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Given a sequence of linear forms
Ry = n, 1001 + "'+Pn,,m(1m7 Pn,,lv---vpn,,m €K, negN,

in m > 2 complex or p-adic numbers ay,...,on € K, with appropriate growth
conditions, Nesterenko proved a lower bound for the dimension d of the vector space
Kai + -+ - + Kam over K, when K = Q and v is the infinite place. We shall generalize
Nesterenko’s dimension estimate over number fields K with appropriate places v, if
the lower bound condition for |Rn| is replaced by the determinant condition. For the
g-series approximations also a linear independence measure is given for the d linearly
independent numbers. As an application we prove that the initial values

F(t), F(qt),..., F(g™~'t) of the linear homogeneous g-functional equation

NF(q™t) = PLF(¢" 1) + PaF(q" ~2t) + - + P F (1),

where N = N(q,t), P; = Pi(q,t) €K[g,t] (i =1,...,m), generate a vector space of
dimension d > 2 over K under some conditions for the coefficient polynomials, the
solution F'(¢) and ¢,¢q € K*.

1. Introduction

Let F(t) be a non-zero solution of the ¢g-functional equation
NF(q™t) = PLF(q™ ")+ Py F(¢™ %) 4+ + P, F(t), m > 2, (1.1)

where N = N(q,t), P, = Pi(¢q,t) € K[g,t] (¢ =1,...,m) are polynomials in ¢ and
t with coefficients from the field K. Here we suppose that equation (1.1) satisfied
by F'(t) is of the lowest order m. The analytic solutions of (1.1) include inter alia
generalized g-hypergeometric (basic) series

oo

B (a1)n.--(ak)n ,p
EACEDD (@Dn(b1)n - .. (bl)nt ’

n=0

where (a)o = 1 and (a), = (1 —a)(1 —aq)...(1 —aq"?t) for n € Z+.

There are few works considering linear independence properties of the solutions
within the general framework of equation (1.1). Osgood [15] studied quantitative
irrationality for the Frobenius-type series solutions of (1.1) over the Gaussian field
Q(4) when ¢ = 1/d, d € Z[i], |d| > 1. Bézivin [2, 3] proved linear independence
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results for the series
o0 t"
F(t) = Z =, Az) € K7] (1.2)
ne0 H¢: A(q )

and its derivatives over imaginary quadratic field K, when ¢ € Zx, |q| > 1. Topfer
[21] considered linear independence of the solutions and their derivatives in some
special cases of (1.1). In the special case qtF(¢*t) = —F(qt) + F(t) attached to
the Rogers—Ramanujan continued fraction sharp irrationality measures have been
obtained by Bundschuh [4] and Shiokawa [17] in the imaginary quadratic field case
and by Matala-aho [10] when K is an algebraic number field.

On the other hand, there is much work considering the arithmetic nature of the
g-hypergeometric series @, (t) (see Stihl [19] and Katsudara [9]) and of the analytic
solutions F'(t) of the first degree ¢g-functional equation

A(g,t)F(qt) = B(q,t)F(t) + C(q, ),

see [1,4-7,13,14,16,18,20-22].

In the first part we shall state and prove linear independence results. Theorem 3.3
is especially designed to study quantitative aspects of g-functions and it is written in
such a way that we do not need to multiply any denominators in the approximation
formulae, all information is now included in the heights via the product formula
(2.1).

Then we shall tackle equation (1.1) with N(q,t) = t°*M(q,t) when the positive
integer s and the degrees ro = deg, M (q,t), r; = deg, P;(q,t) in ¢ of the coefficient
polynomials satisfy the condition (4.2). The new phenomenon coming from the use
of the functional equation method is that we do not need to know a priori any
explicit forms for the solutions of equation (1.1). Only property of the solutions
needed is a slight upper bound condition near zero, we shall use the condition
(4.3). The methods using rational function approximations (Padé approximations)
or Thue-Siegel’s lemma usually need explicit knowledge of the behaviour of the
g-series expansions. The crucial thing in studying equation (1.1) is to use matrix
formalism for the functional equation method, which enables us to achieve trans-
parent estimations for the approximation polynomials (3.2) and for the remainder
term (3.3) and an easy determination of the determinant condition (3.4).

