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Abstract Let P(N) be the power set of N. We say that a function μ� : P(N) → R is an upper density
if, for all X, Y ⊆ N and h, k ∈ N+, the following hold: (f1) μ�(N) = 1; (f2) μ�(X) ≤ μ�(Y ) if X ⊆ Y ;
(f3) μ�(X ∪ Y ) ≤ μ�(X) + μ�(Y ); (f4) μ�(k · X) = (1/k)μ�(X), where k · X := {kx : x ∈ X}; and (f5)
μ�(X + h) = μ�(X). We show that the upper asymptotic, upper logarithmic, upper Banach, upper Buck,
upper Pólya and upper analytic densities, together with all upper α-densities (with α a real parameter
≥ −1), are upper densities in the sense of our definition. Moreover, we establish the mutual independence
of axioms (f1)–(f5), and we investigate various properties of upper densities (and related functions) under
the assumption that (f2) is replaced by the weaker condition that μ�(X) ≤ 1 for every X ⊆ N. Overall,
this allows us to extend and generalize results so far independently derived for some of the classical upper
densities mentioned above, thus introducing a certain amount of unification into the theory.
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1. Introduction

Densities have played a fundamental part in the development of (probabilistic and addi-
tive) number theory and certain areas of analysis and ergodic theory, as evidenced by
the large body of research on the subject. One reason for this is that densities provide an
effective alternative to measures when it comes to the problem of studying the interrela-
tion between the ‘structure’ of a set of integers X and some kind of information about
the ‘largeness’ of X.
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This principle is fully embodied in Erdős’s conjecture on arithmetic progressions [40,
§ 35.4] (that any set X of positive integers such that

∑
x∈X 1/x = ∞ contains arbitrarily

long finite arithmetic progressions), two celebrated instances of which are Szemerédi’s
theorem on sets of positive upper asymptotic density [41] and the Green–Tao theorem
on the primes [12].

The present paper fits into this context insofar as we aim to characterize the upper
asymptotic and upper Banach densities as two of the uncountably many functions satis-
fying a suitable set of conditions, which we use to give a more conceptual proof of some
non-trivial properties of these and many other ‘upper densities’ that have often been
considered in the literature (see, in particular, § 4 and Example 8).

An analogous point of view was picked up, for instance, by A. R. Freedman and
J. J. Sember (motivated by the study of convergence in sequence spaces) in [7], where a
lower density (on N+) is essentially a non-negative (set) function δ� : P(N+) → R such
that, for all X,Y ⊆ N+, the following hold:

(l1) δ�(X) + δ�(Y ) ≤ δ�(X ∪ Y ) if X ∩ Y = ∅;
(l2) δ�(X) + δ�(Y ) ≤ 1 + δ�(X ∩ Y );
(l3) δ�(X) = δ�(Y ) provided that |X�Y | < ∞;
(l4) δ�(N+) = 1.

Then the upper density associated with δ� is the (provably non-negative) function

δ� : P(N+) → R : X 	→ 1 − δ�(N+ \ X)

(see [7, § 2]), and it can be shown that for all X,Y ⊆ N+, the following hold
(see [7, Proposition 2.1]):

(l5) δ�(X) ≤ δ�(Y ) and δ�(X) ≤ δ�(Y ) if X ⊆ Y ;
(l6) δ�(X ∪ Y ) ≤ δ�(X) + δ�(Y );
(l7) δ�(X) = δ�(Y ) provided that |X�Y | < ∞;
(l8) δ�(X) ≤ δ�(X);
(l9) δ�(∅) = δ�(∅) = 0 and δ�(N+) = 1.

The basic goal of this paper is actually to give an axiomatization of the notions of upper
and lower density (Definitions 1 and 2) that is ‘smoother’ than Freedman and Sember’s,
insofar as it implies some desirable properties that do not necessarily hold for a function
δ� subjected to axioms (l1)–(l4) and for its ‘conjugate’ δ� (see Examples 1 and 7).

Similar goals have been pursued by several authors in the past, though to the best
of our knowledge early work on the subject has mostly focused on the investigation of
densities raising as a limit (in a broad sense) of a sequence or a net of measures (see, e.g.
Buck [4], Alexander [1], Maharam [25], Šalát and Tijdeman [36], Mekler [27], Fuchs and
Giuliano Antonini [8], Blass et al. [2], Sleziak and Ziman [39] and Di Nasso [5]). On the
other hand, Di Nasso and Jin [6] have very recently proposed a notion of ‘abstract upper
density’, which, though much coarser than our notion of upper density, encompasses a
significantly larger number of upper (and lower) densities commonly considered in number
theory.
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1.1. Plan of the paper

In § 2, we introduce five axioms we use to shape the notions of upper and lower density
studied in this work, along with the related notion of induced density. In §§ 3–5, we
establish the mutual independence of these axioms, provide examples of functions that
are, or are not, upper or lower densities (in the sense of our definitions), and prove
(Theorem 2) that the range of an induced density is the interval [0, 1]. In § 6, we derive
some ‘structural properties’: most notably, we show that the set of all upper densities is
convex; has a well-identified maximum (namely, the upper Buck density); and is closed
in the topology of pointwise convergence on the set of all functions P(N+) → R (from
which we also obtain—see Example 8—that the upper Pólya density is an upper density).
Lastly in § 7, we draw a list of open questions.

1.2. Generalities

Unless otherwise specified, the letters h, i, j, k and l (with or without subscripts) will
stand for non-negative integers, the letters m and n for positive integers, the letter p for
a positive (rational) prime, and the letter s for a positive real number.

We denote by N the set of non-negative integers (so, 0 ∈ N). For a, b ∈ R ∪ {∞} and
X ⊆ R we set �a, b� := [a, b] ∩ Z and X+ := X ∩ ]0,∞[. Also, we define R+

0 := [0,∞[.
We let H be either Z, N, or N+. We shall consider H as a ‘parameter’. Though it makes

no substantial difference to stick to the assumption that H = N most of the time, some
statements will be sensitive to the actual choice of H (see, e.g. Example 5 or Question 6).

Given X ⊆ R and h, k ∈ R, we define k · X + h := {kx + h : x ∈ X} and take an arith-
metic progression of H to be any set of the form k · H + h with k ∈ N+ and h ∈ H ∪ {0}.
We remark that, in this work, arithmetic progressions are always infinite, unless noted
otherwise.

For X,Y ⊆ H, we define Xc := H \ X and X�Y := (X \ Y ) ∪ (Y \ X). Furthermore,
we say that a sequence (xn)n≥1 is the natural enumeration of a set X ⊆ N if X = {xn :
n ∈ N+} and xn < xn+1 for each n ∈ N+. For a set S we let P(S) be the power set of S.

Last, given a partial function f from a set X to a set Y , herein denoted by f : X 	→ Y ,
we write dom(f) for its domain (i.e. the set of all x ∈ X such that y = f(x) for some
y ∈ Y ).

Further notation and terminology, if not explained when first introduced, are standard
or should be clear from the context.

2. Upper and lower densities (and quasi-densities)

We will write d� and d�, respectively, for the functions P(H) → R mapping a set X ⊆ H
to its lower and upper asymptotic (or natural) density, i.e.

d�(X) := lim inf
n→∞

|X ∩ [1, n]|
n

and

d�(X) := lim sup
n→∞

|X ∩ [1, n]|
n

.
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Moreover, we will denote by bd� and bd�, respectively, the functions P(H) → R taking
a set X ⊆ H to its lower and upper Banach (or uniform) density, i.e.

bd�(X) := lim
n→∞min

l≥0

|X ∩ [l + 1, l + n]|
n

and

bd�(X) := lim
n→∞max

l≥0

|X ∩ [l + 1, l + n]|
n

.

The existence of the latter limits, as well as equivalent definitions of bd� and bd�, are
discussed, e.g. in [17]. Note that although the set X may contain zero or negative integers,
the definitions above only involve the positive part of X, cf. [18, p. xvii] and Example 4
below.

It is well known, see, e.g. [28, § 2] and [29, Theorem 11.1], that if X is an infinite subset
of N+ and (xn)n≥1 is the natural enumeration of X, then

d�(X) = lim inf
n→∞

n

xn
and d�(X) = lim sup

n→∞
n

xn
. (1)

Since d�(X) = d�(X) = 0 for every finite X ⊆ N+, it follows that d�(k · X + h) =
(1/k)d�(X) and d�(k · X + h) = (1/k)d�(X) for all X ⊆ H, h ∈ N, and k ∈ N+.

On the other hand, it is straightforward that for every X ⊆ N+, h ∈ N and k ∈ N+,

min
l≥0

|(k · X + h) ∩ [l + 1, l + nk]| = min
l≥0

|X ∩ [l + 1, l + n]| + O(1), n → ∞,

which implies bd�(k · X + h) = (1/k)bd�(X). The same holds for bd�, by similar argu-
ments.

So, based on these considerations, it seems rather natural to forge an abstract notion
of upper density that matches the above properties of d� and bd�.

Definition 1. We say that a function μ� : P(H) → R is an upper density (on H) if:

(f1) μ�(H) = 1;
(f2) μ�(X) ≤ μ�(Y ) for all X,Y ⊆ H with X ⊆ Y ;
(f3) μ�(X ∪ Y ) ≤ μ�(X) + μ�(Y ) for all X,Y ⊆ H;
(f4) μ�(k · X) = (1/k)μ�(X) for all X ⊆ H and k ∈ N+;
(f5) μ�(X + h) = μ�(X) for all X ⊆ H and h ∈ N.

In addition, we call μ� an upper quasi-density (on H) if μ�(X) ≤ 1 for every X ⊆ H and
μ� satisfies (f1) and (f3)–(f5).

