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Abstract

In this paper we consider random distance graphs motivated by applications in
neurobiology. These models can be viewed as examples of inhomogeneous random
graphs, notably outside of the so-called rank-1 case. Treating these models in the context
of the general theory of inhomogeneous graphs helps us to derive the asymptotics for the
size of the largest connected component. In particular, we show that certain random
distance graphs behave exactly as the classical Erdős–Rényi model, not only in the
supercritical phase (as already known) but in the subcritical case as well.
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1. Introduction

Random distance graphs are often designed as models of real-world systems where some
of the properties of the connections between vertices are observed to be dependent on their
relative distance (for some early examples, see, e.g. [1], [3], and [15]). It is generally assumed
that the vertices of such models are in some metric space, most often R

d or Z
d . The probability

of a connection between any two vertices in these graphs is a function of the distance between
them.

A great demand for this class of models is prompted in particular by developments in
neuroscience. It must be noted that physiological data on the brain structure of a living organism
is a highly costly exercise (see, e.g. the Blue Brain Project of [12]), hence, inevitably it has to
be complemented with theoretical studies. A number of models have been developed along this
line to make mathematical results accessible for applications and, in particular, random graphs
have become a common tool in the exploration of neuronal networks (see, e.g. [16] and [18]
and the references therein).

Recently, a model for the structure and dynamics of the neuropil has been proposed by
Janson et al. [10]. Inspired by this work, we consider here certain random distance graphs,
whose vertices lie on a two-dimensional discrete torus and the connection probabilities decay
both with the distance between the vertices and the total number of vertices in the graph (see
Section 2 for a precise definition). Our results deal with one of the primary questions, namely,
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the size of the largest connected component. This characteristic is very important for the study
of processes on the networks, as, e.g. the propagation of impulses. In complex dynamical
systems the parameters of connectivity change in time; for neuronal networks this is a known
property of the synaptic plasticity. Therefore, it is important to have a complete picture of
the scalings for the largest connected component on the entire parameter space, at least for
some basic test networks. Such a complete description should help to fit the parameters of the
connections in a neuronal model based only on qualitative information on the functioning of a
network.

As a mathematical object, random distance graphs form a particular subclass of the general
inhomogeneous random graph models [6]. The graphs treated in [6] have the following common
feature: edges are placed independently from each other and the probability of edges is, roughly
speaking, of order 1/n, where n is the size of the graph (i.e. the number of its vertices). Briefly,
each of the n vertices is assigned a type, i.e. a value in some separable metric space S. Given
a set of such values {x1, . . . , xn} any two vertices i and j are connected with probability

pn(i, j) = min

{
κ(xi, xj )

n
, 1

}
, (1)

where κ is a symmetric nonnegative measurable function.
Most investigations on random distance graphs have been carried out without much use

of [6] (not counting Example 4.6 of [6] itself, Bollobás et al. [7] is almost an exception). The
reason, perhaps, is that random distance graphs are outside of the so-called rank-1 case, and
thus they belong to a complicated subclass of the inhomogeneous models. The theory of [6]
gives us the critical parameters for the emergence of the giant component and even describes
the size of this component in the supercritical phase. However, the subcritical phase of non
rank-1 models was studied only for some particular subclasses (see [19]), which do not include
the present model. Furthermore, the critical phase has been studied so far only for the rank-1
cases (see [4], [5], and [20]).

The paper is organized as follows. In Section 2 we define our model and outline the
connections with some random graphs models previously studied. The main theorems are
stated in Section 3, whereas their proofs are collected in Section 4.

2. The model

Let N ∈ N, N > 1, and let VN = {1, . . . , N}2 denote the set of vertices in the two-
dimensional discrete torus T

2
N = (Z/NZ)2. Define the graph distance d(u, v) between two

vertices u = (u1, u2) and v = (v1, v2) in VN as

d(u, v) = dN(|u1 − v1|) + dN(|u2 − v2|), (2)

where

dN(i) =
{

i, 0 ≤ i ≤ N/2,

N − i, N/2 < i < N,
for i ∈ {0, . . . , N − 1}.

Let W be a nonnegative random variable, and let Wv , v ∈ VN , be independent and identically
distributed (i.i.d.) copies of W . Given the values Wv, v ∈ VN , assume that between any two
vertices u, v ∈ VN an edge is present independently of others and with probability

p(u, v) = min

{
c

WuWv

Nd(u, v)
, 1

}
, (3)

where c > 0 is a parameter. We denote by GN,W the resulting random graph on VN .
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Note that, in the case of constant W ≡ 1, this graph is exactly the one introduced by Janson et
al. [10] and it also has common features with other random graph models considered previously
(see, e.g. [18]). Janson et al. [10] studied a bootstrap percolation process as a model of the
spread of activation in a neuronal tissue. They also derived the size of the diameter of the graph,
thus extending the corresponding results of [6] for graphs with unbounded number of types.

