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SUMMARY
This paper investigates a 6-degree-of-freedom foldable parallel mechanism for the ship-based
stabilized platform, which is driven by closed chain linkages. The velocity and acceleration mappings
between the moving platform and inputs of the closed chain linkages are deduced in the form
of the first- and second-order influence coefficient matrices. The continuous stiffness matrix is
deduced; furthermore, the translation and rotational stiffness along any direction are also deduced.
With directional stiffness, the singularity of the mechanism is analyzed, and the explanation of the
singularity is given from the viewpoint of stiffness. The directions the platform cannot move or lose
its constraints are got from directional stiffness.

KEYWORDS: Foldable parallel mechanism; Closed chain linkages; Stiffness; Singularity; Influence
matrix.

1. Introduction
The role of a stabilized platform is to provide a relatively stable working environment for a bumpy
carrier (like a ship, vehicle, et al.) to improve the operational accuracy and safety.1–3 In recent years,
much interest has been shown in stabilized platforms. However, most of these are 2-axis or 3-axis
serial stabilized platforms whose bearing capacities are low, and they cannot counteract the motions
of heave and sway. It has been noted that parallel mechanisms can realize multi-axis coupling motions
and have the characteristics such as large bearing capacity and fast response,4–6 so they are the ideal
model for large-scale and multi-axis compensation stabilized platform. However, the application of
the traditional Gough–Stewart platform is limited to structural height, so foldable parallel mechanism
is considered. Most of the foldable mechanisms are better used in the situations that need to change
the form7,8 than those that need to output power. It is because foldable mechanism consists of lot
of bars realizing foldable ability, which makes it easy to get into a singularity. The stoke output
of foldable mechanism is generally larger than the input of drive, hence the stiffness of a foldable
parallel is terrible without some reasonable processing.

The singularity is a very important parameter of mechanism. When a mechanism is in singularity,
the degree-of-freedom (DOF) of mechanism changes instantaneously. Gosselin and Angeles9 divided
the singularity of closed-loop chains into three main groups. Zlatanov et al.10,11 introduced a new
classification and identification method for singular configurations of mechanisms. The classification
of singularities is based on the physical phenomena that occur in singular configurations rather than
that on the mathematical concept of degenerating Jacobians. Chung et al12,13 proposed a new type of
3-DOF foldable parallel mechanism having three foldable sub-chains, and analyzed the singularity
and drew singularity loci.
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Fig. 1. Motions of a ship in the sea.

The stiffness expresses the bearing capacity. Joshi and Tsai14 chose maximum and minimum
stiffness as performance indexes, and concluded that tricept manipulator is better conditioned than
3-UPU manipulator. Shin et al.15 introduced the stiffness analysis of the Eclipse-IA structure to
examine the isotropy of stiffness matrix. Dai and Zhao16 analyzed the stiffness characteristics of two-
link under-actuated manipulators used in the virtual work principle, and illustrated the directional
stiffness mapping.

The analysis of singularity and stiffness is based on mathematical derivation, which is precise and
complex. However, this is not suitable for 6-DOF foldable parallel mechanism, whose kinematic clear
expression is hard to obtain. Hence, the numerical method to judge the determinant of the Jacobian
is taken to estimate singularity. Both singularity and stiffness are closely related to the Jacobian.
Therefore, when the mechanism is in singularity, its stiffness must be special.

This paper mainly studies a 6-DOF mechanism of a ship-based stabilized platform, which can suffer
heavy load. The relationship between the directional stiffness and the singularity of the mechanism is
analyzed. In order to evaluate the bearing capacity around rotational and translational directions, the
stiffness matrix is decomposed into rotational and translational stiffness considering the interaction
of rotation and translation of a moving platform. After that the direction (including rotation and
translation) that the mechanism cannot move or lose its constraints can be easily shown in the map
of directional stiffness. The significance is that the singularity is illustrated in the form of directional
stiffness.

2. Foldable Parallel Mechanism and its Kinematics

2.1. Description of mechanisms
As shown in Fig. 1, the movement of a ship is very complex as the wave in the sea is random. The
ship’s movements are rolling, pitching, yawing, surging, swaying, and heaving. Therefore, it needs a
6-DOF mechanism to isolate all these movements. In order to avoid the structural height restriction,
the mechanisms are designed to be foldable. Figures 2(a) and (b) show the unfolded and folded states
respectively. Meanwhile the closed chain drives are used to increase mechanism’s stiffness, as the
linear drives are easy to produce high stiffness by using screws. According to the closed chain, the
rotation of middle joint is driven by the translation drive, as shown in Fig. 2.