Note that (f1) and (f2) imply that μ�(X) ≤ 1 for every X ⊆ H, which is, however,
false if (f2) is not assumed (Theorem 1). In particular, every upper density is an upper
quasi-density.
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Definition 2. We take the dual, or conjugate, of a function μ� : P(H) → R to be the
map

μ� : P(H) → R : X 	→ 1 − μ�(Xc),

and we say that (μ�, μ
�) is a conjugate pair on H if μ�(H) = 1. We refer to μ� as the

lower dual of μ� and, reciprocally, to μ� as the upper dual of μ�, if μ�(X) ≤ μ�(X) for
every X ⊆ H.

In particular, we call μ� the lower [quasi-]density associated with μ� or, alternatively,
a lower [quasi-]density (on H), if μ� is an upper [quasi-]density.

By the above, d� and bd� are both upper densities (in the sense of our definitions), and
their lower duals are, respectively, d� and bd�.

Definition 3. Let (μ�, μ
�) be a conjugate pair on H and μ the partial function

P(H) 	→ R : X 	→ μ�(X) whose domain is given by the set

{X ⊆ H : μ�(X) = μ�(X)} = {X ⊆ H : μ�(X) + μ�(Xc) = 1}.

If μ� is an upper [quasi-]density, we call μ the [quasi-]density (on H) induced by μ�.

To ease the exposition, we will say that a function μ� : P(H) → R is: monotone if it
satisfies (f2); subadditive if it satisfies (f3); (finitely) additive if μ�(X ∪ Y ) = μ�(X) +
μ�(Y ) whenever X,Y ⊆ H and X ∩ Y = ∅; (−1)-homogeneous if it satisfies (f4); and
translational invariant, or shift invariant, if it satisfies (f5). Also, we note that (f4) and
(f5) together are equivalent to:

(f6) μ�(k · X + h) = (1/k)μ�(X) for all X ⊆ H and h, k ∈ N+.

Axioms (f1)–(f3) correspond to conditions (l4)–(l6) from § 1, respectively (see also the
comments introducing Example 7 in § 6). Besides that, (f1)–(f5) encode some of the most
desirable features a density ought to have, cf. [15, § 3]. One reason is that, roughly speak-
ing, a density on N+ should ideally approximate a shift-invariant probability measure
with the further property that the measure of k · N+ is 1/k for all k ∈ N+. But no count-
ably additive probability measure with this property can exist, see [42, Chapter III.1,
Theorem 1]. Moreover, it is known that the existence of finitely additive, shift-invariant
probability measures P(N+) → R is not provable in the frame of classical mathematics
without (some form of) the axiom of choice (cf. Remark 3), which makes them unwieldy
in many practical situations.

The proofs of the following two propositions are left as an exercise for the reader.

Proposition 1. Let μ� be a monotone and subadditive function P(H) → R, and let
X,Y ⊆ H.

(i) If μ�(X�Y ) = 0, then μ�(X) = μ�(Y ) and μ�(Xc) = μ�(Y c).
(ii) If μ�(Y ) = 0, then μ�(X) = μ�(X ∪ Y ) = μ�(X \ Y ).
(iii) If μ�(X \ Y ) = 0, then μ�(X ∩ Y ) = μ�(X).
(iv) If μ�(X) < μ�(Y ), then 0 < μ�(Y ) − μ�(X) ≤ μ�(Y \ X).
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Proposition 2. Let (μ�, μ
�) be a conjugate pair on H. The following hold.

(i) μ�(∅) = 0, and Im(μ�) ⊆ [0, 1] if and only if Im(μ�) ⊆ [0, 1].
(ii) If μ� is subadditive and X1, . . . , Xn ⊆ H, then μ�(X1 ∪ · · · ∪ Xn) ≤ ∑n

i=1 μ�(Xi).
(iii) Let μ� be (−1)-homogeneous. Then μ�(∅) = 0 and μ�(H) = 1.

Moreover, for all X,Y ⊆ H we have the following:

(iv) Assume μ� is monotone. If X ⊆ Y , then μ�(X) ≤ μ�(Y ).
(v) If μ�(X�Y ) = 0 and μ� satisfies (F2) and (F3), then

μ�(X) = μ�(Y ) and μ�(Xc) = μ�(Y c).

(vi) If μ� is subadditive, then

max(μ�(X), 0) ≤ μ�(X) and μ�(X) + μ�(Y ) ≤ 1 + μ�(X ∩ Y ).

We continue with a few examples and remarks. In particular, the first example is borrowed
from [7, p. 297], while the third shows that conditions (f1)–(f4) alone are not even enough
to guarantee that for a function μ� : P(H) → R, μ�(X) = 0 whenever X ⊆ H is finite.

Example 1. Let δ� be the function P(H) → R sending a set X ⊆ H to 1 if |Xc| < ∞
or to 0 otherwise. It can be shown that δ� satisfies axioms (l1)–(l4) and δ�(k · H) = 0 �=
(1/k)δ�(H) for k ≥ 2; also, if δ� is the conjugate of δ�, then δ�(k · X) = δ�(X) = 1 for
every k ≥ 1 and finite X ⊆ H. That is, neither δ� nor δ� is (−1)-homogeneous.

Example 2. We have already noted that d� is an upper density, and that d� is the
dual of d� (hence a lower density) and satisfies (f1), (f2) and (f4). Now, if we let

X :=
∞⋃

n=1

�(2n − 1)!, (2n)! − 1� ⊆ N+ and Y :=
∞⋃

n=1

�(2n)!, (2n + 1)! − 1� ⊆ N+,

then d�(X) = d�(Y ) = 0 (e.g. by Lemma 1 below), while d�(X ∪ Y ) = 1. So we see that
lower densities (in the sense of our definitions) need not be subadditive. This may sound
‘obvious’ (as we mentioned in the introduction that d� also satisfies (l6)), but should be
confronted with Remark 3 below.

Example 3. It is straightforward to check (we omit details) that the function

m : P(H) → R : X 	→ 1
inf(X+)

,

where inf(∅) := ∞ and 1/∞ := 0, satisfies conditions (f1)–(f4). Note, however, that
m(X + h) �= m(X) �= 0 for every X ⊆ H and h ∈ N+ such that X+ �= ∅.

Remark 1. Proposition 2(vi) yields that an upper quasi-density is necessarily non-
negative; hence, its range is contained in [0, 1].

Remark 2. Four out of the five axioms we are using to shape our notion of upper
density are essentially the same as four out of the seven axioms considered in [15] as a

https://doi.org/10.1017/S0013091519000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000208


On the notions of upper and lower density 145

suggestion for an abstract notion of density on N+; see in particular axioms (A2)–(A5)
in [15, § 3].

Remark 3. All the results in the present paper can be proved by appealing,
e.g. to the usual device of Zermelo–Fraenkel set theory without the axiom of choice
(ZF for short). However, if we assume that we are working in Zermelo–Fraenkel set the-
ory with the axiom of choice (ZFC for short), then it follows from [43, Appendix 5C]
that there are uncountably many non-negative additive functions θ : P(N+) → R such
that θ(N+) = 1 and θ(k · X + h) = (1/k)θ(X) for all X ⊆ N+ and h, k ∈ N+, whence
the function μ� : P(H) → R : X 	→ θ(X+) is an additive upper density.

On the other hand, we have from Proposition 6 below that if μ� is an upper quasi-
density on H, then μ�(X) = 0 for every finite X ⊆ H, and it is provable in ZF that the
existence of an additive measure θ : P(N+) → R which vanishes on singletons yields the
existence of a subset of R without the property of Baire, see [37, §§ 29.37 and 29.38]. Yet
ZF alone does not prove the existence of such an additive measure θ (see [32]).

So, putting it all together, we see that the existence of an additive upper quasi-density
on H is provable in ZFC, but independent of ZF.

Remark 4. Axiom (f6) is incompatible with the following condition, which is often
referred to as sigma-subadditivity (in analogy to the sigma-additivity of measures).

(f7) If (Xn)n≥1 is a sequence of subsets of H, then μ�
(⋃∞

n=1 Xn

) ≤ ∑∞
n=1 μ�(Xn).

Indeed, let μ� be a function P(H) → R that satisfies (f6). Then μ� is (−1)-
homogeneous, and we find that if 0 ∈ H, then μ�({0}) = 0, because μ�({0}) = μ�

(k · {0}) = (1/k)μ�({0}) for all k ∈ N+. Likewise, we have by (f6) that for every k ≥ 1,

μ�({1}) = μ�({1} + k − 1) = μ�({k}) = μ�(k · {1}) =
1
k

μ�({1}),

which yields μ�({1}) = 0. So, if H = Z and k ≤ 0, then

μ�({k}) = μ�({k} + (−k)) = μ�({0}) = 0.

It follows that μ�({k}) = 0 for all k ∈ H.
With this in hand, let (xn)n≥1 be an enumeration of H and set Xn := {xn} for

all n. Then H =
⋃∞

n=1 Xn, but 1 = μ�(H) >
∑∞

n=1 μ�(Xn) = 0, which is incompatible
with (f7).

3. Independence of the axioms

The independence of (f1) from the other axioms is obvious, while that of (f3) and (f5)
follows from Examples 2 and 3, respectively. Moreover, (f4) is independent of (f1)–
(f3) and (f5): Indeed, these latter conditions are all satisfied by the constant function
P(H) → R : X 	→ 1, which however does not satisfy (f4). By contrast, the independence
of (f2) from (f1), (f3) and (f6) is much more delicate, and it clearly follows from the
existence of an upper quasi-density that is not an upper density, which is what we are
going to prove.
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We begin with a rather simple lemma on the upper (and the lower) asymptotic density
of subsets of N+ in which ‘large gaps’ alternate with ‘large intervals’ (we omit the proof).

Lemma 1. Let (an)n≥1 and (bn)n≥1 be sequences of positive real numbers such that:

(i) an + 1 ≤ bn < an+1 for all sufficiently large n;
(ii) an/bn → � as n → ∞;
(iii) bn/an+1 → 0 as n → ∞.