As a consequence of using the functional equation method, we are able to apply
theorems 3.1 and 3.3 not only for the analytic solutions including the class of
g-hypergeometric series studied by Stihl [19] and partly for the class of functions
(1.2) studied by Bézivin [2] and recently by Amou et al. [1], but also for other—even
non-continuous—solutions of (1.1). Our main result, theorem 4.1, for the non-zero
solutions of equation (1.1) is that under the conditions (4.2)—(4.4) at least two of
the numbers

F(t),F(qt),..., F(¢"'t) (1.3)
are linearly independent over K (an algebraic number field) having a linear inde-
pendence measure depending on the degrees s, r; (i = 1,...,m) and the dimension

of the vector space generated by the numbers (1.3).
The case m = 2 has interesting implications for the values of certain g-continued
fractions (see [10,12]).
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2. Notation

Let K be an algebraic number field of degree xk over Q. If the finite place v of K
lies over the prime p, we write v|p, for an infinite place v of K we write v|co. We
normalize the absolute value ||, of K so that

if v|p, then |pl, =p~",

if v|oo, then |z|, = |z,

where | - | denotes the ordinary absolute value in Q. By using the normalized valu-
ations

51,//@’ Ry = [Kv : Qv],

ledlo = la

the product formula has the form
ITlell.=1 Vaek* (2.1)
The Height H(a) of a is defined by the formula

H()=]Tlaly,  llal; = max{1,lall,}

and the height H(a) of vector a = (aq, ..., ) € K™ is given by

al; = max {1, ol }.
1=1,....m

H(a) =[] laly, |
We shall also use the notation

Ko(f) =[] max [5illu,
P

Ly(f) = min max||3;[|. Ky ()

for any vector 3 = (f31,...,084) € K¢ and
K(B) = HH}E}XHbi,ij

for any matrix B = (b; ;). Here the quantity min;—1,.._4max;z; |3}, gives a second

largest number of [|b;]|, j = 1,...,d, and the introduction of L,(f) is essential in
the following argument. For any place v of K, ¢ € K* and ||gq||, # 1, we define the
number
\ = )\ — lgHl(q)
A=Y
log [qllv

having the following properties A\j /4 = —Aq, [Aq| = 1. Also A\, < —1 for all |q[, < 1,
and A\, = —1, if moreover |¢|,, > 1 for all w # v.
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3. Theorems for linear independence and measures
Let us have a sequence of linear forms
R,=Poion+ -+ Pyomam, Puoi,....,Pom €K, neN, (3.1)

in m complex or p-adic numbers ag,...,a, € K,. First we shall study the dimen-
sion of the vector space Kaj + - - - + Ka,, over K under the following assumptions:

max{[|[Pall3s- - 1Pamlli} < Pu(n)  Vu, (32)
[Rnllo < Ry(n)
and
Pn,l e Pn,m
Pn—l,l e Pn—l,m
A(n) = det : - : #0 (3.4)
Pn—m+1,1 e Pn—m+1,m

for all n > nyg.

THEOREM 3.1. Let v be given and let ¢ € K* satisfy ||q|l, < 1. Let Py 1,..., Pym €
K be such that the assumptions (3.2), (3.3) and (3.4) are valid with

Pu(n) = cillgli"™, w21 Vo,

Ry(n) = & lgll," ", e >0,
where cys are positive constants not depending on n (v runs through all places
and positive integer indices) with [[, cw = c2 < oo, and r(n) — oo such that

r(n)/a(n) — oo and r(n)/p(n) — | > 1. If at least one of «;s is non-zero, say
a1 # 0, then the dimension d of the vector space Kay + - - - + Ko, over K satisfies

l

d>——. 3.5
=y (3.5)

Let us recall Nesterenko’s result [8], which uses the lower bound condition
S(n) < |Rnl (3.6)

for the remainder R,, instead of the determinant condition (3.4). Now K = Q and
K, =R.

THEOREM 3.2 (sce [8]). Let Py1,...,Pnm € Z be such that the assumptions (3.2),
(8.3) and (3.6) are valid with

P(n) = e’™,
R(n) = e ™),
S(n) =e o),
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T1 = 7o > 0 and o(n) is a monotonically increasing function on N such that o(n) —
oo and o(n+1)/o(n) — 1. Then the dimension d of the vector space Qa1+ - -+Qayy,
over Q satisfies

1+ T1

> —_— 3.7
1+7’1—7’2 ( )

In order to compare the above theorems, we put K = Q and 7, = 75. Now, if the
assumptions of theorem 3.2 are valid, then d > 1 + 7. To apply theorem 3.1 we
choose an integer s € Z" and a corresponding sequence p(n) such that

) feo(m)
Set also ¢ = 1/s, then
Poi/sP™ L Py /sPM

and
R,/ sP(n)

satisfy the conditions (3.2) and (3.3) respectively with r(n)/p(n) — 7o + 1. If also
the determinant condition (3.4) is fulfilled, then by theorem 3.1

=719+ 1.

From now on we shall suppose that the vector space Kaj+- - - +Ka,, of dimension
d has the base, say, {a1,...,aq}.

