Artificial Intelligence for Engineering Design, Analysis and Manufacturit§98, 12, 383—397. Printed in the USA.
Copyright © 1998 Cambridge University Press 0890-08®4$12.50

A classification and constraint-based framework
for configuration

DANIEL MAILHARRO
ILOG S.A., 9 rue de Verdun, BP 85, 94253 Gentilly Cedex, France

(Receivep October 31, 1997AccepTED February 5, 1998

Abstract

One of the main difficulties with configuration problem solving lies in the representation of the domain knowledge
because many different aspects, such as taxonomy, topology, constraints, resource balancing, component generation,
etc., have to be captured in a single model. This model must be expressive, declarative, and structured enough to be
easy to maintain and to be easily used by many different kind of reasoning algorithms. This paper presents a hew
framework where a configuration problem is considered both as a classification problem and as a constraint satisfaction
problem(CSP. Our approach deeply blends concepts from the CSP and object-oriented paradigms to adopt the strengths
of both. We expose how we have integrated taxonomic reasoning in the constraint programming schema. We also
introduce new constrained variables with nonfinite domains to deal with the fact that the set of components is previ-
ously unknown and is constructed during the search for solution. Our work strongly focuses on the representation and
the structuring of the domain knowledge, because the most common drawback of previous works is the difficulty to
maintain the knowledge base that is due to a lack of structure and expressiveness of the knowledge representation
model. The main contribution of our work is to provide an object-oriented model completely integrated in the CSP
schema, with inheritance and classification mechanisms, and with specific arc consistency algorithms.

Keywords: Configuration; Knowledge Representation; Constraint Satisfaction Problem; Classification; Taxonomic
Reasoning; Nonfinite Domains; Resource Balancing

1. INTRODUCTION The problem is completely defined by the catalog of com-
ponent types. During the search for solution, it is impossi-
ble to define a new type or to modify an existing type by
A general definition of what we understand by “Configura- adding a constraint, an attribute, or a connection port. This
tion” has been given in Mittal and Frayman, 1989. The con+s the difference from the design task where such modifica-
figuration of an artifactis a set of interconnected componentsions are allowed Mittal & Frayman, 1989.

thatare chosen from predefined set of componenttypes, called Given the requirements that the desired product must sat-

thecatalogof component types. Each componenttype is deisfy and any specified optimizing criteria, the configuration
fined by a set ohttributesthat describe its internal charac- tool must produce

teristics(price, geometric dimensions, resource produgtion)))
consumption, etg, a set of connectioportsthat describe « the list of the components that are integrated into the
its relations with other components, and a set of constraints ~ Solution;

on these attributes and ports. The constraints describe com-¢ the type of each of these components;

1.1. Overview

patibility restrictions on component connectiofiype A » the exact topology of the product, that is, the way the
cannot be connected with type Bimitations on resource components are connected to each other; and
productioryconsumption, existential conditiofisompo- o the value of the attributes of each component.

nent of type A needs component of typg Btc. The solution must answer the initial requiremefvisich

can be considered as constrajrasd must satisfy all the
Reprint requests to: Daniel Mailharro, ILOG S.A., 9 rue de Verdun, BPCO.nStrﬁumS def'ne_d on each a;sembled co.mpo.nent..Th.e SO-
85, 94253 Gentilly Cedex, France. E-mail: mailharo@ilog.fr lution must be optimal according to the optimizing criteria.

383

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

384 D. Mailharro

Configuration has interested industrial and research comEach card plugged in this rack consumes one or more slots.
munities for 20 yr. Several modeling approaches have beemhis kind of knowledge is captured well by resource mod-
proposed, such as expert system, resource-based paradigefing, but topological constraints asdrds of type A can
terminological logic, object-oriented model, and more re-only be plugged in slots 1 to”®r “if a card of type A is
cently constraint satisfaction proble(@SP. Each ap- plugged in slot 1, then two cards of type B must be plugged
proach differs in the knowledge representation model andh slots 2 and 3cannot be represented. In real-world con-
reasoning algorithms employed, but all agree that one ofiguration problems, there are topological constraints as well
the main difficulties with configuration tasks is represent-as resource balancing constraints. So a framework dedi-
ing the domain knowledge. Configuration needs an expreseated to configuration problems must be able to take into
sive and declarative framework to represent different typesccount both of the constraint types.
of knowledge(Klein, 1996: taxonomies, structural, arith- Another interesting paradigm is the object-oriented ap-
metic and geometric constrain{grt-of andusesrelations proach where a configuration problem is considered as a
between components, resource productommsumption, Classificationproblem. Given a generic object and a hier-
modularity of components, unknovenpriori set of compo- archy of classes that describes the problem domain, the goal
nents, etc. is to refine the generic object until its correct class in the

This knowledge representation aspect of configuratiorhierarchy is found. This inference process is callexio-
tasks is critical in industrial applications for maintenancenomic reasoningFor example, when configuring a com-
and evolution reasons: catalogs of component types haveuter, we know that we need a processor but we do not know
high rates of modification. In the famous example of/R1 exactly which concrete type will be chosen in the final com-
XCON (McDermott, 1982; Barker & O’Connor, 198%he puter. Among the existing applications of this paradigm are
configurator created at Digital Equipment Corporation tothe Conceptdanguage KL-ONEBrachman & Schmolze,
build computer systems, the catalog contains 17.000 rule$985, the FREEDOM systerfiYokoyama, 199Pwhich de-
and 30.000 component types, and 40% of it is updated eadines relations between objects esnsist-ofand contains
year. relations, and PLAKONCunis et al., 198pwhich defines

A configuration framework must provide an expressiveconstraints on objects.
knowledge representation model that is easy to maintain and In the configuration domain, representing the compo-
must also provide powerful and efficient algorithms to al- nents catalog as a class hierarchy is quite natural. The object-
low optimization in a highly combinatorial context. An im- oriented paradigm strongly improves the maintenance task
portant feature is the ability to describe different reasoningwith its specialization and encapsulation concepts. Subtle
methods such as constraint propagation, hierarchical refinesoncepts asharedobjects andart-of links can easily be
ment, resource-based balancing, domain-dependent heurigpresented with special classes of object relations. We be-
tics, etc. lieve this paradigm is adequate to represent the domain
knowledge required for configuration tasks, and in Section
3 we explain how we have introduced taxonomic reasoning
into our constraint-based framework.

