference from the design task where such modifica-
tions are allowed~Mittal & Frayman, 1989!.

Given the requirements that the desired product must sat-
isfy and any specified optimizing criteria, the configuration
tool must produce

• the list of the components that are integrated into the
solution;

• the type of each of these components;

• the exact topology of the product, that is, the way the
components are connected to each other; and

• the value of the attributes of each component.

The solution must answer the initial requirements~which
can be considered as constraints! and must satisfy all the
constraints defined on each assembled component. The so-
lution must be optimal according to the optimizing criteria.

Reprint requests to: Daniel Mailharro, ILOG S.A., 9 rue de Verdun, BP
85, 94253 Gentilly Cedex, France. E-mail: mailharo@ilog.fr

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~1998!, 12, 383–397. Printed in the USA.
Copyright © 1998 Cambridge University Press 0890-0604098 $12.50

383

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Configuration has interested industrial and research com-
munities for 20 yr. Several modeling approaches have been
proposed, such as expert system, resource-based paradigm,
terminological logic, object-oriented model, and more re-
cently constraint satisfaction problem~CSP!. Each ap-
proach differs in the knowledge representation model and
reasoning algorithms employed, but all agree that one of
the main difficulties with configuration tasks is represent-
ing the domain knowledge. Configuration needs an expres-
sive and declarative framework to represent different types
of knowledge~Klein, 1996!: taxonomies, structural, arith-
metic and geometric constraints,part-of andusesrelations
between components, resource production0consumption,
modularity of components, unknowna priori set of compo-
nents, etc.

This knowledge representation aspect of configuration
tasks is critical in industrial applications for maintenance
and evolution reasons: catalogs of component types have
high rates of modification. In the famous example of R10
XCON ~McDermott, 1982; Barker & O’Connor, 1989!, the
configurator created at Digital Equipment Corporation to
build computer systems, the catalog contains 17.000 rules
and 30.000 component types, and 40% of it is updated each
year.

A configuration framework must provide an expressive
knowledge representation model that is easy to maintain and
must also provide powerful and efficient algorithms to al-
low optimization in a highly combinatorial context. An im-
portant feature is the ability to describe different reasoning
methods such as constraint propagation, hierarchical refine-
ment, resource-based balancing, domain-dependent heuris-
tics, etc.

1.2. Previous work

A good overview of what has been used to date to represent
and to solve configuration problems is given in Haselbock,
1993.

The rule-based approach is the more commonly used par-
adigm. However, it seems to be efficient for small problem
domains only. The main drawback of this approach is the
maintenance, consistency, and evolutability of the knowl-
edge base. The problem is that the knowledge is not well
structured:

• Rules can mix domain knowledge with solving strat-
egies.

• Knowledge of a component type is split among several
rules.

• Rules are more representative of reasoning steps, that
is a transition of state, than a declaration of what is a
component or what must be the configured artifact.

• A set of rules can be inconsistent.

The resource-based paradigm~Heinrich & Jungst, 1991!
provides an intuitive producer0consumer model but does not
account well for the topology of the configured artifact. For
example, a rack produces a resource that is its plugging slots.

Each card plugged in this rack consumes one or more slots.
This kind of knowledge is captured well by resource mod-
eling, but topological constraints as “cards of type A can
only be plugged in slots 1 to 8” or “ if a card of type A is
plugged in slot 1, then two cards of type B must be plugged
in slots 2 and 3” cannot be represented. In real-world con-
figuration problems, there are topological constraints as well
as resource balancing constraints. So a framework dedi-
cated to configuration problems must be able to take into
account both of the constraint types.

Another interesting paradigm is the object-oriented ap-
proach where a configuration problem is considered as a
Classificationproblem. Given a generic object and a hier-
archy of classes that describes the problem domain, the goal
is to refine the generic object until its correct class in the
hierarchy is found. This inference process is calledtaxo-
nomic reasoning. For example, when configuring a com-
puter, we know that we need a processor but we do not know
exactly which concrete type will be chosen in the final com-
puter. Among the existing applications of this paradigm are
the Conceptslanguage KL-ONE~Brachman & Schmolze,
1985!, the FREEDOM system~Yokoyama, 1990! which de-
fines relations between objects asconsist-ofand contains
relations, and PLAKON~Cunis et al., 1989! which defines
constraints on objects.

In the configuration domain, representing the compo-
nents catalog as a class hierarchy is quite natural. The object-
oriented paradigm strongly improves the maintenance task
with its specialization and encapsulation concepts. Subtle
concepts assharedobjects andpart-of links can easily be
represented with special classes of object relations. We be-
lieve this paradigm is adequate to represent the domain
knowledge required for configuration tasks, and in Section
3 we explain how we have introduced taxonomic reasoning
into our constraint-based framework.

The last paradigm we want to talk about is the CSP one.
The principle is to “find values for problem variables sub-
ject to constraints that restrict which combinations of val-
ues are allowed”~Sabin & Freuder, 1996!. CSP is an adequate
framework to represent configuration problems because it
is “highly declarative, domain independent and simple to
use”. A configuration problem can be considered as a con-
straint satisfaction problem where the variables are the type,
ports, and attributes of each component used in the config-
ured artifact, and the constraints are the initial requirements
and the constraints defined in the catalog for each compo-
nent. Because a configuration task is agenerative process
where the set of the components used in the final solution is
not known beforehand and is generated during search, the
basic CSP paradigm cannot be applied directly. The port
variables’ domain is not complete when creating the vari-
able because new possible components are generated dur-
ing search and the constraint network changes each time a
component is generated.

Mittal and Falkenheimer~1990! defines theDynamic CSP
~DCSP! as an extension of the basic paradigm that says that
only a subset of the initial variables may be part of the final

384 D. Mailharro

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

solution. A special kind of constraints calledActivity Con-
straints represent deductions that decide if a variable be-
longs to the solution or not. This model is not adequate
because a maximal set of existing variables must be given
as the specification of the problem. In configuration prob-
lems, providing the maximal set of possible components may
be impossible or may produce a huge set that makes the
search space impracticable.