In addition, pick k ∈ N+ and h ∈ Z, and let X ⊆ N+ be the intersection of the sets⋃∞
n=1�an + 1, bn� and k · H + h. Then d�(X) = (1/k)(1 − �) and d�(X) = 0; in particular,

if α ∈ [0, 1] and we let an := α(2n − 1)! + (1 − α)(2n)! and bn := (2n)! + 1, then d�(X) =
α/k and d�(X) = 0.

The next step is to show how the independence of (f2) can be derived from the existence
of a suitable ‘indexing’ ι : P(H) → N+ ∪ {∞} associated with an upper quasi-density μ�

on Z for which μ�(H) = 1 (if H � Z, we need not have μ�(H) = 1).
More specifically, we will prove that the existence of such an indexing can be used to

construct infinitely many non-monotone functions μ� : P(H) → R that, on the one hand,
are not upper densities (in fact, we will show that they can even be unbounded) and, on
the other hand, are subject to additional constraints on the values they can attain. This
will imply, in particular, that (f2) is also independent of (f1), (f3) and (f6) in the case
where μ� is an upper quasi-density.

Lemma 2. Let μ� be an upper quasi-density on Z with the property that μ�(H) = 1,
and suppose there exists a function ι : P(H) → N+ ∪ {∞} such that:

(i1) ι(H) = 1;
(i2) ι(X) = ∞ for some X ⊆ H only if μ�(X) = 0;
(i3) ι(Y ) ≤ ι(X) whenever X ⊆ Y ⊆ H and μ�(Y ) > 0;
(i4) ι(X) = ι(k · X + h) for all X ⊆ H and h, k ∈ N+ with μ�(X) > 0.

Moreover, let (an)n≥1 be a non-decreasing real sequence with a1 = 1. Then the function

θ� : P(H) → R : X 	→
{

aι(X)μ
�(X) if ι(X) < ∞,

0 otherwise,

satisfies axioms (F1), (F3) and (F6).
Further, if we set �n := sup{μ�(X) : X ⊆ H and ι(X) = n} and, in addition to the

previous assumptions, we suppose that

(i5) 0 < �n+1 ≤ �n for all n, and �n < 1 for all but finitely many n, and
(i6) for every n ∈ N+ and ε ∈ R+, there are X,Y ⊆ H with Y � X such that ι(X) = n,

ι(Y ) = n + 1 and �n+1 ≤ (1 + ε)μ�(Y ),

then, for a given K ∈ [1,∞], we can choose the ‘weights’ a2, a3, . . . so that θ� is non-
monotone and supX∈P(H) θ�(X) = K.

Proof. Clearly, θ� satisfies (f1), since (i1) and the hypothesis that μ�(H) = a1 = 1
give θ�(H) = a1μ

�(H) = 1. Also, it is obvious that θ�(X) ≥ 0 for all X ∈ P(H).
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For (f3), pick X,Y ⊆ H, and assume without loss of generality that μ�(X ∪ Y ) > 0
and μ�(Y ) ≤ μ�(X). We have by (i2) and the subadditivity of μ� that ι(X) < ∞ (if
ι(X) = ∞, then μ�(X ∪ Y ) ≤ 2μ�(X) = 0, a contradiction). So we obtain from (i3) that
ι(X ∪ Y ) ≤ ι(X) < ∞, and we conclude that θ� is subadditive because

θ�(X ∪ Y ) = aι(X∪Y )μ
�(X ∪ Y ) ≤ aι(X∪Y )μ

�(X) + aι(X∪Y )μ
�(Y )

≤ aι(X)μ
�(X) + aι(X∪Y )μ

�(Y ) ≤ θ�(X) + θ�(Y )
(2)

(note that here we have used, among other things, that an ≤ an+1 for all n).
Last, let X ⊆ H and h, k ∈ N+. We want to demonstrate that θ�(k · X + h) = θ�(X).

This is trivial if μ�(X) = 0, since θ�(Y ) = 0 for every Y ⊆ H with μ�(Y ) = 0, and μ�

being an upper quasi-density implies from (f6) that μ�(k · X + h) = 1
kμ�(X) = 0. So

assume μ�(X) �= 0. Then ι(k · X + h) = ι(X) < ∞ by (i2) and (i4), with the result that

θ�(k · X + h) = aι(k·X+h)μ
�(k · X + h)

(f6)
=

1
k

aι(X)μ
�(X) =

1
k

θ�(X).

It follows that θ� satisfies (f6), which, together with the rest, proves the first part of the
lemma.

For the second part, fix K ∈ [1,∞] and let ι satisfy (i5) and (i6). Then we get from
(i1) and the fact that μ�(X) ≤ μ�(H) = 1 for all X ⊆ H that there exists v ∈ N≥2 such
that

0 < �n+1 ≤ �n < �v−1 = · · · = �1 = 1 for n ≥ v. (3)

So we distinguish two cases depending on the actual value of K.

Case 1. 1 < K ≤ ∞. Based on (i5), we make (an)n≥1 into a non-decreasing sequence
by letting an := �−1

n min(2n−1,K) (observe that a1 = 1).
Then, given X ⊆ H with ι(X) < ∞, we have θ�(X) = aι(X)μ

�(X) ≤ min(2ι(X)−1,K) ≤
K. In addition, if we set δ := min(2,K) and pick ε ∈ ]0, 1 − δ−1[, we can find X ⊆ H such
that ι(X) = 2 and μ�(X) ≥ (1 − ε)�2, so that

θ�(X) = a2μ
�(X) ≥ (1 − ε)δ > 1 = θ�(H).

Consequently, we see that supX∈P(H) θ�(X) = K and θ� is non-monotone.

Case 2. K = 1. Similar to the previous case, but now based on (3), we make
(an)n≥1 into a non-decreasing sequence by taking a1 := · · · := av := 1 and an := (1/2)
(1 + �v)�−1

n for n > v.
Then we let X ⊆ H such that n := ι(X) < ∞, so that θ�(X) = anμ�(X). If 1 ≤ n ≤ v,

we have θ�(X) = μ�(X) ∈ [0, 1]; otherwise,

θ�(X) = 1
2 (1 + �v)�−1

n μ�(X) ≤ 1
2 (1 + �v) ≤ 1,

since ι(X) = n yields μ�(X) ≤ �n. It follows that θ�(X) ≤ 1 = θ�(H) for every X ⊆ H.
So supX∈P(H) θ�(X) = K = 1, and we are left to show that θ� is non-monotone.

For this, note that �v < (1/2)(1 + �v), and let ε ∈ R+ be such that �v < (1/2)(1 +
�v)(1 + ε)−1. By (i6), there exist X,Y ⊆ H with the property that Y � X, ι(X) = v,
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ι(Y ) = v + 1 and �v+1 ≤ (1 + ε)μ�(Y ), from which we see that θ� is non-monotone,
because

θ�(X) = avμ�(X) = μ�(X) ≤ �v < 1
2 (1 + �v)(1 + ε)−1 ≤ av+1μ

�(Y ) = θ�(Y ).

Putting it all together, the proof is complete. �

Finally, we prove that there is a function ι : P(H) → N+ ∪ {∞} that fulfils the
assumptions of Lemma 2. This is the content of the following lemma.

Lemma 3. Let μ� be the upper asymptotic density on Z and ι the function P(H) →
N+ ∪ {∞} taking a set X ⊆ H to the infimum of the integers n ≥ 1 for which there
exists Y ⊆ H such that μ�(Y ) ≥ 1/n and |(q · Y + r) \ X| < ∞ for some q ∈ N+ and
r ∈ Z, with the convention that inf(∅) := ∞. Then ι satisfies conditions (I1)–(I6).

Proof. To start with, observe that ι(X) ≤ inf{n ∈ N+ : μ�(X) ≥ 1/n} for every X ⊆
H, since X = 1 · X + 0 and |X \ X| = 0 < ∞. This implies ι(H) = 1, and shows as well
that ι(X) = ∞ for some X ⊆ H only if μ�(X) = 0. That is, ι satisfies (i1) and (i2).

Next, let X ⊆ Y ⊆ H. We claim that ι(Y ) ≤ ι(X). This is obvious if ι(X) = ∞,
so assume ι(X) < ∞. Then, there exists W ⊆ H such that μ�(W) ≥ 1/ι(X) and
|(q · W + r) \ X| < ∞ for some q ∈ N+ and r ∈ Z. So we have |(q · W + r) \ Y | < ∞,
because S \ Y ⊆ S \ X for every S ⊆ H (by the fact that X ⊆ Y ). This proves that
ι(Y ) ≤ ι(X), and hence ι satisfies (i3), since X and Y were arbitrary.

Last, we come to (i4). Let X ⊆ H be such that μ�(X) > 0, and pick h, k ∈ N+.
Then it follows from (i2) that ι(X) < ∞ and ι(k · X + h) < ∞, because μ�(k · X + h) =
(1/k)μ�(X) �= 0 by the fact that μ� satisfies (f6). We want to show that ι(X) =
ι(k · X + h).

To begin, there exists (by definition) a set Y ⊆ H such that μ�(Y ) ≥ 1/ι(X) and
|(q · Y + r) \ X| < ∞ for some q ∈ N+ and r ∈ Z. Therefore, we see that |(q̃ · Y + r̃) \
(k · X + h)| < ∞ for q̃ := qk and r̃ := rk + h, which, in turn, implies ι(k · X + h) ≤ ι(X).

As for the reverse inequality, there exists (again by definition) a set Y ⊆ H such that
μ�(Y ) ≥ 1/ι(k · X + h) and |(q · Y + r) \ (k · X + h)| < ∞ for some q ∈ N+ and r ∈ Z.