A good overview of what has been used to date to represent The |ast paradigm we want to talk about is the CSP one.
and to solve configuration problems is given in Haselbock;The principle is to “find values for problem variables sub-
1993. ject to constraints that restrict which combinations of val-

The rule-based approach is the more commonly used pares are allowed(Sabin & Freuder, 1996CSP is an adequate
adigm. However, it seems to be efficient for small problemframework to represent configuration problems because it
domains only. The main drawback of this approach is thegs “highly declarative, domain independent and simple to
maintenance, ConSiStency, and eVOlUtab”ity of the knOWl-use“. A Configuration pr0b|em can be considered as a con-
edge base. The problem is that the knowledge is not weltraint satisfaction problem where the variables are the type,
structured: ports, and attributes of each component used in the config-

« Rules can mix domain knowledge with solving strat- ured artifact, anq the co.nstra'ints are the initial requirements

egies. and the constraints defined in the catalog for each compo-

¢ Knowledge of a component type is split among several®nt Because a configuration task |ge_merat|_ve process -
rules. where the set of the components used in the final solution is

¢ Rules are more representative of reasoning steps, th t_known before_hand and is genera’Fed dgring search, the
is a transition of state, than a declaration of what is a asic CSP para_dlgm cannot be applied dlrec_tly. The pqrt
component or what must be the configured artifact. variables’ domain is not_ complete when creating the vari-
o Aset of rules can be inconsistent. able because new possible components are generated dur-
ing search and the constraint network changes each time a
The resource-based paradighteinrich & Jungst, 1991 component is generated.
provides an intuitive producgsonsumer model but does not Mittal and Falkenheime1990 defines thedDynamic CSP
account well for the topology of the configured artifact. For (DCSP as an extension of the basic paradigm that says that
example, arack produces aresource that is its plugging slotenly a subset of the initial variables may be part of the final

1.2. Previous work

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Classification and constraint-based framework 385

solution. A special kind of constraints callédtivity Con- Furthermore, this model is not versatile enough to repre-
straintsrepresent deductions that decide if a variable besent variable cardinality. It is impossible to represent a car-
longs to the solution or not. This model is not adequatedinality that is computed by an arithmetic formula, or to
because a maximal set of existing variables must be giverepresent a cardinality that is not limited.

as the specification of the problem. In configuration prob- In our approach, we eliminate these two problems by rep-
lems, providing the maximal set of possible components mayesenting an N relation by one constrained set variable
be impossible or may produce a huge set that makes thaith cardinality limited toN instead ofN ports. The cardi-
search space impracticable. nality of the set is an integer constrained variable that can

Haselbock extends the DCSP model in his ConfCS framebe computed by a constrained formula. There is no order
work (Haselbock, 1998to handle an unlimited number of between the values of the set, so Mikpermutations of an
variables. He uses a generic definition of the domain. Conassignment correspond to a single solution: The search space
straints are defined at a meta level between component typds. divided byN! compared to the ConfCS approach.

Meta variables are used to represent any concrete instanceSabin and Freuddl996 propose another extension of

of a component type. The constraint is consistent when allhe basic CSP paradigm, the composite CSP, which fo-
possible substitutions of the meta variables with existing incuses on the hierarchical structure of the domain knowl-
stances satisfy the constraint. Because the number of iredge. The domain of a constrained variable is a set of entire
stances of a type is unlimited, the number of variables osubproblems with their own variables and constraints. When
the constraint network and the domains of port variablesnstantiating a variable with one of the possible subprob-
are infinite. lems, the variables and the constraints of the subproblem

Special constraints called “resource-constraint” are deare added to the constraint network. This approach is able
fined to represent accumulative relations on a part of théo handle a nonlimited set of components, and allows an
configuration(all instances of a given type or all compo- elegant representation of the recursive decomposition of a
nents connected to a given componefihese constraints problem into subproblems. However, it is not clear how
have the unique ability to be defined on a set of variablegonsistency can be maintained on such variables. How can
that is not known beforehand and to be able to generatthe knowledge about the subproblems that belong to the
new components to ensure consistency. Because configdoemain of a variable be used to deduce which of them are
ration problems are constructive problefpsrts of the ar- inconsistent according to the current state of the variables?
tifact are generated during searcthis kind of constraints In the Sabin and Freudé€1996 example, we are config-
on “unknown world is very useful for expressing knowl- uring a car. The componernginehas two possible types:
edge about what the desired product should be withougasolineand diesel One characteristic of gasolineen-
knowing exactly the number or type of the componentsgine is that it consumes 2 fuel units, against 4 fuel units
that it will compose. For example, an instrumentation andfor the dieselengine. If our car has to consume less than 3
control hardware architecture is composed of a set of profuel units, the diesel type may be removed by an arc con-
grammable logic controllerPLC). We do not know how sistency propagation.
many PLCs are needed but we know that the set of PLCs Itis not clear also how constraints on an “unknown world”,
has to provide a certain amount of computational poweias the resource-constraints of ConfCS, can be expressed.
and cannot consume more than a certain amount of elec-
trical power.

ConfCS takes into account the dynamic and the constru
tive aspects of configuration problems well. Its principle lackOur general aim is to propose a new framework, dedicated
is that its knowledge representation model is not well structo the solving of configuration problems, that strongly fo-
tured; there is no taxonomy of the component types and nguses on domain knowledge representatioecause most
way to differentiate “part-of” from “uses” relations be- of the complexity lies in its captuyand that allows the de-
tween components. It does not facilitate maintenance bescription of efficient solving algorithms.
cause knowledge about what is a component is split: activity Because we consider a configuration problem both as
constraints describe the internal structure of a componery classification and as a constraint satisfaction problem,
type and compatibility constraints describe the relations bewe have developed a framework that deeply blends con-
tween its attributes and ports. cepts from the object-oriented and CSP paradigms. The goal

Another important drawback of the Haselbock model isjs to provide powerful and expressive tools that can cap-
for representing - N relations. When a componeamay ture the different aspects that characterize configuration
be connected thl component®;, we need to defindl ports problems:
in a: a.pl, a.p2...,a.pN When the ports are interchange-
able(if Sis an assignment of thi ports that is a solution, e The hierarchical structure of the domain knowledge.
any permutation of the values of the ports remains a solu- e The critical aspect of maintenance and evolution of the
tion), this model artificially increases the search space bya components catalog.
factor factorialN (N!). Unfortunately, in real-world appli- e The generative procegdynamic constraint netwoyk
cations, ports having the same role are often interchangeable.e The previously unknown set of possible components.

&.3. Our purpose

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

386 D. Mailharro

e The great variety of constraint®pological, arithme- Our framework is based upon the well-known CSP solver

tic, logical, compatibility, resource balancing, etc. library llog-Solver(ILOG, 1997. The code examples pre-
¢ The different types of relations between componentsented in further sections use the-&€ notation.