Haselbock extends the DCSP model in his ConfCS frame-
work ~Haselbock, 1993! to handle an unlimited number of
variables. He uses a generic definition of the domain. Con-
straints are defined at a meta level between component types.
Meta variables are used to represent any concrete instance
of a component type. The constraint is consistent when all
possible substitutions of the meta variables with existing in-
stances satisfy the constraint. Because the number of in-
stances of a type is unlimited, the number of variables of
the constraint network and the domains of port variables
are infinite.

Special constraints called “resource-constraint” are de-
fined to represent accumulative relations on a part of the
configuration~all instances of a given type or all compo-
nents connected to a given component!. These constraints
have the unique ability to be defined on a set of variables
that is not known beforehand and to be able to generate
new components to ensure consistency. Because configu-
ration problems are constructive problems~parts of the ar-
tifact are generated during search!, this kind of constraints
on “unknown world” is very useful for expressing knowl-
edge about what the desired product should be without
knowing exactly the number or type of the components
that it will compose. For example, an instrumentation and
control hardware architecture is composed of a set of pro-
grammable logic controllers~PLC!. We do not know how
many PLCs are needed but we know that the set of PLCs
has to provide a certain amount of computational power
and cannot consume more than a certain amount of elec-
trical power.

ConfCS takes into account the dynamic and the construc-
tive aspects of configuration problems well. Its principle lack
is that its knowledge representation model is not well struc-
tured; there is no taxonomy of the component types and no
way to differentiate “part-of” from “uses” relations be-
tween components. It does not facilitate maintenance be-
cause knowledge about what is a component is split: activity
constraints describe the internal structure of a component
type and compatibility constraints describe the relations be-
tween its attributes and ports.

Another important drawback of the Haselbock model is
for representing 12 N relations. When a componenta may
be connected toN componentsbi, we need to defineN ports
in a: a.p1, a.p2, . . . , a.pN. When the ports are interchange-
able~if S is an assignment of theN ports that is a solution,
any permutation of the values of the ports remains a solu-
tion!, this model artificially increases the search space by a
factor factorialN ~N!!. Unfortunately, in real-world appli-
cations, ports having the same role are often interchangeable.

Furthermore, this model is not versatile enough to repre-
sent variable cardinality. It is impossible to represent a car-
dinality that is computed by an arithmetic formula, or to
represent a cardinality that is not limited.

In our approach, we eliminate these two problems by rep-
resenting an 1-N relation by one constrained set variable
with cardinality limited toN instead ofN ports. The cardi-
nality of the set is an integer constrained variable that can
be computed by a constrained formula. There is no order
between the values of the set, so theN! permutations of an
assignment correspond to a single solution: The search space
is divided byN! compared to the ConfCS approach.

Sabin and Freuder~1996! propose another extension of
the basic CSP paradigm, the composite CSP, which fo-
cuses on the hierarchical structure of the domain knowl-
edge. The domain of a constrained variable is a set of entire
subproblems with their own variables and constraints. When
instantiating a variable with one of the possible subprob-
lems, the variables and the constraints of the subproblem
are added to the constraint network. This approach is able
to handle a nonlimited set of components, and allows an
elegant representation of the recursive decomposition of a
problem into subproblems. However, it is not clear how
consistency can be maintained on such variables. How can
the knowledge about the subproblems that belong to the
domain of a variable be used to deduce which of them are
inconsistent according to the current state of the variables?
In the Sabin and Freuder~1996! example, we are config-
uring a car. The componentenginehas two possible types:
gasolineand diesel. One characteristic of agasolineen-
gine is that it consumes 2 fuel units, against 4 fuel units
for thedieselengine. If our car has to consume less than 3
fuel units, the diesel type may be removed by an arc con-
sistency propagation.

It is not clear also how constraints on an “unknown world”,
as the resource-constraints of ConfCS, can be expressed.

1.3. Our purpose

Our general aim is to propose a new framework, dedicated
to the solving of configuration problems, that strongly fo-
cuses on domain knowledge representation~because most
of the complexity lies in its capture! and that allows the de-
scription of efficient solving algorithms.

Because we consider a configuration problem both as
a classification and as a constraint satisfaction problem,
we have developed a framework that deeply blends con-
cepts from the object-oriented and CSP paradigms. The goal
is to provide powerful and expressive tools that can cap-
ture the different aspects that characterize configuration
problems:

• The hierarchical structure of the domain knowledge.

• The critical aspect of maintenance and evolution of the
components catalog.

• The generative process~dynamic constraint network!.

• The previously unknown set of possible components.

Classification and constraint-based framework 385

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

• The great variety of constraints~topological, arithme-
tic, logical, compatibility, resource balancing, etc.!.

• The different types of relations between components
~has-parts, uses!.

Encapsulation and specialization concepts, hierarchical do-
main CSP~Mackworth et al., 1985!, and taxonomic reason-
ing are well suited to structure the domain knowledge in an
inheritance tree of component types. Maintainability is im-
proved by the using concepts of the object paradigm, such as
inheritance or data abstraction, by CSP declarativity and ex-
pressiveness, and by the clear separation between domain de-
scription and solving strategies that the CSPparadigm allows.
Class instantiation is quite natural for representing the gen-
erative process and the dynamic nature of the constraint net-
work. CSP is well suited for declaring constraints of various
types and for describing optimization algorithms and domain-
dependent heuristics.

This paper presents the principal features of the knowl-
edge representation model of our framework and provides a
simple example extracted from a real-world configuration ap-
plication on which our approach has been applied. Section 2
presents the example that will illustrate the further sections.
Section 3 presents the hierarchical structure of the domain
knowledge representation and the taxonomic reasoning im-
plemented as constraint propagations. Section 4 presents ports
as constraint set variables with nonfinite domains to capture
the “not known beforehand” set of components. Section 5 de-
scribes how resource balancing constraints are represented.
Section 6 details a solution search on the example of Section
2. Section 7 presents some informal results of a nontrivial ap-
plication developed with our framework.Aconclusion in Sec-
tion 8 summarizes the paper and outlines future works.

Our framework is based upon the well-known CSP solver
library Ilog-Solver~ILOG, 1997!. The code examples pre-
sented in further sections use the C11 notation.