In the language of inhomogeneous graph theory, the model introduced by Janson et al. [10]
can be seen as a homogeneous case (that is, roughly speaking, when the degrees of the vertices
are asymptotically all the same; see Example 4.6 of [6]). Note, however, that the general
form (3) considered here (inspired by [8]) makes the model essentially inhomogeneous.

It is worth mentioning that the model (3) is also closely related to certain bond percolation
models (see [15] and, in particular, [1] and [14]). In such models, the graphs have a countable
set of vertices and, as in the model we investigate here, edges between them are present with a
distance-dependent probability. The main problem is whether, depending on the values of the
parameters, a particular vertex belongs to an infinite cluster with positive probability. It was
shown in [7] that this question for the spread-out percolation model [14] can be resolved using
the theory of inhomogeneous random graphs.

3. Results

It has been already shown in [6, Example 4.6] that in the supercritical case a homogeneous
distance graph has the same asymptotics for the size of largest connected component as in the
classical Erdős–Rényi model. We prove that this result holds for the subcritical case as well.

Theorem 1. Let GN denote a random graph on VN with probability of connections

p(u, v) = min

{
c

Nd(u, v)
, 1

}
, u, v ∈ VN,

and let C(GN) denote the size of the largest connected component in GN . Set

λ = c4 log 2.

Then the following hold.

(i) If λ < 1, we have
C(GN)

log(N2)

P−→ 1

λ − 1 − log λ
as N → ∞. (4)

(ii) If λ > 1 then
C(GN)

N2
P−→ β as N → ∞,

where β = β(λ) is the positive solution of β = 1 − eλβ .

As we noted above, only Theorem 1(ii) follows from the results of [6].

Remark 1. One may observe a certain redundancy here, as statements (i) and (ii) of Theorem 1
are particular cases of the following Theorems 3 and 2, respectively. However, stated separately,
Theorem 1 makes it clear that the largest connected component in GN behaves, asymptotically,
as the one in the Erdős–Rényi graph Gn,p, with n = N2 and p = λ/n.

Furthermore, it is plausible to conjecture (but we do not study this case here) that the analysis
of the critical phase in [20] can be extended to this model as well. This would yield that even
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in the critical case, that is, when λ = c4 log 2 = 1, the graph GN has the same asymptotics
for the largest component as Gn,p, with p = 1/n and n = N2, i.e. that the largest connected
component rescaled by n2/3 converges in distribution to a certain positive random variable.

The following theorems treat the general model (3).

Theorem 2. Assume that

EW 2 =
∫ ∞

0
x2μW(dx) < ∞.

Let C(GN,W ) denote the size of the largest connected component in GN,W , and denote again

λ = c4 log 2.

Then
C(GN,W )

N2
P−→

∫ ∞

0
β(x)μW(dx) =: β̂, (5)

where β(x) is the maximal solution to

f (x) = 1 − exp

(
xλ

∫ ∞

0
yf (y)μW(dy)

)
. (6)

Furthermore, β̂ > 0 if and only if
λEW 2 > 1. (7)

Note that the critical parameter λEW 2 in Theorem 2 is similar to the lower bound derived
in Theorem 4.1 of [8] (in fact, it has exactly the same meaning of a certain averaged degree of
a vertex as in [8]) to provide the necessary conditions for percolation.

Theorem 2 follows essentially from the general theory of [6], as we explain below. It tells
us that the limit when N → ∞ of the (scaled) largest component in GN,W coincides with the
corresponding limit for the rank-1 random graph on VN defined by the following probabilities
of connections between any u, v ∈ VN :

p1(u, v) = min

{
λ

WuWv

N2 , 1

}
. (8)

(Note, however, that for any finite N, models (3) and (8) are not equal in distribution.)
Here the largest connected component in the subcritical phase is sensitive to the tail of

the distribution of W . It is known that in models of the form in (8), the size of the largest
component varies between polynomial (see [9]) and logarithmic (see [17]) order depending on
the distribution of W . We shall consider here a particular case of the distribution of W to show
the similarities with Theorem 1.

Theorem 3. Assume that, for some positive ε, EeεW < ∞. If also λEW 2 < 1, there exists a
unique y > 1 which satisfies

y = 1

λM

E(WeλM(y−1)W )

E(W 2eλM(y−1)W )
,

where M = EW . Let C(GN,W ) be the size of the largest connected component in GN,W . Then
we have

C(GN,W )

log(N2)

P−→ 1

log γ
as N → ∞,

where

γ := 1

λE(W 2eλM(y−1)W )
> 1.
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Finally, we remark that our analysis based on the inhomogeneous random graph theory is
well applicable for models of type (3) even for different distance functions d as, e.g. euclidean
distance, as long as one can justify the relations similar to (9) and (27). Also, our approach can
be generalized to the similar models in higher dimensions.