Suppose for a contradiction that μ�(Y ∩ (k · H + l)) < (1/k)μ�(Y ) for every
l ∈ �0, k − 1�. Then we get by axioms (f3) and (f6) and Proposition 6 below that

μ�(Y ) ≤ μ�

( k−1⋃
l=0

(Y ∩ (k · H + l))
)
≤

k−1∑
l=0

μ�(Y ∩ (k · H + l)) <
k−1∑
l=0

1
k

μ�(Y ) = μ�(Y ),

which is impossible. Accordingly, pick l ∈ �0, k − 1� such that μ�(Y ∩ (k · H + l)) ≥
(1/k)μ�(Y ), and Q ⊆ H such that k · Q + l = Y ∩ (k · H + l) ⊆ Y . We have

|(qk · Q + lq + r) \ (k · X + h)| ≤ |(q · Y + r) \ (k · X + h)| < ∞;

this entails that for every y ∈ Q \ S, where S ⊆ H is a finite set, there is x ∈ X for which
qky + lq + r − h = kx, with the result that r̃ := (1/k)(lq + r − h) ∈ Z and qy + r̃ = x.

It follows that |(q · Q + r̃) \ X| < ∞, which is enough to conclude that ι(X) ≤ ι(k ·
X + h), since (1/k)μ�(Q) = μ�(k · Q + l) ≥ (1/k)μ�(Y ), and hence μ�(Q) ≥ μ�(Y ) ≥ 1/ι
(k · X + h).
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To summarize, we have so far established that ι satisfies (i1)–(i4), and we are left with
(i5) and (i6). For this, let Vα be, for each α ∈ ]0, 1[, the set

∞⋃
n=1

�α(2n − 1)! + (1 − α)(2n)! + 1, (2n)! + 1�, (4)

and for every n ∈ N+ define �n := {μ�(X) : X ⊆ H and ι(X) = n}. It is clear that
�1 = 1, and we want to show that �n = (1/n − 1) for n ≥ 2. To this end, we need the
following claim.

Claim. Fix n ≥ 2 and let α ∈ [1/n, (1/n − 1)[. Then μ�(Vα) = α and ι(Vα) = n.

Proof. If Y ⊆ H and μ�(Y ) ≥ (1/n − 1), then |(q · Y + r) \ Vα| = ∞ for all q ∈ N+

and r ∈ Z. In fact, we have from axiom (f6) and Lemma 1 that

μ�(q · Y + r) =
1
q
μ�(Y ) ≥ 1

(n − 1)q
>

α

q
= μ�(Vα ∩ (q · N + r)),

so we get by Proposition 1(iv) that

μ�((q · Y + r) \ Vα) = μ�((q · Y + r) \ (Vα ∩ (q · N + r))) > 0,

which is enough to conclude that (q · Y + r) \ Vα is an infinite set (see Proposition 6
below) and ultimately shows that ι(Vα) ≥ n. On the other hand, a further application of
Lemma 1 yields μ�(Vα) = α ≥ (1/n), whence ι(Vα) ≤ n. So, putting it all together, the
claim is proved. �

In fact, the claim implies �n = (1/n − 1) for n ≥ 2, since it shows that for every ε ∈ R+

we can find X ⊆ H such that μ�(X) ≥ (1/n − 1) − ε and ι(X) = n, and we have by the
observation made at the beginning of the proof that �n ≤ (1/n − 1) (otherwise, there
would exist X ⊆ H with ι(X) = n and μ�(X) ≥ 1/(n − 1)). Therefore, we see that ι
satisfies (i5), since 0 < �n+1 < �n < �2 = �1 = 1 for n ≥ 3.

As for (i6), note that if α, β ∈ ]0, 1[ and α < β, then for every n ∈ N+ we have

(2n − 1)! < β(2n − 1)! + (1 − β)(2n)! < α(2n − 1)! + (1 − α)(2n)! < (2n)!

and

lim
n→∞((α(2n − 1)! + (1 − α)(2n)!) − (β(2n − 1)! + (1 − β)(2n)!)) = ∞,

which yields Vα � Vβ ⊆ N+. Hence, for all n ∈ N+ and ε ∈ R+, there exist X,Y ⊆ H
such that Y � X, ι(X) = n, ι(Y ) = n + 1 and �n+1 ≤ (1 + ε)μ�(Y ). By the claim above,
it is enough to take X := V1/n and Y = Vα for some

α ∈
[
max

( 1
n + 1

,
1

(1 + ε)n

)
,
1
n

]
.

In summary, ι also satisfies condition (i6), and the proof of the lemma is complete. �
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Finally, we have what we need to confirm the independence of (f2). This is implied by
the following theorem, which is straightforward by Lemmas 2 and 3 (we omit further
details).

Theorem 1. Given K ∈ [1,∞], there exists a non-monotone, subadditive, (−1)-
homogeneous and translational invariant function θ� : P(H) → R with the property that
supX∈P(H) θ�(X) = K. In particular, there exists an upper quasi-density on H that is
not an upper density.

4. Examples

We turn to examine a few examples that on the one hand illustrate how to build uncount-
ably many upper densities and, on the other hand, generalize some of the most important
instances of the notion of ‘density’ that can be found in the literature. We begin with the
so-called ‘α-densities’.

Example 4. Fix α ∈ [−1,∞[ and a, b ∈ R such that
∑

i∈Fn
|i|α → ∞ as n → ∞, where

we set Fn := [an, bn] ∩ H for all n. We denote by F the sequence (Fn)n≥1 and consider
the function

d�(F;α) : P(H) → R : X 	→ lim sup
n→∞

∑
i∈X∩Fn

|i|α∑
i∈Fn

|i|α ,

with 0/0 := 1. It can be seen (we omit details) that the dual of d�(F;α) is given by

d�(F;α) : P(H) → R : X 	→ lim inf
n→∞

∑
i∈X∩Fn

|i|α∑
i∈Fn

|i|α ,

and we have the following.

Proposition 3. The function d�(F;α) is an upper density.

Proof. It is straightforward to check that d�(F;α) satisfies (f1)–(f3). For (f6), fix X ⊆
H and h, k ∈ N+. Given ε ∈ ]0, 1[, there exists nε ∈ N+ such that 0 < (1 − ε)|ik + h|α ≤
|ik|α ≤ (1 + ε)|ik + h|α whenever |i| ≥ nε. Together with the fact that d�(F;α)(S) = 0
for every finite S ⊆ H (here we need that

∑
i∈Fn

|i|α = ∞ as n → ∞), this yields
{

d�(F;α)(k · X + h) = d�(F;α)(k · Xε + h)
(1 − ε)kαuε ≤ d�(F;α)(k · X + h) ≤ (1 + ε)kαuε

, (5)

where, for ease of notation, we put

uε := lim sup
n→∞

∑
i∈Xε∩(k−1·(Fn−h)) |i|α∑

i∈Fn
|i|α = lim sup

n→∞

∑
i∈Xε∩F�n/k� |i|α + δ(n)∑

i∈Fn
|i|α , (6)

with

Xε := {i ∈ X : |i| ≥ nε} and δ(n) :=
∑

i∈Xε∩(k−1·(Fn−h))

|i|α −
∑

i∈Xε∩F�n/k�

|i|α.
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Denote by Δ(n) the symmetric difference between H ∩ (k−1 · (Fn − h)) and F	n/k
. By
the triangle inequality (we skip some details), we obtain

0 ≤ lim sup
n→∞

|δ(n)|∑
i∈Fn

|i|α ≤ lim sup
n→∞

∑
i∈Δ(n) |i|α∑
i∈Fn

|i|α = 0,

which, combined with (6), implies

uε = lim sup
n→∞

∑
i∈Xε∩F�n/k� |i|α∑

i∈Fn
|i|α =

1
kα+1

lim sup
n→∞

∑
i∈Xε∩F�n/k� |i|α∑

i∈F�n/k� |i|α
=

1
kα+1

d�(F;α)(X)

(note that d�(F;α)(Xε) = d�(F;α)(X), since Xε ⊆ X and X \ Xε is finite). So, taking
the limit of (5) as ε → 0+, we get the desired conclusion. �

In continuity with [10, Definition 1.4], we call d�(F;α) and d�(F;α), respectively, the
upper and lower α-density relative to F. In particular, if a = 0 and b = 1, then d�(F;−1)
is the upper logarithmic density (cf. [42, Chapter III.1, § 1.2]) and d�(F; 0) is the upper
asymptotic density.

Then it is not difficult to verify (see [39, p. 37]) that for every α ∈ ] − 1,∞[ the upper α-
density of the set A :=

⋃∞
n=1�2

2n + 1, 22n+1� ⊆ N+ is equal to 2α+1/(2α+1 + 1). Clearly,
this shows that the collection of all upper densities on H has at least the same cardinality
of R (and hence is uncountable).

Another interesting example is offered by the upper Buck density (on H).

Definition 4. The upper Buck density (on H) is the function

P(H) → R : X 	→ inf
S∈A :X⊆S

d�(S), (7)

where A denotes the collection of all sets that can be expressed as a finite union of
arithmetic progressions of H (that is, sets of the forms k · H + h with k ∈ N+ and h ∈ H;
see § 1.2).

See, for example, [3], [28, § 7] and [36] for the case H = N+. This is generalized by the
following.

Example 5. Let μ� be an upper quasi-density on H and C a subfamily of P(H) such
that:

(b1) H ∈ C ;
(b2) X ∪ Y ∈ C for all X,Y ∈ C ;
(b3) k · X + h ∈ C for some X ⊆ H and h, k ∈ N+, if and only if X ∈ C ;
(b4) X ∩ (k · H + h) ∈ C for all X ∈ C and h, k ∈ N+.

In particular, it can be seen that A satisfies (b1)–(b4) if H = Z or H = N, but not
if H = N+. On the other hand, it is not difficult to verify that conditions (b1)–(b4)
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are all satisfied by taking

C = Cθ := {X ∪ Y : X ∈ A and θ(Y ) = 0} ⊆ P(H), (8)

provided θ is a function P(H) → R such that:

(i) θ(X) = 0 for every finite X ⊆ H;
(ii) θ(X ∪ Y ) ≤ θ(X) + θ(Y ) for all X,Y ⊆ H (so θ is non-negative, cf. Proposition

2(vi));
(iii) θ(X) ≤ θ(Y ) whenever X ⊆ Y ⊆ H;
(iv) θ(k · X + h) = 0 for some X ⊆ H and h, k ∈ N+, if and only if θ(X) = 0.