(has-parts, uses
Encapsulation and specialization concepts, hierarchical d02—' EXAMPLE
main CSR Mackworth et al., 198f and taxonomic reason- The problem is the configuration of an instrumentation and
ing are well suited to structure the domain knowledge in arcontrol system of an electrical power plant. Such a system
inheritance tree of component types. Maintainability is im-is composed of a set of programmable logic controllers
proved by the using concepts of the object paradigm, such d®LC9. Each PLC is composed of a set of racks into which
inheritance or data abstraction, by CSP declarativity and exare plugged processor cards and inputput cardg|1/O
pressiveness, and by the clear separation between domain a@erds. A processor provides a certain amount of computa-
scription and solving strategies that the CSP paradigm allowgion power and memory units. Arf© card provides a cer-
Class instantiation is quite natural for representing the gentain number of connections to sensors and actuators. The
erative process and the dynamic nature of the constraint nespecification of the desired system is given by a sétin€-
work. CSP is well suited for declaring constraints of varioustions. Each function specifies the quantities of computation
types and for describing optimization algorithms and domainpower and memory units and the number of analogic, nu-
dependent heuristics. meric, and communication connections it needs to be ex-

This paper presents the principal features of the knowlecuted. The task of the configurator is to assign the set of
edge representation model of our framework and provides functions to a set of processors anf@®Icards, and to plug
simple example extracted from a real-world configuration apthese cards into PLC racks. The goal is to minimize the num-
plication on which our approach has been applied. Section Ber of PLCs needed. There are different types of PLCs, racks,
presents the example that will illustrate the further sectionsprocessors and/O cards, and compatibility constraints at
Section 3 presents the hierarchical structure of the domairach connection level. Each hardware component produces
knowledge representation and the taxonomic reasoning iner consumes resources such as electrical intensity, calorific
plemented as constraint propagations. Section 4 presents popswer, plugging slots, computation power, memory, etc. Of
as constraint set variables with nonfinite domains to captureourse all of these resources have to be balanced.
the “notknown beforehand” set of components. Section 5de- For the sake of simplicity, we will only focus on an atomic
scribes how resource balancing constraints are representguhrt of the problem: the assignment of functions to proces-
Section 6 details a solution search on the example of Sectiosors(see Figure L There are three types of functions: FNC,
2. Section 7 presents some informal results of a nontrivial apthe noncritical functions which survey and command sen-
plication developed with our framework. Aconclusionin Sec-sors and actuators; FC, the critical ones; and FCOM which
tion 8 summarizes the paper and outlines future works. are in charge of inter-PLC communication. There are three

Function | IY_ ________ I_ Processor
power power
FNC FC FCOM XCOM XN400 XS100
1
'_)s_’ is-a relation I
_______ uses relation SecuredSystem
<>—— has-part relation

Fig. 1. Example.

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Classification and constraint-based framework 387

types of processors: XCOM, processors dedicated to com- //Objects that represent the component types
munication tasks; XS100, processors with secured hard- llcComponentType Processor, Function;
ware for critical task execution; and XN400, processors with .)
. /IDeclaration of the computation power
nonsecured hardware. A XS100 processor is composed of attribute of Processor
one secured system component. licintAttr power = Processor.addIntAttr-
Afunction is assigned to one processor but one processor (spower”, 0, 1000);
can contain several functions. Functions consume the com-
putation power that is produced by processors. /IDeclaration of the functions port of Pro-
AFunction can only consume the computation power that ©€SSor

is produced by the processor to which it is assigned: llcPort functions = Processor.addPort(lic-
Uses, Function, “functions”);

Vp € Processof >, powef = powep,. /IPower consumed by the functions connected
fEfunctiong, to a processor is
/lless or equal to the power produced by
The global computation power production must be greater this processor

than or equal to the global consumption: Processor.add(functions.getSum(“power”) <=
power);

fEF%:C[ionpowe'f Spepg&essorpow% The component types taxonomy is organized in a
generalizatiopispecialization hierarchy. Each node of the
XCOM, XN400, and XS100 produce, respectively, 200, 400tree describes a type with a set of attributes, ports, and
and 100 units of computation power. The maximal numbeiconstraints that are inherited by subtypes.
of functions that can be assigned to an XS100 processor is Subtypes can complete their ancestor description with new

limited to 3. attributes, ports, and constraints. They can also define more
The following compatibility rules are: restrictive bounds for the domain of inherited attributes or
for the cardinality of inherited ports. For example, XS100
e XCOM only support FCOM functions. is a processor that produces 100 units of computation power,
e XN400 support FCOM and FNC functions. that can support at most three functions and that is com-
e XS100 support FCOM and FC functions. posed of one secured system component:

There are several instances of each function type. Each jicconfigurator cfg;

of these instances specifies its power consumption.
/IDeclaration of the type XS100 as a sub-

type of Processor

3. CLASSIFICATION AND TAXONOMIC llcComponentType XS100 = cfg.addType (*XS100”,
REASONING “Processor”);
/I Bounds restrictions on inherited attributes

3.1. Domain knowledge representation and ports

XS100.getIntAttr(“power”).setValue (100);

We have adopted theomponent-orientethodel presented XS100.getPort(unctions”) setCardMax (3):

in Mittal and Frayman(1989. A component type is de-

scribed by a set of attributes and connection ports and by a //XS100 is composed of exactly one Secured

set of constraints. Attributes are implemented with classical system

constrained variables. Ports are constrained set variables XS100.addPort(llcHasPart, SecuredSystem, 1,

whose domain corresponds to a nonfinite set of compo- “‘secured_system”);

nents(see Section 4 for more detgil€onstraints are those

a.vailable.in llog-Solve(ILOG, 1997), plus specifig eXpres- 55 |nstantiation and refinement

sions defined on ports to represent accumulative relations

on incomplete sets of components. These expressions afée goal of the configuration task is to generate the set of

similar to the “resource-constraints” of ConfCi8aselbock, components that compose the configured artifact, to put each

1993 (see Section 5 for more details component at the right place in the types hierarchy, and to
Let us give an example of a component type declarationinter-connect these components.

