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Stability of hexagonal patterns in Rayleigh–Bénard convection for shear-thinning
fluids with temperature-dependent viscosity is studied in the framework of amplitude
equations. The rheological behaviour of the fluid is described by the Carreau model
and the relationship between the viscosity and the temperature is of exponential type.
Ginzburg–Landau equations including non-variational quadratic spatial terms are derived
explicitly from the basic hydrodynamic equations using a multiple scale expansion.
The stability of hexagonal patterns towards spatially uniform disturbances (amplitude
instabilities) and to long wavelength perturbations (phase instabilities) is analysed for
different values of the shear-thinning degree α of the fluid and the ratio r of the viscosities
between the top and bottom walls. It is shown that the amplitude stability domain shrinks
with increasing shear-thinning effects and increases with increasing the viscosity ratio r.
Concerning the phase stability domain which confines the range of stable wavenumbers,
it is shown that it is closed for low values of r and becomes open and asymmetric for
moderate values of r. With increasing shear-thinning effects, the phase stability domain
becomes more decentred towards higher values of the wavenumber. Beyond the stability
limits, two different modes go unstable: longitudinal and transverse modes. For the
parameters considered here, the longitudinal mode is relevant only in a small region close
to the onset. The nonlinear evolution of the transverse phase instability is investigated by
numerical integration of amplitude equations. The hexagon–roll transition triggered by the
transverse phase instability for sufficiently large reduced Rayleigh number ε is illustrated.

Key words: Bénard convection, pattern formation

1. Introduction

Convection of a fluid confined between two parallel horizontal plates and heated from
below (Rayleigh–Bénard convection, RBC) is a paradigm of pattern-forming instabilities
in spatially extended nonlinear systems (Bodenschatz, Pesch & Ahlers 2000). When
the control parameter, i.e. the temperature difference across the fluid layer or the
Rayleigh number, exceeds a critical value, the rest state is replaced by motions that
organize themselves to form a convective pattern. Increasing further the control parameter,
a transition between convective patterns of different symmetries may occur at a
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second threshold. For modelling processes in geoscience as well as in many industrial
systems, the variation of the viscosity with temperature has to be taken into account. A
spatially varying viscosity causes additional nonlinear coupling between the temperature
and the velocity field and breaks the up–down reflection symmetry with respect to the
midplane of the fluid layer. This breaking symmetry modifies the onset of convection and
affects the selection of the pattern convection.

1.1. Effect of temperature-dependent viscosity on the onset of convection
The effect of a temperature-dependent viscosity on the onset of convection was first
studied by Palm (1960) in the case of free–free boundary conditions. Palm (1960) assumed
that the kinematic viscosity ν varies as ν = ν1 + �ν cos(b(T − T1)), where �ν is the
difference in the viscosity between the top and bottom boundaries, b is a constant and
T1 is the temperature at the bottom of the fluid layer. In his analysis, it is required that
�ν/ν1 � 1. It is found that the critical Rayleigh number Rac defined with the average
viscosity ν0 as well as the critical wavenumber kc decreases with increasing the viscosity
variation �ν. They differ by O(�ν/ν0)

2 from that obtained with constant viscosity. The
decrease of Rac and kc with increasing �ν was confirmed by Stengel, Olivier & Booker
(1982) in free–free and rigid–rigid boundary conditions when a cosine law is used for the
dynamic viscosity μ(T). Busse & Frick (1985) assumed, for numerical convenience, a
linear dependence of the viscosity on temperature. The onset of convection is determined
in the case of rigid boundary conditions. The variation of Rac and kc as a function
of the viscosity ratio r = μmax/μmin is quite similar to that obtained by Palm (1960)
using cosine law for μ(T). As pointed out by Busse & Frick (1985), for cosine and
linear functions μ(T), the viscosity at the midplane equals to the average viscosity of
the static layer, this is why Rac decreases with increasing r. However, if an exponential
viscosity variation is used, the average viscosity exceeds the value used in the definition
of Rac. In this case, the critical Rayleigh number Rac increases, reaches a maximum
of Rac ≈ 2200 at a viscosity ratio r ≈ 3000 and then decreases (Stengel et al. 1982).
This result was confirmed by White (1988). It can be explained by a simple physical
argument based on the idea that convection begins first in the sublayer with maximum
Rayleigh number. Actually, for a large viscosity contrast, the convection is confined to
the sublayer near the hot boundary, and a stagnant zone develops near the cold (top)
boundary (Stengel et al. 1982; Davaille & Jaupart 1993; Solomatov 1995). Whereas, for
cosine and linear laws μ(T), the convection occurs throughout the entire fluid layer. The
onset of two-dimensional convection with strongly temperature-dependent viscosity has
been also considered by Bottaro, Metzener & Matalon (1992), assuming Arrhenius law.
In this case, the viscosity ratio depends on the temperature difference across the fluid
layer and on the temperature level, while for exponential law, the viscosity ratio depends
only on the temperature difference. Bottaro et al. (1992) found that depending on the
reference temperature, the dependence of the critical Rayleigh number Rac on the viscosity
ratio across the layer may have one of the two behaviours described previously. Either,
Rac decreases with increasing the viscosity ratio as predicted by Palm (1960) and Busse
& Frick (1985), or Rac increases initially with increasing the viscosity ratio, reaches a
maximum and then decreases as predicted by Stengel et al. (1982). Actually, there are
two controlling factors that play opposing roles. The reduced thickness of the active layer
on one hand requires a larger Rayleigh number for the onset of convection. On the other
hand, the fluid layer near the heated wall is less stable because of the decrease of the
viscosity.
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1.2. Influence of temperature-dependent viscosity on the planform near the onset
In Rayleigh–Bénard convection, under Boussinesq conditions, i.e. when only the
temperature variations of the density across the fluid layer are kept, convection in the
form of rolls emerge at the onset via a supercritical bifurcation. However, in situations
with sufficiently large temperature differences, such that the temperature dependence of
the material cannot be neglected, i.e. in non-Oberbeck–Boussines (NOB) convection, the
primary bifurcation is transcritical and the nonlinear state that forms beyond it consists
of hexagonal cells. The occurrence of a hexagonal pattern can be explained by the triadic
wavevector interactions enabled by the quadratic term in the amplitude equations. The
temperature dependence is usually the dominant case of asymmetry in convection layers,
and its importance for the preference of hexagons was supported theoretically by Palm
(1960), Palm, Ellingsen & Gjevik (1967), Segel & Stuart (1962), Busse (1967), Palm (1975)
and experimentally by Hoard, Robertson & Acrivos (1970), Somerscales & Dougherty
(1970), Stengel et al. (1982), Richter (1978), White (1988), Pampaloni et al. (1992).
Note that for liquids where the viscosity decreases with increasing temperature, the fluid
ascends in the central part of the hexagon and descends in the peripherical parts.

According to weakly nonlinear theory, the primary bifurcation to hexagons is associated
with a saddle node located at Ra < Rac. With increasing the heating, a Rayleigh number
Rar is reached beyond which rolls and hexagons can exist, until Rah where hexagons
become unstable. This classical NOB scenario was quantified in a pioneering paper of
Busse (1967). Actually, at Rar < Ra < Rah, hexagons and rolls are not equally stable,
because they are characterized by different values of the specific potential (Lyapunov
functional), which depend on the amplitude of rolls sets that constitute the pattern. The
transition should occur at RaT where the potential is the same for rolls and hexagons.
Near RaT , the metastable state is replaced by the absolute stable state when a sufficiently
strong disturbance is imposed. The range of Ra, where the metastable state coexists with
the absolute state defines a region of hysteretic transition (Getling 1988; Pampaloni et al.
1992). Some discrepancies exist between theoretical predictions made for an unbounded
layer of liquid and experiments in convective cells with a finite aspect ratio (Ciliberto,
Pampaloni & Perez-Garcia 1988).

Besides rolls and hexagons, a new planform in the form of squares was observed when
the viscosity contrast between upper and lower boundaries exceed a value of order ten
(Stengel et al. 1982; White 1988). The planform selection problem between rolls and
squares was analysed by Busse & Frick (1985) with the assumption that the viscosity varies
linearly with temperature. They found that near the critical conditions, rolls are preferred
for low values of r, but squares are preferred for large values of r. The change from rolls
to squares occurs at r ≈ 2. Jenkins (1987) used a weakly nonlinear method to investigate
the stability of squares. In the case of a linear variation of the viscosity with temperature
he found that the transition from rolls to squares occurs at r ≈ 3.2. The disagreement with
Busse & Frick (1985) was not clarified in the literature. For exponential fluids, Jenkins
(1987) found that the transition occurs at r ≈ 3.

