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Abstract

As a measure to manage the climate impact of aviation, significant enhancements to aviation technologies and operations
are necessary. When assessing these enhancements and their respective impacts on the climate, it is important that we also
quantify the associated uncertainties. This is important to support an effective decision and policymaking process. How-
ever, such quantification of uncertainty is challenging, especially in a complex system that comprises multiple interacting
components. The uncertainty quantification task can quickly become computationally intractable and cumbersome for one
individual or group to manage. Recognizing the challenge of quantifying uncertainty in multicomponent systems, we utilize
a divide-and-conquer approach, inspired by the decomposition-based approaches used in multidisciplinary analysis and
optimization. Specifically, we perform uncertainty analysis and global sensitivity analysis of our multicomponent aviation
system in a decomposition-based manner. In this work, we demonstrate how to handle a high-dimensional multicomponent
interface using sensitivity-based dimension reduction and a novel importance sampling method. Our results demonstrate
that the decomposition-based uncertainty quantification approach can effectively quantify the uncertainty of a feed-forward
multicomponent system for which the component models are housed in different locations and owned by different groups.
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1. INTRODUCTION

The aviation sector is projected to be one of the fastest grow-
ing contributors to anthropogenic greenhouse gas emissions
(Lee, 2009). If left unconstrained, the emissions from aircraft
in 2050 are projected to be quadruple the emissions from
aircraft in 2006 (International Civil Aviation Organization,
2010a). Many groups are using simulation-based tools to
study technologies, designs, and policies that address this
challenge. In conducting such studies, it is critical to quantify
the effects of uncertainties and to account for their impacts in
decision making. Yet, uncertainty quantification for such a
complex multicomponent system, with multiple components
ranging from individual aircraft technologies to fleet-wide
operations, is a significant challenge. This paper demon-
strates how a decomposition-based approach can manage
the complexity to make uncertainty quantification tractable
for a large-scale feed-forward problem in environmental im-
pacts of aviation technology and operation. Our problem is

large scale in several regards: the dimension of the uncertain
parameter space is 12; there are 100 variables describing the
coupling between the two components; and a single analysis
(forward simulation) of the system takes approximately 3 min
on a desktop computer. To manage the high-dimensional
multicomponent interface, we apply a combination of dimen-
sion reduction to identify the important coupling variables
and importance sampling to transform the information across
the interface in an efficient and dependable manner.

As a measure to manage the climate impact of aviation, the
Committee for Environmental Protection under the Interna-
tional Civil Aviation Organization and with support from
the Federal Aviation Administration, adopted a 2% annual
efficiency improvement goal for aviation through 2050
(International Civil Aviation Organization, 2010b). To satisfy
this fast-paced fleet-wide improvement requires significant
enhancements to aviation technology, sustainable fuels with
low CO2 emissions, and efficient operational procedures
(Rutherford & Zeinali, 2009). To meet these demanding re-
quirements, Committee for Environmental Protection assem-
bled a panel of independent experts with varying backgrounds
to establish long-term technology goals for aviation fuel
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consumption (Cumpsty et al., 2010). Within their study they
investigated future aviation technology scenarios, which repre-
sented varying regulatory pressure to reduce fuel consumption.
The future aircraft technology scenarios were then applied
in analysis tools as “technology packages” to assess the tech-
nology improvement on aircraft fuel consumption. However,
these technological enhancements are inherently uncertain,
and thus their respective impacts on the environment are also
uncertain.

Through a rigorous characterization and management of
uncertainty, one can provide quantitative estimates of uncer-
tainty necessary to calculate relevant statistics and event prob-
abilities. However, to estimate relevant statistics and event
probabilities requires an uncertainty quantification of the en-
tire system. Uncertainty quantification is a broad field encom-
passing a number of different aspects (Smith, 2013); this
work focuses on uncertainty analysis and global sensitivity
analysis. The objective of an uncertainty analysis, also known
as forward propagation of uncertainties, is to quantify the dis-
tribution of the output of interest, given distributions on the
uncertain input variables. The objective of a global sensitivity
analysis is to apportion variability in the output quantity of in-
terest according to contributions from the uncertain input
variables and their interactions.

Quantifying uncertainty of an entire system may be cumber-
some due to factors that result in inadequate integration of en-
gineering disciplines, subsystems, and parts, which we refer to
collectively here as components. Such factors include compo-
nents managed by different groups, component design tools or
groups housed in different locations, component analyses that
run on different platforms, components with significant differ-
ences in analysis run times, lack of shared expertise among
groups, and the sheer number of components comprising the
system. These challenges are only heightened by the fact that
globalization has spread the design and analysis of the complex
systems throughout the world. Recognizing the challenge of
quantifying uncertainty in multicomponent systems, we estab-
lish a divide-and-conquer approach, inspired by the decompo-
sition-based approaches used in multidisciplinary analysis and
optimization (Braun & Kroo, 1997; Sobieszczanski-Sobieski
et al., 2000; Kim et al., 2003; Kroo, 2004).