2. EXAMPLE

The problem is the configuration of an instrumentation and
control system of an electrical power plant. Such a system
is composed of a set of programmable logic controllers
~PLCs!. Each PLC is composed of a set of racks into which
are plugged processor cards and input0output cards~I0O
cards!. A processor provides a certain amount of computa-
tion power and memory units. An I0O card provides a cer-
tain number of connections to sensors and actuators. The
specification of the desired system is given by a set offunc-
tions. Each function specifies the quantities of computation
power and memory units and the number of analogic, nu-
meric, and communication connections it needs to be ex-
ecuted. The task of the configurator is to assign the set of
functions to a set of processors and I0O cards, and to plug
these cards into PLC racks. The goal is to minimize the num-
ber of PLCs needed. There are different types of PLCs, racks,
processors and I0O cards, and compatibility constraints at
each connection level. Each hardware component produces
or consumes resources such as electrical intensity, calorific
power, plugging slots, computation power, memory, etc. Of
course all of these resources have to be balanced.

For the sake of simplicity, we will only focus on an atomic
part of the problem: the assignment of functions to proces-
sors~see Figure 1!. There are three types of functions: FNC,
the noncritical functions which survey and command sen-
sors and actuators; FC, the critical ones; and FCOM which
are in charge of inter-PLC communication. There are three

Fig. 1. Example.

386 D. Mailharro

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

types of processors: XCOM, processors dedicated to com-
munication tasks; XS100, processors with secured hard-
ware for critical task execution; and XN400, processors with
nonsecured hardware. A XS100 processor is composed of
one secured system component.

A function is assigned to one processor but one processor
can contain several functions. Functions consume the com-
putation power that is produced by processors.

A Function can only consume the computation power that
is produced by the processor to which it is assigned:

;p [Processor, (
f[functionsp

powerf # powerp.

The global computation power production must be greater
than or equal to the global consumption:

(
f[Function

powerf # (
p[Processor

powerp

XCOM, XN400, and XS100 produce, respectively, 200, 400,
and 100 units of computation power. The maximal number
of functions that can be assigned to an XS100 processor is
limited to 3.

The following compatibility rules are:

• XCOM only support FCOM functions.

• XN400 support FCOM and FNC functions.

• XS100 support FCOM and FC functions.

There are several instances of each function type. Each
of these instances specifies its power consumption.

3. CLASSIFICATION AND TAXONOMIC
REASONING

3.1. Domain knowledge representation

We have adopted thecomponent-orientedmodel presented
in Mittal and Frayman~1989!. A component type is de-
scribed by a set of attributes and connection ports and by a
set of constraints. Attributes are implemented with classical
constrained variables. Ports are constrained set variables
whose domain corresponds to a nonfinite set of compo-
nents~see Section 4 for more details!. Constraints are those
available in Ilog-Solver~ILOG, 1997!, plus specific expres-
sions defined on ports to represent accumulative relations
on incomplete sets of components. These expressions are
similar to the “resource-constraints” of ConfCS~Haselbock,
1993! ~see Section 5 for more details!.

Let us give an example of a component type declaration:
A processor has an integer attribute “power” that represents
the amount of computation power it provides~from 0 to
1000!, a port “functions” that represents the set of functions
that are assigned to it, and a local resource balancing con-
straint on computation power:

//Objects that represent the component types
IlcComponentType Processor, Function;

//Declaration of the computation power
attribute of Processor
IlcIntAttr power = Processor.addIntAttr-
(“power”, 0, 1000);

//Declaration of the functions port of Pro-
cessor
IlcPort functions = Processor.addPort(Ilc-
Uses, Function, “functions”);

//Power consumed by the functions connected
to a processor is
//less or equal to the power produced by
this processor
Processor.add(functions.getSum(“power”) <=
power);

The component types taxonomy is organized in a
generalization0specialization hierarchy. Each node of the
tree describes a type with a set of attributes, ports, and
constraints that are inherited by subtypes.

Subtypes can complete their ancestor description with new
attributes, ports, and constraints. They can also define more
restrictive bounds for the domain of inherited attributes or
for the cardinality of inherited ports. For example, XS100
is a processor that produces 100 units of computation power,
that can support at most three functions and that is com-
posed of one secured system component:

IlcConfigurator cfg;

//Declaration of the type XS100 as a sub-
type of Processor
IlcComponentType XS100 = cfg.addType (“XS100”,
“Processor”);

// Bounds restrictions on inherited attributes
and ports
XS100.getIntAttr(“power”).setValue(100);
XS100.getPort(“functions”).setCardMax(3);

//XS100 is composed of exactly one Secured
system
XS100.addPort(IlcHasPart, SecuredSystem, 1,
“secured_system”);

3.2. Instantiation and refinement

The goal of the configuration task is to generate the set of
components that compose the configured artifact, to put each
component at the right place in the types hierarchy, and to
inter-connect these components.

Component generation is supported by type instantia-
tion. A component is created with an associated copy of all
the attributes, the ports, and the constraints defined in the
instantiated type and with a special constrained variable that
represents its type. When the instantiated type is not a leaf

Classification and constraint-based framework 387

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

of the type hierarchy, the component may berefined later
by a constraint propagation or by an explicit choice point of
the search procedure. The refinement of a component cor-
responds to a more accurate knowledge of what can or what
must be the final implementation of the component. Thus,
when a component is refined, it becomes an instance of one
of the descendant types of its current type, and so all the
attributes, ports, and constraints defined for its new type
~except those inherited from its current type! are added to
the current constraint network.

In our previous example, if we have the instanceaPro-
cessorthat is refined from processor to XS100, restrictions
on its “power ” and “functions ” variables are per-
formed and a “secured_system ” port is added to it, as
illustrated in Figure 2.

The refinement procedure is powerful because it allows
reasoning on a partial description of a component. Infer-
ences can be made on a component without knowing ex-
actly what its concrete implementation in the final artifact
will be. Propagations can be performed on the possible types
of a component to decide which types remain possible or
become required after an event occurs on any constrained
variable domain. For example, we know that our config-
ured artifact needs a processor but we do not know which
kind of processor. So, we can create an instance of the ge-
neric type processor, and begin to work on it with the par-
tial knowledge we have of it, for example, the computation
power it provides must be greater than or equal to the sum
of the computation power consumed by the functions that
are assigned to it. Then, when assigning functions to it, de-
ductions on its possible types are activated. For example, if
the quantity of consumed power becomes greater than 100
units, XS100 becomes inconsistent. Or if an FC function is
assigned to it, compatibility constraints propagate that only
XS100 is consistent and the processor is then refined to
XS100.