4. Proofs

4.1. Random distance graph via inhomogeneous random graphs

Rescale the set VN as follows:

VN → ṼN =
{(

u1

N
,
u2

N

)
: (u1, u2) ∈ VN

}
.

Hence, ṼN is a set of N2 vertices in the continuous torus T
2 := (R/Z)2. Let μL denote the

Lebesgue measure on T
2, and let μW be the Borel measure on R+ induced by the random

variable W . Denote S := T
2 × R+, and define the product measure μ = μL × μW on this

space. Then the triple V := (S, μ, {(v, Wv) : v ∈ ṼN }) satisfies the definition of a generalized
vertex space from [6], i.e. for any Borel set A ⊆ S, the following convergence holds:

|{v : (v, Wv) ∈ A}|
N2

P−→ μ(A).

Define now, for u 	= v, u, v ∈ T
2, the kernel

κ1(u, v) := 1

ρ(u, v)
,

where, for any u = (u1, u2), v = (v1, v2) ∈ T
2,

ρ(u, v) = ρ1(|u1 − v1|) + ρ1(|u2 − v2|)
with

ρ1(a) =
{

a, 0 ≤ a ≤ 1
2 ,

1 − a, 1
2 < a ≤ 1.

Furthermore, let κ2(x, y) := xy denote the standard product on R
2+.

Finally, we define the kernel on S × S:

κ((u, x), (v, y)) := κ1(u, v)κ2(x, y), (u, x), (v, y) ∈ S,

and construct the random graph GV(N2, κ) (following the notation of [6]) on a given set ṼN

of N2 vertices in S, by placing an independent edge between any pair of vertices xi , xj ∈ ṼN

with probability (see (1))

p̃(xi , xj ) := min

{
c
κ(xi , xj )

N2 , 1

}
.

Proposition 1. The model GN is equivalent to the inhomogeneous random graph model
GV(N2, κ).

Proof. Given a set of types wv, v ∈ VN , let ṽ = v/N for any v ∈ VN . Then the probability
of connection (3) satisfies

p(u, v) = min

{
c

wuwv

Nd(u, v)
, 1

}
= min

{
c
κ1(̃u, ṽ)wuwv

N2 , 1

}
= p̃((̃v, wv), (̃u, wu)). (9)
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Hence, given a set of types wv, v ∈ VN , there is a connection between any two vertices
u, v ∈ VN of GN if and only if there is a connection between the corresponding vertices (̃u, wu)

and (̃v, wv) of the graph model GV(N2, κ). �
It is straightforward to check that the kernel κ is graphical (see Definition 2.7 of [6]), since

it is continuous, κ ∈ L1(S × S, μ × μ), and the number of edges in the graph e(GV(N2, κ))

satisfies the following convergence:

1

N2 Ee(GV(N2, κ)) → 1

2

∫
S

∫
S

κ(x, y) dx dy. (10)

4.2. Proof of Theorem 2

Proposition 1, together with (10), allows us to apply some of the results of [6] to our case.
In particular, we can approximate the size of the connected component by the total progeny of a
multitype Galton–Watson branching process B(x), with type-space S, where the single ancestor
has type x, and the number of offspring of type y of each individual of type x ∈ S has Poisson
distribution with intensity κ(x, y)μ(dy). Denote here βκ(x) and X(x), correspondingly, the
survival probability and the size of the total progeny of this branching process with the ancestor
of type x.

Following [6], let us define the integral operator Tκ :

(Tκf )(x) :=
∫

S
κ(x, y)f (y) dμ(y)

for all measurable functions f (when the integral is defined) on S, and define the norm of Tκ

as
‖Tκ‖ := sup{‖Tκf ‖2 : f ≥ 0, ‖f ‖2 ≤ 1}. (11)

Then, by Theorem 3.1 of [6] (whose applicability here is granted by Proposition 1), we
immediately obtain

C(GN,W )

N2
P−→

∫
S

βκ(x)μ(dx) =: β̂. (12)

Moreover, it was also proved in [6] that the survival probability βκ is the maximal solution to

f (x) = 1 − e−(Tκf )(x), x ∈ S, (13)

and that β̂ > 0 if and only if
‖Tκ‖ > 1. (14)

Observe that it follows directly from the symmetry of our model that the survival probability
βκ(x), where x = (u, x) ∈ T

2 × R+, does not depend on u ∈ T
2, but it is only a function of

x ∈ R+. Hence, we shall simply write the survival probability as

βκ(x) = βκ(x), x = (u, x) ∈ S,

which, by (13), is the maximal solution to

f (x) = 1 − exp

(
−λ

∫ ∞

0
xyf (y)μW(dy)

)
, x ∈ R+, (15)

i.e. (6). This together with (12) yields (5).
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We are left to prove (7). Firstly, one could use definition (11) to derive straightforwardly

‖Tκ‖ = λEW 2,

which together with (14) would yield (7). However, it is easier to derive (7) using direct
relations between the defined above multitype branching process and a certain homogeneous
Galton–Watson process which we define shortly.