Previous works have tackled these challenges through the
use of surrogate modeling and/or a simplified representation
of the uncertainty. Using surrogates in place of the higher
fidelity components in the system provides computational
gains and also accommodates the task of integrating compo-
nents (Martin & Simpson, 2006). Using a simplified uncer-
tainty representation (e.g., using mean and variance in place
of full distributional information) bypasses the need to propa-
gate the full nonparametric uncertainty from one component
to another. Such simplifications are commonly used in uncer-
tainty-based multidisciplinary design optimization methods
as a way to avoid a system-level uncertainty analysis (see,
e.g., Yao et al., 2011, for a review of these methods and their
engineering applications). Other methods have exploited the
structure of the multicomponent system to manage the com-

plexity of the system uncertainty analysis where the system
contains a feedback loop (Arnst et al., 2012a, 2012b; San-
karaman & Mahadevan, 2012; Arnst et al., 2014; Constantine
et al., 2014; Chaudhuri & Wilcox, 2016). In addition, pre-
vious works have tackled decomposition-based global sensi-
tivity analysis within the application of feed-forward systems.
A top-down (i.e., assuming that all system variables are inde-
pendent) sensitivity analysis strategy was developed to deter-
mine critical components in the system and used a simplified
formulation to evaluate the main sensitivity indices (Yin &
Chen, 2008; Liu et al., 2010). Limitations in these existing
approaches include the introduction of approximations of
the components comprising the system, parametric approxi-
mations of the uncertainty, a need to repeatedly evaluate the
system in its entirety, and a need to apply correlation between
system variables to account for dependency structure. Instead,
we approach the problem using a decomposition-based vision
of the multicomponent uncertainty quantification task: per-
forming uncertainty quantification on the respective compo-
nents individually, and assembling the component-level uncer-
tainty quantifications to quantify the system uncertainty.

In Section 2, we introduce the multicomponent aviation
system of interest and describe its constituent components:
the aircraft technology component and aviation environ-
mental impacts component. In Section 3, we present the
coupling between the aircraft technology component and
the aviation environmental impacts component. We discuss
the challenges that arise from this component-to-component
coupling and our proposed solution for overcoming said chal-
lenges. Our decomposition-based uncertainty quantification
approach is introduced in Section 4 along with the uncertainty
quantification results. Our results are compared to the stan-
dard Monte Carlo simulation of the entire system. Finally,
our conclusion and future work are provided in Section 5.

2. SYSTEMS MODELING OF AVIATION
ENVIRONMENTAL IMPACTS

The multicomponent system of interest consists of a concep-
tual-level aircraft design component, the Transport Aircraft
System Optimization (TASOpt; Drela, 2010), and an aviation
environmental impacts component, the Aviation Environment
Design Tool (AEDT) version 2a (Roof et al., 2007). This multi-
component system is depicted in its entirety in Figure 1.

2.1. TASOpt

The TASOpt component is an aircraft performance tool that
allows users to evaluate and size future aircraft with poten-
tially novel airframe, aerodynamic, engine, or operation vari-
ables using low-order physical models implementing funda-
mental structural, aerodynamic, and thermodynamic theory.
TASOpt uses historical-based correlations only when neces-
sary, in particular only for some of the secondary structure
and aircraft equipment. The TASOpt component takes as
input aircraft technology and operational variables and can
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either optimize an aircraft over a specified set of constraints or
resize an aircraft to meet a desired mission requirement. The air-
craft configuration selected for this study is the Boeing 737–
800W shown in Figure 2. This aircraft operates in the short-
to-medium range while seating approximately 180 passengers.

Table 1 contains the 27 uncertain TASOpt random input
variables selected for this study and their respective distribu-
tions. These input variables represent the technological and
operational variables of an aircraft that are considered to be
uncertain in the design phase. The uncertainty associated

Fig. 1. System-level uncertainty quantification of the toolset consists of quantifying how uncertainty in aircraft technologies and operations
impacts the uncertainty in the output of interest, here the aircraft’s payload fuel energy intensity.

Fig. 2. Boeing 737–800W airframe configuration. (Schematic from Boeing.com)
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with the technology input variables captures our lack of
knowledge due to material properties and measurement ca-
pabilities. The uncertainty associated with the operational in-
put variables captures the designer lack of knowledge in the
design phase of an aircraft. We start by defining a baseline
aircraft. The baseline aircraft configuration used for this
study was created using TASOpt’s optimization capabilities
to best represent the Boeing 737–800W aircraft configuration
(defined in Figure 1’s “Boeing 737–800 Template Input
File”). We then generate a realization of the random variables
associated with each of the 27 input variables in Table 1. This
defines a “sampled aircraft.” Next, TASOpt resizes this sam-
pled aircraft in order to ensure that it is a feasible aircraft.

The next step of the process quantifies the sampled air-
craft’s performance by flying 99 mission profiles, which
are generated using a Latin hypercube design of experiments.
The Latin hypercube design of experiments populates the 12
mission input variables contained in Table 2. Of the 100 mis-
sion profiles (baseline plus 99 additional missions) simulated
in TASOpt, the first 50 are flown under international standard
atmosphere (ISA) conditions while the remaining 50 are
flown under non-ISA conditions. For any mission variable
(e.g., Range) we generate 99 realizations from the uniform
distribution [i.e.,Uða, bÞ] using the Latin hypercube sampling
scheme and the parameters provided in Table 2. This process
allows, for example, the Range to vary between 750 (nmi)
and 3250 (nmi). Finally, the aircraft’s configuration, opera-

tional procedure, and performance over multiple flight seg-
ments and atmospheric conditions are provided by the
TASOpt component. This information is then transformed
through a regression process in order to construct a similar re-
presentative aircraft in the AEDT database. We shall discuss
this multicomponent coupling procedure further in Section 3.