The mechanism contains six branches that are distributed regularly around the vertical axis of
a fixed platform. The axes (arrows on Ai (i = 1, 2 . . . 6)) of the U-joint’s first revolute joint is
distributed, as illustrated in Fig. 3. The axes of the U-joint’s second revolute joint points to the R-joint
axes and vertical to it, as shown in Fig. 2(a).

2.2. Inverse kinematics
The sketch of a foldable parallel mechanism is illustrated in Fig. 3. Let Ai (i = 1, 2 . . . 6) denote the
central point of the U-joint connected to a fixed platform; subscript i stands for the ith branch; Bi is
the center point of the joint between two bars; Ci is the center point of the sphere joint connected
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Fig. 2. Foldable parallel mechanism configurations.
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Fig. 3. Geometry parameter.

to the moving platform; rc and O ′ are the radius and the center of the circumscribed circle of Ci

respectively; ra and O are the radius and the center of the circumscribed circle of Ai respectively;
ϕc1 is the angle of � C1O

′C2; and La is the length of AiBi . The other dimension parameters can be
obtained by

⎧⎪⎨
⎪⎩

ϕa1 = 2asin((rc/ra) sin(ϕc1/2))
ϕa2 = (2π − 3ϕa1)/3
ϕc2 = (2π − 3ϕc1)/3
Lc = La + (racos(ϕa1/2) − rccos(ϕc1/2))

,
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Fig. 4. Branch and closed loop parameters.

where Lc is the length of BiCi ; ϕa1, ϕa2, and ϕc2 are the angles of � A5OC6, � A5OC4, and � C2O
′C3

respectively.
The ith branch coordinate frame {ai} is established on joint center Ai , as shown in Fig. 4. The

direction of the yi-axis coincides with the revolute joint axis. The zi-axis is vertical up.
Let T denotes the homogenous representation of the moving platform frame {o′} relative to frame

{o}, T i is the transformation matrix of frame {ai} relative to frame {o}. The homogenous coordinates
of point Ci in terms of frame {ai} can be given by

C̄ai

i = [T i]
−1 T C̄o′

i , (1)

where C̄o′
i are the homogenous coordinates of point Ci in terms of frame {o′}.

Let Di be the projection of point Ci in the xizi-plane of frame {o}, the position vector of point Di

in terms of frame {ai} is given as

Dai

i =
[ (

Cai

i

)
xi

0
(
Cai

i

)
zi

]T

,

where (Cai

i )xi
and (Cai

i )zi
are the components along the xi- and zi-axes of vector Cai

i respectively.
The length of BiDi can be obtained from the result of Eq. (1),

Ld =
(
L2

c − (
Cai

i

)2
yi

)1/2
, (2)

where, (Cai

i )yi
is the component along the yi-axis of vector Cai

i .
The following equations can be obtained based on the geometrical relationship

⎧⎨
⎩

(
Bai

i

)2
xi

+ (
Bai

i

)2
zi

= L2
a((

Bai

i

)
xi

− (
Dai

i

)
xi

)2
+

((
Bai

i

)
zi

− (
Dai

i

)
zi

)2
= L2

d

. (3)

The above equations, combined with Eqs. (1) and (2), have two groups of solution. Since point Ci

is always in the positive direction of the z-axis of frame {o}, the projection of point Di should be in
the positive direction of the z-axis in terms of frame {ai}. Therefore, the rational solution of Eq. (3) is
the one which has a smaller (Bai

i )xi
, and the homogeneous coordinates of point Bi can be represented

as

B̄i = T i B̄ai

i .

The input angles θi (i = 1, 2, ...6) can be obtained from the above results. The rotation angles
of drive joints are determined by the input of prismatic joints in closed chain linkages, as shown
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in Fig. 4, and the length of li can be calculated from the geometrical relationship of closed chain
linkages,

li = (
l2
a + l2

c − 2lalc cos θi

)1/2
, (4)

where la is the length of BiEi ; lc is the length of BiFi in Fig. 4(b).

2.3. Velocity and acceleration analysis
The mapping from the velocity of each joint φ̇i to the moving platform generalized velocity V H of
the ith branch is expressed as

V H = GH
i φ̇i , (5)

where

GH
i = [

J1 J2 . . . J6
]

; J i =
(

Si

Si × (P − pi)

)
,

where Si is the direction of a revolute joint; P is the vector of origin {o′}; and pi is the location of
revolute joints.