Let us introduce first yet another branching process B1(x) with type-space R+, where the
single ancestor has type x, and the number of offspring of type y ∈ R+ of any individual of
type x ∈ R+ has Poisson distribution with intensity λxyμW(dy). Using the same analysis as
for B, we obtain the survival probability β1

κ (x) of B1(x) as the maximum solution to (15).
Therefore, in the notation of Theorem 2, it holds that

β(x) = β1
κ (x) = βκ(x)

for all u ∈ T
2 and for any x = (u, x).

Finally, we define a homogeneous Galton–Watson process B2. This process starts with one
single ancestor and its offspring distribution Ỹ has a compound Poisson distribution

Poisson(W̃λE(W)),

where the random variable W̃ has the following so-called size-biased distribution:

μW̃ (dy) := yμW(dy)

EW
.

Let us denote X1(x) and X2 as the total progeny of B1(x) and B2, respectively. It was
proved in Section 2.2 of [17], that X1(W̃ ) and X2 are equal in distribution, i.e.

X1(W̃ )
d= X2. (16)

In the case of a homogeneous process B2, the necessary and sufficient condition for a positive
survival probability is simply E(Ỹ ) = λE(W 2) > 1. Therefore, (16) yields P(X̃1(W̃ ) = ∞) >

0 if and only if λE(W 2) > 1.
It follows by the properties of a Poisson distribution that the type of a randomly chosen

offspring of the ancestor in the process B1(x) has distribution W̃ for any x ∈ R+. Hence,
for any x, the process B1(x) survives with a positive probability (i.e. β1

κ (x) > 0), if B1(W̃ )

survives with a positive probability (i.e. P(X̃1(W̃ ) = ∞) > 0). Since β1
κ is the maximal

solution to (15), i.e. to (6), it follows that β̂ > 0 (see (5)) if λE(W 2) > 1.
On the other hand, if B1(W̃ ) survives with probability 0 (i.e. if λE(W 2) ≤ 1) then the

equality

0 = P(X̃1(W̃ ) = ∞) =
∫

R+
P(X̃1(x) = ∞)μW̃ (dx) =

∫
R+

β1
κ (x)μW̃ (dx)

implies that β1
κ = 0, μW̃ -almost surely (a.s.), and, hence, μW -a.s. Since β1

κ is the maximal
solution to (15), i.e. to (6), it follows that in this case β̂ = 0.

Summarizing, we find that β̂ > 0 if and only if λE(W 2) > 1. In turn, this yields ‖Tκ‖ =
λE(W 2). This proves the theorem. �
4.3. Proof of Theorem 1

4.3.1. Breadth-first search. Let us fix a vertex v ∈ VN arbitrarily and let Cv(N) denote
the connected component containing v. We use a standard procedure to reveal Cv(N), an
exploration algorithm known as the breadth-first search (see, e.g. [2] or [21]). This is defined
as follows.
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In the course of exploration, the vertices of GN can be in one of the three states: active,
saturated, or neutral. At time i = 0, the vertex v is set to be active, while all the other vertices
are neutral. This ends step i = 0.

We denote by Si the set of active vertices at time i. Hence, |S0| = 1. The state of a vertex
changes during the exploration of Cv(N) as follows.

At each time step i ≥ 1, we choose an active vertex in Si−1 uniformly at random and denote
it by vi . Then each vertex u which is neutral after step i − 1 becomes active at step i, if it is
connected to vi ; otherwise, u stays neutral. After searching the entire set of neutral vertices the
vertex vi becomes saturated. This finishes the ith step of the exploration algorithm.

The process stops when there are no more active vertices, i.e. at the first time i when |Si | = 0,
that is, at time

T = min{i ≥ 1 : |Si | = 0}. (17)

At this time all considered vertices are saturated and they do not have any connection to the
neutral vertices. Hence, Cv(N) coincides with the set of saturated vertices, and, thus, |Cv(N)| =
T .

Let Xi denote the number of vertices becoming active at the ith step. Then the following
recursion holds:

|S0| = 1, |Si | = |Si−1| + Xi − 1 = X1 + · · · + Xi − (i − 1). (18)

Correspondingly, we can rewrite T , defined in (17), as follows:

T = min{i ≥ 1 : X1 + · · · + Xi = i − 1}.
4.3.2. Subcritical case. In this section we assume that λ < 1 and we prove part (i) of Theorem 1.