2.2. AEDT

The AEDT component is a suite of integrated aviation environ-
mental impact tools. AEDT provides users with the ability to
assess the interdependencies among aviation-produced fuel
consumption, emissions, and noise. For cruise conditions the
AEDT component implements the Eurocontrol’s Base of Air-
craft Data (Nuic, 2010), which uses an energy-balance thrust
model and thrust specific fuel consumption modeled as a func-
tion of airspeed. The Base of Aircraft Data fuel consumption
model has been shown to work well in cruise, with differences
from airplane reported fuel consumption of about 5% (Nuic,
2010). For terminal conditions (e.g., departure/arrival flights
until 10,000 feet above ground level), the AEDT component
implements a set of energy-balance equations to support a
higher level of fidelity in fuel consumption modeling.

The AEDT component characterizes an aircraft using 100
input variables as depicted in Figure 1 as the AEDT aircraft
coefficients. A detailed description of the AEDT input vari-
ables are provided in the AEDT technical manual (Nuic,

Table 1. TASOpt random input variables and their respective distributions

Input Description Distribution Units

1pol,lc Low pressure compressor polytropic efficiency U [0.936, 0.938] —
1pol,hc High pressure compressor polytropic efficiency U [0.903, 0.904] —
1pol,lt Low pressure Turbine polytropic efficiency U [0.870, 0.872] —
1pol,ht High pressure Turbine polytropic efficiency U [0.875, 0.877] —
sstrut Max allowable strut stress U [28500, 31500] psi
tweb Max allowable wing spar web shear stress U [19000, 21000] psi
scap Max allowable wing spar cap stress U [28500, 31500] psi
sskin Max allowable fuselage skin pressurization stress U [14500, 15500] psi
sbend Max allowable fuselage shell bending stress U [28500, 31500] psi
rstrut Strut material density U [2672, 2726] kg/m3

rweb Wing box web material density U [2672, 2726] kg/m3

rcap Wing box cap material density U [2672, 2726] kg/m3

rskin Fuselage pressure-skin density U [2672, 2726] kg/m3

rbend Fuselage bending-material density U [2672, 2726] kg/m3

Tmetal Turbine metal temperature U [1172, 1272] K
TT4,TO Turbine inlet total temperature for takeoff U [1783, 1883] K
TT4,CR Turbine inlet total temperature for cruise U [1541, 1641] K
Stc Turbine area-weighted Stanton number U [0.094, 0.096] —
Qf Film cooling efficiency U [0.315, 0.325] —
FPR Fan pressure ratio U [1.60, 1.62] —
OPR Operating pressure ratio U [24.2, 28.2] —
Ecap Wing cap modulus of elasticity U [9.5e6, 10.5e6] psi
Estruct Wing strut modulus of elasticity U [9.5e6, 10.5e6] psi
hCR Start-of-cruise altitude U [34000, 36000] ft.
CL,max Maximum aircraft lift coefficient U [2.2, 2.3] —
CL Aircraft lift coefficient U [0.576, 0.578] —
Mach Cruise flight Mach number U [0.77, 0.79] —
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2010; Koopermann & Ahearn, 2012). These input variables
characterize the aircraft’s configuration and the operational
procedure, and define the aircraft performance over multiple
flight segments and atmospheric conditions. To initialize the
AEDT component, we first generate a temporary Boeing
737–800W aircraft within the AEDT fleet database. Any
TASOpt-generated aircraft then replaces the 100 aircraft
input variables in the temporary Boeing 737–800W AEDT
fleet database through the multicomponent coupling proce-
dure described in the next section. The objective of the multi-
component coupling procedure is to ensure that an AEDT air-
craft characterized through these 100 AEDT input variables is
an adequate representation of the sampled TASOpt aircraft.

For each sampled aircraft, we must quantify its respective
environmental impacts. To do so, we fly each sampled aircraft
over a set of deterministic flight trajectories using the AEDT
component. The flight trajectories for this study were selected
from a 2006 representative day flight scenario database (Noel
et al., 2009). Using the representative day, the flights associ-
ated with the Boeing 737–700 aircraft are included as possible
flight trajectories, as the Boeing 737–800W was not compre-
hensively represented in the 2006 representative day flight
scenario. Twenty flight trajectories were selected; they are pre-
sented in Table 3 and illustrated in Figure 3. For computational
purposes, these flight trajectories are approximated by a
great circle path from the departure airport to the arrival
airport. Each flight trajectory was generated by the TASOpt
component using the baseline Boeing 737–800W aircraft
configuration.

The output of interest, which we use to quantify an air-
craft’s environmental impacts, is the PFEI fuel consumption
performance (i.e., fuel energy consumption per payload-
range) and is defined as

PFEI ¼
P

i Wfuel,ihfuelP
i Wpay,iRtotal,i

, (1)

where the summation is over number of missions, wfuel;i is the
total fuel consumption of the ith mission, Rtotal;i is the total
range of the ith mission, Wpay;i is the payload weight of the
ith mission, and hfuel is the specific heating value of kerosene.