In the applications for g-series the approximation forms (3.1) are usually such
that Py, , = Py x(g, 2) are polynomials of degree An? in ¢ and of degree an in z and
the remainder R,, = R,(q, z) has order Bn? in zero with respect to variable g, i.e.

Ru(4,2) = ¢°" 5,(q,2),  Su(a,2) € K[lg, 2]].

For this reason we prove the following results corresponding to the assumptions
(3.2) and (3.3) with

a(n) = an, p(n) = An?, r(n) = Bn?, (3.8)
where a, A and B are constants not depending on n. Further, we shall use the
notation

___ B
FEB¥(d—1r

and w=p —1 when B+ (d —1)AA4 > 0.

THEOREM 3.3. Let the assumptions of theorem 3.1 be valid with (3.8) and suppose
that
B+ (d—1)AA > 0. (3.9)

Then there exist positive constants C', D and Lo such that

C
(KLw)rz/m,LD(log L)y-1/2"

|Bra + -+ + Bacalw > (3.10)

for all B = (8;) € K\ {0} with L = max{L,(8), Lo} and K = K,(3).
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We call w a linear independence measure (exponent) of the numbers ay, ..., aq4.

COROLLARY 3.4. Let K = Q and let the assumptions of theorems 3.1 and 3.3 be
valid. Then there exist positive constants C', D and Lg such that

C

[Brot + -+ + Baaal > To+DlogL) 7%

(3.11)
for all 8= (8;) € Z*\ {0} with
ged(Br,...,84) =1 and L= max{i:nll’i{l’dr?zx 16, LO}

(depends on the second largest coefficient).

If we suppose a; = 1 and d > 2, then by the general theory we have w > d — 1
in (3.11) (see [8]). Let Ay = —1. In order to get the best possible measure p = d we
should to construct such an approximations that B/A = d.

COROLLARY 3.5. Let oy = 1 and let the assumptions of theorems 3.1 and 3.3 be
valid. Then there exist positive constants C', D and Lo such that

C B B
(KLw)rz/m,LD(logL)—l/z ’ = B+ (d — 1))\14

_max {la; = fifu} > (3.12)

for all = (1,82,...,0m) € K™ with L = max{L,(8), Lo} and K = K,(j3).

COROLLARY 3.6. Let m = 2, a1 = 1, as = « and let the assumptions of the-
orems 3.1 and 3.3 be valid. Suppose that B + AA > 0, then there exist positive
constants C', D and Lo such that

C B B
(KLo)</m [pos Dy M= A

law — By > (3.13)

for all B € K with L = max{L,(1,8), Lo} and K = K,(1,3).

COROLLARY 3.7. Let K=Q, m =2, a1 = 1, as = « and let the assumptions of
theorems 3.1 and 3.8 be valid. Suppose that B + AA > 0, then there exist positive
constants C', D and Lo such that

_M ¢ __B
@ F=B1aa

(3.14)

N > N [w+D(log L)~1/2"
for all M/N € Q with N > 0 and L = max{min{|M|, N}, Lo}.

In the case of approximating only one number « like in corollaries 3.6 and 3.7 we
shall call p an irrationality measure of «.
Also we note that the lower bounds used in corollaries 3.5-3.7 are usually replaced
by
c’ B
Hrnlmoi Do) 72 H= B3
where H = max{H(3), Hy}.

oo — By > (3.15)
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Proof of theorems 3.1 and 3.3 and the corollaries. Let the base of the vector space
Koy + -+ - + Ka,, be (without loss of generality) oy, ..., aq. Thus there exist p =
m — d linearly independent linear forms

Ljﬁzﬂj,lxl++ﬂ],mea ﬂj,iEKa jzla"'alu’aizla"'am

such that
Lia = pBj100 4+ Bjmam =0, j=1... 4. (3.16)

We set
Ad£=ﬂ1$1+"'+ﬂd$d, ﬂjEK, j=1,...,d,

where at least one of 3; # 0. If now
a1+ +a, L, +a,414q=0
for some a1, ...,a,4+1 € K, then
a Lo+ +a,Lya+a,144a=0.

Using (3.16) we get
autr1Bion + -+ ayg18q0q = 0,
which implies a, 181 = -+ - = a,1184 = 0 by the linear independence of oy, ..., ag.
Thus a,41 = 0 giving
a1L1—|—---—|—a#L#=0,

which by the linear independence of L,...,L, implies that a1 = --- = a, =
au+1 = 0. Hence the linear forms Li,...,L,, A4 are linearly independent and so
there exist ny1,...,nq_1 € {n,n—1,...,n —m + 1} such that
Pox -+ - - - Pun
Pojin =+« o+ o Puim
A=det| B - Bs 0 - 0 £0 (3.17)
Bi1 e Brm
Bua e Brum
for all n > ng by the assumption (3.4). Further,
R, Pho o+ « « o Py
Rpy s Puyio -+ -+ Puim
apA=det | Ay B oo Bg 0 - 0
0 Bra cee Bim
0 B cee Bym