This mechanism gives great flexibility for writing search
algorithms because choosing the type of a component can
be separated from the component generation. There are three

important operations on a component: its creation, its clas-
sification, and its connection with other components. Cre-
ation is always the first operation, but there is no mandatory
order for the two others. A component can be connected be-
fore being classified or can be classified before being con-
nected. It is also possible to interlace the two operations:
we can decide to connect some of its ports, then to refine it
until a certain level, then to connect some others of its ports,
then to refine it again, etc. It is also possible to delay one
operation by making choice points on other parts of the con-
figured artifact, hoping that these choices will make inter-
esting propagations on our component.

It is interesting to note that the refinement procedure is
perfectly integrated in the CSP schema because it has a
monotonic behavior. The set of the possible refinements for
a given type is a subset of the possible refinements of its
ancestor types. So refining a component consists in reduc-
ing the set of its possible classifications, that is, refinement
can only reduce the domain of the constrained type variable
of a component.

3.3. Type variables

Each component has a constrained variable that represents
its type. We call it thetype variableof the component. This
variable has a hierarchical domain as defined in Mack-
worth et al.~1985!. The variable is bound only when it is
impossible to refine the component more. In other words,
the variable can only be instantiated with leaf types of the
hierarchy. This corresponds to the fact that the configured
artifact must finally be built with concrete component types
available in a constructor catalog. In our example, it is not
sufficient to say that the system contains a processor; the
configurator must decide exactly if it is a XS100, a XN400,
or an XCOM.

Inferences made on the type variable are as follows:

1. When a type is inconsistent, then so are all its descen-
dents~see Figure 3b!.

Fig. 2. Refinement procedure:@0..1000# denotes a constrained integer variable whose value is between 0 and 1000.@0..1# denotes a constrained integer
variable whose maximal value is the infinity.~ ! @0..5# denotes a constrained set variable whose cardinality is between 0 and 5.

388 D. Mailharro

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

2. When a type is inconsistent and when it was the sole
descendent of its father, then its father is also incon-
sistent~see Figure 3c!.

3. When the component is refined to a given type, then
only the ancestors and the descendents of that type re-
main consistent~see Figure 3d!.

4. When a type becomes inconsistent and when only one
possible descendent for the current type of the com-
ponent remains, then the component is refined to that
descendent type~see Figure 3e!.

Because of the subsumption semantic that exist between
a leaf type and its ancestors, we can easily imagine that the
value of a type variable is an implicit set of component types
that correspond to the oriented simple path from a root type
to a leaf type along thesubsumeslinks. For example, if a
component is refined to the type XS100, the value of its
type variable is$Processor, XS100% since an XS100 in-
stance is also an instance of Processor. We can deduce the
two following properties:

• A possible path contains only possible component types.

• A possible type belongs to at least one possible path.

The soundness of previous inferences can be easily showed
with this properties. From the first property, we can say that
if a type becomes impossible, all the paths that include it
becomes impossible values for the type variable~inference
1!. From the second property, we can deduce that when a
path becomes impossible, each of its nodes that no more
belongs to a possible path, becomes impossible~inference
2!. When a component is refined to a component type, only

the path that includes this type remain possible~inference
3!. If a type T belongs to all the possible paths, the compo-
nent can be refined to this~inference 4!.

a. The initial possible paths are:

~ $A-B-F% $A-B-G% $A-C-H% $A-D-I % $A-E-J% $A-E-K% $A-E-L% !

A belongs to all the possible paths, so the component
is refined toA.

b. E becomes impossible. All the paths that containE are
removed:

~ $A-B-F% $A-B-G% $A-C-H% $A-D-I % !

J, K, L do not belong to a possible path: they become
impossible types.

c. H becomes impossible. All the paths that containH
are removed:

~ $A-B-F% $A-B-G% $A-D-I % !

C does not belong to a possible path: it becomes an
impossible type for the component.

d. Only paths containingB remain possible:

~ $A-B-F% $A-B-G% !

e. G becomes impossible. All the paths that containG
are removed:

~ $A-B-F% !

Fig. 3. Inferences on type variables.

Classification and constraint-based framework 389

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

The component is refined toF becauseF belongs to all
the possible paths.

4. TOPOLOGY: NONFINITE DOMAIN FOR
PORT VARIABLES

4.1. Motivation

The topology of the configured artifact, that is the descrip-
tion of the interconnections of its components, is com-
pletely represented by port constrained variables assignment.
In our framework, a port is typed, that is, only components
of a given type can be connected to it. Connections between
components are always constrained by such type restric-
tions; only cards can be plugged into racks. Because a type
defines a subset of the entire existing components set, typ-
ing a port reduces its domain size, and thus, reduces the
size of the search space.

In configuration problems the set of the components is
not known beforehand, and sometimes even the size of the
set cannot be estimated. The problem with classical con-
strained variables is that the set of the possible values must
be known before creating the variable, so it is impossible to
define the domain of port variables.

However, we wanted to have port variables that would
be able to represent partial connections and to post con-
straints that could generate new components to insure con-
sistency. Even if the components do not exist yet, we wanted
to express constraints such as “The sum of the size of the
cards that are plugged into a rack cannot exceed the capac-
ity of the rack”. We wanted to makegenerative inferences
that create a new component each time there is no existing
component that can satisfy the constraint. For example, we
know that a processor produces at most 1000 units of com-
putation power, and we know that 4000 units are required
to execute a set of functions. We can easily deduce that at
least four processors are required, and so we can create them.

To represent such knowledge, we have defined a new type
of variable whose domain contains the components that al-
ready exist and a representation in intension of the ones that
will be created later. Ports are such variables.

4.2. Constrained set variables

A port is implemented as a constrained set variable~Puget,
1992!. It is a multivalued constrained variable whose value
is a set of components and whose domain is the set of the
possible component sets that can be assigned to the vari-
able. In practice, the domain of a constrained set variable is
represented by two sets: thepossible setthat contains all
the elements thatcanbelong to the value of the variable and
therequired setthat contains all the elements thatdobelong
to the value of the variable. When the variable is instanti-
ated, the required set is equal to the possible set.