The mapping from the moving platform generalized velocity V H to the generalized velocity of
revolute joints θ̇ is expressed as

θ̇ = Gθ
HV H, (6)

where

Gθ
H =

⎛
⎜⎜⎜⎜⎜⎝

[
GH

1

]−1

3:[
GH

2

]−1

3:

[
GH

6

]−1

3:

⎞
⎟⎟⎟⎟⎟⎠ .

Hence, the mapping from θ̇ to V H is expressed as

V H = GH
θ θ̇ , (7)

where GH
θ = [Gθ

H]−1.
By differentiating Eq. (7), the acceleration of the moving platform can be expressed as

AH = GH
θ θ̈ + θ̇TH H

θ θ̇ , (8)

where HH
θ is the second-order influence coefficient matrix of the system; θ̈ is the generalized angular

acceleration of revolute joints; and AH is the generalized acceleration of the moving platform.
The above equations establish the relationships of velocity and acceleration between the moving

platform and the driving revolute joints. As the rotation of the middle joint is driven by the translational
drive, it is necessary to establish the velocity and acceleration mapping between the moving platform
and prismatic joints in closed chain. By differentiating Eq. (4), the relationship between the revolute
joints’ velocities θ̇i and the prismatic joints’ velocities l̇i can be obtained:

θ̇i = li

lalc sin θi

l̇i (i = 1, 2 · · · 6;) . (9)

The above equation can be written as

θ̇ = Gθ
l l̇, (10)
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where

Gθ
l = diag

(
l1

lalc sin θ1

l2

lalc sin θ2
· · · l6

lalc sin θ6

)
6×6

.

According to Eqs. (7) and (10), the generalized velocity mapping of closed chain to the moving
platform can be obtained as,

V H = GH
l l̇, (11)

where GH
l = GH

θ Gθ
l is the first-order influence coefficient matrix of a foldable parallel mechanism

driven by closed chain.
Similarly, the acceleration mapping from prismatic joints in closed chain linkages to the moving

platform can be built by differentiating Eq. (11),

AH = GH
θ Gθ

l l̈ + Ġ
H
θ Gθ

l l̇ + GH
θ Ġ

θ

l l̇. (12)

By differentiating Eqs. (9) and (10), the accelerations of revolute and prismatic joints have the
following relation:

θ̈ = Gθ
l l̈ + l̇T Hθ

l l̇, (13)

and the mapping of each branch:

θ̈i = li

lalc sin θi

l̈i + hi l̇
2
i , (14)

where

hi =
lalc sin θi − l2

i

cos θi

sin θi

(lalc sin θi)2 .

Comparing with Eqs. (13) and (14), the second-order influence coefficient matrices of closed chain
are obtained,

Hθ
l = diag

(
h1 h2 · · · h6

)
6×6×6 .

Substituting Eqs. (8), (10), and (13) into Eq. (12), the moving platform’s acceleration is given as,

AH = GH
θ Gθ

l l̈ + l̇T
[
Gθ

l

]T
HH

θ Gθ
l l̇ + l̇T GH

θ ⊗ Hθ
l l̇,

where the symbol ⊗ represents the Kronecker product between matrices. The acceleration mapping
of closed chain to the moving platform can be obtained as

AH = GH
l l̈ + l̇T HH

l l̇, (15)

where HH
l = [Gθ

l ]T HH
θ Gθ

l + GH
θ ⊗ Hθ

l is the second-order influence coefficient matrix of the
foldable parallel mechanism driven by closed chain.

3. Directional Stiffness and its Extreme Value

3.1. Directional stiffness
Take 6-DOF mechanism for example, the only stiffness that we considered was the drive’s stiffness
k = diag(k1, k2, · · · k6), where ki is the stiffness of the ith branch drive. We also ignore the gravity
and other forces acting on the link except the moving platform. Assume that the moving platform is
suffering an external force FH, and the mechanism is in a state of equilibrium. After the force changes
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δFH = ( δM
δF ), the mechanism will get into a state of new equilibrium. The generalized displacement of

the moving platform caused by the small force change is δT = ( δθ
δ p ), where δ p = [ δpx δpy δpz ]T

and δθ = [ δθx δθy δθz ]T.

By the principle of virtual work, we can get V T
H FH + l̇

T
τ = 0, and then

l̇
T

GHT
l FH + l̇

T
τ = 0, (16)

where V H is the generalized velocity of the moving platform, l̇ = [ l1 l2 · · · l6 ]T is the
generalized velocity, and τ = [ τ1 τ2 · · · τ6 ]T is the drive force of the ith branch.