A processor has an integer attribute “power” that represents Component generation is supported by type instantia-

the amount of computation power it providéisom 0 to tion. A component is created with an associated copy of all

1000, a port “functions” that represents the set of functionsthe attributes, the ports, and the constraints defined in the

that are assigned to it, and a local resource balancing cornnstantiated type and with a special constrained variable that

straint on computation power: represents its type. When the instantiated type is not a leaf

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

388 D. Mailharro

of the type hierarchy, the component mayreénedlater important operations on a component: its creation, its clas-
by a constraint propagation or by an explicit choice point ofsification, and its connection with other components. Cre-
the search procedure. The refinement of a component coation is always the first operation, but there is no mandatory
responds to a more accurate knowledge of what can or whatrder for the two others. A component can be connected be-
must be the final implementation of the component. Thusfore being classified or can be classified before being con-
when a component is refined, it becomes an instance of oneected. It is also possible to interlace the two operations:
of the descendant types of its current type, and so all theve can decide to connect some of its ports, then to refine it
attributes, ports, and constraints defined for its new typeuntil a certain level, then to connect some others of its ports,
(except those inherited from its current tymee added to then to refine it again, etc. It is also possible to delay one
the current constraint network. operation by making choice points on other parts of the con-
In our previous example, if we have the instamé&o- figured artifact, hoping that these choices will make inter-
cessotthat is refined from processor to XS100, restrictionsesting propagations on our component.

on its “power ” and “functions " variables are per- It is interesting to note that the refinement procedure is
formed and a Secured_system " portis added to it, as perfectly integrated in the CSP schema because it has a
illustrated in Figure 2. monotonic behavior. The set of the possible refinements for

The refinement procedure is powerful because it allowsa given type is a subset of the possible refinements of its
reasoning on a partial description of a component. Inferancestor types. So refining a component consists in reduc-
ences can be made on a component without knowing exing the set of its possible classifications, that is, refinement
actly what its concrete implementation in the final artifact can only reduce the domain of the constrained type variable
will be. Propagations can be performed on the possible typesf a component.
of a component to decide which types remain possible or
become required after an event occurs on any constrained
variable domain. For example, we know that our config-3'

ured artifact needs a processor but we do not know whiclEach component has a constrained variable that represents
kind of processor. So, we can create an instance of the ggts type. We call it theype variableof the component. This
neric type processor, and begin to work on it with the par-ariable has a hierarchical domain as defined in Mack-
tial knowledge we have of it, for example, the computationworth et al.(1985. The variable is bound only when it is
power it provides must be greater than or equal to the sunimpossible to refine the component more. In other words,
of the computation power consumed by the functions thathe variable can only be instantiated with leaf types of the
are assigned to it. Then, when assigning functions to it, dehjerarchy. This corresponds to the fact that the configured
ductions on its possible types are activated. For example, #rtifact must finally be built with concrete component types
the quantity of consumed power becomes greater than 104yaijlable in a constructor catalog. In our example, it is not
units, XS100 becomes inconsistent. Or if an FC function iSsufﬁcient to say that the System contains a processor; the
assigned to it, compatibility constraints propagate that onlytonfigurator must decide exactly if it is a XS100, a XN400,
XS100 is consistent and the processor is then refined tgr an XCOM.
X$100. Inferences made on the type variable are as follows:
This mechanism gives great flexibility for writing search
algorithms because choosing the type of a component can 1. When a type is inconsistent, then so are all its descen-
be separated from the component generation. There are three dents(see Figure 3b

3. Type variables

Processor

power: [0..1000]
functions: ()[0..+]

aProcessor refinement

power: [100]
functions: ()[0..5]
secured_system: ()[1]

\H XS100 XN400 XCOM

Fig. 2. Refinement procedur¢0..100q denotes a constrained integer variable whose value is between 0 and@.06Qdenotes a constrained integer
variable whose maximal value is the infinity.) [0..5] denotes a constrained set variable whose cardinality is between 0 and 5.

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Classification and constraint-based framework 389

type: type: [[1'
c

[E]]
%] Qf’i
el 0 0 GO L dte] I 1

a) Initial domain of a type variable b) E is inconsistent (inference 1)

e | n : type: [EI 1
L]

¢) H becomes inconsistent d) refinement to B e) G is inconsistent
(inference 2) (inference 3) (inference 4)

Fig. 3. Inferences on type variables.

2. When a type is inconsistent and when it was the soleéhe path that includes this type remain possiliderence
descendent of its father, then its father is also incon-3). If a type T belongs to all the possible paths, the compo-
sistent(see Figure 3c nent can be refined to thisnference 4.

3. When the component is refined to a given type, then
only the ancestors and the descendents of that type re-
main consistentsee Figure 3i ({A-B-F} {A-B-G} {A-C-H} {A-D-1} {A-E-J} {A-E-K} {A-E-L})

4. When a type becomes inconsistent and when only one _
possible descendent for the current type of the com- A Pelongs to all the possible paths, so the component
ponent remains, then the component is refined to that 1S refined toA.
descendent typésee Figure 3e

a. The initial possible paths are:

b. Ebecomesimpossible. All the paths that contaire

Because of the subsumption semantic that exist between ~ rémoved:

a leaf type and its ancestors, we can easily imagine that the
value of a type variable is an implicit set of component types
that correspond to the oriented simple path from a root type J, K, L do not belong to a possible path: they become
to a leaf type along theubsumedinks. For example, if a impossible types.

component is refined to the type XS100, the value of its

type variable is{Processor, XS1Q0since an XS100 in- c. H becomes impossible. All the paths that contklin
stance is also an instance of Processor. We can deduce the are removed:

two following properties:

({A-B-F} {A-B-G} {A-C-H} {A-D-I})

({A-B-F} {A-B-G} {A-D-1})
¢ Apossible path contains only possible component types.

« A possible type belongs to at least one possible path. ~ C d0€s not belong to a possible path: it becomes an

impossible type for the component.

The soundness of previous inferences can be easily showed
with this properties. From the first property, we can say that
if a type becomes impossible, all the paths that include it
becomes impossible values for the type varidbiéerence
1). From the second property, we can deduce that when a e. G becomes impossible. All the paths that cont@in
path becomes impossible, each of its nodes that no more are removed:
belongs to a possible path, becomes imposdiblierence
2). When a component is refined to a component type, only ({A-B-F})

d. Only paths containin® remain possible:

({A-B-F} {A-B-G})

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

390 D. Mailharro

The component is refined t6 becausd- belongs to all ity. Consistency between these two variables is maintained
the possible paths. by the following relation:

|RequiredV)| = Min(Card(V)) = Max(Car(V))
4. TOPOLOGY: NONFINITE DOMAIN FOR

PORT VARIABLES = |PossibldV)],

4.1. Motivation where| S| d_enotes the qumber o_f eleme_nts of theSéV,

the constrained set variablRequiredV), its required set;
The topology of the configured artifact, that is the descrip-possiblgV), its possible set; an@ard(V), its associated
tion of the interconnections of its components, is com-cardinality variable.
pletely represented by port constrained variables assignment. Multivalued ports are very useful in configuration prob-
In our framework, a port is typed, that is, only componentsiem description because most of the intercomponent rela-
of a given type can be connected to it. Connections betweefions are - N or N — M relations and cardinalities of these
components are always constrained by such type restrige|ations are often not fixed. For example, a set of cards is
tions; only cards can be plugged into racks. Because a typglugged into a rack. The size of this set is not fixed, but it
defines a subset of the entire existing components set, tygan be limited by the physical size of the rack. An example
ing a port reduces its domain size, and thus, reduces thgf theN — M relation is that functions are dispatched on a

size of the search space. set of I/O cards and these cards are shared between several
In configuration problems the set of the components iSynctions.