Aconstrained set variable is systematically associated with
an integer constrained variable that represents its cardinal-

ity. Consistency between these two variables is maintained
by the following relation:

6Required~V !6 # Min~Card~V !! # Max~Car~V !!

6Possible~V !6,

where6S6 denotes the number of elements of the setS; V,
the constrained set variable;Required~V !, its required set;
Possible~V !, its possible set; andCard~V !, its associated
cardinality variable.

Multivalued ports are very useful in configuration prob-
lem description because most of the intercomponent rela-
tions are 12 N or N2 M relations and cardinalities of these
relations are often not fixed. For example, a set of cards is
plugged into a rack. The size of this set is not fixed, but it
can be limited by the physical size of the rack. An example
of theN 2 M relation is that functions are dispatched on a
set of I0O cards and these cards are shared between several
functions.

WhenN components of type A have to be connected to
one amongM components of type B, we useM set variables
that haveN possible values; the space complexity to repre-
sent the possible assignments isN 3 M. Set variable does
not induce a bigger space complexity than other type of con-
straint variable. Whatever is the type of constrained vari-
able used, this memory complexity is unavoidable since the
domain of a constraint variable has to be represented ex-
plicitly. If we use Boolean variables to represent the fact
that a component A is connected to a component B, we need
N 3 M such Boolean variables. If we use simple enumer-
ated variables, we needN variables which containM pos-
sible values. Fortunately, Ilog-Solver provides efficient
internal data structures based upon bit-sets that allow low
memory consumption and fast data access. Ilog-Solver set
variables have been successfully used to model large-scale
applications. For instance, an airline crew scheduling appli-
cation at Air France had to form 3000 crews with a pool of
2000 people.

Set variables have the ability to reduce the search space
by cutting symmetries. For instance, suppose we have to
connect three cardsa, b, c into a rack. If we use a model
with three variablesp1, p2, p3 that represent the three con-
nections, and if~ p15 a, p25 b, p35 c! is a solution, then
any permutation ofa, b, c leads to the same solution. The
second model consists of using one set variable with a car-
dinality limited to 3. Because there is no order into a set
variable, there is only one possible assignment of the vari-
able that is~a b c). Using constrained set variables instead
of single variables induces a drastic reduction of execution
time by dividing the search space size by a factorN!, with
N representing the number of components to connect.

4.3. Port variables

The possible set of a port variable contains all the compo-
nents that already exist for the type of the port, and it also

390 D. Mailharro

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

contains a particular value, calledwildcard, that represents
the set of all the components that have not been generated
yet. The required set, that represents the effective connec-
tions to the port, contains only existing components, that is,
it never containswildcard.

While wildcard is in the domain, new components can be
added to it. Whenwildcard is removed from the domain by
a constraint propagation or by a choice point, the port is
closedand new components are ignored.

While the port is not closed, the upper bound of the car-
dinality variable is1` because an unlimited number of com-
ponents can be generated. Of course, it is possible to define
another maximal value by posting an explicit constraint on
the cardinality. The lower bound of the cardinality corre-
sponds to the size of the required set as for a classical con-
strained set variable.

Each time a type is instantiated, all the ports dedicated to
this type, except the closed ports, have their domain in-
creased with the new component but the maximal value of
their cardinality remains unchanged. When all the instances
of a type are known, the type is closed and so are all the
ports dedicated to it.

Figure 4 shows an example where three instances of the
typeFunction , f1 , f2 , andf3 have a port “process ”
on the typeProcessor . There are two existing instances
of Processor , p1 andp2 . When a new processorp3 is

created,f2 andf3 have the domain of their portprocess
increased withp3 . f1 is not updated because its port is
closed.

Domain extension of a port variable is well integrated in
the CSP paradigm because it has a monotonic behavior. In-
serting a new component into the domain of a port does not
change the domain at all. The new component was already
taken into account implicitlyvia wildcardbefore it became
concrete. It was also integratedvia the cardinality1` up-
per bound.Acomponent that is removed from a domain never
comes back~except when back-tracking! becausewildcard
expansion never generates the same component instance
twice.

4.4. On demand components generation

A port can activate type instantiations when there are not
enough existing components in its domain to insure consis-
tency with the minimum value of its cardinality variable.
This is what we call theon-demand inference. For example,
if we add to our previous example a constraint on the min-
imal cardinality of the port off2 , which says it is greater
than or equal to 4, two new processorsp4 andp5 are gen-
erated because there are only two existing processors in the
domain off2 port. Figure 5 illustrates this.

Fig. 4. Increasing domain of port variables~see Figure 2 for notation conventions!.

Classification and constraint-based framework 391

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

It is possible to make a choice point on a port variable
that will try to assign thewildcard value. In that event, a
new component is created and tried inwildcard’s place. If
the choice leads to an inconsistency,wildcard is removed
from the possible set of the port. Because all components of
a same type are considered equivalent at creation time, an-
other component generation would just lead to a similar
inconsistency.

4.5. Has-part relation

Ports represent relations between components. Specific re-
lations ashas-partrelations are represented by specific ports.
Has-partrelations describe an ownership relation between
two components where one~the part! exists only inside of
the other~the owner!. Parts of a component are not shared;
they belong to their owner component. When a component
is created, its parts are also created. This behavior is easily
implemented with a specific on-demand inference that di-
rectly assigns the components it creates to the port, instead
of just making the possible set grow. We call thisHas-part
inference. In the example of Section 2, secured system com-
ponents are part of XS100 processors. So each time an
XS100 processor is created, or each time a processor is re-
fined to XS100, one secured system is created and assigned
to the processor.

Part components are not shared by several composite ob-
jects inside the scope of a particularHas-partrelation, but
they can be shared through several differentPart-of rela-
tions. For instance, when configuring a computer, if we say
that a processor is a part-of the computer, the processor in-
stancep1 cannot be shared by several computers;p1 is a
part of one and only one computer. Now if we say that the
processor is part-of the computer and is also part-of the
mother-board, then the instancep1 is shared by an instance
of computer and an instance of mother-board.

Figure 6 illustrates a sequence of a component generation
due to a choice-point~Figure 6a!, a component refinement due
to a compatibility constraint propagation~Figure 6b! and an-

other component generation due to a Has-part inference~Fig-
ure 6c!.