Eliminate l̇
T

from Eq. (16), and derive both sides, then it can be written as,

δGHT
l FH + GHT

l δFH + δτ = 0. (17)

By the definition of the second-order influence matrix, we get:

δGHT
l FH =

6∑
i=1

∂GHT
l

∂li
δli FH = (

HHT
l ⊗ FH

)
δl,

substitute it into Eq. (17), then

(
HHT

l ⊗ FH
)
δl + GHT

l δFH + δτ = 0. (18)

As the drive stiffness is known as k = diag(k1, k2, · · · k6), we can get δτ = −kδl and δl =
GH−1

l δT . Substitute these into Eq. (18), then we have:

δFH = (
GHT

l

)−1 [
k − (

HHT
l ⊗ FH

)] (
GH

l

)−1
δT . (19)

So the stiffness matrix can be defined as

K = (
GHT

l

)−1 [
k − (

HHT
q ⊗ FH

)] (
GH

l

)−1
. (20)

Set FH = 0, then the stiffness matrix is expressed as

K = (
GHT

l

)−1
k

(
GH

l

)−1 = GlT
H kGl

H . (21)

The compliance matrix is the inverse of the stiffness matrix:

C = GH
l k−1GHT

l . (22)

Based on the above equation, the moving platform’s translational and rotational stiffness along
any direction can be deduced.

Assume the moving platform is suffering an external pure force without moment: δFH = ( 0
δF ).

From Eq. (19), we can have

[
0

δF

]
=

[
K 1 K 2

K 3 K 4

] [
δθ

δ p

]
, (23)

where the stiffness matrix K is separated as four 3 × 3 matrix [ K 1 K 2
K 3 K 4

].
It should be noted here that in Eq. (23), δθ is not necessarily equal to zero, and δ p is not necessarily

be along δF either, for the translation of the moving platform caused by pure force may also couple
with some translation.
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Deduce Eq. (23) further:

{
K 1δθ + K 2δ p = 0

K 3δθ + K 4δ p = δF
.

Eliminating δθ above, we have

δF = (
K 4 − K 3 K−1

1 K 2
)
δ p = Kpδ p. (24)

As the directions of δF and δ p are not coaxial, the projection of δ p on δF is the displacement
change along δF. The translational direction stiffness along δF, by symbol KF , can get

KF = |δF|2
δ pTδF

= |δF|2
δFT

(
K−1

p

)T
δF

. (25)

Setting δF = F f , f being the unit vector, Eq. (25) can be simplified as:

KF = f T K T
p f . (26)

In a similar way, assume the moving platform is suffering an external pure moment without force
δFH = ( δM

0 ), then we can get similar equation as Eq. (24):

δM = (
K 1 − K 2 K−1

4 K 3
)
δθ = K θ δθ .

Then the rotational stiffness around δM can get:

KM = |δM|2
δMT

(
K−1

θ

)T
δM

. (27)

Setting δM = Mm, m is the unit vector. The rotational stiffness around m can get

KM = mT K T
θ m. (28)

3.2. Extreme value of directional stiffness
Take translational stiffness, for example. In order to get the extreme stiffness when the direction f
changes, the Lagrange multiplier method is used:

L = f T K T
p f − λ

(
f T f − 1

)
.

It should satisfy ∂L
∂ f = 0; ∂L

∂λ
= 0, when L reaches the extreme value,

{
2 f T K T

p − 2λ f T = 0

f T f − 1 = 0
.

Then we have Kp f = λ f and KF = f T K T
p f = λ, which means that all the eigenvalues of Kp

are the extreme values of translational stiffness, and the corresponding eigenvector is the direction.
In the same way, the extreme value of rotational stiffness is all the eigenvalues of K θ , and the

corresponding eigenvector is the direction.
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Fig. 5. Flowchart of singularity judgment.

3.3. Singularity judgment analyzed by stiffness
Singularity is closely related to the Jacobian matrix. As illustrated in Eqs. (5) and (6), the inverse of
GH

i is necessary for building GH
θ . Therefore, if the rank of GH

i is deficient, the branch is in singularity.
Therefore, the parallel mechanism is apparently in singularity. If GH

i is not deficient, GH
θ can be built.