1.3. Secondary instabilities
Above onset, there is a range of wavenumbers for which stationary convecting patterns can
exist. The existence of these stationary states does not guarantee their physical relevance;
they must also themselves be stable to infinitesimal disturbances. A variety of secondary
instabilities occur and restrict the domain of stable convection.

In a series of papers, Busse and co-workers Busse (1967), Busse & Whitehead (1971),
Clever & Busse (1974) and Busse (1978) gave a complete classification of secondary
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instabilities that restrict the region of stable straight convection rolls in Rayleigh–Bénard
convection. The region of stable roll convection is often referred to as the ‘Busse balloon’.

The nature of secondary instabilities in more complex patterns such as squares or
hexagons is not as well studied as rolls. In the case of a hexagonal pattern it is shown
that the secondary instability is induced by long wavelength modulation of the phase of
the pattern. In the Bénard–Marangoni problem estimates of the size and shape of a stable
band of wavenumbers have been made by Echebarría & Pérez-García (1998) and Young
& Riecke (2002) using amplitude equations.

1.4. Case of non-Newtonian fluids: influence of shear-thinning effects
Compared to the Newtonian case, very few studies were devoted to non-Newtonian fluids
despite their common occurrence in natural systems, food, chemical and petrochemical
engineering processes. Most non-Newtonian fluids have two common properties:
viscoelasticity and shear-thinning. The influence of the elastic response, in particular
the possibility of oscillatory convection due to elastic restoring forces are discussed in
the literature; see, for instance, Larson (1992) and the references therein. Compositional
effects may also exist as advocated by Kolodner (1998). The pattern selection has been
also considered in the literature, e.g. Li & Khayat (2005).

Here, we neglect the elastic response. We focus only on the shear-thinning effects, i.e.
the influence of nonlinear decrease of the viscosity with the shear rate. This feature,
when it is sufficiently strong, leads to a subcritical bifurcation (Lamsaadi, Naimi &
Hasnaoui 2005; Solomatov & Barr 2006, 2007; Balmforth & Rust 2009; Albaalbaki &
Khayat 2011; Alloui et al. 2013; Benouared, Mamou & Ait-Messaoudene 2014; Bouteraa
et al. 2015; Jenny, Plaut & Briard 2015). Indeed, in the presence of a finite amplitude
perturbation, the viscosity decreases reducing by this way the viscous damping. In the case
of RBC in Carreau fluids between two plates of infinite extent maintained at two different
temperatures, the shear-thinning degree α = |dμ/dΓ |Γ =0 above which the bifurcation
becomes subcritical has been determined using a weakly nonlinear analysis. The critical
value of the shear-thinning degree is αc = 24/601π4 for stress-free boundary conditions
(Balmforth & Rust 2009) and αc = 2.15 × 10−4 for no-slip boundary conditions. In the
previous expression, the viscosity μ and the second invariant of the strain rate deformation
Γ (defined by (2.7)) are rendered dimensionless using the zero-shear-rate viscosity and
thermal diffusion time as characteristic scales. Bouteraa et al. (2015) have also studied the
stability of the convective patterns near the onset. They show that the only stable patterns
are rolls in the supercritical bifurcation. Using two-dimensional nonlinear computations of
rolls solutions in Carreau fluids with α > αc, the threshold value of the Rayleigh number
has been determined by Benouared et al. (2014) and Jenny et al. (2015) for a large range
of rheological parameters.

Very few experimental studies dealing with RBC in shear-thinning fluids exist in the
literature. Liang & Acrivos (1970) were the first to study experimentally the onset of
convection in horizontal layers of dilute aqueous solutions of polyacrylamide. These
fluids are shear-thinning with approximately constant viscosity at low shear rates. The
shear-thinning degree α is less than αc. The experimental set-up consists of a rectangular
cavity with the length to height aspect ratio AR ≈ 25. Liang & Acrivos (1970) found
that the critical Rayleigh number is practically the same as for a Newtonian fluid. The
flow patterns detected by visualizations using aluminium flakes as tracers, consist of
two-dimensional rolls with a transition to a three-dimensional structure at much higher
Rayleigh number. To our knowledge, since Liang & Acrivos in the 1970s, there is no more
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experimental data until 2016. Darbouli et al. (2016) investigated experimentally the RBC
in shear-thinning fluids in a cylindrical cell using a magnetic resonance imaging (MRI)
technique. The aspect ratio of the cylindrical cavity, i.e. diameter-to-height ratio is AR = 6.
Actually, the aspect ratio value is imposed by the diameter of the MRI resonator (Darbouli
et al. 2016). The fluids used are xanthan gum solutions at different concentrations, which
rheological behaviour can be described by the Carreau model. In these experiments,
α < αc. For a concentration of 1000 ppm, the patterns observed above the criticality
consist of patches of fairly regular rolls linked by lines of disclinations. With increasing the
concentration of xanthan gum, the shear-thinning effects as well as the viscosity plateau at
low shear rates increase. A larger temperature difference is therefore needed for the onset
of convection. The non-Oberbeck–Boussinesq effects become significant and convection
in the form of ‘polygons’ occurs at the onset. With increasing Ra, a transition to rolls is
observed. This study was supplemented by Bouteraa (2016) using a shadowgraph method
for pattern visualization. The experimental set-up is identical to that in Darbouli et al.
(2016). For a sufficiently high concentration of xanthan gum, hexagonal patterns are
clearly observed at the onset, followed by a range of Rayleigh numbers where the two
solutions rolls and hexagons coexist with topological defects. A deeper analysis indicates
that the wavenumber of the hexagonal pattern increases with Ra.

In another context, RBC in shear-thinning fluids with strong variation of the viscosity
with temperature has been studied numerically in two-dimensional layers by Solomatov
& Barr (2007), Solomatov & Barr (2007) and Kaddiri et al. (2012). The viscosity ratio
r between the top and bottom walls is greater than 103. In this case, the convection
takes place in the so-called stagnant-lid regime. The objective was to understand the
convection in the interiors of the Earth and other planets whose viscosity is a much
stronger function of temperature. In these studies, the power-law model is adopted for
the rheological behaviour. The primary bifurcation is subcritical and it is shown that the
threshold value of the Rayleigh number Ra1 for the onset of convection decreases with
increasing shear-thinning effects and viscosity contrasts. A correlation relating Ra1 to the
shear-thinning index and the viscosity ratio is proposed.

To summarize:

(a) In the frame of Boussinesq approximations, theoretical studies show that
for sufficiently strong shear-thinning effects, the primary bifurcation becomes
subcritical. In this case, the threshold values of the Rayleigh number for the onset of
convection have been determined from numerical computations in two-dimensional
layers.

(b) In the frame of Boussinesq approximations, and in the supercritical regime,
theoretical studies show that near the onset, only rolls are stable and shear-thinning
effects reinforce convection in the form of rolls.

(c) Recent experimental investigations of Rayleigh–Bénard convection in shear-thinning
polymer solutions show that steady hexagonal patterns with upflow at the centre
arise at the onset, because of NOB effects, followed by a range in Ra, where rolls and
hexagons coexist. Furthermore, for the hexagonal pattern, the wavenumber selected
by the system increases with increasing Ra.

1.5. Objectives, methodology and outline of the paper
It is clear that the theoretical predictions of Rayleigh–Bénard convection in shear-thinning
fluids done within the framework of Boussinesq approximations cannot be used to describe
at least qualitatively the experimental results.
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The objective of the present work is to investigate the influence of shear-thinning
effects and the variation of the viscosity with temperature on the pattern selection,
its stability and the range of stable wavenumbers. The rheological law introduces an
additional nonlinear coupling between the flow variables. A weakly nonlinear analysis
is used as a first approach to study nonlinear effects. Amplitude equations are derived
and the instabilities of hexagonal patterns with respect to homogeneous and longwave
perturbations are calculated.

The present work considers a laterally infinite system. Therefore, it is difficult to have
a direct correspondance with the experimental results obtained with an apparatus of
a small aspect ratio such as that used by Darbouli et al. (2016) and Bouteraa (2016).
Indeed, the finite size and the no-slip boundary conditions at the lateral walls affect
the Rayleigh number at the convective threshold (Charlson & Sani 1970) and introduces
topological defects such as dislocations and disclinations which play a significant role
in the roll–hexagon competition (Ciliberto et al. 1990) as well as on the mechanism of
wavenumber selection (Pocheau & Croquette 1984). Nonetheless, we expect a qualitative
comparison.