= Rn1A1 + -4 Rnd_lAd—l + AgA4.
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Thus we may use the product formula (2.1) to get
1=All [T 14l
wH#v
< e s Bl Ru() P2 + [ Aalu Po() =) mass 6111
T Pty max 15l mac |53 115 = S(n) + W(n), (318
i =1,..., )
where
S(n) = esLu(B)K (BY! ;™ [lgll; " g @2 T el gl (=
wH#v
and
W (n) = e3K, (B)K (B)" | Aallucl= D) T eld=D g7, D7t
wH#v
with B = (3; ;). The term

Lv = i j va
(B) = min max||3;].K.(5)
in S(n) comes from the fact that no o; (¢ = 1,...,d) is zero and so a; can be
replaced by any «; (i =1,...,d).

We note that theorem 3.1 can be derived by a slight modification of the above

argument, namely, if we use only the linear forms L1,...,L, in (3.17), then there
exist ny,...,ng € {n,n —1,...,n — m+ 1} such that
Pui -+ + <+ Pum
P R 2
det | © et Ml £0 0 Vn > no.
Bia v - - o Bim
Bui - o o Bum

So we can replace the upper bound S(n) + W(n) in (3.18) by
Un) = eacs™ llall; ™ H (@) = cacs™ g+ (3.19)
However, U(n) — 0 holds for every d satisfying
r(n) +dip(n) >0 Yn>=mn (3.20)
from some 71 > ng on. Hence we necessarily have
[4+dx<0. (3.21)

This proves theorem 3.1.
We next prove theorem 3.3.
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From (3.18) we get the Diophantine seesaw
1 < S(n)+W(n)<S'(n)+W(n), (3.22)

where
§'(n) = Lyct™||g|[r(M+@=DN 1 — 1,(8)

and
W' (n) = || Adllo Kocg™ H(g) =P K, = K, (8).

Choosing L, big enough, say L, > Lo (if necessary), and using (3.9), we can find a
largest ng > ny such that
5'(n2) > 5. (3.23)

Consequently, the Diophantine seesaw (3.22) implies
W'(ng +1) > 3. (3.24)

First we shall use the inequality (3.23) giving

_ logecg _ log2L,
B+ (d—1)MA)R2 +a Tio <0, (3.25)
(B (@ DAME g ial,™ T TogTl,
which implies the bounds
—log2L,
g < 7 + (3.26)
\/log lgllv(B + (d — 1)AA)
and
B — log 2L, 10g 2L,
2 2
ny < e+ 2¢7 - . (3.27)
2o \/lognqnv(B +(d=1AA)  logllgll.(B + (d —1)A4)
Then using (3.24) we get
3 < alloK o™ H (@)Dt
< || Aallo K ocf? H (q)@- DA™
< ||Ad||UKUCQL;)\(d—1)A/(B+(d—1))\A)+Clo/\/ log L, (328)

proving the estimate (3.10).
In corollary 3.4 we have k = 1 and v = 0o giving

K =Kex(@) =[] max |5,

B pF00

where max;—1,_ 48|, = 1 for any p # oo because ged(f1,...,8q) = 1. Thus K =1
and
L="L,(8)= min max|3

i=1,...,d j#

is a second largest coordinate of 3.
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In corollary 3.5 the dimension d of the vector space Kaj + - - - + Kay, is at least
2 having a base {1,...,q;,...}. From (3.10) we get

c B
F=BTxa

;= Byl > (3.29)

(K/L/w)n/mL/D(log Ln-1/2?

for any §; € K with g = (-4;,0,...,0,1,0,...) € K™, L' = max{L,(§’), Ly} and
K' = K,(f'). This immediately gives (3.12).
-
P

Corollary 3.6 follows directly from corollary 3.5.
In corollary 3.7
K=Ky,= H maxq 1 %
=K, = |
M
L=L, = min{l, ’W’}N = min{N, |M|}

pF0

and

giving (3.14). O

4. g-series
Let F(t) be a non-zero solution of the ¢g-functional equation
t*MF(q™t) = Py1F(q™ ') + PooF(q™ 2t) + - + Py F(2) (4.1)

of lowest order m, where m > 2, s > 1 and M = M (q,t), Po; = Po.i(¢,t) € K[g, 1]
are of degree
r = deg, M, T, = deg, Po ;.