not known beforehand, and sometimes even the size of the WhenN components of type A have to be connected to

set cannot be estimated. The problem with classical COMNpne amon@ﬂ Components of type B, we uséset variables
strained variables is that the set of the possible values Mufhat haveN possib|e values; the space Comp|exity to repre-
be known before creating the variable, so it is impossible tasent the possible assignment\is< M. Set variable does
define the domain of port variables. not induce a bigger space complexity than other type of con-

However, we wanted to have port variables that wouldstraint variable. Whatever is the type of constrained vari-
be able to represent partial connections and to post corgple used, this memory complexity is unavoidable since the
straints that could generate new components to insure cofomain of a constraint variable has to be represented ex-
sistency. Even if the components do not exist yet, we wanteg|icitly. If we use Boolean variables to represent the fact
to express constraints such as “The sum of the size of thﬂ]at acomponentA is connected to a component B, we need
cards that are plugged into a rack cannot exceed the capag-x M such Boolean variables. If we use simple enumer-
ity of the rack”. We wanted to makgenerative inferences ated variables, we need variables which contaiivl pos-
that create a new component each time there is no existingible values. Fortunately, llog-Solver provides efficient
component that can satisfy the constraint. For example, Wiyternal data structures based upon bit-sets that allow low
know that a processor produces at most 1000 units of commemory consumption and fast data access. llog-Solver set
putation power, and we know that 4000 units are requireqariables have been successfully used to model large-scale
to execute a set of functions. We can easily deduce that afpplications. For instance, an airline crew scheduling appli-
least four processors are required, and so we can create thegation at Air France had to form 3000 crews with a pool of

To represent such knowledge, we have defined a new typgooo people.
of variable whose domain contains the components that al- Set variables have the ability to reduce the search space
ready existand a representation in intension of the ones th@l cutting symmetries. For instance, suppose we have to
will be created later. Ports are such variables. connect three Cach’ b, cinto a rack. If we use a model
with three variablepl, p2, p3 that represent the three con-
nections, and if p1l = a, p2 = b, p3 = ¢) is a solution, then
any permutation o8, b, c leads to the same solution. The
Aportis implemented as a constrained set variableget, second model consists of using one set variable with a car-
1992. Itis a multivalued constrained variable whose valuedinality limited to 3. Because there is no order into a set
is a set of components and whose domain is the set of theariable, there is only one possible assignment of the vari-
possible component sets that can be assigned to the vagple that is(ab c). Using constrained set variables instead
able. In practice, the domain of a constrained set variable isf single variables induces a drastic reduction of execution
represented by two sets: tip@ssible sethat contains all time by dividing the search space size by a fadrwith
the elements thatanbelong to the value of the variable and N representing the number of components to connect.
therequired sethat contains all the elements thtitbelong
to the value of the variable. When the variable is instanti-4 3. Port variables
ated, the required set is equal to the possible set. e

Aconstrained set variable is systematically associated witiThe possible set of a port variable contains all the compo-
an integer constrained variable that represents its cardinahents that already exist for the type of the port, and it also

4.2. Constrained set variables

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Classification and constraint-based framework 391

contains a particular value, calledldcard, that represents createdf2 andf3 have the domain of their poprocess
the set of all the components that have not been generatedcreased withp3. f1 is not updated because its port is
yet. The required set, that represents the effective conneclosed.
tions to the port, contains only existing components, thatis, Domain extension of a port variable is well integrated in
it never containsvildcard. the CSP paradigm because it has a monotonic behavior. In-
While wildcardis in the domain, new components can beserting a new component into the domain of a port does not
added to it. Whenvildcard is removed from the domain by change the domain at all. The new component was already
a constraint propagation or by a choice point, the port igaken into account implicitlyia wildcardbefore it became
closedand new components are ignored. concrete. It was also integrateth the cardinality+oo up-
While the port is not closed, the upper bound of the carper bound. Acomponent that is removed from a domain never
dinality variable is+oo because an unlimited number of com- comes backexcept when back-trackindpecausevildcard
ponents can be generated. Of course, it is possible to defirexpansion never generates the same component instance
another maximal value by posting an explicit constraint ontwice.
the cardinality. The lower bound of the cardinality corre-
sponds to the size of the required set as for a classical con-
strained set variable. 4.4. On demand components generation
Each time a type is instantiated, all the ports dedicated to
this type, except the closed ports, have their domain inA port can activate type instantiations when there are not
creased with the new component but the maximal value oénough existing components in its domain to insure consis-
their cardinality remains unchanged. When all the instancetency with the minimum value of its cardinality variable.
of a type are known, the type is closed and so are all th@his is what we call then-demand inferenc&or example,
ports dedicated to it. if we add to our previous example a constraint on the min-
Figure 4 shows an example where three instances of thienal cardinality of the port of2 , which says it is greater
type Function ,fl ,f2 ,andf3 have a port process ” than or equal to 4, two new processpé andp5 are gen-
on the typeProcessor . There are two existing instances erated because there are only two existing processors in the
of Processor , pl andp2. When a new process@3 is domain off2 port. Figure 5 illustrates this.

Function

T Y

| \

T
|
| T
o @ a
process: () pl p2) [0..2]
|
@
I process: (() p2 wildcard) [0..+]

|

Processor

@ process: (() pl p2 wildcard) [0..+]

a) Initial domains

Function

Processor

T T

I

T
|

L ; AN

’l 'l process: (() p1 p2) [0..2] K
I @ process: () p2 p3 wildcard) [0..+] -

] |

@ process: (() pl p2 p3 wildcard) [0..+]