Note that for moderate values of the viscosity ratio r, a competition between rolls and
hexagons is concerned. When the viscosity ratio exceeds a limit value r�, rolls become
unstable to squares. Except in the linear stability analysis where a large range of r is
considered, in the rest of the paper we consider only the case where 1 < r ≤ r� as in
Darbouli et al. (2016) and Bouteraa (2016).

This paper is organized as follows. We start with the governing equations in § 2. The
linear stability analysis is presented in § 3. The weakly nonlinear analysis using a multiple
scale method is presented in § 4. The amplitude equations for hexagons are derived and
the different coefficients are determined as a function of shear-thinning effects and the
viscosities ratio. In § 5 the limit value of the viscosity ratio above which rolls become
unstable to squares is determined as a function of shear-thinning effects. The relative
stability of homogeneous hexagons and rolls is discussed in § 6. Then, in § 7 the stability of
hexagons with respect to long wavelength perturbations is addressed. The phase equations
are derived and the range of stable wavenumbers is determined. Numerical simulations of
the amplitude equations are presented in § 8. The nonlinear evolution of the instabilities
and the formation of defects are investigated. Finally, a brief summary of the results is
given in § 9.

2. Basic equations

Hereafter, quantities with hats are dimensional quantities. We consider a layer of
shear-thinning fluid of depth d̂ confined between two impermeable horizontal plates,
infinite in extent, which are perfect heat conductors. The bottom and top plates are kept
at constant temperatures, respectively, T̂0 + δT̂/2 and T̂0 − δT̂/2, with δT̂ > 0. The fluid
has density ρ̂, thermal diffusivity κ̂ , thermal expansion coefficient β̂ and viscosity μ̂0 at
zero shear rate. In the absence of convection the heat conducting state is described by

û = 0,
dP̂
dẑ

= −ρ̂0ĝ[1 − β̂(T̂cond − T̂0)], T̂cond − T̂0 = δT̂
2

(
1 − 2ẑ

d̂

)
, (2.1a–c)

where û is the fluid velocity, P̂ is the pressure and T̂0 is the mean of the boundary
temperatures. The z-axis is directed upwards, with its origin located at the bottom plate.
The stability of the hydrostatic solution is considered by introducing temperature and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.766


Rayleigh–Bénard convection for shear-thinning fluids 905 A33-7

pressure perturbations as well as a fluid motion. Using the units d̂2/κ̂ , d̂, κ̂/d̂ and δT̂
for time, length, velocity and temperature, the dimensionless perturbation equations are

∇ · u = 0, (2.2)

1
Pr

[
∂u
∂t

+ (u · ∇) u
]

= −∇p + Ra θ ez + ∇ · τ , (2.3)

∂θ

∂t
+ u · ∇θ = u · ez + ∇2θ. (2.4)

Here, ez denotes the unit vector in the vertical direction, p(x, t) and θ(x, t) represent
the pressure and temperature deviations from their values in the conductive state. The
Boussinesq approximations are taken into account, i.e. the variation of the density is
neglected except in the buoyancy term. Denote by (x, y, z) the components of the position
vector x, and (u, v, w) the components of the velocity vector u. The Rayleigh number Ra
and the Prandtl number Pr are

Ra = ρ̂0ĝβ̂δT̂d̂3

κ̂ ˆ̄μ0

; Pr =
ˆ̄μ0

ρ̂0κ̂
. (2.5a,b)

The reference viscosity, ˆ̄μ0, is the zero-shear-rate viscosity evaluated at T̂0, i.e. the mean
of the boundary temperatures.

2.1. Rheological model and parameters
The fluid is assumed to be purely viscous and shear-thinning. The viscous stress tensor

τ = μ (Γ ) γ̇ with γ̇ = ∇u + (∇u)T (2.6)

the rate-of-strain tensor, of second invariant

Γ = 1
2 γ̇ijγ̇ij. (2.7)

We assume a Carreau-law fluid where the viscosity depends exponentially on temperature,

μ − μ∞
μ0 − μ∞

= exp[−b̂(T̂ − T̂0)]
(

1 + λ̂2Γ̂
)(nc−1)/2

, (2.8)

with μ0 = μ̂0/ ˆ̄μ0 and μ∞ = μ̂∞/ ˆ̄μ0 are the viscosities at low and high shear rate, b̂ is
the thermodependency coefficient which measures the sensitivity of viscosity to variation
in temperature, nc < 1 is the shear-thinning index and λ̂ is the characteristic time of
the fluid. The characteristic shear rate for the onset of shear-thinning is determined by
1/λ̂. The infinite shear viscosity, μ̂∞, is generally significantly smaller (103 to 104 times
smaller) than μ̂0 (Bird, Amstrong & Hassager 1987; Tanner 2000). The ratio μ̂∞/μ̂0
will be thus neglected in the following. The exponential model used for the viscosity
thermodependency is referred to in the literature as the Frank–Kamenetski model and
can be derived from the Arrhenius law by expanding the arguments of the exponential (in
the Arrhenius law) in a Taylor series about the reference temperature T̂0 (Bottaro et al.
1992).
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The dimensionless effective viscosity is then

μ = μ̂

ˆ̄μ0

= μb(z) exp(−cθ)(1 + λ2Γ )(nc−1)/2, (2.9)

where μb(z) = exp(c(z − 1/2)) is the viscosity profile at quiescent state, c = b̂δT̂ is a
measure of the viscosity contrast and λ = λ̂/(d̂2/κ̂) is a dimensionless characteristic time
of the fluid. The Newtonian behaviour, μ̂ = μ̂0, is obtained by setting nc = 1 or λ̂ = 0.
The viscosity ratio across the fluid layer,

r = μb(z = 1)

μb(z = 0)
with ln(r) = c = b̂δT̂, (2.10)

depends on b̂ and δT̂ , but not on the temperature level. For a small amplitude disturbance,
the viscosity can be expanded about the hydrostatic solution,

μ = μb [1 − cθ + . . .]
[

1 +
(

nc − 1
2

)
λ2Γ + . . .

]
. (2.11)

At the second-order Taylor expansion of (1 + λ2Γ )(nc−1)/2, a relevant rheological
parameter, i.e. the ‘degree of shear-thinning’ appears:

α =
∣∣∣∣ dμ

dΓ

∣∣∣∣
Γ =0

= 1 − nc

2
λ2. (2.12)

2.2. Boundary conditions
For the velocity field, no-slip boundary conditions are considered. For the temperature
deviation, the thermal conductivity of the boundaries is assumed much larger than that of
the fluid, so that their temperature remains ‘fixed’. The boundary conditions are then

θ = u = v = w = 0 on z = 0, 1. (2.13)

2.3. Reduction: elimination of the pressure
Applying twice the curl to momentum equations (2.3) and using the continuity equation,
we get the following evolution equations for the velocity components w, u and v:

1
Pr

∂

∂t
�w = 1

Pr

[
∂2

∂y∂z
N (v) + ∂2

∂x∂z
N (u) − �HN (w)

]
+ Ra�Hθ

+ μb�
2w + 2

(
dμb

dz

)
�

(
∂w
∂z

)
+ d2μb

dz2

(
∂2w
∂z2

− �Hw
)

+
[
�HNVz − ∂2

∂x∂z
NVx − ∂2

∂y∂z
NVy

]
, (2.14)

1
Pr

∂

∂t

[
�Hu + ∂2w

∂x∂z

]
= 1

Pr

[
∂2

∂x∂y
N (v) − ∂2

∂y2
N (u)

]
+ μb�

[
�Hu + ∂2w

∂x∂z

]

+ dμb

dz
∂

∂z

[
�Hu + ∂2w

∂x∂z

]
− ∂

∂y
NVz, (2.15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.766


Rayleigh–Bénard convection for shear-thinning fluids 905 A33-9

1
Pr

∂

∂t

[
�Hv + ∂2w

∂y∂z

]
= 1

Pr

[
∂2

∂x∂y
N (u) − ∂2

∂x2
N (v)

]
+ μb�

[
�Hv + ∂2w

∂y∂z

]

+ dμb

dz
∂

∂z

[
�Hv + ∂2w

∂y∂z

]
+ ∂

∂x
NVz. (2.16)

Here the ‘horizontal Laplacian’ is defined by

�H = ∂2

∂x2
+ ∂2

∂y2
. (2.17)

The nonlinear inertial terms N (·) and nonlinear viscous terms NVx are defined by

N (·) = (u · ∇)(·); NVx = [∇ · ((μ − μb)γ̇ )] · ex , (2.18a,b)

similarly for NVy and NVz. The boundary conditions are

θ = w = ∂w
∂z

= u = v = 0 at z = 0, 1. (2.19)