In the following we set

S '
A= max {7“1,(] )(S_.FTH_TJ}, B=3s
ji=2,...,m 2j
and we suppose
B> A. (4.2)

THEOREM 4.1. Let v be a place of K and let q,t € K* satisfy B+MA > 0, |q|, < 1,
M(q,q"t) # 0 and Py m(q,q"t) # 0 for all k € N. Let F(t) be a solution of the
functional equation (4.1) such that

|F(¢"t)], <}y YneN (4.3)
for some positive constant c11 and the numbers
F(t),F(qt),...,F(g™ 't (4.4)
are not all zero, then
d = dimg {KF(t) + KF(qt) + - + KF(¢™ )} > 2.

If d = 2, then any two of the numbers (4.4) being linearly independent over K have
a linear independence measure w = p — 1, where = B/(B + \A).
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QUESTIONS 4.2. Let equation (4.1) be of the lowest order m > 3.
(i) Is the independence result in theorem 4.1 best possible for the general solution
of the functional equation (4.1), i.e. does there exist solutions with d = 27

(ii) If F(t) is an analytic solution in theorem 4.1, is then always

dimg {KF(t) + KF(qt) + -+ KF(¢™ ')} = m?

EXAMPLE 4.3. Let ¢,t € K* satisfy —3 < A < —1, |q|, < 1. If F(t) is a non-zero
solution of the functional equation

t*F(¢*t) = —F(¢*t) + tF(qt) + F(t), (4.5)
satisfying the condition (4.3) and the numbers
F(t), Fl(at), F(q®t) (4.6)

are not all zero, then at least two of them are linearly independent over K.

If d = 2, then any two of the numbers (4.6) being linearly independent over K
have a linear independence measure w = p — 1, where p = 4/(44+3)\). T K = Q
and ¢ =d~! (d € Z\ {0,£1}) or ¢ = p' (p is a prime, [ € ZT), then A = —1 and
w = 3 for the real or p-adic numbers (4.6).

Note that equation (4.5) has an entire solution

o0 N _1
Fi(t)=)Y_ fat", fo=1, f1=1_—q2a
n=0

n—+1
q —
for2 = =g (1 + ¥ fa) YneN (4.7)
1—¢?nt

Let us define the orbits
H(t)={tq" |n€ Z}, teC,,

and the index set 2 = {0} U{t € C, | |¢|, < |t|, < 1}, which make up a partition
of C, that is I,c o H (w) = C,. Given ¢,t € C,, and any initial values

F(t),F(qt),...,F(¢™ 't) € Cp,

then the functional equation (4.1) has a unique solution F'(¢) on the orbit H(t), if
M(q,q"t) # 0 for all k € Z. So, a priori we do not even need to study continuous
solutions of (4.1). In the following example we shall construct a non-continuous
solution of (4.5) satisfying the conditions of theorem 4.1.

EXAMPLE 4.4. Let v =00, K=Q, ¢ =  and
-1, ifteR
hty=9. " \Q
1, ift € Q.

Then F»(t) = h(t)Fi(t) is a non-continuous solution of the functional equation (4.5)
satisfying the condition (4.3) and thus

dimg{QF(t) + QFy(gt) + QF2(q*t)} > 2
for every t € Q*.
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Osgood [15] studied the Frobenius-type series solutions

F(ty=t">_ fat", c€C, (4.8)
n=0

of the functional equation (4.1) giving the following kind of approximations. Let
K = Q(¢) and let ¢ = 1/d, d € Z]i],|d| > 1. Then there exists v > 0 (depending on
the degrees s, r and r;) such that for every € > 0

, M
max {’F(qlt) — W’} > |[N|7te

i=0,...,m—1
when M, N € Z[i] and |N| > N(e) for some positive constant N(e).

COROLLARY 4.5. Let v be a place of K and let q,t € K* satisfy |ql, < 1, —1 —
1/(m —1) <A< —1. Let F(t) be a solution of the functional equation

tF(¢™t) = PF(¢™ ") +---+ SF(t), m>2, (4.9)
where P,..., S € K, S € K*, such that
|F(¢"t)|, <cfy VYneN
for some positive constant c11 and the numbers
F(t), F(qt),...,F(¢™ 't (4.10)
are not all zero, then
d = dimg {KF(t) + KF(qt) + -+ KF(g™ ')} > 2.

If d = 2, then any two of the numbers (4.10) being linearly independent over K
have a linear independence measure w = 1 — 1, where = m/(m + (m — 1)A).

Let
T(z)=Pz™ '+ + 8.

If T(1) = 0, then (4.9) has an entire solution
F(t) i ) t" (4.11)
B ne0 H?:l T(q") . .

When we set ¢ = 1/s and note Ay = —\,, then we shall get the following conse-
quence, where we denote Q(z) = x*T(1/z).