7T Ay

\ s/

b) Type instantiation

Fig. 4. Increasing domain of port variablésee Figure 2 for notation conventions

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

392 D. Mailharro

Function
u 0 Processor

F T T
N
¢ 1\ N\

Type instantiation

A}

T
I
@
/ i
r (™
f process: () p2 p3 wildcard) [4..+]
| Card(f2.process) >4

Fig. 5. On-demand inferencésee Figure 2 for notation conventions

T

It is possible to make a choice point on a port variableother component generation due to a Has-partinferéfige
that will try to assign thewildcard value. In that event, a ure 69.
new component is created and triedwridcards place. If
the choice leads to an inconsistenagidcard is removed 5 RESOURCE CONSTRAINTS

from the possible set of the port. Because all components of _
a same type are considered equivalent at creation time, ahieinrich and Jungsti991) describe a component as a pro-

other component generation would just lead to a similardUFer andor consumer of resources. In a conf|gurat|o.n So-
inconsistency. lution, resources have to be globally balanced, that is, the

total amount of produced resource must be greater or equal
to the total amount of consumed resource.
4.5. Has-part relation However, a configured artifact is a structured set of com-
_ ~ ponents where each component produces resources to an-
Ports represent relations between components. Specific rgyer the demand of the components that are directly connected
lations ashas-partrelation_s are representgd by specific POrtS.to it. For example, the computer power resource produced by
Has-partrelations describe an ownership relation betweery processor s directly consumed by the functions that are ex-
two components where orithe par} exists only inside of gcyted on it. Resources have to be balanced locally for each
the other(the owney. Parts of a component are not shared;omponentto insure that the component produces enough re-
they belong to their owner component. When a componendqrces to satisfy its connected components needs.
is created, its parts are also created. This behavior is easily |, practice, the resource producti@onsumption of a
implemented with a specific on-demand inference that di'componenC is represented by one of its attributes, which
rectly assigns the components it creates to the port, instegge denotaes in the following. This value depends on the
of just making the possible set grow. We call thias-part amount of resource consumed or produced by the compo-
inference In the example of Section 2, secured system CoOMpents that are connected @ For example, the electrical
ponents are part of XS100 processors. So each time &Rtensity consumed by a programmable logic controller is
XS100 processor is created, or each time a processor is r'ye sum of its rack consumption plus its own consumption.
fined to XS100, one secured system is created and assigngge rack consumption is the sum of the consumption of the
to the processor. cards plugged in it, etc.

Part components are not shared by several composite ob- T represent such accumulative functions on the con-
jects inside the scope of a particuldas-partrelation, but acted components of a given component, we have defined
they can be shared through several differBatt-ofrela- accumulative expressions on port variables. As an example,
tions. For instance, when configuring a computer, if we sayye will detail the most useful expression that is the sum of
that a processor is a part-of the computer, the processor ifzas on the components connected to a port. The computa-

stancepl cannot be shared by several comput@®js @ tion power consumed by a processor corresponds to the sum
part of one and only one computer. Now if we say that theyf jts assigned functions consumption:

processor is part-of the computer and is also part-of the
mother-board, then the instanggis shared by an instance jicintvar sum = Processor.getPort(“functions”).
of computer and an instance of mother-board. getSum(“power”);
Figure 6 illustrates a sequence of a component generation
dueto a choice-poiriFigure 63, acomponentrefinementdue The minimum value osum is the sum ofres on the
to a compatibility constraint propagatioRigure 6D andan- components that belong to the required set of the port. The

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Classification and constraint-based framework 393
Processor
FC
, /
@ Instantiation >
process: (() wildcard) [1] - XS100
a) Choice point on fcl.process
FC Processor
7
/
process: ((p1)) [1] XS100 SecuredSystem
reﬁnanN 4
secured-system: (() wildcard) [1]
b) Compatibility constraint propagation
XS100 SecuredSystem
—
/ |
Has-part inference :
secured-system: ((ss1))[1] d f » @
¢) Has-part on-demand inference

Fig. 6. Choice point, refinement and Has-part inference.

maximum value is the sum oés on the components that
belong to the possible set:

Min(sum =

ecRequired Port)

>

ecPossiblgPort)

eres

Max(sum = eres

Consistency between the port, its cardinality, suen and
theres variables, is insured by a set of propagations. We
give several of them as an example:

1. Eachtime a componeftis connected to the port, the
minimum value of the sum is increased with the min-
imum value of theC attributeres .

. Each time a componefitis removed from the possi-
ble set of the port, if the port is closed, the maximum

4. When the maximal value of the sum is decreased, the
possible elemeni@ncluding wildcard that have a too
big value for their attributees are removed from the
domain of the port.

When the minimal value of the sum is increased, new
components are generated if the sum of the possible
element’s attributees is not sufficient.

. When the bounds of the cardinality variable are
changed, bounds of the sum can be computed using
the definition bounds of the attributes (denoted
Min, (res) and Max, (res)):

Min(Card(Port)) X Min, (res) = sum
= Max(Card(Port)) X Max, (res).

Let us illustrate the previous propagations by a simple

value of the sum is decreased by the maximum Valu%xample. Suppose we have a rack that has aBiorvhich

of the C attributeres .

. When bounds of thees variable of a componer@
are changed, minimum or maximum valuesofn can
be recomputed depending on whetlidrelongs to the
required or to the possible set.

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

are connected a set of cards. Suppose that each card pro-
duces from 10 to 100denoted10..100]) units of a given
resourceR. The value of the resourc¢denoted;) produced

by theith card depends on the functions that are assigned to
it.

This value is computed during the search by constraint

https://doi.org/10.1017/S0890060498124101

394 D. Mailharro

propagations. Suppose now that we want to compute the licPort func = Processor.getPort(“func-
sumSof R produced by the cards of the rack. Suppose that tions”);
at the beginning, there are two existing cacdsndc?2 that /I Local resource balancing constraint
pI’Oduce, I‘espectivel)[SO..SO] and [90100] units of R. Processor_add(func_ge’[Sum(“power”) <= prod_
Table 1 shows how the consistency is maintained between power);
the constrained variablds Card(E), S, andr;.
Local resource balancing is represented by a simple con- Each component type has a special port that contains all
straint on a component: its instances. Global resource balancing can be expressed
on these port variables:
/I computation power production of a pro-

cessor llicConfigurator cfg;
licintAttr prodPower = Processor.getIntAttr llcComponentType Processor, Function;
(“power); i

/I F represents the set of the instances of
/I Processor port where power consumers are Function
connected llicPort F = Function.getinstancesPort();

Table 1. Resource constraint example

Event Propogations S CardE) RequiredE) PossibldE)

Initial state There is no required card so the minimum valug of [0..+] [0..+] ¢1:[30..50]
is 0. €2:[90..100]
There is no limitation on the cardinality &, so the Wildcard
maximum value ofSis +oo.

rheEe clproduces at least 30, so the minimum valué&sof ~ [30..+] [1..+] ¢1:[30..50] €2:[90..100]
is increased with 3QPropagation L Wildcard

Card(E) =4 There is at most four required cards that produce [30..400] [1..4] ¢1:[30..50] €2:[90..100]
100 eachSis at most 40Q Propagation § Wildcard

S=100 c2is removed because it produces at least 90, that [30.100] [1..4] ¢1:[30..50] Wildcard

added to the 30 of the already required cetd
makes the minimum value & greater than 100.