In a matrix notation, the system (2.14)–(2.16), (2.4) can be written formally as

M
∂Ψ

∂t
= LΨ + NI + NV , (2.20)

where Ψ = (w, u, v, θ)t, the operators M, L, NI and NV represent the weight matrix,
the linear operator, the nonlinear inertial operator and the nonlinear viscous operator,
respectively. The nonlinear operators can also be decomposed as

NI = [NIw, NIu, NIv, NIθ ]t and NV = [NVw, NVu, NVw, 0]t . (2.21a,b)

3. Linear stability analysis

In linear theory u(u, v, w) and θ are assumed infinitesimal and the nonlinear terms
in (2.14)–(2.16) and (2.4) are neglected. As the horizontal extent is taken infinite, the
disturbance quantities w, u, v, θ are assumed periodic and of the form

(w, u, v, θ) = (F11(z), U11(z), V11(z), G11(z)) f (x, y) exp (st) , (3.1)

with f (x, y) = exp(ikx x + iky y), k = (kx , ky, 0) the horizontal wavenumber and s = sr +
isi a complex number. This leads to the eigenvalue problem

sPr−1(D2 − k2)F11 = μb(D2 − k2)2F11 + 2Dμb(D2 − k2)DF11

+ D2μb(D2 + k2)F11 − k2RaG11, (3.2)

sG11 = F11 + (D2 − k2)G11, (3.3)

with D the derivative with respect to z and k the norm of the vector k. Note that at this
order, no non-Newtonian effects enter the problem and the thermodependency appears
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FIGURE 1. Exponential fluid. Critical Rayleigh number (a) and critical wavenumber (b) as a
function of the viscosity ratio. (1) NSBC, (2) SFBC.

through the viscosity profile of the base state μb(z). The boundary conditions are

F11 = DF11 = G11 = 0 at z = 0, 1. (3.4)

The eigenvalue problem (3.2) and (3.3) where s is the eigenvalue and X 11 = (F11, G11) the
eigenvector can be written formally as

sM̃ · X 11 = L̃ · X 11. (3.5)

It is easy to show that the principle of exchange of stability still holds, i.e. si = 0, when
the viscosity profile is not uniform. Since any multiple of the eigenvector X 11 is also a
solution of (3.5), X 11 has to be normalized. We have adopted the same normalization as in
Bouteraa et al. (2015):

G11(z = 1/2) = 1. (3.6)

A spectral Chebyshev method is used to determine the critical Rayleigh number and the
critical wavenumber (Bouteraa et al. 2015). The marginal stability curve Ra(k) is obtained
by the condition s(Ra, k) = 0. Using 20 Chebyshev polynomials, the first eigenvalue, i.e.
that for which the real part is the largest, is calculated with an accuracy of 10−4. The
minimum of the marginal stability curves gives the critical Rayleigh number Rac and
critical wavenumber kc. In the case of exponential fluids, figure 1 displays the variation
of the critical Rayleigh number for the onset of convection, Rac, as well as the critical
wavenumber, kc, as a function of the viscosity ratio r for no-slip boundary conditions
(NSBC) and stress-free boundary conditions (SFBC). This later was added only as a
validation test. Our results are in very good quantitative agreement with those obtained by
Stengel et al. (1982). As indicated by these authors, three different ranges of the viscosity
ratio can be distinguished. (i) At low viscosity ratio, 0 ≤ r ≤ 1.5, Rac and kc are almost
constant. (ii) At moderate viscosity ratio, 1.5 ≤ r ≤ 8, Rac increases with increasing r
and kc is nearly constant or decreases slightly for SFBC. The viscosity variation in the
moderate viscosity ratio stabilizes the conductive state. (iii) For a large viscosity ratio,
Rac decreases with increasing r and kc increases rapidly. In this regime, the convection is
governed by a sublayer that is more unstable than the full layer (Stengel et al. 1982).

As another validation of the linear stability analysis, we have also reproduced the results
obtained by Busse & Frick (1985) assuming a linear dependency of the viscosity with
temperature.
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FIGURE 2. Exponential fluid. (a) Vertical velocity eigenfunction and (b) temperature
perturbation at the first order as a function of the depth z for different values of the
thermodependency coefficient c. (1) c = 0; (2) c = 1; (3) c = 2; (4) c = 3 . . . increasing c by
step 1 until curve (8) c = 7.

Figure 2 displays, for an exponential fluid, the profiles of the vertical velocity
eigenfunction and the temperature perturbation at the first order for different values of
the thermodependency coefficient. With increasing the viscosity contrast c, the maximum
of F11(z) takes place near the bottom plate where the fluid is less viscous, i.e. the centre of
the convection rolls is shifted towards the bottom plate, and the fluid motion is significantly
reduced near the top wall. The shear rate increases near the lower boundary and decreases
near the upper. The viscosity contrast between the top and lower boundaries could be
reinforced by the shear-thinning effects. Similarly, the temperature perturbation becomes
more confined near the heated wall. Of course, when c = 0, the eigenfunctions, F11(z) and
G11(z), are symmetric with respect to the midplane of the fluid layer.

4. Amplitude equations in a hexagonal lattice

The critical Rayleigh number for the onset of convection determined from the linear
stability analysis depends only on the norm kc of the wavevector. Because of the isotropy
of the extended horizontal plane, the direction of the wavevector is arbitrary. In addition,
any linear combination of modes Ap exp(ikp · r)(F11(z), G11(z)), where r = (x, y), kp =
(kpx , kpy), |kp| = kc and Ap are constant coefficients is a solution of the linear problem, i.e.
there is also a pattern degeneracy. We consider the case where the wavevectors lie on a
hexagonal lattice

(w, θ) =
3∑

p=1

Ap(F11, G11) exp(ikp · r) + c.c. + h.o.t., (4.1)

where, ‘c.c.’ denotes the complex conjugate of the prior expression and ‘h.o.t.’ means
‘higher order terms’. The hexagon patterns (see figure 3) are made of three pairs
of wavevectors at 2π/3 angles apart: k1 = kcex , k2 = kc(−ex/2 + (

√
3/2)ey) and k3 =

kc(−ex/2 − (
√

3/2)ey). The objective is to determine the spatio-temporal evolution of the
amplitude Ap, above threshold, due to different nonlinearities of the problem.

4.1. Multiple scales method
As the Rayleigh number is increased above the onset Rac, the growth rate of the
perturbation is positive for any wavenumber within a band

√
ε around the critical
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FIGURE 3. (a) Hexagonal convection with flow up in the centre. (b) Basic wavevectors of
hexagonal pattern. (c) Unit vectors: ni parallel and τ i perpendicular to the wavevector.

wavenumber, where ε = (Ra − Rac)/Rac is the distance from the onset. Indeed, Taylor
expansion of the dispersion curve near its maximum shows that s ∝ ε and (k − kc) ∝ √

ε.
For ε > 0, emergent patterns are described by an infinite sum of unstable modes (in
a continuous band) of the form exp(εt/τ0) exp(ikcx) exp(i(

√
εx/ξ0)). Here, τ0 is the

characteristic time for the instability to grow and ξ0 is the coherence length. For small
ε, we can separate the dynamics into fast eigenmodes and slow modulation of the form
exp(εt/τ0) exp(i(

√
εx/ξ0)). A similar reasoning can be done for the y-direction.

Let us denote δ = √
ε. The multiple scales approach is used to obtain the amplitude

equation, which describes the slow temporal and spatial variation of the variables. The
slow scales

X = δx, Y = δy and T = δ2t (4.2a–c)

are treated as independent of the fast scales x, y and t. The derivatives with respect to the
new variables are

∂

∂t
−→ ∂

∂t
+ δ2 ∂

∂T
,

∂

∂x
−→ ∂

∂x
+ δ

∂

∂X
,

∂

∂y
−→ ∂

∂y
+ δ

∂

∂Y
,

∂

∂z
−→ ∂

∂z
.

(4.3a–d)

The fast spatial variables vary on the order of a typical wavelength. The slow variables
describe the temporal and the spatial modulations of these fast variables. Furthermore, as
the marginal mode is stationary, then

∂

∂t
−→ δ2 ∂

∂T
. (4.4)

The solution of the nonlinear problem in the neighbourhood of the critical conditions,
corresponding to the onset of convection is developed with respect to the parameter δ by

Ψ = δΨ (1) + δ2Ψ (2) + δ3Ψ (3) + O(δ4), (4.5)

Ra = Rac + δRa(1) + δ2Ra(2) + O(δ3). (4.6)

The Taylor expansion is also applied to the operators

M = M (0) + δM (1) + O(δ2), (4.7)

L = L(0) + δL(1) + δ2L(2) + O(δ3), (4.8)
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NI = δ2NI (2) + δ3NI (3) + O(δ4), (4.9)

NV = δ2NV (2) + δ3NV (3) + O(δ4). (4.10)

The explicit expressions of M , L, NI and their sub-scales are given in appendix A. The
expressions of NV and its sub-scales are too lengthy, and, thus, are not shown.