EXAMPLE 4.6. Let Q(z) € K[z], deg, Q(z) = k < m and

o0 Zn
F(z)zz — —, s,ze K", |s[, > 1. (4.12)
o s PO, Qs
Ifhk<m-—1land 1< s <141/(m—1), then
d = dimg {KF(t) + KF(qt) + -+ KF(g™ ')} > 2. (4.13)

If d = 2, then any two of the numbers (4.13) being linearly independent over K
have a linear independence measure w = p — 1, where p=m/(m — (m — 1)A,).
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The results of Bézivin [2] imply qualitative linear independence results over the
imaginary quadratic field K for the series (4.12) and its derivatives, if s,t € K*, s €
Zx,|s| > 1, where Zg denotes the ring of integers in K.

Let -
B =L o

be the g-analogue of the Bessel function. Matala-aho [11] proved an irrationality
measure = 7/(7 — 4X;) over K for Bs(s) with s € K, |s], > 1 and 1 < A\s < 7/4.

Duverney [7] used Thue-Siegel lemma to construct approximations for the solu-
tions in the form (4.12) of the equation

2 f(2) = P(2)f(d2) + Q(2). (4.14)

In Amov et al. [1] Thue-Siegel’s method is developed in a significant manner to
get irrationality measures for the functions (4.12) over algebraic number fields K.

Based on the Padé approximations of g-hypergeometric series Stihl [19] has
proved linear independence results over Q in the archimedean case with measures
for a class of g-hypergeometric series which interlace partly with our analytic solu-
tions of the functional equation (4.9).

In the following example a comparison is made in certain common cases between
the results coming from our corollary 4.5, Theorem 2 of Amou et al. [1] and Satz
1-2 of Stihl [19)].

ExAMPLE 4.7. Now we shall restrict to the archimedean case in K = Q. The ¢-
hypergeometric series

F(t):z(

n=0

t", m=>=2 1<m-2, 4.15
D@ () (4.15)

satisfies the functional equation
tF(g™t) = di 1 F (¢ + diF (¢'t) + -+ + do F (1), (4.16)
where
dipett v dit 4+ do= (1 — qz)(1 — agz) ... (1 — ax). (4.17)

If d; = di(a1,...,a;) € Q (i = 1,...,1+ 1), then corollary 4.5 gives the linear
independence over Q of at least two of the numbers

F(t), F(qt),..., F(g™ ') (4.18)

for all ¢ = r/s,t € Q* satisfying s > |r|™. If d = 2, then any two of the numbers
(4.18) being linearly independent over K have a linear independence measure w =
1 — 1, where
!
o dolr/s)
log(r™ /s)
From Amou et al. [1] it follows that the numbers (4.18) are irrational for all
q=r/s, t € Q* satisfying s > |r|/", where Iy = I'/(m) (is a computable positive
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number) with an irrationality measure

o gy dos(r/s)
! log(r!/s)

When a; € Q (¢ = 1,...,1), Stihl [19] gives the linear independence of all the
numbers

1,F(t),F(qt),...,F(¢™ ') (4.19)

for all ¢ = r/s, t € Q*, satisfying s > |r|'2, where

Iy = Iy(m,l) = (T+2m)(m—1) +12 -1

2(m —1)2
+ VA +4m2)(m —12)2 +4(m — (1 +m)(12 = 1)),

with a linear independence measure wr, = ppr, — 1,

o=y dos(r/)
2= Plog(rT /)

Here we have chosen the best possible I, i.e. the case when all a; = ¢** for some
k; € Zt.

The numerical values
I(2) = 2858, I0(3)=239.54, I(2,0)=4562, I,(3,0)=6.542 (4.20)
(and of course the general form of I';) show that our results are valid in considerably
larger set of variable ¢ than Amou et al. [1] and Stihl [19] have and also our measures

are rather sharp compared to measures given in [1] and [19]. However, we note that
Stihl has the full linear independence with measures.

5. Iterations of the functional equation

Let the operator J be defined by
JE(t) = F(qt)
for any function, vector or matrix F'(¢). It is readily seen that
J(FG)=JFJG, (5.1)

whenever the scalar or matrix product of F' and G is defined.
Let F(t) satisfy the linear homogeneous g-functional equation

NF(q™t) = Poy1F (g™ ') + P2 F(q¢™ 2t) + -+ 4+ Py F(t) (5.2)
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of lowest order m > 2, where N = N(q,t), Poq = Py1(q,t),..., Pom = Pom(q,t) €
K[g, t]. We shall write equation (5.2) in the matrix form

gm-1p Poi Pop -+ - Pom gm-1p
(Jm—QF N 0 e . 0 (Jm—QF
. 0 N o . 0
NI ] =
op } . } op
4 0 0 - N 0 7
or
NJA = Py, (5.3)

where J operates to the m-vector A and Py is the m X m matrix.
Let us use the notation

n—1
[Flo=[[ J'F, [Fl-n=1 ¥neN
1=0

and

[N]n—H
Nyp=——"" Vk=1,...,n+2.
T N ke

We shall also write
[Nyg1 ST E = Py J" Y F 4 Po ™ 2F -+ Py F V> —m,  (5.4)
where P_;; =1and P_;; =0forallé,j=1,...,m,i# j. Then