5. RESOURCE CONSTRAINTS

Heinrich and Jungst~1991! describe a component as a pro-
ducer and0or consumer of resources. In a configuration so-
lution, resources have to be globally balanced, that is, the
total amount of produced resource must be greater or equal
to the total amount of consumed resource.

However, a configured artifact is a structured set of com-
ponents where each component produces resources to an-
swer thedemandof thecomponents thataredirectly connected
to it. For example, the computer power resource produced by
a processor is directly consumed by the functions that are ex-
ecuted on it. Resources have to be balanced locally for each
component to insure that the component produces enough re-
sources to satisfy its connected components needs.

In practice, the resource production0consumption of a
componentC is represented by one of its attributes, which
we denoteres in the following. This value depends on the
amount of resource consumed or produced by the compo-
nents that are connected toC. For example, the electrical
intensity consumed by a programmable logic controller is
the sum of its rack consumption plus its own consumption.
The rack consumption is the sum of the consumption of the
cards plugged in it, etc.

To represent such accumulative functions on the con-
nected components of a given component, we have defined
accumulative expressions on port variables. As an example,
we will detail the most useful expression that is the sum of
res on the components connected to a port. The computa-
tion power consumed by a processor corresponds to the sum
of its assigned functions consumption:

IlcIntVar sum = Processor.getPort(“functions”).
getSum(“power”);

The minimum value ofsum is the sum ofres on the
components that belong to the required set of the port. The

Fig. 5. On-demand inference~see Figure 2 for notation conventions!.

392 D. Mailharro

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

maximum value is the sum ofres on the components that
belong to the possible set:

5Min~sum! 5 (
e[Required~Port!

e.res

Max~sum! 5 (
e[Possible~Port!

e.res

Consistency between the port, its cardinality, thesum and
the res variables, is insured by a set of propagations. We
give several of them as an example:

1. Each time a componentC is connected to the port, the
minimum value of the sum is increased with the min-
imum value of theC attributeres .

2. Each time a componentC is removed from the possi-
ble set of the port, if the port is closed, the maximum
value of the sum is decreased by the maximum value
of theC attributeres .

3. When bounds of theres variable of a componentC
are changed, minimum or maximum value ofsumcan
be recomputed depending on whetherC belongs to the
required or to the possible set.

4. When the maximal value of the sum is decreased, the
possible elements~including wildcard! that have a too
big value for their attributeres are removed from the
domain of the port.

5. When the minimal value of the sum is increased, new
components are generated if the sum of the possible
element’s attributeres is not sufficient.

6. When the bounds of the cardinality variable are
changed, bounds of the sum can be computed using
the definition bounds of the attributeres ~denoted
MinI ~res! andMaxI ~res!!:

Min~Card~Port!! 3 MinI ~res! # sum

Max~Card~Port!! 3 MaxI ~res!.

Let us illustrate the previous propagations by a simple
example. Suppose we have a rack that has a portE in which
are connected a set of cards. Suppose that each card pro-
duces from 10 to 100~denoted[10..100]! units of a given
resourceR. The value of the resource~denotedri ! produced
by theith card depends on the functions that are assigned to
it. This value is computed during the search by constraint

Fig. 6. Choice point, refinement and Has-part inference.

Classification and constraint-based framework 393

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

propagations. Suppose now that we want to compute the
sumSof R produced by the cards of the rack. Suppose that
at the beginning, there are two existing cardsc1andc2 that
produce, respectively,[30..50] and [90..100] units of R.
Table 1 shows how the consistency is maintained between
the constrained variablesE, Card(E), S, andri .

Local resource balancing is represented by a simple con-
straint on a component:

// computation power production of a pro-
cessor
IlcIntAttr prodPower = Processor.getIntAttr
(“power”);

// Processor port where power consumers are
connected

IlcPort func = Processor.getPort(“func-
tions”);

// Local resource balancing constraint
Processor.add(func.getSum(“power”) <= prod-
Power);

Each component type has a special port that contains all
its instances. Global resource balancing can be expressed
on these port variables:

IlcConfigurator cfg;
IlcComponentType Processor, Function;

// F represents the set of the instances of
Function
IlcPort F = Function.getInstancesPort();

Table 1. Resource constraint example

Event Propogations S Card~E! Required~E! Possible~E!

Initial state There is no required card so the minimum value ofS
is 0.
There is no limitation on the cardinality ofE, so the
maximum value ofS is 1`.

[0..1] [0..1] c1:[30..50]
c2:[90..100]
Wildcard

r1 [E c1produces at least 30, so the minimum value ofS
is increased with 30~Propagation 1!.

[30..1] [1..1] c1:[30..50] c2:[90..100]
Wildcard

Card~E! # 4 There is at most four required cards that produce
100 each.S is at most 400~Propagation 6!.

[30..400] [1..4] c1:[30..50] c2:[90..100]
Wildcard

S# 100 c2 is removed because it produces at least 90, that
added to the 30 of the already required cardc1,
makes the minimum value ofSgreater than 100.
~Propagation 4!.

[30.100] [1..4] c1:[30..50] Wildcard

r1 $ 40 Becausec1 is required, the minimum value ofS is
increased.~Propagation 3!.

[40..100] [1..4] c1:[40..50] Wildcard

S$ 70 The maximum amount of resource produced by the
existing card is 50. A new card is needed to satisfy
the demand;c3 is generated~Propagation 5!.

[70..100] [1..4] c1:[40..50] c3:[10..100]
Wildcard

r3 5 80 c3 is removed because it produces 80, that added to
the 30 of the already required cardc1, makes the
minimum value ofSgreater than 100.~Propagation
4!.
The maximum amount of resource produced by the
existing card is 50. A new card is needed to satisfy
the demand;c4 is generated~Propagation 5!.

[70..100] [1..4] c1:[40..50] c4:[10..100]
Wildcard

r4 5 10 The maximum amount of resource produced by the
existing cards is 60~50 byc1 and 10 byc4!. A new
card is needed to satisfy the demand;c5 is generated
~Propagation 5!.