4.2. Derivation of the Ginzburg–Landau equation
Taking (4.3a–d) and (4.4) into account, the expansion of variables (4.5), (4.6) and
operators (4.7)–(4.10) are substituted formally into the nonlinear system of (2.4),
(2.14)–(2.16). After ordering according to the power of δ, a sequence of systems of
equations is obtained. In the following, the first three orders are determined.

4.2.1. Solution at order δ

At the first order of δ, the following linearized problem is obtained:

L(0)Ψ (1) = 0. (4.11)

The system (4.11) corresponds to the linear problem discussed in § 3. However, now
Ψ (1) is also a function of the slow variables X, Y and T . These variables do not appear in
the linear stability analysis section. For hexagon patterns, the first-order solution Ψ (1) =
[w(1), u(1), v(1), θ (1)]t is

w(1) = F11(z)[A1 exp(ik1 · r) + A2 exp(ik2 · r) + A3 exp(ik3 · r)] + c.c., (4.12)

θ(1) = G11(z)[A1 exp(ik1 · r) + A2 exp(ik2 · r) + A3 exp(ik3 · r)] + c.c., (4.13)

u(1)

H = DF11

k2
∇Hx [A1 exp(ik1 · r) + A2 exp(ik2 · r) + A3 exp(ik3 · r)] + c.c., (4.14)

where ∇Hx denotes the horizontal gradient for the fast variables, uH = (u, v) the
horizontal velocity components and Ap the amplitude of the perturbation

Ap = Ap (X, Y, T), p = 1, 2, 3. (4.15)

4.2.2. Solution at order δ2

At the next order δ2, we have

L(0)Ψ (2) = −L(1)Ψ (1) − NI (2) − NV (2). (4.16)

The forcing terms on the right-hand side of (4.16) are computed by introducing the
first-order solution (4.12)–(4.14). It is worthy to note that at the second order, the nonlinear
viscous term [NV ](2) is proportional to c = ln(r). Indeed [∇ · (μ − μb)γ̇ ] reduces at the
second order to [−c∇ · (μbθ γ̇ )]. The forcing terms on the right-hand side of (4.16) can be
separated in four parts.

(a) Terms proportional to |Ap|2 (p = 1, 2, 3), with the wavenumber modulus |k| = 0,
due to the interaction of the eigenmode with its complex conjugate.

(b) Terms proportional to A2
p exp(2ikp · r), |k| = 2kc, due to the interaction of the

eigenmode with itself.
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(c) Terms proportional to ApA∗
q exp(i(kp − kq) · r), |k| = √

3kc.
(d) Resonant forcing with wavevector k� (� = 1, 2, 3 and |k�| = kc).

Four separate sets of non-homogeneous differential equations are then derived for each
component. They are given in appendix B. For the fourth component, the right-hand
side of the non-homogeneous differential contains secular terms. A solvability condition,
known as the Fredholm alternative, should then be applied for a solution to exist, i.e. the
left-hand side of (4.16) has to be orthogonal to the null space of the adjoint operator given
in appendix C. We obtain

A∗
2A∗

3

∫ 1

0
Gad(2F11DG11 + G11DF11) dz + A∗

2A∗
3

1
Pr

∫ 1

0
Fad(2DF11D2F11 + F11D3F11

− 3k2
cF11DF11 dz) − A∗

2A∗
3

∫ 1

0
Fad[NV w](2)

A∗
2A∗

3
dz − 2i(k1 · ∇HX)A1

×
[

2
∫ 1

0
μb

(
D2F11 − k2

cF11
)

Fad dz + 2
∫ 1

0

dμb

dz
dF11

dz
Fad dz

]
− 2i (k1 · ∇HX)

× A1

[
−

∫ 1

0

d2μb

dz2
F11Fad dz + Rac

∫ 1

0
G11Fad dz

]
− k2

cRa(1)A1

∫ 1

0
G11Fad dz = 0.

(4.17)

Two other similar relations are obtained by circular permutation of the indices. In the
above equations ∇HX denotes the horizontal gradient for the slow variables. The integrals
in (4.17) are evaluated numerically by means of the Clenshaw and Curtis method. The
calculation leads to a result of the form

Ra(1)A1 + bA∗
2A∗

3 = 0. (4.18)

Again, two other similar relations are obtained by circular permutation. These expressions
allow us to determine the solution at the second order, Ψ (2) = [w(2), u(2), v(2), θ (2)]t which
can be written as the sum of four terms. The influence of nonlinear viscous terms
proportional to c = ln(r) is clearly highlighted.

The first term Ψ
(2)

1 proportional to |Ap|2 correspond to the modification of the base state.
It is shown that u(2)

1 = 0, i.e. there is no velocity for the zero mode. The correction at the
second order of the conductive temperature profile θ

(2)

1 = T1(z)[|A1|2 + |A2|2 + |A3|2] is
displayed in figure 4. The warm upflow and cold downflow fluid tend to reduce the vertical
temperature gradient. This effect is more significant with increasing viscosity ratio.

The second term Ψ
(2)

2 proportional to A2
p exp(2ikp · r) is the first harmonic of the

fundamental. Hence, we have [w(2)

2 , θ
(2)

2 ] = [W2(z), T2(z)][A2
1E2

1 + A2
2E2

2 + A2
3E2

3], with
Ep = exp(ikp · r). The influence of the viscosity ratio r on the profile W2(z) and T2(z)
is shown in figure 5.

The third term Ψ
(2)

3 proportional to ApA∗
qEpE∗

q results from the quadratic interaction
between modes with wavevector kp and (−kq) with p /= q. We have [w(2)

3 , θ
(2)

3 ] =
[W3(z), T3(z)][A1A∗

2E1E∗
2 + A1A∗

3E1E∗
3 + A2A∗

3E2E∗
3]. The variations of W3 and T3 are

displayed in figure 6. The amplitude of these modes increases with r and are more
important than that of the first harmonic. The fourth term (resonant term) proportional
to exp(ikp · r) is given by (w(2)

4 , θ
(2)

4 ) = (W4, T4)(E1 + E2 + E3) + c.c. Variations of W4
and T4 for different values of r are shown in figure 7.
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FIGURE 4. Modification of the conductive temperature profile at Pr = 50 and different values
of the viscosity ratio: (1) r = 1; (2) r = 2 and (3) r = 3.
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FIGURE 5. First harmonic of the fundamental at Pr = 50 and different values of the viscosity
ratio: (1) r = 1; (2) r = 2 and (3) r = 3.
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FIGURE 6. Modes factor of ApA∗
q exp(i(kp − kq)) at Pr = 50 and different values of r:

(1) r = 1; (2) r = 2 and (3) r = 3.

4.3. Solution at order δ3

At this order, we obtain the equation for the evaluation of Ψ (3):

L(0)Ψ (3) = M (0) ∂Ψ (1)

∂T
− L(1)Ψ (2) − L(2)Ψ (1) − NI (3) − NV (3). (4.19)
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FIGURE 7. Modes factor of exp(ikp · r) at Pr = 50 and different values of r: (1) r = 1;
(2) r = 2 and (3) r = 3.