(Propagation %

r, =40 Becausel is required, the minimum value &is [40..100] [1..4] c1:[40..50] Wildcard
increased(Propagation 8

S=70 The maximum amount of resource produced by the [70..100] [1..4] c1:[40..50] ¢3:[10..100]
existing card is 50. A new card is needed to satisfy Wildcard
the demand¢3is generatedPropagation b

r; =80 c3is removed because it produces 80, that added to[70..100] [1..4] c1:[40..50] c4:[10..100]
the 30 of the already required cacd, makes the Wildcard
minimum value ofS greater than 10Q.Propagation
4).

The maximum amount of resource produced by the
existing card is 50. A new card is needed to satisfy
the demandc4 is generatedPropagation b

r,=10 The maximum amount of resource produced by the [70..100] [1..4] c1:[40..50] c4:[10]
existing cards is 6050 bycl and 10 byc4). A new ¢5:[10..100]
card is needed to satisfy the deman#8js generated Wildcard
(Propagation b

CloseE c5is required because it is the sole possible card [70..100] [2..3] c1:[40..50] c4:[10]
that can produce the difference between the required ¢5:[10..60]

card productior{50) and the minimum deman@0).
rs is limited to 60 because the sum cannot be greater
than 100, and1 already produces 40.

rs =30 Because all the producers are knoffris closed, [70..90] [2..3] c1:[40..50] c4:[10]
the maximum value o§ can be recomputed. ¢5:[10..30]
(Propagation 8

rs & E Because all the producers are knottis closed,
the maximum value o§ can be recomputed.
(Propagation 2
The minimum value ot5is increased to satisfy the [70..80] [2] c1:[40..50]
demand. qc5:[20..30]

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Classification and constraint-based framework 395

Il P represents the set of the instances of The optimal solution contains four processors. A possi-
Processor ble distribution of the functions igcomlandfcom3in p1;
licPort P = Processor.getinstancesPort(); fcom2andfnclin p2; fcl, fc2, andfc4in p3; fc3andfc5in

/I Global resource balancing constraint p4. .) .
cfg.add(F.getSum(“power”) <= P.getSum (“pow- We do not detail the steps to reach this solution and to
er)); prove optimality because they are similar to those pre-

sented in Tables 2 and 3.
6. A SAMPLE OF SOLVING

This section details the execution of the solution search for - APPLICATION EXPERIENCE

the example presented in Section 2, to show how taxowe have experimented our framework on a real-world prob-
nomic reasoning, port extensions, and resource constrainfsm described in Mailharro and LeQuenv@®95. The ap-
interact. The goal is to find the configuration that mini- plication has been developed at Electricite De Frafd2F).
mizes the number of processors needed to support the ex-consisted in configuring the instrumentation and control
ecution of the functions listed in Table 2. hardware and software architecture of nuclear power plants.
The algorithm used is a classical Branch and Bound proThe configurator had to assign a predefined set of functions
cedure that alternates choice points on variable assignmet§ a hardware architectuteubicles, racks, processorggl
and constraint propagations. When an inconsistency is desards, physical connection to sensors and actugtansl to
tected, back-track is performed until the last choice pointa software architecturg@rograms, cyclic tasks, logical con-
to try another value. The decision variables are the jart nectiong. Each part of the configuration had to satisfy a
cess of the functions. These variables are instantiated injarious and complex set of constraints: safety, capacity, com-
the order of the functions creation, that is, the order giverpatibility, etc.

in Table 2. We use a heuristic that chooses existing compo- The application has been used to configure a real nuclear

nents before trying to generate a new one. power plant. It had to generate and interconnect several thou-
At the beginning, there is no processor. So all pine- sands of components. The execution time was about one
cess ports have the following forn{() wildcard) hour on a Sun Sparc 20. Such a configuration required sev-

[1] . that denotes a cardinality constrained to be equal to ral weeks when it was done manually.
and no existing processor.

Table 3 describes each choice point and its consequent
propagations until the first solution is reached— b de- 8. CONCLUSION
notes a choice point that chooses the valand assigns it
tob.

Optimization is done by posting a more restrictive con-
straint on the cost function each time a solution is found
such that the cost of theh solution is strictly bettefgreater
or less than the cost of thén — 1)th solution. In our ex-

We have presented a new configuration dedicated frame-
work whose objective is to provide an expressive and struc-
tured knowledge representation model and a set of powerful
‘and efficient algorithms that allows construction and opti-
mization of solutions. The knowledge of a configuration

ample. the cost function is the numMber of DroCeSSors Thgroblem domain is concentrated in the catalog of compo-
imple, th unctiont u P : ent types that define generic local models of the different
first solution contains six processors. The second must con-

; f d bl d .br}nodules that can be combined to form the configured arti-
:ﬁ:—?satléprgolitillvtié);%%?n?fgll?tri]onsics) :’enécI\ae de 4 descri ef%l_ct. B_e_cause this catalog is constantly_ modified,_the_main-
’ tainability of the knowledge representation model is critical.

We have explained that our approach consists in consid-
ering configuration problems both as classification prob-

Table 2. Data lems and as constraint satisfaction problems. We have

combined object-oriented concepts with CSP concepts to

Computation power adopt the strengths of both. The object-oriented approach

Instance Type consumption allows the structuring of the domain knowledge as a
fcom1 FCOM 180 generalizatioyfispecialization tree of component types with
fcom2 FCOM 30 inheritance mechanism that improves its modularity and
fcom3 FCOM 200 maintainability. The CSP approach provides a declarative
]tgil :z('\:'c 228 and expressive formalism to represent the constraints that
fe2 FC 30 must be satisfied and the solving strategies.

fc3 FC 10 We have shown how taxonomic reasoning can be imple-
fc4 FC 40 mented with constraint propagations and hierarchical do-
fcs FC 70

main CSP. We have shown how dynamic CSP can be supported
by type instantiation and object refinement mechanism.

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

396 D. Mailharro

Table 3. First solution search

Step Action Propagations

1 Wildcard — fcom1

Generation of process@l and connection técoml
plis not XS100 becauseomlneeds 180 power units whereas XS100 only produces 100 units;
plbecomes impossible fdcl, fc2, fc3, fc4, fe5 functions because of compatibility constraints.