Upper bound. We start by finding an upper bound on C(GN), the size of the largest connected
component. Namely, we prove that, for any positive ε,

P

{
C(GN)

log N
<

2

1 − λ − log λ
+ ε

}
→ 1 as N → ∞. (19)

The proof is based on the exploration algorithm described above. We also use essentially
the geometry of the discrete torus with the distance defined in (2). Recall, in particular, that the
number Nr of vertices at distance r from any given vertex, for N odd, is given by

Nr =
{

4r, 1 ≤ r ≤ �N/2,
4(N − r), �N/2 < r ≤ N; (20)

while for N even, it is given by

Nr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4r, 1 ≤ r < N/2,

2(N − 1), r = N/2,

4(N − r), N/2 < r < N,

1, r = N.

(21)

Recall that the vertices becoming active at the ith step are connected to the vertex vi . Let Xi,r

denote the number of vertices at distance r from vertex vi , which become active at the ith step.
Hence,

Xi =
N∑

r=1

Xi,r .
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Let Ui denote the number of active and saturated vertices at time i (in other words, Ui is the
number of vertices revealed by time i). In particular, by (18), we have

Ui = |Si | + i. (22)

Correspondingly, for any vertex u, let Ui,r (u) be the number of active and saturated vertices at
time i, which are at distance r from u. In particular, for any i ≥ 1 and any vertex u, it holds
that

N∑
r=1

Ui,r (u) = Ui.

The number Xi,r depends on the number Ui−1,r (vi) of active and saturated vertices at time
i − 1 which are at distance r from vi , in the following way:

Xi,r |Ui−1,r (vi ) ∈ binomial(Nr − Ui−1,r (vi), pr), (23)

where we use the notation

pr = c

Nr
= p(u, v) if d(u, v) = r.

Remark 2. In (23) and elsewhere, we write a random parameter for a distribution with the
usual meaning that the distribution is defined conditionally on a given value of the parameter.

Let us introduce the random variables

Zi,r ∈ binomial(Ui−1,r (vi), pr), X+
i,r = Xi,r + Zi,r ∈ binomial(Nr, pr).

Then, we define

X+
i :=

N∑
r=1

X+
i,r .

If a random variable ξ stochastically dominates η we denote this by η � ξ .
It is clear from the above definition that Xi,r � X+

i,r , and, correspondingly, Xi � X+
i .

Therefore,
|Si | � S+

i := X+
1 + · · · + X+

i − (i − 1).

Note that the largest connected component has size larger than k if and only if there is a
component of size at least k. Then

P{C(GN) ≥ k} = P{there exists v : |Cv(N)| ≥ k} = P

{⋃
v∈V

{|Cv(N)| ≥ k

}
.

It follows simply by the symmetry of the model that the random variables |Cv|, v ∈ VN, are
equally distributed. This allows us to derive, from the last equation, the following bound:

P{C(GN) ≥ k} ≤ N2
P{|Cv(N)| ≥ k} (24)

for any arbitrarily fixed vertex v.
By the exploration algorithm, we find that the probability for a component Cv(N) to be

larger or equal to k is equal to the probability of having active vertices in each of the k −1 steps
of the exploration, hence,

P{|Cv(N)| ≥ k} = P{|St | > 0 for all t ≤ k − 1}
≤ P{S+

t > 0 for all t ≤ k − 1}
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≤ P{S+
k−1 > 0}

= P

{k−1∑
t=1

X+
t − (k − 2) > 0

}
. (25)

We use the coupling method described in [11] for finding stochastic bounds on X+
i . It follows

that X+
i,r is stochastically bounded from above by a random variable Yi,r

d= Poisson(−Nr log(1−
pr)), i.e. X+

i,r � Yi,r . Therefore, we can stochastically bound X+
i by a Poisson random variable

as follows:

X+
i �

N∑
r=1

Yi,r ∈ Poisson

( N∑
r=1

−Nr log(1 − pr)

)
= Poisson(λN), (26)

where

λN =
N∑

r=1

−Nr log(1 − pr)

=
N∑

r=1

Nr(pr + o(pr))

=
�N/2∑
r=1

4r(pr + o(pr)) +
N∑

r=�N/2+1

4(N − r)(pr + o(pr))

= λ − 2c

N
+ o

(
1

N

)
. (27)

Let Yi , i ≥ 1, be i.i.d. random variables with Poisson(λN) distribution. Then we derive,
using (25) and (26) with (27), the following upper bound for the probability in (24):

P{C(GN) ≥ k} ≤ N2
P

{k−1∑
t=1

X+
t > k − 2

}
≤ N2

P

{k−1∑
t=1

Yt > k − 2

}
. (28)

Using Chebyshev’s inequality in (28), for any h > 0, we have

P{C(GN) ≥ k} ≤ N2
P

{k−1∑
t=1

Yt > k − 2

}

≤ N2 ∏k−1
t=1 EehYt

eh(k−2)

= N2 exp(−h(k − 2))

k−1∏
t=1

exp(λN(eh − 1))

= N2 exp(−h(k − 2)) exp((k − 1)λN(eh − 1)). (29)

The last equation attains its minimum at h = log((k − 1)/kλ), where it is equal to

N2 exp(k(1 − λ + log λ) + ko(1)).