[70..100] [1..4] c1:[40..50] c4:[10]
c5:[10..100]
Wildcard

CloseE c5 is required because it is the sole possible card
that can produce the difference between the required
card production~50! and the minimum demand~70!.
r5 is limited to 60 because the sum cannot be greater
than 100, andc1 already produces 40.

[70..100] [2..3] c1:[40..50]
c5:[10..60]

c4:[10]

r5 # 30 Because all the producers are known~E is closed!,
the maximum value ofScan be recomputed.
~Propagation 3!.

[70..90] [2..3] c1:[40..50]
c5:[10..30]

c4:[10]

r3 Ó E Because all the producers are known~E is closed!,
the maximum value ofScan be recomputed.
~Propagation 2!.
The minimum value ofc5 is increased to satisfy the
demand.

[70..80] [2] c1:[40..50]
qc5:[20..30]

394 D. Mailharro

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

// P represents the set of the instances of
Processor
IlcPort P = Processor.getInstancesPort();

// Global resource balancing constraint
cfg.add(F.getSum(“power”) <= P.getSum(“pow-
er”));

6. A SAMPLE OF SOLVING

This section details the execution of the solution search for
the example presented in Section 2, to show how taxo-
nomic reasoning, port extensions, and resource constraints
interact. The goal is to find the configuration that mini-
mizes the number of processors needed to support the ex-
ecution of the functions listed in Table 2.

The algorithm used is a classical Branch and Bound pro-
cedure that alternates choice points on variable assignment
and constraint propagations. When an inconsistency is de-
tected, back-track is performed until the last choice point,
to try another value. The decision variables are the portpro-
cess of the functions. These variables are instantiated in
the order of the functions creation, that is, the order given
in Table 2. We use a heuristic that chooses existing compo-
nents before trying to generate a new one.

At the beginning, there is no processor. So all thepro-
cess ports have the following form(() wildcard)
[1] , that denotes a cardinality constrained to be equal to 1
and no existing processor.

Table 3 describes each choice point and its consequent
propagations until the first solution is reached.a r b de-
notes a choice point that chooses the valuea and assigns it
to b.

Optimization is done by posting a more restrictive con-
straint on the cost function each time a solution is found,
such that the cost of thenth solution is strictly better~greater
or less! than the cost of the~n 2 1!th solution. In our ex-
ample, the cost function is the number of processors. The
first solution contains six processors. The second must con-
tain at most five processors, and so on. Table 4 describes
the steps until the second solution is reached.

The optimal solution contains four processors. A possi-
ble distribution of the functions is:fcom1andfcom3in p1;
fcom2andfnc1 in p2; fc1, fc2, andfc4 in p3; fc3 andfc5 in
p4.

We do not detail the steps to reach this solution and to
prove optimality because they are similar to those pre-
sented in Tables 2 and 3.

7. APPLICATION EXPERIENCE

We have experimented our framework on a real-world prob-
lem described in Mailharro and LeQuenven~1995!. The ap-
plication has been developed at Electricite De France~EDF!.
It consisted in configuring the instrumentation and control
hardware and software architecture of nuclear power plants.
The configurator had to assign a predefined set of functions
to a hardware architecture~cubicles, racks, processors, I0O
cards, physical connection to sensors and actuators!, and to
a software architecture~programs, cyclic tasks, logical con-
nections!. Each part of the configuration had to satisfy a
various and complex set of constraints: safety, capacity, com-
patibility, etc.

The application has been used to configure a real nuclear
power plant. It had to generate and interconnect several thou-
sands of components. The execution time was about one
hour on a Sun Sparc 20. Such a configuration required sev-
eral weeks when it was done manually.

8. CONCLUSION

We have presented a new configuration dedicated frame-
work whose objective is to provide an expressive and struc-
tured knowledge representation model and a set of powerful
and efficient algorithms that allows construction and opti-
mization of solutions. The knowledge of a configuration
problem domain is concentrated in the catalog of compo-
nent types that define generic local models of the different
modules that can be combined to form the configured arti-
fact. Because this catalog is constantly modified, the main-
tainability of the knowledge representation model is critical.

We have explained that our approach consists in consid-
ering configuration problems both as classification prob-
lems and as constraint satisfaction problems. We have
combined object-oriented concepts with CSP concepts to
adopt the strengths of both. The object-oriented approach
allows the structuring of the domain knowledge as a
generalization0specialization tree of component types with
inheritance mechanism that improves its modularity and
maintainability. The CSP approach provides a declarative
and expressive formalism to represent the constraints that
must be satisfied and the solving strategies.

We have shown how taxonomic reasoning can be imple-
mented with constraint propagations and hierarchical do-
mainCSP.WehaveshownhowdynamicCSPcanbesupported
by type instantiation and object refinement mechanism.

Table 2. Data

Instance Type
Computation power

consumption

fcom1 FCOM 180
fcom2 FCOM 30
fcom3 FCOM 200
fnc1 FNC 220
fc1 FC 20
fc2 FC 30
fc3 FC 10
fc4 FC 40
fc5 FC 70

Classification and constraint-based framework 395

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Table 3. First solution search

Step Action Propagations

1 Wildcardr fcom1 • Generation of processorp1 and connection tofcom1;
• p1 is not XS100 becausefcom1needs 180 power units whereas XS100 only produces 100 units;
• p1 becomes impossible forfc1, fc2, fc3, fc4, fc5 functions because of compatibility constraints.

2 p1r fcom2 • XCOM becomes an impossible type forp1 because 210 power units are needed~ fcom11
fcom2! and XCOM only produces 200 units;

• p1 is refined to XN400 because it is the sole possible refinement forp1;
• fcom3andfnc1become impossible forp1 because they need more power than available inp1

~190 free against 200 and 220 asked!.

3 Wildcardr fcom3 • Generation of processorp2 and connection tofcom3;
• p2 is not XS100 becausefcom3needs 200 power units whereas XS100 only produces 100 units;
• p2 becomes impossible forfc1, fc2, fc3, fc4, fc5 functions because of compatibility constraints;
• fnc1becomes impossible forp2 because it needs more power than available inp2 ~maximum

200 free against 220 asked!.

4 Wildcardr fnc1 • Generation of processorp3 and connection tofnc1;
• p3 is refined to XN400 because of compatibility constraints;
• p3 becomes impossible forfc1, fc2, fc3, fc4, fc5 functions because of compatibility constraints.