However, if its rank is deficient, the mechanism is also in singularity. If Gθ
l cannot be calculated by

Eq. (10), then the branch is also in singularity, which causes the singularity of parallel mechanism.
The judgments of singularity can be illustrated in Fig. 5. It should be noted that this method depends
on the computer to calculate and judge nearly all the configurations in the workspace, and all the
singularity configurations are not absolutely precise but are very close to the singularities. 	 is a
positive real number that is close to zero.

The determinant of the first-order influence coefficient matrix is equal to zero when the mechanism
is in a singular configuration. In practical applications, when the mechanism is near singularity, the
kinematic performance may have already got poor. The singularities are classed into kinematic
singularity and constrained singularity based on causation. When the kinematic singularity occurs,
kinematic screws get linear correlation and the moving platform cannot move along or around any
direction. Set the direction A(A �= 0), from GH

l l̇ = V H we get GH
l A = 0 and rankGH

l < 6. From Eq.
(22), it satisfies rankC < 6, which means that the compliance along A, CA is zero, and the stiffness
along A is infinite. When the constrained singularity occurs, constraint screws get linear correlation
and the moving platform can achieve additional DOF along some directions when all the six drives
are locked. Set the direction B(B �= 0), considering l̇ = Gl

HV H, we get Gl
H B = 0 and rankGl

H < 6.
Considering Eq. (21), rankK < 6 can be obtained. It means that the stiffness along B, KB is zero.
Both kinds of singularities may occur at the same position and orientation, and the difference is in
their directions.

4. Examples
The dimensions of the mechanism are set as rc = 1.75 m; ra = 2.5 m; ϕc1 = 110◦; La = 1.5 m; la =
1.479 m; and lc = 1.479 m.

Spheroidal coordinate is used to illustrate the stiffness of moving platform in all directions. It
represents the direction and the norm of translational and rotational stiffness, shown in Figs. 6 and
7. The distance from the points on the surface to the origin is the value of stiffness, and the vectors
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Fig. 6. The directional stiffness as the moving platform translates.

Fig. 7. The directional stiffness as the moving platform rotates.

of the points are the directions. The arrows in these figures illustrate extreme stiffness. As the main
destination is singularity analysis, it might as well set the drive stiffness as 1 N/m.

At the initial position and orientation (moving platform is in the middle place, and horizontal,
the height is 2.5 m), the translational stiffness along all directions is illustrated in Fig. 6 (a). It
can be seen that the distribution of translational stiffness is uniform. However, the distribution of
rotational stiffness is not uniform, especially when the stiffness around x ′, y ′ directions are smaller.
The directional stiffness is illustrated in Fig. 6(b) and (c) when the moving platform moves 1 m and
2.13 m (where it is very close to singularity) along the x ′-axis. As the mechanism gets close to the
boundary of the workspace, it gets close to singularity as well, and the directional stiffness along
some directions (such as P1) get close to infinite (200 times than the drive stiffness 1 N/m). Along
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these directions the mechanism cannot move, which means kinematic singularity. On the other hand,
along some directions, such as translational stiffness along P2 and rotational stiffness around P3, the
value gets close to zero, and the mechanism loses its constraints, which means constrained singularity.
Therefore, the configuration is in both kinematic and constrained singularity, and the difference is
the directions along (or around) which singularity occurs. The singularity configuration is shown in
Fig. 8 (a).

Figures 7(a), (b), and (c) illustrate the directional stiffness along and around the directions when
the moving platform rotates 20◦, 35◦, and 50.3◦ around x ′ of {o′} coordinate respectively. It gets
very close to singularity when it rotates 50.3◦. The moving platform lost its constraints along some
directions, such as P4, for the stiffness along these directions is close to zero. The mechanism is in
constrained singularity only. The rotational stiffness changes are steady, and no singularity occurs
around all these directions. The singularity configuration is shown in Fig. 8(b)

5. Conclusions
The mechanism which is used as a heavy load ship-based stabilized platform has been analyzed.
Based on inverse kinematics, the first- and second-order influence matrices of the closed loop drive
mechanism have been deduced. The stiffness matrix considering changes in the configuration of
mechanism has been built based on virtual work principle. After that translational and rotational
stiffness along any directions are deduced. Moreover, the extreme values of translational and rotational
stiffness are obtained according to the separation of stiffness matrix. At last, the spheroidal coordinates
were used to illustrate directional stiffness. In this way, the singularity was analyzed using the data
of directional stiffness.

It is important that the way to analyze the singularity is visual and accessible. The directions can
be obtained to illustrate the directions the moving platform cannot move or lost its constraints. It will
make clear as to how the kinematic situation will be when the mechanism gets close to singularity.
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