For instance, these conditions are fulfilled if θ is an upper density on H (see Proposition
6 below for (i)); the characteristic function of the infinite subsets of H (this is not an upper
density), in which case Cθ is the set of all subsets of P(H) that can be represented as a
finite union of arithmetic progressions of H or differ from these by finitely many integers;
or the constant function P(H) → R : X 	→ 0 (this is not an upper density either), in
which case Cθ = P(H).

With this in mind, consider the function

b�(C ;μ�) : P(H) → R : X 	→ inf
S∈C :X⊆S

μ�(S),

which we denote by b� whenever C and μ� are clear from the context, and is well defined
by the fact that H ∈ C and μ�(S) ∈ [0, 1] for all S ∈ C (by Remark 1). We have the
following.

Proposition 4. The function b�(C ;μ�) is an upper density.

Proof. First, it is clear that b�(H) = 1, because H ⊆ S for some S ∈ C only if S = H,
and, on the other hand, H ∈ C by (b1) and μ�(H) = 1 by the fact that μ� satisfies (f1).

Second, if X ⊆ Y ⊆ H and Y ⊆ S ∈ C , then of course X ⊆ S. Therefore, we obtain
that

b�(X) = inf
S∈C :X⊆S

μ�(S) ≤ inf
S∈C :Y ⊆S

μ�(S) = b�(Y ).

Third, if X,Y ⊆ H and S, T ∈ C are such that X ⊆ S and Y ⊆ T , then S ∪ T ∈ C by
(b2) and X ∪ Y ⊆ S ∪ T . This, together with the subadditivity of μ�, gives

b�(X ∪ Y ) ≤ inf
S,T∈C :X⊆S,Y ⊆T

μ�(S ∪ T ) ≤ inf
S,T∈C :X⊆S,Y ⊆T

(μ�(S) + μ�(T ))

= inf
S∈C :X⊆S

μ�(S) + inf
T∈C :Y ⊆T

μ�(T ) = b�(X) + b�(Y ).

Last, pick X ⊆ H and h, k ∈ N+. If X ⊆ S ∈ C , then (b3) yields k · X + h ⊆ k · S + h ∈
C . Conversely, if k · X + h ⊆ T for some T ∈ C , then k · X + h ⊆ T ∩ (k · H + h) = k ·
S + h for some S ⊆ H, which implies, by (b3) and (b4), that X ⊆ S ∈ C . Thus, we find

b�(k · X + h) = inf
T∈C :k·X+h⊆T

μ�(T ) = inf
S∈C :X⊆S

μ�(k · S + h) =
1
k

b�(X),

where we have used that μ� satisfies (f6). It follows that b� is an upper density. �
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In view of Proposition 4, we will refer to b�(C ;μ�) as the upper Buck density
(on H) relative to the pair (C , μ�). If μ� is the upper asymptotic density and C is the
set Cθ determined by (8) when θ is the characteristic function of the infinite subsets of
H, then b�(C ;μ�) is the upper Buck density, as given by (7); in particular, Proposition
4 generalizes [30, Corollaries 2 and 3].

It is perhaps interesting to note that the definition of b�(C ;μ�) produces a ‘smoothing
effect’ on μ�, in the sense that b�(C ;μ�) is monotone, no matter whether μ� is.

In addition, we have the following result, which, together with Proposition 14 in § 7,
proves that the usual definition of the upper Buck density on N+ can be (slightly) simpli-
fied by establishing, as we do, that the upper Buck density on H is given by b�(A ; d�) if
H = Z, and by the restriction to P(H) of the upper Buck density on Z otherwise (recall
that A does not satisfy (b1)–(b4) if H = N+, and that d� accounts only for the positive
part of a subset of H).

Proposition 5. Let C � := {X ∪H : X ∈ C ,H ⊆ H, |H| < ∞}. Then

b�(C ;μ�) = b�(C �;μ�).

Proof. Pick X ⊆ H. Since C ⊆ C �, it follows immediately that b�(C �;μ�)(X) ≤
b�(C ;μ�)(X), where we use, as in the proof of Proposition 4, that if ∅ �= A ⊆ B ⊆ R,
then inf(B) ≤ inf(A). It remains to prove that b�(C ;μ�)(X) ≤ b�(C �;μ�)(X).

For this, fix a real ε > 0. By definition, there exists T ∈ C � for which X ⊆ T and
μ�(T ) ≤ b�(C �;μ�)(X) + (ε/2). On the other hand, T ∈ C � if and only if T = Y ∪H for
some Y ∈ C and H ⊆ H with |H| < ∞. So, set V :=

⋃
h∈H(k · H + h), where k is an

integer ≥ (2/ε)|H|, and notice that (Y + k) ∪ V = (T + k) ∪ V.
It follows from the above and conditions (b1)–(b3) that X + k ⊆ (T + k) ∪ V ∈ C ,

and this in turn implies, by the facts that b�(C ;μ�)(X) is translational invariant (by
Proposition 4) and μ� is translational invariant and subadditive (by hypothesis), that

b�(C ;μ�)(X) = b�(C ;μ�)(X + k) ≤ μ�(T + k) + μ�(V)

= μ�(T ) +
|H|
k

≤ b�(C �;μ�)(X) + ε.

This is enough to complete the proof, since ε was arbitrary. �

For future reference, we take the Buck density on H to be the density induced by
b�(A ; d�), and we call the dual of b�(A ; d�) the lower Buck density on H.

We are left with the question of providing a ‘convenient expression’ for the lower dual
of b�(C ;μ�), here denoted by b�(C ;μ�). This seems unfeasible in general. However, if we
assume

(b5) Xc ∈ C whenever X ∈ C (namely, C is closed under complementation),

then it is not difficult to verify that b�(C ;μ�)(X) is given by the function

P(H) → R : X 	→ sup
T∈C :T⊆X

μ�(T ),
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with μ� being the lower dual of μ�. In fact, if C satisfies (b5) then, for all X ⊆ H,

b�(C ;μ�)(X) := 1 − b�(C ;μ�)(Xc) = 1 − inf
S∈C :Xc⊆S

μ�(S) = 1 − inf
S∈C :Sc⊆X

μ�(S)

= 1 − inf
T∈C :T⊆X

μ�(T c) = sup
T∈C :T⊆X

(1 − μ�(T c)) = sup
T∈C :T⊆X

μ�(T ).

Last, we note that the above construction is not vacuous, in the sense that for some
choice of μ� and C we have μ� = b�(P(H);μ�) �= b�(C ;μ�) �= b�(A ;μ�). Indeed, let ld�

denote the upper logarithmic density on H (see Example 4). By Proposition 11 (we
omit details), there exists X ⊆ N+ with ld�(X) = d�(X) = 0, but b�(A ; d�)(X) = 1. On
the other hand, we get, e.g. from [24, Theorem 3], that there is Y ⊆ N+ such that
ld�(Y ) = 0 and d�(Y ) = 1. So d� �= b�(C ; d�) �= b�(A ; d�), where, consistent with (8), we
set C := {S ∪ T : S ∈ A and ld�(T ) = 0}.

Our last example is about another classic of the ‘literature on densities’.

Example 6. Denote by ζ the function ]1,∞[ → R : s 	→ ∑∞
n=1 n−s, namely, the

restriction of the Riemann zeta to the interval ]1,∞[. Then consider the function

a� : P(H) → R : X 	→ lim sup
s→1+

1
ζ(s)

∑
i∈X+

1
is

.

We claim that a� is an upper density, which we refer to as the upper analytic density
(on H) for consistency with [42, Part III, § 1.3], where the focus is on the case H = N+.

In fact, it is straightforward to check that a� satisfies (f1)–(f4). For (f5), fix X ⊆ H
and h ∈ N, and pick ε ∈ ]0, 1[. There exists nε ∈ N+ such that

0 < (1 − ε)|i + h| ≤ |i| ≤ (1 + ε)|i + h| (9)

for |i| ≥ nε. Set Xε := {i ∈ X : i ≥ nε}. Then a�(S) = 0, and hence a�(T ) = a�(S ∪ T )
for all S, T ⊆ H with |S| < ∞. Thus a�(X) = a�(Xε), and by (9) we have

lim sup
s→1+

1
(1 + ε)sζ(s)

∑
i∈Xε

1
(i + h)s

≤ a�(X) ≤ lim sup
s→1+

1
(1 − ε)sζ(s)

∑
i∈Xε

1
(i + h)s

.

This, in the limit as ε → 0+, yields a�(X) = a�(Xε + h) = a�(X + h), where we have used
again that a� is ‘invariant under union with finite sets’.

Therefore, a� is an upper density, whose lower dual (we omit details) is given by

a� : P(H) → R : X 	→ lim inf
s→1+

1
ζ(s)

∑
i∈X+

1
is

.

More examples will come later, when we provide some simple criteria to construct
new upper densities from old ones (see, e.g. the discussion at the beginning of § 6 and
Proposition 10).
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5. Range of upper and lower densities

There are a number of natural questions that may be asked about upper densities. In the
light of Remark 1, one of the most basic of them is probably the following.

Question 1. Let μ� be an upper density on H. Is it true that Im(μ�) = [0, 1]?

We will actually prove (Theorem 2) that the image of every quasi-density is the whole
interval [0, 1]; therefore, so will be the image of every upper and lower quasi-density.
This generalizes [3, Theorem 6] and [30, Theorem 5] (the case of the upper Buck density
on N+) and similar results that are known for other classical densities (cf. also Question
3 and [25, § 3]). Moreover, it is a kind of analogue for upper quasi-densities of a theorem
of Liapounoff [23, Theorem 1] on the convexity of the range of a non-atomic countably
additive vector measure (with values in Rn).