[N]pi1 J" ™A =P, A VneN, (5.5)
where
NpaPpa NpiPpo2 e Npi1Ppm
NpaPp_11 NpaPp_1p e NpoPn_1m
P . . . .
NoomPr—my11 NomPn—mt12 - NomPa—mii,m

The equation (5.5) operated by J gives
n—+1
(H JZN> J"2A = JP,JA. (5.6)
=1
Multiplying by N and using (5.3) we get
[N]pyoJ" T2 A = TP, PyA. (5.7)
Using the fact that equation (5.2) is of the lowest order implies
Pn+1 =JP, Py VneN. (58)
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On the other hand, equation (5.3) operated by J"! implies

JUTIN A = Jrtipy grtia, (5.9)
Multiplication of (5.9) by [T, J'N and the use of (5.5) give
[NngoJ"T2A = J PP P, A. (5.10)
Hence by (5.5) and (5.10) we get
Ppyr = J"TPyP, VneN. (5.11)

Equations (5.8) and (5.11) may be considered the fundamental recurrence forms for
the functional equation (5.2).

THEOREM 5.1. The polynomials Py, 1(q,t), Pn2(q,t), ..., Pnm(q,t) satisfy the lin-
ear recurrences
Po1(q,;t) = Ny 1 J" Py Pro11(q,t) + - 4+ Nyt " Pom Po—m 1(q, 1),
Pra(q,t) = Nno11J"Po1Pr12(q,t) + -+ + No—1.mJ " Pom Pnom,2(q, 1),

Pn,m(Qat) = Nn—l,lJnPO,lpn—l,m(Q7 t) + -+ Nn—l,mJnPO,mPn—m,m(%t),

(5.12)
for allm > 0.
Proof. From the formula (5.11) we get
Nn,lpn,l Nn,lpn,Q Nn,lpn,m
NpoPn_11 NpoPp_1p2 e NpoPn_1m
Nn,mPn—m+1,1 Nn,mPn—m+1,2 e Nn,mPn—m+1,m
J"Py1 J"Pya2 - . J"Pom
J'N 0 . . 0
0 J*N .- . 0
0 0 - JPN 0
Np-11Pn-11  Np—11Pa—i2 -+ Np—1aPooim
Nn—l,QPn—Q,l Nn—l,QPn—Q,Q e Nn—l,QPn—Q,m
y . . . . |
Nn—l,mPn—m,l Nn—l,mPn—m,Q e Nn—l,mPn—m,m
which directly implies the recurrences (5.12). O
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THEOREM 5.2.

det P, = (=)D [Py ) [N]E (5.13)

Proof. From the formula (5.11) we get

P = (J"Po)(J" " Py) ... (JPo)Po. (5.14)
For each term in the product (5.14) the determinant
JEPyy JEPys - - J*Pym
JEN 0 e . 0
0 JEN e : 0
det J*Py = det
0 o - J'N 0

_ (_1)m+1JkPO’m(JkN)m—1

follows easily from the definition of Py. Thus the formula (5.13) follows. O

6. Applications

Let ¢, t € K* and |g|, < 1. In order to apply theorems 3.1 and 3.3 and corollaries 3.4—
3.7 to the solutions of the functional equation (4.1) we shall denote o; = F(¢™"t)
for alli =1,...,m and use the notation

R, = [N]n+1Jn+mF = Pn,lal + Pn,2a2 + -+ Pn,mam Vn = —m, (61)
for the remainder term R,,.
Proof of theorem 4.1. First we have to estimate the upper bounds P, (n) for the
approximation polynomials Py 1,..., Py m. Let

P(z) = Zpkzk, Q(z) = quzk € K[z],
k=0 k=0

if [|prllw < |lgrllw for all & € N, then we shall use the notation

P(z) < Q(2)

w

in any valuation w. The recurrences in (5.12) are of the form

Pn = aan_1—|— ---—|—amPn_m, (62)

where
n
aj = Np—1,;J" Py

and the polynomials N = N(q,t), Py; = Poi(q,t) € K[g,t] are of degree

ro =1+ 5 =deg; N, r; = deg, Py ;
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with respect to t. Because the degrees r; and [K : Q] are finite there exists an h € Q
such that
N(t) < [[hflw(L+ -+ t7) (6.3)

and

for all places w.
From (4.2) it follows that (j — 1)r +r; < s and especially r,7; < s < 19 < 2s for
all j =1,...,m. Hence

aj=J""IN . JTINT P
gl I+t e Y Lt e £7)
w
< lals % |l (ro + 1)7%% (14t +--- 4+ 7°) Vj=1,...,m, (6.5)
w
where §, = 0, if w {00, 6, = 1, if w|oo and