3. MULTICOMPONENT COUPLING AND
DIMENSION REDUCTION

The objective of the multicomponent coupling procedure is to
couple the tools and create a consistent representation of the
system, that is, to accurately represent the sampled TASOpt

Table 2. TASOpt mission input variables and their respective uniform distribution parameters

Input Description a b Units

Range Mission profile range 750 3250 nmi
Wmax Average weight per passenger (180 passengers) 165 265 lb.
hTO Altitude at takeoff 24000 4000 ft.
DT Temperature difference from ISA at takeoff 212.5 12.5 K
hCR Deviation of start-of-cruise altitude 24000a 4000a ft.
CL,max Deviation of maximum aircraft lift coefficient 20.05a 0.05a —
QTO Angle of attack at takeoff 39 41 deg
QIC Angle of attack at initial climb 2.8 3.2 deg
QDE,1 Angle of attack at initial descent 23.2 22.8 deg
QDE,5 Angle of attack at landing 23.2 22.8 deg
CL Deviation of aircraft lift coefficient 20.025a 0.025a —
MACH Deviation of cruise flight Mach number 20.02a 0.02a —

Note: The performance of each sampled aircraft configuration is evaluated using a Latin hypercube design of
experiments.

aParameters that are also TASOpt random input variables; in those cases, the parameters here represent deviations
from the input realization to TASOpt.

Table 3. Representative flight trajectories flown by the Boeing
737–800W in the TASOpt-AEDT uncertainty quantification study

Departure Arrival
Range
(nmi)Airport Runway Airport Runway

KDTW 04L KPVD 21 535
KIAH 26L KLAX 24L 1197
KLGA 22 KMEM 27 835
KDTW 04L KSFO 28R 1801
KPDX 28R KLAX 24L 725
KMIA 08L KDEN 35R 1482
KPDX 28L KABQ 08 964
KJFK 31R KLGB 16L 2138
KIAD 01R KORD 28 511
KPHX 26 KMSP 35 1106
KBWI 28 KFLL 09L 806
KPHX 26 KFLL 09L 1710
KMCO 35L KDCA 01 662
KIAH 26L KBOS 27 1387
KMCO 17R KMKE 07R 928
KSJC 30R KIAD 19L 2082
KSFO 28L KPHX 25L 565
KDFW 35L KSFO 28R 1270
KPHL 09R KFLL 09L 864
KCLE 24L KSFO 28R 1874
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aircraft within the AEDT component. In this section, we sum-
marize the multicomponent coupling procedure and demon-
strate how to transform the TASOpt outputs (i.e., aircraft con-
figuration and performance) into AEDT inputs. We validate
the multicomponent coupling by comparing the fuel con-
sumption over similar scenarios (i.e., flight trajectories and
operations) of a sampled TASOpt aircraft flown in TASOpt
to that same aircraft imported into the AEDT component
and flown in AEDT. Finally, we reduce the dimensions of
the multicomponent interface coupling by identifying which
of the AEDT inputs have a significant impact on the systems
output of interest uncertainty.

3.1. Multicomponent coupling

The TASOpt component outputs the aircraft’s configuration
variables, which include the maximum takeoff weight, empty
weight, maximum fuel weight, wing area, and maximum
thrust. In addition, the TASOpt component outputs the air-
craft’s performance for each mission, where each mission is
composed of 15 individual flight segments (i.e., 3 takeoff,
5 climb, 2 cruise, and 5 descent segments). The TASOpt gen-
erated aircraft performance data contains,

Range
Altitude

True Airspeed
Mach Number
Lift Coefficient

Drag Coefficient
Aircraft Weight

Thrust
Fuel Burn Rate
Angle of Attack

Total Temperature at Engine Inlet
Total Pressure at Engine Inlet

2
666666666666666664

3
777777777777777775

:

For demonstration purposes, we present an example of
how to compute the AEDT thrust coefficients TCC1 , TCC2 ,
and TCC3 in a flight’s climbing segment and under ISA con-
ditions. The AEDT aircraft thrust coefficients are related to
the TASOpt outputs thrust, F, and altitude, h, by the following
relation (Noel et al., 2009; Nuic, 2010):

F ¼ TCC1� 1� h

TCC2

þ TCC3� h2

� �
: (2)

To perform this transformation, we use the TASOpt thrust
and altitude performance data in the first 50 missions (i.e.,
under ISA conditions) and in the five climbing flight seg-
ments. With the TASOpt performance data collected, we per-
form a regression to obtain the AEDT coefficients using
Eq. (2). A similar procedure to the one explained here is per-
formed for the remaining AEDT input variables. This multi-
component coupling procedure is depicted in Figure 1 as the
“TASOpt to AEDT Transformation.”