Therefore, setting k = (2/(λ − 1 − log λ) + ε) log N in (29), we find that (19) holds.
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Lower bound. To complete the proof of (4), we will prove that, for any ε > 0,

P

{
C(GN)

log N
>

2

1 − λ − log λ
− ε

}
→ 1 as N → ∞. (30)

Before proceeding to the proof of (30), we derive a useful result, which roughly speaking tells
us that removing an arbitrary set of o(N2) vertices from VN does not change (asymptotically
as N → ∞) the expected degree of a vertex.

Lemma 1. Let nr, r = 1, . . . , N , with 0 ≤ nr ≤ Nr , be an arbitrary sequence such that

N∑
r=1

nr = o(N2).

Then
1

N

N∑
r=1

nr

r
→ 0 as N → ∞.

Proof. We prove the lemma by contradiction. Assume there exists a constant c > 0 such
that, for any M ∈ N, there exists N ≥ M such that

1

N

N∑
r=1

nr

r
≥ c. (31)

Let 0 < δ < min{4, c} and define the sets Nδ and its complementary N δ as follows:

Nδ = {r ∈ {1, . . . , N} : nr ≥ δr}, N δ = {r ∈ {1, . . . , N} : nr < δr}.
Noting that from (20) and (21), we have nr ≤ Nr ≤ 4r for any 0 ≤ r ≤ N , from (31) it follows
that

c ≤ 1

N

N∑
r=1

nr

r

= 1

N

( ∑
r∈Nδ

nr

r
+

∑
r∈N δ

nr

r

)

≤ 1

N

( ∑
r∈Nδ

4 +
∑

r∈N δ

δ

)

= 1

N
(4|Nδ| + δN δ)

= δ + 4 − δ

N
|Nδ|.

In particular, we have

|Nδ| ≥ c − δ

4 − δ
N,

and, therefore,

N∑
r=1

nr ≥
∑
r∈Nδ

nr ≥
∑
r∈Nδ

δr ≥ δ

|Nδ |∑
r=1

r ≥ δ

2
|Nδ|2 ≥ δ

2

(
c − δ

4 − δ

)2

N2,

which contradicts the assumptions. �
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Now we can prove (30). We shall follow the construction used already in [17]. For any vertex
v, letV (Cv(N))denote here the set of vertices of the componentCv(N). Observe thatGN can be
decomposed into pairwise disjoint connected components as follows. Set ṽ1 = v. Then, given
Cṽ1(N), . . . , Cṽk

(N), for k ≥ 1 choose a vertex ṽk+1 uniformly in VN \ ⋃k
i=1 V (Cṽi

(N)),
unless the last set is empty, in which case we stop the algorithm. The graph GN is thus
decomposed into pairwise disjoint connected components Cṽ1(N), . . . , CṽM

(N), where M =
M(N) is a bounded random variable, 1 ≤ M ≤ N2, denoting the number of disjoint components
in GN .

Fix ε > 0 arbitrarily and denote KN = (2/(λ − 1 − log λ) + ε) log N . Then we define the
event

EN = {C(GN) ≤ KN }.
Recall that, from (19), it follows that

P{ĒN } → 0 as N → ∞.

This yields, for any k ≥ 1,

P{C(GN) ≤ k} = P{|Cṽ1(N)| ≤ k, . . . , |CṽM
(N)| ≤ k}

≤ P{|Cṽ1(N)| ≤ k, . . . , |CṽM
(N)| ≤ k | EN } + o(1). (32)

Note that, since conditionally on EN the largest connected component is smaller than KN , it
follows that MKN ≥ N2. Hence, for any mN ≤ N2/KN ≤ M , the following bound holds for
the probability in (32):

P{|Cṽ1(N)| ≤ k, . . . , |CṽM
(N)| ≤ k | EN }

≤
mN∏
i=1

P{|Cṽi
(N)| ≤ k | |Cṽ1(N)| ≤ k, . . . , |Cṽi−1(N)| ≤ k, EN }. (33)

Let V0 be an arbitrary set of mNKN nodes, u be a vertex in VN \ V0, and let C̃u = C̃u(V0)

denote the connected component containing u constructed precisely as the original Cv(N) but
on the vertex set VN \ V0.