We need not solve (4.19) but only write the solvability condition to get an equation
for Ra(2). To obtain the amplitude equations at cubic order, we use (4.6) combined with
ε = (Ra − Rac)/Rac, the departure from the linear threshold. We have

εA1 = δ

Rac
Ra(1)A1 + δ2

Rac
Ra(2)A1. (4.20)

We substitute in (4.20) Ra(1)A1 and Ra(2)A1 by their expressions derived from the
solvability conditions at orders δ2 and δ3, i.e. (4.18) and (D 7) in appendix D, respectively.
Finally, returning to the fast variable δAj(X, Y, T) = A′

j(x, y, t), ∂/∂X = (1/δ)(∂/∂x), . . .,
we obtain

∂A1

∂t
= ε

τ0
A1 + ξ 2

0

τ0
(k1 · ∇Hx)

2A1 + ζA∗
2A∗

3

− g1|A1|2A1 − g2(|A2|2 + |A3|2)A1

+ iβ1[A∗
2(k3 · ∇Hx)A∗

3 + A∗
3(k2 · ∇Hx)A∗

2]

+ iβ2[A∗
2(k2 · ∇Hx)A∗

3 + A∗
3(k3 · ∇Hx)A∗

2], (4.21)

where ∇Hx is the horizontal gradient for the fast variables. Companion equations for A2

and A3 are obtained by subindex permutation. In the above equations we have dropped the
prime in A′

j and we expect no confusion to the reader.
Following Echebarría & Pérez-García (1998), it is useful to express the derivatives in

(4.21) in terms of unitary vectors of the corresponding mode: n2 = −n3/2 + (
√

3/2)τ 3 in
the term A∗

2(k2 · ∇Hx)A∗
3 and n3 = −n2/2 − (

√
3/2)τ 2 in the term A∗

3(k3 · ∇Hx)A∗
2, where

ni is the unitary vector in the direction of ki and τ i orthogonal to ni. We obtain

∂A1

∂t
= ε

τ0
A1 + ξ 2

0

τ0
(n1 · ∇Hx)

2A1 + ζA∗
2A∗

3

− g1|A1|2A1 − g2(|A2|2 + |A3|2)A1

+ iα1[A∗
2(n3 · ∇Hx)A∗

3 + A∗
3(n2 · ∇Hx)A∗

2]

+ iα2[A∗
2(τ 3 · ∇Hx)A∗

3 + A∗
3(τ 2 · ∇Hx)A∗

2]. (4.22)

As indicated by Bragard & Velarde (1998) and Brand (1989), there is no Lyapunov
functional for (4.22), opening the possibility for complex spatio-temporal behaviour and
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FIGURE 8. Variation of the characteristic time τ0 (a) and the coherence length ξ0 (b) as a
function of the viscosities ratio, for different values of Prandtl number. (1) Pr = 50; (2) Pr = 5;
(3) Pr = 2; (4) Pr = 1.

it is possible, for some values of α1 and α2, that the steady state cannot be reached. In
contrast, when α1 and α2 vanish, a Lyapunov functional can be written down in the form

∂Aj

∂t
= − ∂F

∂A∗
j
, (4.23)

with

F =
∫∫ 3∑

j=1

[
− ε

τ0
|Aj|2 + ξ 2

0

τ0
|(nj · ∇Hx)Aj|2 + g1

2
|Aj|4

]
dx dy

+ g2[|A1|2|A2|2 + |A1|2|A3|2 + |A2|2|A3|2] − ζ(A1A2A3 + c.c.). (4.24)

This functional F guarantees that only stationary patterns (given in the following section)
are possible as t → ∞.

The characteristic time for the instability to grow τ0 and the coherence length ξ0 are
shown in figure 8 as a function of r and for different values of Pr. As it can be observed, τ0
decreases with increasing Prandtl number. Nevertheless, there is no significant effect from
Pr = 50. Furthermore, the viscosity ratio r has practically no influence on τ0 at least for
r ∈ [1, 3]. Concerning the coherence length ξ0, the curves determined at different values
of Pr collapse onto a master curve where ξ0 decreases slightly with increasing r. The
coefficient ζ arises from non-Oberbeck–Boussinesq effects. It increases with increasing
viscosity ratio, since ζ ∝ c = ln(r), and with increasing Prandtl number as it is shown
in figure 9. However, it is observed that from Pr = 50, there is no significant effect of
Pr. The coefficient g1 refers to the self-saturation coefficient and g2 the cross-saturation
coefficient. It can be shown straightforwardly that g1 and g2 can be written as the sum
of two contributions. The first one (gN

1 , gN
2 ) similar to that obtained for a Newtonian fluid

arises from the nonlinear inertial terms and the thermodependency of the viscosity. The
second contribution (gV

1 , gV
2 ) arises from the nonlinear variation of the viscosity with the

shear rate

g1 = gN
1 + gV

1 with gV
1 = −αgNN

1 , (4.25)

and similarly for g2. Variations of gN
1 , gNN

1 , gN
2 and gNN

2 as a function of the viscosity ratio
for different values of Pr are displayed in figure 10. The coefficients g1 and g2 increase
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FIGURE 9. Variation of ζ with the ratio viscosity r for different values of the Prandtl number.
(1) Pr = 50; (2) Pr = 5; (3) Pr = 2; (4) Pr = 1.
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FIGURE 10. (a) ‘Newtonian’ and (b) non-Newtonian contribution to the first Landau coefficient
and to the cross-saturation coefficient (c) and (d), respectively, as a function of r for different
values of Pr. (1) Pr = 50; (2) Pr = 5; (3) Pr = 2; (4) Pr = 1.

significantly with the Prandtl number up to Pr = 50, whereas their dependency on r is
quiet modest. The coefficients α1 and α2, displayed in figure 11, are real. The term with α1

accounts for distortions in the directions of rolls and, therefore, corresponds physically to
wavenumber dilatation. The coefficient α1 is positive and takes values of the same order
as ζ . Note also that α1 vanishes when r = 1, and increases with increasing r. The terms
with α2 account for distortions in the hexagonal form. The coefficient α2 is negative and
smaller (in absolute value) than α1. Following Echebarria & Perez-Garcia (2001), a sketch
of their action is drawn in figure 12.
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FIGURE 11. Coefficients α1 and α2 as a function of r for different values of Pr. (1) Pr = 50;
(2) Pr = 5; (3) Pr = 2; (4) Pr = 1.
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FIGURE 12. (a) Dilatation and (b) distortion of hexagonal pattern (Echebarria & Perez-Garcia
2001).

For the set of coefficients discussed above, the following correlations can be used:

τ0 = 0.0509 + 0.026Pr−1; ξ0 = 0.385 − 3.57 × 10−4r − 1.68 × 10−4r2,

ζ = (9.90 − 4.72Pr−1 + 1.38Pr−2) log(r),

gN
1 = 254.3(1.0037 − 0.4722Pr−1 + 0.1392Pr−2)(1.0067 − 0.0037r − 0.002r2),

gNN
1 =11.86 105(1.0038 − 0.4808Pr−1+0.1422Pr−2)(0.9733 + 0.0128r + 0.0094 r2),

gN
2 = 375.9(1.0029 − 0.3545Pr−1 + 0.1020Pr−2)(1.0091 − 0.0047r − 0.0029 r2),

gNN
2 = 1.343 106(1 − 0.476Pr−1 + 0.146Pr−2)(0.9756 + 0.0117r + 0.0086r2),

α1 = 12.5(1 − 0.504Pr−1 + 0.148Pr−2) log(r),

α2 = −2.1(1.003 − 0.238Pr−1 + 0.069Pr−2) log(r).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.26)

5. Competition between rolls and squares

It was shown theoretically by Busse & Frick (1985) and Jenkins (1987), and
experimentally by White (1988), that at low values of the viscosity ratio r, rolls are the
preferred pattern of convection, whereas squares are the preferred for larger values of r.
For a Newtonian fluid with an exponential viscosity function, Jenkins (1987) found that
the changeover to squares occurs at r� ≈ 3.2. In this section we investigate the influence of
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FIGURE 13. Domains of stability of rolls and squares in the plane (α, r).

shear-thinning effects on this limit value r�. Here, we consider only competition between
perfect rolls and squares without spatial modulation. In a square lattice the solution at
order δ is

w(1) = F11(z)[A1 exp(ik1 · r) + A2 exp(ik2 · r)] + c.c., (5.1)

θ(1) = G11(z)[A1 exp(ik1 · r) + A2 exp(ik2 · r)] + c.c.. (5.2)

The derivation of amplitude equations without spatial terms for the two modes A1 and A2
forming an angle of 90◦ follows the same procedure as in § 4. They are given by

dA1

dt
= sA1 − [g1|A1|2 + g2s|A2|2]A1 + . . . , (5.3)

dA2

dt
= sA2 − [g1|A2|2 + g2s|A1|2]A2 + . . . . (5.4)

Note that (5.3), (5.4) can be obtained using symmetries introduced by the square lattice:
symmetries of square D4 in addition to the two-torus T2 of translation in the two horizontal
directions (Golubitsky, Swift & Knoblock 1984; McKenzie 1988).

A linear stability analysis of stationary rolls and squares, i.e. stationary solutions of
(5.3), (5.4) is performed. It is shown that squares are stable when g2s < g1, i.e. when the
cross-coupling between two orthogonal modes that describe the square pattern is weak
enough. The numerical results are displayed in figure 13 where we have represented the
variation of r� as a function of the shear-thinning degree α at Pr = 10. On the left of the
curve, rolls are stable and on the right of the curve, squares are stable. One note is that r�

increases with increasing shear-thinning effects.