5 Wildcardr fc1 • Generation of processorp4 and connection tofc1;
• p4 is refined to XS100 because of compatibility constraints;
• A secured-system is generated and connected top4 ~Has-part inference!.

6 p4r fc2 • fc5 becomes impossible forp4 because it consumes more power than available inp4 ~50 free
against 70 asked!.

7 p4r fc3 • fc4 becomes impossible forp4 because XS100 support at most three functions.

8 Wildcardr fc4 • Generation of processorp5 and connection tofc4;
• p5 is refined to XS100 because of compatibility constraints;
• A secured-system is generated and connected top5 ~Has-part inference!.
• fc5 becomes impossible forp5 because it consumes more power than available inp5 ~60 free

against 70 asked!.

9 Wildcardr fc5 • Generation of processorp6 and connection withfc5;
• p6 is refined to XS100 because of compatibility constraints;
• A secured-system is generated and connected top6 ~Has-part inference!.

Table 4. Second solution search

Step Action Propagations

10 6Processor6 , 6 • Back-track to step 9: wildcard becomes impossible forfc5. Inconsistency is detected
because cardinality is at least 1 and there is no possible processor;

• Back-track to step 8: wildcard becomes impossible forfc4. Inconsistency is detected
because cardinality is at least 1 and there is no possible processor;

• Back-track to step 7.

11 Wildcardr fc3 • Generation of processorp5 and connection tofc3;
• p5 is refined to XS100 because of compatibility constraints;
• A secured-system is generated and connected top5 ~Has-part inference!.
• Type processor is closed because the maximal number of instances is reached;
• All ports process are closed;
• fc5 is assigned top5 because it is the sole possibility;
• fc4 becomes impossible forp5 because it consumes more power than available inp5 ~20

free against 40 asked!;
• fc4 is assigned top4 because it is the sole possibility.

396 D. Mailharro

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Because the set of the components that compose the con-
figured artifact is not known beforehand, we have proposed
implementing connection ports as constrained set variables
with nonfinite domain: This allows reasoning on the partial
knowledge that is available when constructing the artifact.
We have explained the semantic and the mechanisms asso-
ciated with such variables.

We have also explained how port variables generate com-
ponents on demand considering their cardinality and how
has-part relations are implemented by a specialization of
this on-demand mechanism. Finally, we have shown how
accumulative functions defined on port variables can be used
to represent resource balancing constraints that are able to
generate components to ensure consistency.

Our future work will take into account the concept of
component interchangeability defined in Freuder,~1991!
and Haselbock~1993! to reduce the search space by elim-
inating equivalent assignment of port variables. Interchange-
ability must be context dependent because two components
are interchangeable only in comparison to the role they
have just as they are being considered. For example, when
two cards of two different types are plugged into a rack,
they are interchangeable if they have the same physical
size. But if we consider them as sensor connections pro-
ducer for function assignment, they may not be interchange-
able if they do not provide the same number or the same
type of physical connections.

REFERENCES

Barker, V., & O’Connor, D.~1989!. Expert systems for configuration at
Digital: XCON and beyond.Communications of the ACM 32(3), 298–
318.

Brachman, R.J., & Schmolze, J.G.~1985!. An overview of the KL-ONE
Knowledge Representation System.Cognitive Science 9(2), 171–216.

Cunis, R., Gunter, A., Syska, I., Bode, H., & Peters, H.~1989!. PLAKON,
an approach to domain independent construction.Proc. Conf. IEA0
AIE.

Freuder, E.C.~1991!. Eliminating interchangeable values in constraint sat-
isfaction problems.Proc. AAAI Conf., 227–233.

Haselbock, A.~1993!. Knowledge-based configuration and advanced con-
straint technologies. Ph.D. Dissertation, Institut fur Informationssys-
teme, Technische Universitat Wien.

Heinrich, M., & Jungst, E.W.~1991!. A resource-based paradigm for the
configuring of technical systems from modular components.Proc. 7th
Conf. on Artificial Intelligence Applications, 257–264.

ILOG ~1997!. Reference Manual and User’s Manual, ILOG Solver, 4.0
Edition. ILOG, Paris, France.

Klein, R. ~1996!. A logic-based description of configuration: The Con-
structive Problem Solving approach. InWorkshop Notes of AAAI Fall
Symposium on Configuration, 1–10b. AAAI Press, Menlo Park, CA.

Mailharro, D., & LeQuenven T.~1995!. A constraint based tool for auto-
matic sizing of an instrumentation and control architecture.Proc. First
Ilog Solver Users Conf.

McDermott, J.~1982!. R1: A rule based configurator of computer systems.
Artificial Intelligence 19, 39–88.

Mackworth, A.K., Mulder, J., & Havens, W.~1985!. Hierarchical arc con-
sistency: Exploiting structured domains in constraint satisfaction prob-
lems.Computational Intelligence 1, 118–126.

Mittal, S., & Frayman, F.~1989!. Towards a generic model of configura-
tion tasks.Proc. Eleventh Int. Joint Conf. of Artificial Intelligence, 1395–
1401.

Mittal, S., & Falkenhainer, B.~1990!. Dynamic constraint satisfaction prob-
lems.Proc. AAAI Conf., 25–32.

Puget, J.F.~1992!. Programmation par contrainte orientee objet.Proc. Int.
Conf. on Expert Systems of Avignon, 129–138.

Sabin, D., & Freuder, F.~1996!. Configuration as Composite Constraint
Satisfaction. InWorkshop Notes of AAAI Fall Symposium on Config-
uration, 28–36. AAAI Press, Menlo Park, CA.

Yokoyama, T.~1990!. An object-oriented and constraint-based knowledge
representation system for design object modeling.Proc. Sixth Conf. on
Artificial Intelligence Applications, 146–152.

Daniel Mailharro is an enginer that works in the Research
and Development Department of ILOG, S.A. in Paris,
France. After achieving a Master of Science at Paris Uni-
versity, he worked for 7 years as a consultant specializing
in constraint programming for TéléCom, and energy and
transport companies. Currently, he is focusing his efforts
on constraint problems at ILOG.

Classification and constraint-based framework 397

https://doi.org/10.1017/S0890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