Proposition 6. Let μ� be a function P(H) → R that satisfies axioms (F1), (F3) and
(F6). If X is a finite subset of H, then μ�(X) = 0.

Proof. Let X be a finite subset of H. We have by Proposition 2(iii) that μ�(∅) = 0,
and by Remark 4 that μ�({k}) = 0 for all k ∈ H. So, we obtain from the above and parts
(ii) and (vi) of Proposition 2 that 0 ≤ μ�(X) ≤ ∑

x∈X μ�({x}) = 0, which completes the
proof. �

Incidentally, observe that in view of Example 3, conditions (f1)–(f4) alone are not
sufficient for Proposition 6 to hold, while the result is independent of (f2).

Proposition 7. Let μ� be an upper quasi-density, and for a fixed k ∈ N+ let
h1, . . . , hn ∈ N be such that hi �≡ hj mod k for 1 ≤ i < j ≤ n and set X :=

⋃n
i=1

(k · H + hi). Then, for every finite V ⊆ H, we have

μ�(X ∪ V) = μ�(X \ V) = μ�(X ∪ V) = μ�(X \ V) =
n

k
,

where μ� is the lower dual of μ�.

Proof. Let li be, for each i = 1, . . . , n, the remainder of the integer division of hi by
k (in such a way that 0 ≤ li < k), and set

Y :=
⋃

l∈H(k · H + l) where H := �0, k − 1� \ {l1, . . . , ln}.

Clearly, H = X ∪ Y ∪ S for some finite S ⊆ H. Therefore, we have from axioms (f1),
(f3) and (f6) and Propositions 6 and 2(ii) that, however we choose a finite V ⊆ H,

1 = μ�(H) ≤ μ�(X ∪ V) + μ�(Y ∪ S) ≤ μ�(X) + μ�(Y ) + μ�(S) + μ�(V)

= μ�(X) + μ�(Y ) ≤ nμ�(k · H) + (k − n)μ�(k · H) = kμ�(k · H) = 1,

which is possible only if μ�(X ∪ V) = μ�(X) = nμ�(k · H) = n
k .
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On the other hand, if V ⊆ H is finite, then for each i ∈ �1, n� there exists a set Si ⊆ H
such that (k · H + hi) \ V = k · Si + hi. Thus, we conclude from the above, Proposition
6 and the properties of μ� (we skip some details) that

n

k
= μ�(X) ≤ μ�(V) +

n∑
i=1

μ�((k · H + hi) \ V)

=
n∑

i=1

μ�(k · Si + hi) =
1
k

n∑
i=1

μ�(Si) ≤ n

k
,

which shows that μ�(X \ V) = μ�(X) = n/k.
For μ�, it is straightforward that if V is a finite subset of H then |Y �(X ∪ V)c| < ∞

and |Y �(X \ V)c| < ∞, which, together with the first part, yields

μ�((X ∪ V)c) = μ�((X \ V)c) = μ�(Y ) = 1 − n/k,

and hence μ�(X ∪ V) = μ�(X \ V) = n/k. �

Proposition 7 can be regarded, in the light of Proposition 6, as a supplement to Propo-
sition 1(ii), and it is already enough to imply the following corollary (we omit further
details), which falls short of an answer to Question 1 but will be used later in the proof
of Theorem 2.

Corollary 1. Let μ be an upper quasi-density on H. Then Q ∩ [0, 1] ⊆ Im(μ).

The next result is essentially an extension of Proposition 7.

Proposition 8. Let μ� be an upper quasi-density, and assume that (ki)i≥1 and (hi)i≥1

are integer sequences with the properties that:

(i) ki ≥ 1 and ki | ki+1 for each i ∈ N+;
(ii) given i, j ∈ N+ with i < j, there exists no x ∈ Z such that kix + hi ≡ hj mod kj .

Then μ�(Xn) =
∑n

i=1 1/ki, where Xn :=
⋃n

i=1(ki · H + hi).

Proof. Fix n ∈ N+. By condition (i), we have, for each i ∈ �1, n�,

ki · H + hi =
k−1

i kn−1⋃
l=0

(kn · H + kil + hi).

Therefore, we find that

Xn =
n⋃

i=1

k−1
i kn−1⋃

l=0

(kn · H + kil + hi). (10)

On the other hand, if 1 ≤ i < j ≤ n then kili + hi �≡ kj lj + hj mod kn for all li ∈
�0, k−1

i kn − 1� and lj ∈ �0, k−1
j kn − 1�, otherwise we would have that li is an integer solu-

tion to the congruence kix + hi ≡ hj mod kj (by the fact that kj | kn), in contradiction
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to condition (ii). Thus, it follows by (10) and Proposition 7 that

μ�(Xn) =
1
kn

n∑
i=1

k−1
i kn =

n∑
i=1

1
ki

,

which concludes the proof. �

While (f2) is, by Theorem 1, independent of (f1), (f3) and (f6), the latter conditions are
almost sufficient to prove a weak form of (f2), as shown in the next two statements, where
A � denotes the set of all subsets of H that are finite unions of arithmetic progressions of H
or differ from these by a finite number of integers (in particular, ∅ ∈ A �); cf. Example 5.

Proposition 9. Let μ� be an upper quasi-density on H, and pick X ∈ P(H) and
Y ∈ A � such that X ⊆ Y . Then μ�(X) ≤ μ�(Y ).

Proof. Since Y ∈ A �, there exist k ∈ N+ and H ⊆ �0, k − 1� such that the symmet-
ric difference between Y and

⋃
h∈H(k · H + h) is finite. Because X ⊆ Y , it follows that

the relative complement of
⋃

h∈H Xh in X, where Xh := X ∩ (k · H + h) ⊆ X, is finite
too. Therefore, we get by Propositions 6 and 2(ii) that μ�(X) ≤ ∑

h∈H μ�(Xh), and by
Proposition 7 that μ�(Y ) = 1

k |H|.
On the other hand, we have that however we choose h ∈ H, there is a set Sh ⊆ H for

which Xh = k · Sh + h. Hence, we infer from the above, (f6) and Remark 1 that

μ�(X) ≤
∑
h∈H

μ�(Xh) =
∑
h∈H

μ�(k · Sh + h) =
1
k

∑
h∈H

μ�(Sh) ≤ μ�(Y ),

which finishes the proof. �

Corollary 2. Take X ⊆ H and Y,Z ∈ A � such that Y ⊆ X ⊆ Z, and assume μ� is
an upper quasi-density on H. Then Y,Z ∈ dom(μ) and μ(Y ) ≤ μ�(X) ≤ μ�(X) ≤ μ(Z),
where μ and μ� are, respectively, the quasi-density induced by and the lower dual of μ�.

Proof. First, Y ⊆ X implies Xc ⊆ Y c, and it is clear that Y c ∈ A �. So we get from
Propositions 2(vi) and 9 that μ�(X) ≤ μ�(X) ≤ μ�(Z) and μ�(Xc) ≤ μ�(Y c), and the
latter inequality gives μ�(Y ) ≤ μ�(X). This is enough to complete the proof, since we
know from Proposition 7 that Y,Z ∈ dom(μ) and, therefore, μ�(Y ) = μ(Y ) and μ�(Z) =
μ(Z). �

Finally, we are ready to answer Question 1.

Theorem 2. Let μ be the quasi-density induced by an upper quasi-density μ� on H.
Then the range of μ is [0, 1]. In particular, Im(μ�) = Im(μ�) = [0, 1], where μ� is the lower
dual of μ�.

Proof. Remark 1 and Corollary 1 yield Q ∩ [0, 1] ⊆ Im(μ) ⊆ [0, 1]. So, fix an irrational
number α ∈ [0, 1]. Then, there is uniquely determined an increasing sequence (ai)i≥1 of
positive integers with α =

∑∞
i=1 2−ai . Accordingly, let Xi denote, for each i ∈ N+, the

set Xi := 2ai · H + ri, where ri :=
∑i−1

j=1 2aj−1. Last, define X :=
⋃∞

i=1 Xi.

https://doi.org/10.1017/S0013091519000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000208


158 P. Leonetti and S. Tringali

Given n ∈ N+, we note that Xi ⊆ 2an−1 · H + rn for every i ≥ n, because x ∈ Xi if
and only there exists y ∈ H for which x = 2aiy +

∑i−1
j=1 2aj−1, so that x = 2an−1z + rn

for some z ∈ H. Taking Yn :=
⋃n

i=1 Xi, we obtain

Yn ⊆ X ⊆ Yn ∪ (2an−1 · H + rn),

which, in turn, implies by Corollary 2 and axiom (f3) that

μ(Yn) ≤ μ�(X) ≤ μ�(X) ≤ μ(Yn ∪ (2an−1 · H + rn))

≤ μ(Yn) + μ(2an−1 · H + rn). (11)

On the other hand, it can be seen that however we choose i, j ∈ N+ with i < j, there
exists no x ∈ Z such that 2aix + ri ≡ rj mod 2aj . Otherwise, 2aix ≡ ∑j−1

l=i 2al−1 mod 2aj ,

that is, 2x ≡ ∑j−1
l=i 2al−ai mod 2aj−ai+1, which is impossible because

∑j−1
l=i 2al−ai is an

odd integer and aj − ai + 1 > 0. It follows from Proposition 8, Equation (11) and axiom
(f6) that

n∑
i=1

1
2ai

= μ(Yn) ≤ μ�(X) ≤ μ�(X) ≤ 1
2an−1

+
n∑

i=1

1
2ai

.

So, passing to the limit as n → ∞, we get that μ�(X) = μ�(X) = α. Thus, X ∈ dom(μ)
and μ(X) = α, which completes the proof, since α was arbitrary. �

Incidentally, it was recently proved in [20, Theorem 1] that upper and lower quasi-
densities have a kind of intermediate value property, which is actually much stronger
than the ‘In particular’ part of Theorem 2 (cf. also Question 4 below).