To validate our multicomponent coupling procedure, we
compare the total fuel consumption and relative error over
three flight trajectories. The results from our validation study
are provided in Table 4. The results indicate that we obtain a
fair comparison between the two components. Of the three
trajectories, Flight B had the highest relative error; however,
this discrepancy can be attributed to how AEDT computes the
aircraft’s takeoff weight with respect to the flight trajectories
range (Koopmann & Ahearm, 2012). In Flight B, the AEDT
takeoff weight was significantly higher than the TASOpt
takeoff weight, which resulted in the increased total fuel
consumption. The deviation in total fuel consumption in
Flight A and Flight C are significantly lower than Flight B,
as the AEDT aircraft takeoff weight was approximately equal
to the TASOpt aircraft takeoff weight.

Fig. 3. Illustrated here are the 20 representative flight trajectories flown by the Boeing 737–800W in the Transport Aircraft System
Optimization–Aviation Environment Design Tool uncertainty quantification study.
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3.2. Dimension reduction

The challenge with performing a decomposition-based
uncertainty quantification of the system illustrated in Figure 1
lies in the high-dimensional multicomponent interface. The
reason this is challenging is because our decomposition-
based uncertainty quantification of the multicomponent
system, which we present in Section 4, requires that we de-
construct then reconstruct this multicomponent interface.
To mitigate this challenge, we exploit the fact that many of
the AEDT input variables have an insignificant impact on
the uncertainty in the system output of interest. This permits
us to reduce the dimensions of the multicomponent interface
to only those AEDT input variables that have a significant in-
fluence on the system output of interest uncertainty. As a re-
sult, we perform the decomposition-based uncertainty quan-
tification on a reduced multicomponent interface. In this
section, we quantify the influence of the AEDT input vari-
ables on the system output of interest and use this information
to determine which of the AEDT input variables should take
part in the decomposition-based uncertainty quantification.

We quantify the influence of the AEDT input variables on
the system output of interest using a variance-based global
sensitivity analysis of AEDT (Saltelli, 2004). A variance-
based global sensitivity analysis of AEDT apportions the out-
put of interest variance among the AEDT input variables.
Implicit in a variance-based global sensitivity analysis is
the assumption that the variance characterizes the uncertainty
of the output of interest (Borgonovo, 2007; Borgonovo et al.,
2011). However, in many applications, the variance only pro-
vides a restricted representation of the output of interest
uncertainty. In this work, we will assume the variance ade-
quately characterizes the output of interest uncertainty for
our purposes; however, in general, the results of a variance-
based global sensitivity analysis should be carefully inter-
preted. In addition, as the inputs to AEDT are obtained
from the outputs of TASOpt, there is no guarantee that the
AEDT inputs are independently distributed, which is a strong
assumption in many methods for performing variance-based
global sensitivity analysis (Saltelli, 2004). As a result, we
implement a generalized analysis of variance (ANOVA) di-
mensional decomposition, which addresses dependent vari-
ables explicitly, that is, without invoking any isoprobabilistic
transformations (Rahman, 2014).

A generalized ANOVA dimensional decomposition aims to
represent the high-fidelity AEDT component using multivariate
orthonormal polynomials as basis functions. The multivariate
orthonormal polynomials are constructed with respect to the
AEDT dependent input probability distribution. The multivari-
ate orthonormal polynomials form the basis for the high-dimen-
sional model representation subcomponent functions by which
the coefficients are solved through a coupled system of equa-
tions satisfying the hierarchical orthogonal condition of the sub-
component functions. The AEDT component, which we repre-
sent here as f, admits a unique, finite, hierarchical expansion,

f ðtÞ ¼ ff0g þ
Xd

i¼1
ffig ðtiÞ þ

Xd

i�¼1

Xd

j.i
ffi,jgðti, tjÞ þ � � � þ ff1,2,..., dgðtÞ,

¼
X

A#f1,...,dg
fAðtAÞ, (3)

where t¼ [t1, t2, . . . , td]T are the inputs to f, ff0g is a constant,
ffig is a function of only ti, ffi;jg is a function of only ti and tj, and
so on (Rahman, 2014). Using the generalized ANOVA dimen-
sional decomposition, the expectation of the AEDT output of
interest (i.e., PFEI) is given by the first subcomponent function
(i.e., A ¼ f0g),

m ¼ EX ½ f ðtÞ� ¼ ff0g, (4)

where X : V! Rd defined on the probability space ðV,F , PÞ
is the AEDT random input variable. In addition, the variance of
the AEDT output of interest is given by

s2 ¼ EX f tð Þ � mð Þ2
h i

¼
X

0=A# 1,...,df g
EX ½ f 2

A tAð Þ�

þ
X

0=A; �A# 1,...,df g
A� �A�A

EX fA tAð Þf�A t �A
� �� �

, (5)

where d ¼ 100. The second sum accounts for the covari-
ance contributions from two distinct (i.e., A # f1, . . . , dg and
�A # {1, . . . , d}) nonconstant component functions that are

not hierarchically orthogonal.
When the input variables involve dependent probability

distributions, we require a triplet of global sensitivity

Table 4. Fuel consumption results over the three flight trajectories

Flight A (850 nmi) Flight B (1520 nmi) Flight C (2300 nmi)

Fuel
(lb.)

Rel. Error
(%)

Fuel
(lb.)

Rel, Error
(%)

Fuel
(lb.)