6. Amplitude instabilities

In this section we consider homogeneous and stationary solutions of (4.22) by including
a slightly off-critical wavenumber in the amplitude (Ap = Ap exp(iqp · r)). We discuss
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their domain of existence and their stability with respect to homogeneous perturbations
(amplitude instabilities).

(i) Roll solution with a wavenumber slightly off-critical k = kc + q. It is given by A1 =
R0 exp(iqx), A2 = A3 = 0, and any circular permutation with R0 =

√
(ε − ξ 2

0 q2)/τ0g1.
A linear stability analysis of this solution with respect to uniform perturbations A1 =
(R0 + r1) exp (iqx1), A2 = r2 exp (iqx2) and A3 = r3 exp (iqx3), where xp = np · r with
p = 1, 2, 3, shows that the roll solution is stable when g2 > g1 and

ε > εr(q) = τ0g1 (ζ + 2α1q)2

(g2 − g1)
2 + ξ 2

0 q2. (6.1)

(ii) Hexagon solutions: three sets of rolls of equal amplitude, Ap = H0 exp (i q xp) with

H0 =
(ζ + 2α1q) +

√
(ζ + 2α1q)2 + 4 (g1 + 2g2) (ε − ξ 2

0 q2)/τ0

2 (g1 + 2g2)
, (6.2)

called up-hexagons, that correspond to upflow in the centre, and

H0 = −(ζ + 2α1q) +
√

(ζ + 2α1q)2 + 4(ε − ξ 2
0 q2) (g1 + 2g2) /τ0

2 (g1 + 2g2)
, (6.3)

called down-hexagons, that correspond to downflow motion in the centre.
Solutions called up-hexagons, exist for

ε > εa = −(ζ + 2α1q)2 τ0

4 (g1 + 2g2)
+ ξ 2

0 q2, (6.4)

and are linearly stable for εa < ε < εh, with

εh = τ0(ζ + 2α1q)2 (2g1 + g2)

(g1 − g2)
2 + ξ 2

0 q2. (6.5)

Note that εa and εh do not contain α2 since only perfect hexagons are considered.
Solutions called down-hexagons, exist for ε > ξ 2

0 q2 and are linearly unstable.
(iii) The ‘mixed states’ given by

A1 = ζ − 2α1q
g2 − g1

, A2 = A3 =
√

(ε − ξ 2
0 q2)/τ0 − g1A2

1

g1 + g2
(6.6)

and any circulation permutation exist for ε > (ζ + 2α1q)2g1/(g1 − g2)
2 + ξ 2

0 τ0 and are
linearly unstable with respect to rolls or up-hexagons.

An example of amplitude stability curves in (ε, q) space and the associated bifurcation
diagram for q = 0 is given in figures 14 and 15. Hexagons bifurcate transcritically from the
conductive state where they are unstable. Both hexagons and the conductive state are stable
in the range εa ≤ ε ≤ 0 and both hexagons and rolls are stable in the range εr ≤ ε ≤ εh.
In this range, rolls and hexagons are linked via a branch of mixed modes which are always
unstable.

Variations of εa, εr, εh and (εh − εr) as a function of the viscosities ratio, r, for
different values of the shear-thinning degree are depicted in figure 16. Overall, the
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FIGURE 14. Amplitude stability curves in the (ε, q) plane at r = 2.5, Pr = 50 and two
different values of α: (a) α = 0 Newtonian fluid, (b) α = 10−4 Carreau fluid.
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FIGURE 15. Bifurcation diagram for hexagons in the case where g2 > g1 with the parameters
r = 2.5, q = 0 and α = 10−4. The amplitude |A1| is plotted against the distance to the threshold
ε for the roll-solution branch (labelled R), for the mixed mode branch (labelled M) and for the
two hexagon-solution branches, up- and down-hexagons. Solid lines indicate stable solutions and
dashed lines represent unstable solutions.

thermodependency of the viscosity favours convection in the form of hexagons and
their stability whereas shear-thinning effects favour convection in form of rolls and their
stability. For instance, in figure 16(c) the domain of stability of hexagons increases with
increasing r and decreases with increasing shear-thinning effects. In the same way, in
figure 16(d) the domain of bistability rolls and hexagons shrinks with increasing α, and
increases with increasing the viscosities ratio, i.e. the thermodependency effect. One can
also note in figure 16(a) that |εa| increases with increasing α as shear-thinning effects
favour a subcritical bifurcation (Bouteraa et al. 2015). The correlations proposed by Busse
(1967) for a Newtonian fluid assuming a linear variation of the viscosity with temperature
(see appendix E) are displayed for comparison. As it can be observed, the difference
between the linear and the exponential models increases with increasing r.

7. Phase instabilities

In this section we consider perturbations involving spatial modulations over distances
much larger than the basic wavelength. The amplitudes of slightly distorted up-hexagons
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FIGURE 16. Variations of εa, εr, εh and (εh − εr) versus r for three values of the shear-thinning
degree α. The Prandtl number is fixed, Pr = 50. (1) Newtonian fluid, α = 0; (2) Carreau
fluid with α = 0.5 10−4; (3) Carreau fluid with α = 10−4. The dashed line is the correlation
proposed par Busse (1967) for a Newtonian fluid, assuming a linear variation of the viscosity
with temperature.

can be written as

Ap = (H0 + rp) exp [i(qxp + φp)], p = 1, 2, 3, (7.1)

where xp = np · r. Here, Ap represents the amplitude of a slightly distorted hexagonal
pattern, |rp(x1, x2, x3, t)| � 1 and |φp(x1, x2, x3, t)| � 1 are the amplitude and the phase
of the perturbation, respectively. Substitution of (7.1) into (4.22) and linearizing with
respect to rp and φp leads to the following set of equations:

∂rp

∂t
= −[2g1H0 + (ζ + 2α1q)]H0rp + ξ 2

0

τ0

∂2rp

∂x2
p

+ [(ζ + 2α1q) − 2g2H0]H0(rj + rk) − 2qH0
ξ 2

0

τ0

∂φp

∂xp

+
(

α1 + α2√
3

)
H2

0

(
∂φj

∂xj
+ ∂φk

∂xk

)
+ 2α2√

3
H2

0

(
∂φj

∂xk
+ ∂φk

∂xj

)
, (7.2)

∂φp

∂t
= −(ζ + 2α1q)H0(φp + φj + φk) + ξ 2

0

τ0

∂2φp

∂x2
p

+ 2q
H0

ξ 2
0

τ0

∂rp

∂xp

+
(

α1 + α2√
3

)(
∂rj

∂xj
+ ∂rk

∂xk

)
+ 2α2√

3

(
∂rj

∂xk
+ ∂rk

∂xj

)
. (7.3)
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In the long wavelength limit the perturbations rp in the amplitudes follow adiabatically the
phase dynamics and are eliminated with the total phase Φ = φ1 + φ2 + φ3. As a result,
only two phases dominate the dynamics of the modulated hexagonal pattern. Instead of
using φ2 and φ3 it is convenient to consider φx = −(φ2 + φ3) and φy = (1/

√
3)(φ2 +

φ3), which are related to the two translational symmetries in the x and y directions,
respectively (Echebarría & Pérez-García 1998; Echebarria & Perez-Garcia 2001). The
resulting equations can then be written as a linear diffusion equation of the phase vector
φ = (φx , φy),

∂φ

∂t
= D⊥∇2φ + (

D‖ − D⊥
)∇ (∇ · φ) , (7.4)

where D⊥ and D‖ are the transverse and longitudinal phase diffusion coefficients, given
by

D⊥ = 1
4

ξ 2
0

τ0
− q2

2ũ

(
ξ 2

0

τ0

)2

+ H2
0

8ũ

(
α1 −

√
3 α2

)2
, (7.5)

D‖ = 3
4

ξ 2
0

τ0
− q2 (4ũ + ṽ)

2ũṽ

(
ξ 2

0

τ0

)2

+ H2
0

8ũ

(
α1 −

√
3 α2

)2

− H2
0 α1

ṽ

(
α1 +

√
3 α2

)
+ H0q

ṽ

ξ 2
0

τ0

(
3α1 +

√
3 α2

)
, (7.6)

with

ũ = H2
0 (g1 − g2) + (ζ + 2α1q) H0, (7.7)

ṽ = 2H2
0 (g1 + 2g2) − (ζ + 2α1q) H0. (7.8)

Note that both ũ and ṽ have to be positive for hexagons to be stable against amplitude
instabilities. The phase equation (7.4) allows us to split the phase vector φ into longitudinal
φ� and transverse φt modes, φ = φ� + φt, that satisfy ∇ × φ� = 0 and ∇ · φt = 0,
respectively. This leads to the uncoupled phase diffusion equations (Lauzeral, Metens &
Walgraef 1993; Echebarría & Pérez-García 1998; Echebarria & Perez-Garcia 2001; Pena
& Perez-Garcia 2001)