6. Structural results

Let G be a subset of F := {(f1), . . . , (f5)}, where axioms (f1), . . . , (f5) are viewed as
words of a suitable formal language; in particular, we write F1 for F \ {(f1)}, F2 for
F \ {(f2)} and so on. We denote by M�(G ) the set of all functions μ� : P(H) → R that
satisfy the axioms in G and the condition Im(μ�) ⊆ [0, 1], and by M�(G ) the set of the
duals of the functions in M�(G ). In particular, M�(F ) and M�(F2) are, respectively,
the set of all upper densities and the set of all upper quasi-densities on H. We may ask
the following (vague) question.

Question 2. Is there anything interesting about the ‘structure’ of M�(G ) and M�(G )?

For a partial answer, we regard M�(G ) and M�(G ) as subsets of B(P(H),R), the real
vector space of all bounded functions f : P(H) → R, endowed with the (partial) order �
given by f � g if and only if f(X) ≤ g(X) for all X ⊆ H (as usual, we will write f ≺ g
if f � g and f �= g).

Given q ∈ R+, we say that a subset F of non-negative and uniformly bounded func-
tions of B(P(H),R) is countably q-convex if, however we choose a [0, 1]-valued sequence
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(αn)n≥1 such that
∑∞

n=1 αn = 1 and an F-valued sequence (fn)n≥1, the function

f : P(H) → R : X 	→
( ∞∑

n=1

αn (fn(X))q

)1/q

is still in F (notice that f is well defined, thanks to the assumption that there exists
K ∈ R+ such that fn(X) ≤ K for every X ∈ P(H) and n ∈ N+). In particular, ‘F being
sigma-convex’ is the same as ‘F being countably 1-convex’ (which in turn implies that F
is convex).

Proposition 10. Let q ∈ [1,∞[. Then M�(G ) is a countably q-convex set.

Proof. Let μ� :=
∑∞

n=1 αnμq
n, where (αn)n≥1 is a sequence of non-negative real

numbers such that
∑∞

n=1 αn = 1, and (μn)n≥1 is an M�(G )-valued sequence. It is
straightforward that μ� ∈ M�(G ). In particular, it is an easy consequence of Minkowski’s
inequality for sums that if every μn is subadditive, then so is μ�. �

The above proposition implies (we omit details) that M�(F ) has at least the same
cardinality of R (cf. Example 4), and it leads to the following corollary, whose simple
proof we leave as an exercise for the reader (later on, we will often do the same with no
further comment).

Corollary 3. Both M�(G ) and M�(G ) are sigma-convex sets.

On the other hand, we have from Propositions 1(iv), 2, 6 and 14 that if μ� is an upper
density with lower dual μ�, then μ� and μ� satisfy axioms (l2)–(l9) with H = N+,
δ� = μ� and δ� = μ�. Thus, it is natural to ask whether a lower density in the sense of
our definitions must be also a lower density in the sense of Freedman and Sember’s work
[7]. The next example shows that this is not the case, and we have already noted in
Example 1 that the converse does not hold either.

Example 7. Let f and g be two upper densities, and let α ∈ [0, 1] and q ∈ [1,∞[. We
have by Proposition 10 that the function

h� := (αfq + (1 − α)gq)1/q

is an upper density too. In particular, assume from now on that f is the upper asymptotic
density and g the upper Banach density. Accordingly, fix a ∈ ]0, 1] and define

Va :=
∞⋃

n=1

�a(2n − 1)! + (1 − a)(2n)!, (2n)!�.

Then, consider the sets

X := Va ∪ (V c
a ∩ (2 · H)) and Y := Va ∪ (V c

a ∩ (2 · H + 1)) ∪ {1}.
It is clear that X ∪ Y = H and X ∩ Y = Va, and we get from Lemma 1 that f(Va) = a.
So, f being an upper density (in the sense of our definitions) yields

f(X) ≤ f(Va) + f(V c
a ∩ (2 · H)) ≤ a + 1

2 ,
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and similarly f(Y ) ≤ a + (1/2). On the other hand, Va contains arbitrarily large intervals
of consecutive integers, hence g(X) = g(Y ) = g(Va) = 1. It follows that

{
1 + h�(X ∩ Y ) = 1 + (α + aq(1 − α))1/q,
h�(X) + h�(Y ) ≤ 2 · (α + (a + 1/2)q(1 − α))1/q.

With this in hand, suppose for a contradiction that 1 + h�(A ∪ B) ≤ h�(A) + h�(B) for
all A,B ⊆ H such that A ∪ B = H (regardless of the actual values of the parameters a,
α and q), which is equivalent to saying that the conjugate of h� satisfies (l1). Then, we
have from the above that

1 + α1/q ≤ 2 · (α + (a + 1/2)q(1 − α))1/q,

which implies, in the limit as a → 0+, that 1 + α1/q ≤ (2qα + 1 − α)1/q for all α ∈ [0, 1]
and q ∈ [1,∞[. This, however, is false (e.g. let α = 1/2 and q = 2).

Now we establish that the set M�(F2) has a maximum element, meaning that there
exists μ� ∈ M�(F2) such that θ� � μ� for all θ� ∈ M�(F2).

We will need the following proposition, which extends and generalizes a criterion used
in [3, § 3, p. 563] to prove that the upper Buck density of the set of perfect squares is
zero.

Proposition 11. Fix X ⊆ H, let (μ�, μ
�) be a conjugate pair on H such that μ� is an

upper quasi-density, and for k ≥ 1 and S ⊆ H denote by wk(S) the number of residues
h ∈ �0, k − 1� with the property that μ�(S ∩ (k · H + h)) > 0. Then, for all k ∈ N+ we
have

1 − wk(Xc)
k

≤ μ�(X) ≤ μ�(X) ≤ wk(X)
k

. (12)

Proof. Pick k ∈ N+ and S ⊆ H, and let Wk(S) be the set of all integers h ∈ �0, k − 1�
for which μ�(S ∩ (k · H + h)) > 0, so that wk(S) = |Wk(S)|.

However we choose h ∈ �0, k − 1�, there exists Sh ⊆ H such that

S ∩ (k · H + h) = k · Sh + h.

Therefore, Propositions 2(ii) and 6 and axioms (f3) and (f6) yield

μ�(S) ≤
k−1∑
h=0

μ�(S ∩ (k · H + h)) =
∑

h∈Wk(S)

μ�(k · Sh + h)

=
∑

h∈Wk(S)

1
k

μ�(Sh) ≤ wk(S)
k

. (13)

Note that here we have used, among other things, that
⋃k−1

h=0(k · H + h) = H \ V for
some finite V ⊆ H (in particular, V = �1, k − 1� if H = N+, and V = ∅ otherwise),
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in such a way that

S \ V = (S ∩ H) \ V =
k−1⋃
h=0

(S ∩ (k · H + h)).

Thus, we obtain

μ�(Sc) = 1 − μ�(S) ≥ 1 − wk(S)
k

, (14)

and it follows by taking S = X in (13) and S = Xc in (14) that

1 − wk(Xc)
k

≤ μ�(X) and μ�(X) ≤ wk(X)
k

, (15)

which, together with Proposition 2(vi), implies (12). �

Theorem 3. Let b� be the upper Buck density on H. Then b� is the maximum of
both M�(F ) and M�(F2).

Proof. It is clear that M�(F ) ⊆ M�(F2), and by Example 5 we have b� ∈ M�(F ).
Thus, we just need to show that b� is the maximum of M�(F2).

To this end, fix X ⊆ H. It follows from [30, Theorem 1], which carries over to the
slightly more general version of the upper Buck density considered in the present paper,
that there exists an increasing sequence (ki)i≥1 of positive integers such that

b�(X) = lim
i→∞

rki
(X)
ki

,

where for k ≥ 1 we write rk(X) for the number of residues h ∈ �0, k − 1� with the property
that X ∩ (k · H + h) �= ∅. So Propositions 11 and 6 yield that for every μ� ∈ M�(F2),

μ�(X) ≤ lim inf
k→∞

rk(X)
k

≤ lim
i→∞

rki
(X)
ki

= b�(X),

which confirms, since X was arbitrary, that b� is the maximum element of M�(F2). �

Remark 5. Let b� be the upper Buck density on H, and let Y ⊆ X ⊆ H and μ� ∈
M�(F2). We get from Remark 1, Theorem 3 and the monotonicity of b� (Proposition 4)
that 0 ≤ μ�(Y ) ≤ b�(Y ) ≤ b�(X). Hence, b�(X) = 0 implies μ�(Y ) = 0.

In fact, Theorem 3 can be ‘dualized’ to show that M�(F ) also has a minimum element,
i.e. there is μ� ∈ M�(F ) such that μ� � θ� for all θ� ∈ M�(F2).

Lemma 4. Let (λ�, λ
�) and (μ�, μ

�) be conjugate pairs on H. Then λ� � μ� if and
only if μ� � λ�.

Proof. Just recall that λ�(X) = 1 − λ�(Xc) and μ�(X) = 1 − μ�(Xc) for every
X ⊆ H. �
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Corollary 4. Let b� be the lower Buck density on H. Then b� is the minimum of both
M�(F ) and M�(F2).

Proof. Since M�(F ) ⊆ M�(F2) and b� ∈ M�(F ) by Example 5, it is enough to
prove that b� is the minimum of M�(F2). This follows immediately from Theorem 3 and
Lemma 4. �

The next result is a generalization of [30, Theorem 2] and a straightforward consequence
of Theorem 3 and Corollary 4.

Corollary 5. If μ : P(H) 	→ R is a quasi-density on H, then dom(b) ⊆ dom(μ) and
μ(X) = b(X) for every X ∈ dom(b), where b is the Buck density on H.