Rel. Error
(%)

TASOpt 5015.6 — 8715.3 — 13186.4 —
AEDT 5284.7 5.37 9737.4 9.62 13594.4 3.09

Note: The TASOpt row represents an aircraft generated by and flown in TASOpt. The AEDT row represents the
TASOpt aircraft imported into the AEDT component through the multicomponent coupling procedure and then
flown on the same flight trajectory as the TASOpt flight trajectory.
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indices (Rahman, 2014). The three A-variate global sensitivity
indices of fA, where A # f1, . . . , dg, are denoted by SA, v,
SA, c, and SA, , and are defined by the ratios

SA, v ¼
EX ½ f 2

AðtAÞ�
s2

, (6)

SA, c ¼

P
0=�A#f1,...,dg

A� �A�A
EX fAðtAÞf�Aðt�AÞ
� �
s2

, (7)

and

SA ¼ SA;v þ SA;c: (8)

The first two indices, SA, v and SA, c, represent the normalized
versions of the variance contribution from fA to s2 and of the
covariance contributions from fA and all f �A, such that
A� �A � A, to s2. They are termed the variance-driven global
sensitivity index and the covariance-driven global sensitivity
index, respectively, of fA. The third index, SA, referred to as
the total global sensitivity index of fA, is the sum of variance
and covariance contributions to s2 that are associated with
fA. Summing over all of the triplet global sensitivity indices
adds up to

X
0=A#f1,...,dg

SA,v þ
X

0=A#f1,...,dg
SA,c ¼

X
0=A#f1,...,dg

SA ¼ 1: (9)

We use these sensitivity indices to identify the most influen-
tial AEDT input variables on the AEDT output of interest. We
construct the generalized ANOVA dimensional decomposition
of the AEDT component using first-order basis functions (i.e.,
A ¼ {i}) with at most first-degree polynomials as the subcom-
ponent functions. The AEDT random input variable is distrib-
uted according to a multivariate Gaussian distribution where
the mean and covariance terms are computed using a subset
of TASOpt output realizations. The reason for using TASOpt
output realizations is because we did not have adequate expe-
rience or prior knowledge of this system to accurately guess
these parameters; instead, a few TASOpt realizations provide
an informed estimate. With the subcomponent functions in
hand, we compute the absolute maximum allowable variation
(i.e., jSA, vj þ jSA, cj) due to each AEDT random input variable.
Using this criterion, we rank the AEDT random input variables
in decreasing order of influence on the AEDT output of inter-
est, as illustrated in Figure 4. These results confirm that only a
small subset, here just 15 AEDT random input variables, of the
original d AEDT random input variables have a substantial in-
fluence on the AEDT output of interest variation.

At this stage in the analysis, we could approximately identify
which of the TASOpt inputs contribute the most to the variation
of the important variables presented in Figure 4 by performing a
global sensitivity analysis of TASOpt with respect to the 15
important variables. However, as our system is only composed

Fig. 4. This plot presents the absolute variance- and covariance-driven sensitivity indices from each of the Aviation Environment Design
Tool (AEDT) random input variables on the AEDT fuel consumption performance variance. This plot illustrates that the absolute variance-
and covariance-driven sensitivity indices decay rapidly and that 15 AEDT random input variables capture almost all of the AEDT fuel con-
sumption performance variance.
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of two components, there is no need to do this. We can com-
plete the uncertainty quantification study as is, through the com-
putationally efficient procedure described in the next section. If
our system were composed of more than two components, then
one could possibly justify performing global sensitivity analy-
sis on more than one component to reduce the coupling inter-
face dimensions across two or more components.

4. UNCERTAINTY QUANTIFICATION

Applying the results from Section 3, we reduce the multicom-
ponent coupling interface and decompose the multicompo-
nent system as illustrated in Figure 5. Consequently, instead
of performing the uncertainty quantification of the multicom-
ponent system presented in Figure 1, we perform a decompo-
sition-based uncertainty quantification of the reduced multi-
component system presented in Figure 5.

4.1. Uncertainty analysis

As illustrated on the left in Figure 6, we wish to perform the
multicomponent system uncertainty analysis that propagates

uncertainty in system inputs to uncertainty in system outputs.
To tackle the complexity of a multicomponent uncertainty anal-
ysis, we propose to decompose the system uncertainty analysis
into individual component-level uncertainty analyses that are
then assembled into the desired multicomponent system uncer-
tainty analysis (Amaral et al., 2014). The decomposed system
uncertainty analysis is illustrated on the right in Figure 6. The
decomposition-based uncertainty analysis approach comprises
two main procedures, which are illustrated in Figure 7: local
uncertainty analysis, performing a local Monte Carlo uncer-
tainty analysis on each component using their respective pro-
posal distributions; and global compatibility satisfaction, resolv-
ing the coupling among the components without any further
evaluations of the components or of the system as a whole.

In the offline phase, demonstrated on the top in Figure 7,
each local uncertainty analysis is performed concurrently
for each component. The challenge created by decomposition
is that the distribution functions of the inputs for each compo-
nent are unknown when conducting the local uncertainty
analysis. Therefore, we propose an initial distribution func-
tion for each component input, which we refer to as the pro-
posal distribution function. Local uncertainty analysis uses

Fig. 5. We partitioned the Aviation Environment Design Tool (AEDT) input variables into two sets: an influential set and a noninfluential
set. The noninfluential set contains AEDT input variables that were deemed not to influence, by the AEDT component global sensitivity
analysis, the AEDT output of interest. The influential set contains AEDT random input variables that were labeled as influential by the
AEDT component global sensitivity analysis.