2 pl— fcom2 * XCOM becomes an impossible type fpt because 210 power units are needézbm1+
fcom2 and XCOM only produces 200 units;
» plis refined to XN400 because it is the sole possible refinemenpIpr
» fcom3andfncl become impossible fqul because they need more power than availabfglin
(190 free against 200 and 220 asked
3 Wildcard —» fcom3 ¢ Generation of process@2 and connection tbcom3
* p2is not XS100 becauseom3needs 200 power units whereas XS100 only produces 100 units;
* p2becomes impossible fdcl, fc2, fc3, fc4, fc5 functions because of compatibility constraints;
» fnclbecomes impossible f@2 because it needs more power than availablgZiimaximum
200 free against 220 asked
4 Wildcard — fncl » Generation of process@3 and connection téncl;
» p3is refined to XN400 because of compatibility constraints;
» p3becomes impossible fdcl, fc2, fc3, fc4, fc5 functions because of compatibility constraints.
5 Wildcard — fcl » Generation of process@4 and connection técl;
» p4is refined to XS100 because of compatibility constraints;
» A secured-system is generated and connectgel{d¢ias-part inference
6 p4 — fc2 « fc5 becomes impossible fg4 because it consumes more power than availabjgi(0 free
against 70 asked
7 p4 — fc3 « fc4 becomes impossible fqr4 because XS100 support at most three functions.
8 Wildcard — fc4 » Generation of process@5 and connection téc4;
» p5is refined to XS100 because of compatibility constraints;
» A secured-system is generated and connectgb {dHas-part inferenge
« fc5 becomes impossible f@5 because it consumes more power than availabfgbsi(60 free
against 70 asked
9 Wildcard — fc5 » Generation of process@6 and connection witlfic5;

 p6is refined to XS100 because of compatibility constraints;
» A secured-system is generated and connected {¢Has-part inferende

Table 4. Second solution search

Step Action Propagations

10 |Processof < 6 Back-track to step 9: wildcard becomes impossiblef¢dr Inconsistency is detected
because cardinality is at least 1 and there is no possible processor;
Back-track to step 8: wildcard becomes impossiblefédr Inconsistency is detected
because cardinality is at least 1 and there is no possible processor;

Back-track to step 7.

11 Wildcard — fc3

Generation of process@5 and connection téc3;

p5is refined to XS100 because of compatibility constraints;

A secured-system is generated and connectgxb {dias-part inference

Type processor is closed because the maximal number of instances is reached;

All ports process are closed;

« fc5is assigned t@5 because it is the sole possibility;

 fc4 becomes impossible fq5 because it consumes more power than availabfEbi(R0
free against 40 asked

« fcdis assigned t@4 because it is the sole possibility.

.

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

Classification and constraint-based framework 397

Because the set of the components that compose the coBRreuder, E.C(199]). Eliminating interchangeable values in constraint sat-

; ; ; isfaction problemsProc. AAAI Conf, 227-233.
figured artifact is not known beforehand, we have pr0poseq{—laselbock, A(1993. Knowledge-based configuration and advanced con-

implementing connection ports as constrained set variables siraint technologies. Ph.D. Dissertation, Institut fur Informationssys-
with nonfinite domain: This allows reasoning on the partial ~ teme, Technische Universitat Wien.

knowledge that is available when constructing the artifactHeinich, M., & Jungst, E.W(1991. A resource-based paradigm for the
configuring of technical systems from modular componeftsc. 7th

We have explained the semantic and the mechanisms asso- conf. on Artificial Intelligence Application@57-264.
ciated with such variables. ILOG (1997). Reference Manual and User's Manual, ILOG Solv410

; ; _ Edition. ILOG, Paris, France.
We have also explalned how port variables generate Con](lein, R. (1996. A logic-based description of configuration: The Con-

ponents on demand considering their cardinality and how siryctive Problem Solving approach. Workshop Notes of AAAI Fall
has-part relations are implemented by a specialization of Symposium on Configuratipa-10b. AAAI Press, Menlo Park, CA.

this on-demand mechanism Finally we have shown hov{ylailharro, D., & LeQuenven T(1995. A constraint based tool for auto-
. . L ’ . matic sizing of an instrumentation and control architectBrec. First
accumulative functions defined on port variables can be used |iog solver Users Conf.

to represent resource balancing constraints that are able MrDermott, J(1982. R1: Arule based configurator of computer systems.

; Artificial Intelligence 19 39-88.
generate components to ensure consistency. Mackworth, A.K., Mulder, J., & Havens, W1985. Hierarchical arc con-

Our fUture_ work will tak?_ into qccoupt the concept of sistency: Exploiting structured domains in constraint satisfaction prob-
component interchangeability defined in Freudéd991) lems.Computational Intelligence,1118-126.

im_ Mittal, S., & Frayman, F(1989. Towards a generic model of configura-
and HaselbOCK1993 to reduce the search space by elim tion tasksProc. Eleventh Int. Joint Conf. of Artificial Intelligenc&395—

inating equivalent assignment of port variables. Interchange- 1401,

ability must be context dependent because two componentéttal, S., & Falkenhainer, B1990. Dynamic constraint satisfaction prob-
; i ; lems.Proc. AAAI Conf. 25-32.

are m_terChangeable Onl_y in comparlson to the role the}é’uget, J.K1992. Programmation par contrainte orientee obrtc. Int.

have just as they are being considered. For example, when "cont. on Expert Systems of Avignd29-138.

two cards of two different types are plugged into a rack,Sabin, D., & Freuder, F1996. Configuration as Composite Constraint

i i i Satisfaction. InWorkshop Notes of AAAI Fall Symposium on Config-
they are interchangeable if they have the same physical uration, 28-36. AAAI Press. Menlo Park, GA.

size. But if we ConSiqer them as sensor Conn_eCtionS Proyokoyama, T(1990. An object-oriented and constraint-based knowledge
ducer for function assignment, they may not be interchange- representation system for design object modeliimgc. Sixth Conf. on

able if they do not provide the same number or the same Artificial Intelligence Applications146-152.
type of physical connections.

REFERENCES Daniel Mailharro is an enginer that works in the Research
o and Development Department of ILOG, S.A. in Paris,
Barker, V., & O’'Connor, D.(1989. Expert systems for configuration at = Aft hievi M f Sci Paris Uni
Digital: XCON and beyondCommunications of the ACM 32 (398— ran_ce. er achieving a Master of Science at ar_'s) _m'
318. versity, he worked for 7 years as a consultant specializing
Brachman, R.J, & Schmolze, J.G985. An overview of the KL-ONE i constraint programming for TéléCom, and energy and
Knowledge Representation Syste@ognitive Science 9(2171-216.
Cunis, R., Gunter, A., Syska, I., Bode, H., & Peters(+889. PLAKON, transport companies. Currently, he is focusing his efforts

an approach to domain independent constructiRioc. Conf. IEA on constraint problems at ILOG.
AlE.

https://doi.org/10.1017/50890060498124101 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124101