The question of the existence of minimal elements of M�(F ) and M�(F2) is subtler,
where a function μ� ∈ M�(G ) is minimal if there does not exist any θ� ∈ M�(G ) for
which θ� ≺ μ�. The answer is negative in any model of ZF that admits two or more
additive upper densities, and hence in ZFC (see Remark 3). In fact, let θ� be an additive
upper density on H, and suppose for a contradiction that θ� is not a minimal element of
M�(F2), i.e. there exists μ� ∈ M�(F2) with μ� ≺ θ�. Then Proposition 2(vi) and Lemma
4 yield θ� � μ� ≺ θ�, where θ� is the lower dual of θ�. This is, however, impossible, because
θ� = θ�.

With this said, we can show that M�(G ) and M�(G ) have at least another notable
structural property related to the order �. First, we need some terminology.

Specifically, we let a complete upper semilattice be a pair (L,≤L) consisting of a set L
and a (partial) order ≤L on L such that for every non-empty subset S of L, the set

Λ(S) := {y ∈ L : x ≤L y for all x ∈ S}
has a least element, namely, there exists y0 ∈ Λ(S) such that y0 ≤L y for every y ∈ Λ(S);
cf. e.g. [11, §§ 1.10 and 3.14], where the condition S �= ∅ is not assumed. On the other
hand, we say that (L,≤L) is a complete lower semilattice if and only if (L,≥L) is a
complete upper semilattice, where ≥L is the partial order on L defined by taking x ≥L y
if and only if y ≤L x.

Proposition 12. (M�(G ),�) is a complete upper semilattice.

Proof. Pick a non-empty subset S of M�(G ), and let θ� denote the function P(H) →
R : X 	→ supμ�∈S μ�(X), which is well defined because S �= ∅ and the image of each
function in S is contained in [0, 1].

It is clear that Im(θ�) ⊆ [0, 1] and μ� � θ� for all μ� ∈ S. In addition, if μ�(H) = 1 for
every μ� ∈ M�(G ) then θ�(H) = 1, and if every μ� ∈ M(G ) is subadditive then

θ�(X ∪ Y ) ≤ sup
μ�∈S

(μ�(X) + μ�(Y )) ≤ sup
μ�∈S

μ�(X) + sup
μ�∈S

μ�(Y ) = θ�(X) + θ�(Y ),

for all X,Y ⊆ H (i.e. μ� is subadditive too). Similarly, θ� is monotone, (−1)-homogeneous
or translational invariant, respectively, if so is every μ� ∈ M�(G ) (we omit details). �

Incidentally, Proposition 12 implies that both M�(F ) and M�(F2) have a maximum
element (not necessarily the same), but does not identify it more precisely, in contrast
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to Theorem 3. Similar considerations apply also to the following result, when compared
with Corollary 4.

Corollary 6. (M�(G ),�) is a complete lower semilattice.

Finally, let S be a set and (A,≤A) a directed preordered set. To wit, A is a set and ≤A is
a reflexive and transitive binary relation (i.e. a preorder) on A such that for every non-
empty finite B ⊆ A there is α ∈ A with β ≤A α for all β ∈ B. A net (fα)α∈A of functions
S → R is any function η : A → RS . We say that the net (fα)α∈A is pointwise convergent
if there exists a function f : S → R, which we call a pointwise limit of (fα)α∈A, such that
for every x ∈ S the real net (fα(x))α∈A converges to f(x) in the usual topology on R.

With these definitions and the above notation in place, we have the following.

Proposition 13. Let (μα)α∈A and (λα)α∈A be, respectively, pointwise convergent nets
with values in M�(G ) and M�(G ), and denote by μ a pointwise limit of (μα)α∈A and
by λ a pointwise limit of (λα)α∈A. Then μ and λ are uniquely determined and belong,
respectively, to M�(G ) and M�(G ).

We conclude the section by adding one more distinguished item to our list of upper
densities.

Example 8. Let p� be the upper Pólya density on H, viz. the function

P(H) → R : X 	→ lim
s→1−

lim sup
n→∞

|X ∩ [ns, n]|
(1 − s)n

.

It is not difficult to check that the dual of p� is the function

P(H) → R : X 	→ lim
s→1−

lim inf
n→∞

|X ∩ [ns, n]|
(1 − s)n

,

which we refer to as the lower Pólya density on H. Among other things, p� has
found a number of remarkable applications in analysis and economic theory (see e.g.
[19,22,26,33]), but what is perhaps more interesting in the frame of the present work is
that p� is an upper density in the sense of our definitions. This follows from Proposition
13 and the fact that p� is the pointwise limit of the real net of the upper α-densities on
H (see [21, Theorem 4.3]).

7. Closing remarks

Below, we draw a list of questions we have not been able to answer, some of them being
broad generalizations of questions from the literature on densities.

Question 3. Let μ� be an upper quasi-density on H and μ� its conjugate, and for
every X ⊆ H denote by DX(μ�) the set of all pairs (a1, a2) ∈ R2 such that a1 = μ�(Y )
and a2 = μ�(Y ) for some Y ⊆ X. Is DX(μ�) a convex or closed subset of R2 for every
X ⊆ H?

https://doi.org/10.1017/S0013091519000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000208


164 P. Leonetti and S. Tringali

Notice that if μ� is an upper density, then DX(μ�) is contained, by Proposition 2(vi), in
the trapezium {(a1, a2) ∈ [0, 1]2 : 0 ≤ a1 ≤ μ�(X) and a1 ≤ a2 ≤ μ�(X)}, but this is no
longer the case when μ� does not satisfy (f2), as follows from Theorem 1.

Actually, the answer to Question 3 is positive when μ� is, for some real expo-
nent α ≥ −1, the classical upper α-density on N+, as essentially proved in [13,14].
More generally, the same is true for certain upper weighted densities, as we get from
[16, Theorem 2].

On a related note, we ask the following question, which has a positive answer for
the Buck density and the Banach density; see [31, Theorem 2.1] and [9, Theorem 4.2],
respectively.

Question 4. Let μ be a quasi-density on H. Given X ∈ dom(μ) and a ∈ [0, μ(X)],
does there exist Y ∈ dom(μ) such that Y ⊆ X and μ(Y ) = a?

It is perhaps worth mentioning that if μ� is an upper quasi-density on H and X ⊆ Y ⊆ H,
then for every a ∈ [μ�(X), μ�(Y )] there exists A ∈ P(H) with X ⊆ A ⊆ Y and μ�(A) = a
(see [20, Theorem 1]). This provides a positive answer to a weaker version of Question 4.

In fact, the very existence of upper quasi-densities that are not upper densities
(Theorem 1) raises a number of problems. In particular, Remark 5 suggests the
following.

Question 5. Let μ� be an upper quasi-density on H. If X ⊆ H and μ�(X) = 0, can
there exist a set Y ⊆ X for which μ�(Y ) �= 0? And is it possible that μ�(X) �= μ�(Y ) for
some X,Y ⊆ H such that |X�Y | < ∞?

The case of upper densities is covered by the following supplement to Proposition 2(v).

Proposition 14. Let μ� be an upper density on H and μ� its conjugate, and pick
X,Y ⊆ H. If |X�Y | < ∞, then μ�(X) = μ�(Y ) and μ�(X) = μ�(Y ).

Proof. Assume that |X�Y | < ∞. By Proposition 6, we have μ�(X�Y ) = 0;
since X�Y = Xc�Y c, this implies, along with Proposition 1(i), that μ�(X) = μ�(Y )
and μ�(Xc) = μ�(Y c). Therefore, we find that μ�(X) = 1 − μ�(Xc) = 1 − μ�(Y c) =
μ�(Y ). �

A special case of Question 5, which would simplify some of the proofs of this paper and
show that the case H = N+ can be reduced, to some degree, to the case H = N, is as
follows.

Question 6. Can an upper quasi-density on N+ be uniquely extended to an upper
quasi-density on N?

We obtain from Propositions 1(iv) and 6 that if we replace upper quasi-densities with
upper densities in Questions 5 and 6, then the answer to the former is negative and the
answer to the latter is positive. The same argument leads to the next proposition (we
omit details).

Proposition 15. Let (μ�, μ
�) be a conjugate pair on H such that μ� satisfies (F2),

(F3) and (F5). Then μ� is translational invariant.
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On the other hand, we have not succeeded in settling the following.

Question 7. Is it true that every lower density is (−1)-homogeneous? Is there a lower
quasi-density that is not translational invariant?

On a different note, one may wonder whether a set X ⊆ H such that μ�(X) > 0 for some
upper density μ� has to contain a finite arithmetic progression of length n for some n ≥ 3
(or even for every n ≥ 3). But the answer is negative: it follows from [31, Theorem 3.2]
that the upper Buck density of the set X := {n + n! : n ∈ N} is 1, yet X does not contain
any finite arithmetic progression of length 3.

Loosely speaking, this means that neither Szemerédi’s theorem [41] nor Roth’s theorem
[34,35] are ‘characteristic of the theory of upper densities’, as long as the notion of upper
density is interpreted along the lines of the present work. So it could be interesting to
tackle the following.

Question 8. Does there exist a reasonable set of axioms, alternative to or sharper
than (f1)–(f5), for which an ‘abstract version’ of Roth’s or Szemerédi’s theorem can be
proved?

Note added in proof. It turns out that Question 6 has an affirmative answer. In
fact, let μ� be an upper [quasi-]density on N+. Then it is relatively easy to verify that
the function

μ̄� : P(N) → R : X 	→ μ�(X + 1)

is an upper [quasi-]density on N; and that any extension of μ� to a shift-invariant function
f : P(N) → R does coincide with μ̄�, on account of the fact that, for every X ⊆ N, one
has X + 1 ⊆ N+, and hence f(X) = f(X + 1) = μ�(X + 1) = μ̄�(X + 1) = μ̄�(X).
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39. M. Sleziak and M. Ziman, Lévy group and density measures, J. Number Theory 128(12)
(2008), 3005–3012.

40. A. Soifer, The mathematical coloring book (Springer-Verlag, New York, 2009).
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