Fig. 6. The proposed method of multicomponent uncertainty analysis decomposes the problem into manageable components, similar to
decomposition-based approaches used in multidisciplinary analysis and optimization, and synthesizes the system uncertainty analysis
without needing to evaluate the system in its entirety.
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the proposal distribution function to generate samples of the
uncertain component inputs and propagate them through the
component analysis to generate corresponding samples of
component outputs.

In the online phase, demonstrated on the bottom in Fig-
ure 7, we learn the true distribution function of the inputs
of each component. We refer to these true distribution func-
tions as the target distribution functions. For those compo-
nent inputs that correspond to system inputs, the target distri-
bution functions represent the particular specified scenario
under which we wish to perform the system uncertainty anal-
ysis. For those component inputs that correspond to coupling
variables (i.e., they are outputs from upstream components),
the target distribution functions are specified by the uncer-
tainty analysis results of the corresponding upstream compo-
nent(s).

Global compatibility satisfaction is ensured by starting
with the most upstream components of the system and ap-
proximating their respective target distribution functions
using importance sampling on the corresponding proposal
distribution functions. The approach we implement for the
importance sampling step entirely avoids the probability den-
sity function and works with the well-defined and determin-
able empirical distribution function associated with the ran-
dom samples (Amaral et al., 2016). A key attribute of the
approach is its scalability: it lends itself well to handling a
large number of samples through a scalable optimization al-
gorithm. The approach also scales to problems with high-
dimensional distributions, an important property we use in
this engineering example. The updated output importance
weighted samples of the upstream component then define
the target distribution function for the downstream compo-
nent. The process of importance sampling is repeated for
the downstream component, resulting in the downstream
components importance weighted output samples. The down-
stream components importance weighted output samples
characterize the multicomponent systems outputs of interest

uncertainty under the target distribution and are used to quan-
tify the desired statistics of interest.

The proposal distribution selected for the AEDT compo-
nent is the same distribution used to construct the generalized
ANOVA dimensional decomposition in Section 3 with the
covariance term multiplied by a factor of three. The proposal
covariance term was multiplied by a factor of three to ensure
the unknown target distribution from the upstream TASOpt
component is supported by the AEDT input proposal distri-
bution. In the situation that the input proposal distribution
does not support the forthcoming target distribution, we
must resample the AEDT module using the latest information
from the forthcoming target distribution. The uncertainty
analysis results are presented in Figure 8. The results illustrate
the system output of interest distribution function under three
different scenarios. The first scenario is the outcome of run-
ning the AEDT component under the proposal distribution
assumption. The second scenario is produced by performing
an all-at-once uncertainty analysis of the system illustrated in
Figure 1 using Monte Carlo simulation. The last scenario is
the result of performing a decomposition-based uncertainty
analysis of the system illustrated in Figure 5.

These results demonstrate that our decomposition-based
uncertainty analysis of the reduced system in Figure 5 accu-
rately produces the result from the standard approach, the all-
at-once Monte Carlo simulation of the full system in
Figure 1. The discrepancy between the decomposition-based
approach and the all-at-once Monte Carlo simulation can be at-
tributed to performing the importance sampling on a subset
of the coupling variables using only a finite number of sam-
ples. The results presented imply that we successfully iden-
tified the 15 influential AEDT random input variables and
also that we accurately performed the importance sampling pro-
cedure across the resulting 15-dimensional interface between
the TASOpt component and the AEDT component. By
reducing the dimensions of the multicomponent interface, we
illustrated that our decomposition-based uncertainty analysis

Fig. 7. The process depicts the local uncertainty analysis and global compatibility satisfaction for our two component system. First, local
uncertainty analysis is performed on each component. Second, global compatibility satisfaction uses importance sampling to update the
proposal samples so as to approximate the target distribution. Here we use X and Y to represent the proposal and target random variables,
respectively.
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approach can be extended to calculate the relevant statistics and
failure probabilities of complex and high-dimensional systems.

4.2. Global sensitivity analysis

The purpose of a global sensitivity analysis is to identify how
the variability in a system output quantity of interest is related
to a system input and which of the system input sources dom-
inate the response of the system output. Our motivation for a
system-level global sensitivity analysis is research prioritiza-
tion: which system input factor is the most deserving of fur-
ther analysis or measurement? To address our objective, we
apply the Sobol variance-based global sensitivity analysis
method, which quantifies the amount of variance that each in-
put factor contributes to the unconditional variance of the out-
put (Saltelli et al., 2008).

To perform the global sensitivity analysis of the multicom-
ponent system, we apply the generalized ANOVA framework
presented in Section 3 to this context, where f now represents
the entire multicomponent system. Because the multicompo-
nent system inputs are independently distributed, we can dis-
card the covariance contribution in Eq. (9) from our A-variate
global sensitivity indices. The resulting global sensitivity in-
dices of the multicomponent system,

1 ¼
Xd

i¼1
Sfig, v þ

Xd

i,j
Sfi, jg, v þ � � � þ S{1, 2,... ,d}, v, (10)

apportion the output variance among the system inputs.
Global sensitivity indices with only a single subscript (e.g.,
Sfig) are called main effect indices. Inputs with large main

effect indices are known as the “most influential factors,” or
the inputs that, on average, once fixed, would result in the great-
est reduction in variance. Global sensitivity indices with multi-
ple subscripts (e.g., Sfi;jg) are called interaction effect indices.