Then each factor in (33) can be uniformly bounded as follows:

P{|Cṽi
(N)| ≤ k | |Cṽ1(N)| ≤ k, . . . , |Cṽi−1(N)| ≤ k, EN } ≤ max

V0⊆VN : |V0|=mNKN
u∈VN\V0

P{|C̃u| ≤ k},

where we simply used the fact that on a smaller set of vertices, the components are smaller as
well. Therefore, from (33), it follows that

P{C(GN) ≤ k} ≤
(

max
V0 : |V0|=mNKN, u∈VN\V0

P{|C̃u| ≤ k}
)mN

. (34)

In the following, fix the set V0 ⊂ VN arbitrarily but so that

|V0| = mNKN = o(N2).

Fix a vertex u 	∈ V0 arbitrarily, and construct the component C̃u on the vertex set VN \ V0 as
described in the exploration algorithm. Let us denote here u1, u2, . . . , the sequence of saturated
vertices (which corresponds to the sequence v1, v2, . . . , in the original exploration algorithm).

Define n0
r (u) to be the number of nodes in V0 which are at distance r from u, so that

0 ≤ n0
r (u) ≤ Nr and

∑N
r=1 n0

r (u) = |V0| for any u.
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Analogous to the notion used previously, let Ũi here denote the number of active and saturated
vertices at step i in this new exploration process on VN \ V0 (see (22)), and Ũi,r (w) be the
number of those vertices at distance r from the vertex w. Let also n0

i,r = n0
r (ui) denote the

number of the vertices in V0 which are at distance r from the ith saturated vertex ui . By this
definition, and our assumption on |V0| = o(N2), we have

N∑
r=1

n0
i,r = |V0| = mNKN = o(N2) for any i. (35)

Hence, the number of vertices activated at step i at distance r from the ith explored vertex,
which we denote X̃i,r , has the following distribution:

X̃i,r ∈ binomial(Nr − n0
i,r − Ũi−1,r (ui), pr),

and the total number of vertices activated at the ith step is given by

X̃i =
N∑

r=1

X̃i,r .

Using these definitions, we derive, for any k ≥ 1,

P{|C̃u| > k} ≥ P{X̃1 + X̃2 + · · · + X̃t > t − 1 for all t ≤ k − 1}. (36)

To approximate the distribution of X̃i in the last equation, let us recall the following result on
the Poisson approximation.

Lemma 2. (See, e.g. [21].) On a rich enough probability space, we can define a random vector
(X, Y ) so that X

d= binomial(n, λ/n), Y
d= Poisson(λ), and, moreover,

P(X 	= Y ) ≤ λ2

n
.

Given the numbers 0 ≤ ki,r ≤ Nr − n0
i,r , r = 1, . . . , N, i = 1, . . . , k − 1, such that

N∑
r=1

ki,r ≤ k, (37)

let us define couplings (X̃i,r , Z̃i,r ) with the Poisson random variables

Z̃i,r ∈ Poisson((Nr − n0
i,r − ki,r )pr),

which satisfy the conditions in Lemma 2.
Then

Z̃i =
N∑

r=1

Z̃i,r ∈ Poisson(λi,N ), (38)

where

λi,N =
N∑

r=1

(Nr − n0
i,r − ki,r )pr . (39)

To simplify the notation, define the event

FN = {Ũi,r = ki,r ,

N∑
r=1

ki,r ≤ k for all i ≤ k − 1, r = 1, . . . , N}
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and consider

P(Z̃i > k | FN) = P(Z̃i > k, Z̃i = X̃i | FN) + P(Z̃i > k, Z̃i 	= X̃i | FN)

≤ P(X̃i > k | FN) + P(Z̃i 	= X̃i | FN).

Note that

P{X̃i 	= Z̃i | FN } = P

{ N∑
r=1

X̃i,r 	=
N∑

r=1

Z̃i,r

∣∣∣∣ FN

}

≤ P

{ N⋃
r=1

{X̃i,r 	= Z̃i,r}
∣∣∣∣ FN

}

≤
N∑

r=1

P{X̃i,r 	= Z̃i,r | FN }.

By Lemma 2, we have

P{X̃i,r 	= Z̃i,r | FN } ≤ p2
r (Nr − n0

i,r − ki,r ),

which yields

P{X̃i 	= Z̃i | FN } ≤
N∑

r=1

p2
r (Nr − n0

i,r − ki,r )

= c2

N2

N∑
r=1

1

r2 (Nr − n0
i,r − ki,r )

= O

(
log N

N2

)
, (40)

uniformly in i.
Next we consider

P{Z̃1 + · · · + Z̃t > t − 1 for all t ≤ k − 1}

≤ P{X̃1 + · · · + X̃t > t − 1 for all t ≤ k − 1 | FN } +
k−1∑
s=1

P{X̃s 	= Z̃s | FN }. (41)

Note that, by (40),

εk(N) :=
k−1∑
s=1

P{X̃s 	= Z̃s | FN } = O

(
k log N

N2

)
. (42)