2n —
- ]7“0—|—m“j. (6.6)

dj = (G —1)

Taking into account the estimate (6.5) with (6.6) and the recurrence (6.2) we get

Pa(t) <mP{ max gl ® Il (ro + 175 (14 ¢4+ 470) Py }
j=1,....m

2
alls, ™ BI ro + 1)™0 (L b )

<
w
< mﬁw
w
« An?+smn mn mndy mron
< llglly, [ Al ™ (mro + 1) (L+t4- ™) (6.7)
w
because
dj + An—3j)*+sm(n—j)< An* +smn, Vji=1,...,m. (6.8)

Thus we may take

m Moy * TN * SMmAn % An?
Py(n) = (Il (mro + 1)™ [t ™" gl ™) Nalls, ™ (6.9)

where
cw = || 1ll7 (mrg + 1)™

* MTo * sm
¢l llallz,

satisfies the condition that the product

ITew =TT R0z TT tmro + v TT et ™ TT gl
w w w w

w|oo

= (mro+ 1)™ H(t)™° H(q)*™ (6.10)

is finite.
Secondly, we shall study the upper bound R, (n) for the remainder term R,,. Let

N(gq,t) =t’M(q,t) =t°(mo +mat +--- +m,t"),

https://doi.org/10.1017/50308210500001827 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001827

Diophantine approzimations 657

then

n

n+1
IRulo = |50 2(2)| | F (kg™ ™)), I Imo +matg® + -+ m,t"q™ .. (6.11)
k=0

So
R < |¢]8(n+1) S(ngl) n n 6.12
|Rulo < [t[5" gl * “eractilmoly (6.12)

for some c12 > 0 because the product

n

k=0

tk tr rk
1_|_m1q + +m,t"q

mo »

converges for every |q|, < 1 and |F(tg"t™)|, < /™ by the assumption (4.3).
Hence we may take

Ry (n) = 5t lalls™ /2, eis > 0. (6.13)

In order to study the determinant condition (3.4) we start from the definitions
(3.4) and (5.5) to get

det Py, = Np1Npo ... Ny mA(n), (6.14)
which together with theorem 5.2 imply
A(n) = (=)D Py 1 [N - [N T—maee. (6.15)
Hence for all g, t satisfying
Pom(q,q"t) #0, N(q,¢"t)#0 VkeN

the determinant condition (3.4) is valid because A(n) # 0 by (6.15).
So, the assumptions (3.2)—(3.4) are valid with

« An® 2
Py(n) = cpllally,™ Ro(n) =i llalld™,
where
S '
A= max {7“1,(] )(S_,FT)_FTJ}, B=2.
ji=2,....m 2]

The assumption B + AA > 0 gives the dimension estimate

l B
dz2—=——-7>1 6.16
R 7 (6.16)
by theorem 3.1 and, if d = 2, then theorem 3.3 gives the measure

B

F=Ba
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Proof of example 4.3. Equation (4.5) is irreducible and thus solutions of (4.5) do
not satisfy any lower degree linear ¢-functional equation over K[g, t]. Now

A=max{0,2,2} =32 and B=3%=1

giving A > —3 and a measure y = 4/(4 + 3X). The solution (4.7) is entire because

; q(2) (6.17)
n= T o In .
kill(l —q%)
where
|gn|v < C?ll4
for some c14 > 0 for every q satisfying |g|, < 1. O
Proof of corollary 4.5. Now
) — 1 1
Acmad U=l _(4_LYs g5 (6.18)
27 m) 2 2

Thus A > —m/(m —1) and p = 1/(1 + A(1 — 1/m)). O

Proof of example 4.7. By using the definition for A = \; = log H(q)/log||¢||,, the
irrationality measure exponent p = p(A) can be written as follows

B
B+ (d—1)(log H(q)/ log|lqll.)A

B log lg/
B—(d—1)A log Hqu/(B—(d—l)A)H(d_1)A/(B—(d—1)A)

’U,:

(1) log [|gll» (6.19)

log Jgll* " H#(--1

for all |¢|, < 1 satisfying the condition (3.9), which reads ||¢||ZH (¢)@ 14 < 1.
Thus, if ¢ = r/s and d = 2, then

p= u(—l)M (6.20)

log [r[*1 /s

under the condition |r|*(-1) < s. By corollary 4.5 we know that p(—1) = m. O
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