In this context, we cannot construct a generalized ANOVA
dimensional decomposition of the multicomponent system
because this would result in having to evaluate the entire mul-
ticomponent system. Instead, to evaluate the global sensitiv-
ity indices using a decomposition-based approach, we first
use a restated but equivalent definition of the global sensi-
tivity indices. For example, the main effect indices can be re-
stated using the conditional and unconditional variances,

Si ¼
varXiðEXc

i
½ ffig�Þ

s2
, (11)

where Xi is the ith component of the vector of random vari-
ables X, and Xc

i is the vector containing all components of
X except Xi (Saltelli et al., 2008).

As Eq. (11) requires evaluating the expectation of f condi-
tioned on random variables, we cannot yet directly apply a
decomposition-based methodology in a straightforward way.
Instead, we will approximate Eq. (11) by evaluating the expec-
tation of f conditioned on the random variable existing in a fi-
nite range. By relaxing the conditional dependence in this way,
we can evaluate the expectations contained within Eq. (11)
using our decomposition-based uncertainty analysis algorithm,
because expectation is just a statistic of interest. To construct
these conditional sets of finite range, we partition the input
space into a finite number of bins (Saltelli et al., 2008). For
each bin, we evaluate the expectation contained in Eq. (11)
using our decomposition-based uncertainty analysis algorithm

Fig. 8. The Aviation Environment Design Tool (AEDT) fuel consumption performance distribution is shown, on the left, using the AEDT
output proposal distribution, all-at-once Monte Carlo uncertainty analysis, and the decomposition-based uncertainty analysis. On the right
are the resulting probability density functions. These results suggest that our decomposition-based uncertainty analysis performed ade-
quately, which implies the change of measure across the 15 AEDT random input variables was successful and that the correct 15
AEDT random input variables were selected by the AEDT component-level global sensitivity analysis.

Environmental impacts of aviation technology and operation 261

https://doi.org/10.1017/S0890060417000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000154


and modifying the system input target distribution to be con-
tained in the bin of interest. After evaluating the expectations
over each bin, we can evaluate the variance over those expec-
tations to approximate Eq. (11). This procedure relies only on
the offline step of our decomposition-based uncertainty analy-
sis algorithm. Therefore we can repeat these steps for each sys-
tem input without having to evaluate the components compris-
ing the system.

The results of the system-level main sensitivity indices are
presented in Figure 9. The results depict the system-level
main sensitivity indices computed using the all-at-once Monte
Carlo simulation approach of the system illustrated in Figure 1
and the decomposition-based approach of the system illustrated
in Figure 5. These results confirm that our decomposition-
based sensitivity analysis algorithm can accurately quantify
the main sensitivity indices of the system in Figure 1. As pre-
viously mentioned, the decomposition-based sensitivity analy-
sis algorithm hinges on the fact that we can evaluate the de-
composition-based uncertainty analysis. The main sensitivity
indices suggest that the output of interest variation is mostly
dominated by a handful of aircraft technological and opera-
tional variables. That is, by improving our understanding of
these TASOpt random input variables through research, we
can reduce the variation of the overall system output of interest,
which is beneficial for decision making and policymaking.

5. CONCLUSION

This paper presents uncertainty quantification of a realistic
application problem involving a complex multicomponent

system model of the environmental impacts of aviation tech-
nologies and operations. The multicomponent system com-
prises a conceptual-level aircraft design tool and an environ-
mental impacts tool. The challenges of applying uncertainty
quantification to this multicomponent system include long
computational run times, a high-dimensional component-to-
component interface, and a lack of software integration
among the system components. These challenges are over-
come through a combination of dimensionality reduction
and decomposition. A component-level global sensitivity
analysis identifies the most influential component-to-compo-
nent interface variables and permits reduction of the dimen-
sionality of the component-to-component interface. With
this reduction in dimensions, a decomposition-based uncer-
tainty quantification approach becomes feasible. This permits
local uncertainty analyses to be conducted, and the results
synthesized to compute system-level uncertainty estimates
and system-level sensitivity indices. The results reveal the
most important sources of uncertainty across the system,
which informs policy and decision making as well as future
tool development. Future work will extend these ideas to dif-
ferent and more complex architectures of feed-forward and
feed-back multicomponent systems. This will require ac-
counting for dependency among variables using only the
samples but with no explicit description of their underlying
probability density functions. An additional future direction
includes performing decomposition-based uncertainty quan-
tification with a goal-oriented objective. The aim in this case
is to minimize the system complexity while approximating
the quantity of interest to within a specified tolerance.

Fig. 9. The decomposition-based main sensitivity index and all-at-once system-level Monte Carlo main sensitivity index. These results
suggest that our decomposition-based global sensitivity analysis performed adequately and that only a handful of technological and opera-
tional system input variables have a significant influence, on average, on the system output of interest. A description of the system inputs are
provided in Table 1.
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