Therefore, (41) yields

P{X̃1 + · · · + X̃t > t − 1 for all t ≤ k − 1 | FN }
≥ P{Z̃1 + · · · + Z̃t > t − 1 for all t ≤ k − 1} − εk(N). (43)

We shall construct i.i.d. random variables Z̃−
i , 1 ≤ i ≤ k, which are a.s. smaller than Z̃i ,

1 ≤ i ≤ k, correspondingly.
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First, using assumption (35) and Lemma 1, we derive

∑
r

n0
i,rpr = c

N

∑
r

n0
i,r

r
= o(1). (44)

From now on, we shall assume that

k = a log N for some positive a. (45)

Under this assumption, we have

∑
r

ki,rpr = c

N

N∑
r=1

ki,r

r
≤ c

N

∑
r

ki,r = kc

N
= ac log N

N
= o(1). (46)

Hence, from (44) and (46), we obtain the following bound for λi,N defined in (39):

λi,N =
N∑

r=1

(Nr − n0
i,r − ki,r )pr ≥

N∑
r=1

Nrpr + oi(1), (47)

where oi(1) might depend on i. Note that, by (27),

N∑
r=1

Nrpr = λ + o(1). (48)

Hence, for any (constant)
λ′ < λ, (49)

(47) together with (48) yields the following uniform in i ≤ k bound:

λi,N > λ′. (50)

Recall that Z̃i ∈ Poisson(λi,N ) by (38). Therefore, (50) allows us to construct independent
Z̃−

i ∈ Poisson(λ′), 1 ≤ i ≤ k, such that

Z̃−
i ≤ Z̃i a.s. for each i.

Now we can derive the following bound:

P(Z̃1 + . . . , Z̃t > t − 1, t = 1, . . . , k − 1) ≥ P(Z̃−
1 + · · · + Z̃−

t > t − 1, t = 1, . . . , k − 1)

= P{T ≥ k},
where T denotes the total progeny of a branching process with offspring distribution
Poisson(λ′). Substituting this bound into (43), we obtain

P{X̃1 + · · · + X̃t > t − 1 for all t ≤ k − 1 | FN } ≥ P{T ≥ k} − εk(N),

where the right-hand side is uniform in FN (here we still assume conditions (37) and (45)).
This yields

P{X̃1 + · · · + X̃t > t − 1 for all t ≤ k − 1} ≥ P{T ≥ k} − εk(N),
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and, therefore, by (36),

P{|C̃u| ≤ k} ≤ 1 − P{T ≥ k} + εk(N). (51)

Using a well-known formula for the distribution of the progeny of a branching process (see,
e.g. [13]), we compute

P{T ≥ k} =
∞∑

j=k

(λ′j)j−1

j ! eλ′j ≥ (λ′k)k−1

k! eλ′k,

which, together with the Stirling formula, yields

P{T ≥ k} ≥ 1√
2πλ′

1

k3/2 e−αk

(
1 + O

(
1

k

))
, (52)

where
α = λ′ − 1 − log λ′. (53)

Substituting (52) into (51), we obtain, using (42) for k = a log N ,

P{|C̃u| ≤ a log N} ≤ 1 − 1

AN

(1 + o(1)) + O

((
log N

N

)2)
, (54)

where
AN = √

2πλ′(a log N)3/2Naα.

Choose now arbitrarily a constant

a <
2

α
. (55)

Then (54) yields

P{|C̃u| ≤ a log N} ≤ 1 − 1

AN

(1 + o(1)). (56)

Observe that the value on the right-hand side of the above equation is uniform in the choice of
the set V0 and vertex u. Therefore, we can use bound (56) in (34) to obtain

P{C(GN) ≤ a log N} ≤
(

1 − 1

AN

(1 + o(1))

)mN

. (57)

Finally, we choose
mN = AN log N � AN,

which by (55) also satisfies condition (35), i.e.

mNKN = o(N2),

where

KN =
(

2

λ − 1 − log λ
+ ε

)
log N.

With this choice of mN , bound (57) implies that

P{C(GN) ≤ a log N} = o(1) (58)

for any fixed constant (see (53) and (55))

a <
2

α
= 2

λ′ − 1 − log λ′ .
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By (49), here we can choose any λ′ < λ; therefore, it follows that (58) holds for any

a <
2

λ − 1 − log λ
.

This proves (30), and, therefore, part (i) of Theorem 1 is proved.
This completes the proof of Theorem 1, since part (ii) follows by Theorem 2. �

4.4. Outline of the proof of Theorem 3

A proof of Theorem 3 can be obtained by following the same strategy as in the proof of
Theorem 1(i), in combination with the proof of the corresponding result for the rank-1 model
(8) given in [17]. Therefore, we omit the details here.
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