∂φ�

∂t
= D‖∇2φ�,

∂φt

∂t
= D⊥∇2φt. (7.9a,b)

The normal modes φt and φ� correspond to Eckhaus rectangular and rhomboidal
perturbations, respectively. The hexagons are stable to phase modes in the domain defined
by D‖ > 0 and D⊥ > 0. In the figure 17 we show the phase stability diagrams for a
Newtonian fluid and two different values of the viscosities ratio r. Curves (1) and (2)
correspond to D⊥ = 0 and D‖ = 0, respectively. Curve (4) is the upper stability amplitude
where a bifurcation to rolls occurs. The minimum of curve (4) is located in the region
q < 0. Below curve (3), no hexagons exist. Hexagons are stable in the shaded region. For
viscosities ratio 1 ≤ r ≤ 2, the region of stability to amplitude and phase modes is closed.
Whereas for larger values of r, the stability domain is open. Note also that the domain of
stability is decentred towards the right. It is delimited mainly by the stability amplitude
curves and the transverse phase instability boundary. Nevertheless, the numerical results
show that close to the threshold, the longitudinal mode is the relevant destabilizing mode.
The region where the longitudinal mode destabilizes the pattern increases slightly with
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FIGURE 17. Hexagon stability diagram for a Newtonian fluid at Pr = 50 and two different
values of the viscosities ratio: (a) r = 1.5 and (b) r = 2.5. Hexagons are stable inside the grey
area. Curve (1): D⊥ = 0, curve (2) D‖ = 0, curve (3) bifurcation from the conductive state to
convection with hexagons, curve (4) bifurcation from hexagons to rolls.
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FIGURE 18. Hexagon stability diagram for a shear-thinning fluid with α = 10−4 at Pr = 50
and two different values of the viscosities ratio: (a) r = 1.5 and (b) r = 2.5. Hexagons are stable
inside the grey area.

increasing r. Qualitatively, a similar description of the phase stability diagram can be
done for a Carreau fluid with low or moderate values of r as it is shown in figure 18.
Once again, the region where the longitudinal mode is the relevant destabilizing mode
remains small and close to the onset. A summary of the results relating to the influence
of r and α on the stability domain of hexagons is given by figure 19(a). With increasing
shear-thinning effects, the stability domain becomes more decentred towards the right.
Concerning the influence of r, as discussed before, the thermodependency of the fluid
viscosity increases significantly the stability domain of hexagons. For comparison, we
have represented in figure 19(b) the stability domain of hexagons when α1 = α2 = 0. This
domain is symmetrical with respect to the vertical axis.

8. Numerical solutions of amplitude equations

8.1. Numerical simulation
For numerical integration of the Ginzburg–Landau equations (4.22), we employed a
Fourier pseudospectral method on a square mesh with periodic boundary conditions.
Calculations are carried out in spectral space (wavenumber) with the exception of
evaluating nonlinear and conjugate terms which are performed in physical space. The
square domain [−L/2, L/2] × [−L/2, L/2] is discretized into N × N uniformly spaced
grid points M�,p with x� = −L/2 + ��x (similarly for yp), �x = �y = L/N and N even.
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FIGURE 19. Influence of shear-thinning effects and viscosities ratio on the hexagons stability
diagram at Pr = 50. (a) Spatial non-variational terms in (4.22) are taken into account, (b) α1 =
α2 = 0. Curves (1), (4) and (7) correspond to a Newtonian fluid and three different values of
r: 2.5, 2.0, 1.5, respectively. Curves (2), (5) and (8) correspond to a shear-thinning fluid with
α = 5 × 10−5. Curves (3), (6) and (9) correspond to a shear-thinning fluid with α = 10−4.
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FIGURE 20. Hexagon stability diagram for a shear-thinning fluid with α = 10−4, Pr = 50 and
r = 2.5. The curve εr(q) is a boundary above which rolls are stable with respect to homogeneous
perturbations. (+) Points where numerical simulations were performed.

For the temporal discretization, the time domain [0, tmax ] is discretized with equal time
step of width �t as tm = m�t, m = 0, 1, 2, . . .. The exponential time differencing method
of second order (ETD2) proposed by Cox & Matthews (2002) is used. The pseudospectral
method is implemented in Matlab. Finally, to check the convergence, several simulations
are carried out with an increasing numbers of grid points and refining the time step. For
the results presented in this section, the numerical resolution is 512 × 512 in a square of
size L = 5 × 2π/q and the time step is fixed at 0.01.

8.2. Numerical results
Numerical simulations were carried out in order to illustrate the nonlinear evolution of the
transverse phase instability for a hexagonal pattern in both cases: (i) low values of ε, where
practically only hexagons are stable for q > 0; and (ii) larger ε. We discuss the impact of
the non-variational quadratic spatial terms on the competition between rolls and hexagons.
Further numerical simulations were done to illustrate the transition rolls-hexagons when
ε < εr. In the following, the results are presented for three values of the parameters (ε, q),
represented by the symbol (+) in figure 20.
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FIGURE 21. Initial condition (P1): hexagons with q = 0.45, ε = 0.1, r = 2.5, α = 10−4 and
Pr = 50. Contours of the vertical velocity w = ∑3

i=1 Ai exp(ikc,i · x) + c.c. for a hexagonal
pattern undergoing the transverse instability. The contours are shown at times (a) t = 0;
(b) t = 10; (c) t = 1000 and (d) t = 2000. In panel (c) the penta-hepta defects are circled.

8.2.1. Nonlinear evolution of the transverse instability at low ε

The initial condition is a perfect hexagonal pattern with a wavenumber k = kc + 0.45 at
ε = 0.1. The point (P1), ε = 0.1 and q = 0.45 in figure 20 is outside the domain where
hexagons are stable to phase modes. The other parameters are shear-thinning degree α =
10−4, viscosity ratio r = 2.5 and Prandtl number Pr = 50. At t = 0, the hexagonal pattern
is slightly disturbed.

Figure 21 displays the time evolution of the vertical velocity w = ∑3
i=1 Ai(x, y, t)

exp(ikc,i · r) + c.c.. It shows how the transverse phase instability leads to a stable
hexagonal pattern after passing through intermediate stages. The breakdown of the initial
pattern takes place through the creation of penta-hepta defects (two hexagons are replaced
by a pentagon and a heptagon). At t = 10 most of the penta-hepta defects (PHD) are
aggregated along lines perpendicular to wavevectors. Their number decreases with time.
At t = 1000, the number of PHD is quite limited and they are circled in figure 21(c). A
zoom is given in figure 22(a). The PHD move and eventually annihilate or disappear at
the boundaries. Figure 22 is a focus on one penta-hepta defect. It is shown, figure 22(b–d),
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FIGURE 22. Initial condition (P1): hexagons with q = 0.45, ε = 0.1, r = 2.5, α = 10−4 and
Pr = 50. Focus on one penta-hepta defect at q = 0.45, r = 2.5 and α = 10−4: (a) contours of
the ‘vertical velocity’ w at t = 1000 with one penta-hepta defect circled. (b) Modulus of A1
which vanishes at the core of the defect. (c) Modulus of A2, non-zero in the circle (|A2 = 0.114|).
(d) Modulus of A3 which vanishes at the core of the defect.

that in this process the amplitude of two of the three rolls making up the hexagonal pattern
are zero. The phases of the sets of rolls obtained from arctan(Im[Ai(x, y)]/Re[Ai(x, y)])
are represented in figure 23. The phases of two sets of rolls that vanish at the defect present
a singularity, while the third one does not have any singularity. Actually, the penta-hepta
defect is pictured as a dislocation in each of the sets of rolls whose amplitude vanish at the
core of the defect (Ciliberto et al. 1990; Sushchik & Tsimring 1994; Hoyle 1995).

8.2.2. Nonlinear evolution of the transverse phase instability at large ε

In the previous section we considered a rather small ε for which hexagons are the
only possible state. A completely different final state of the transverse phase instability is
observed for larger ε, i.e. ε greater than a threshold value ε∗. Figure 24 shows the nonlinear
evolution of the convection pattern when the initial condition, point P2 in figure 20,
consists of a perfect hexagon at ε = 0.3, with a wavenumber, k = kc + 0.55, outside
the phase stability domain. The other parameters are α = 10−4, r = 2.5 and Pr = 50. In
this case, the transverse phase instability triggers the transition from a regular hexagonal
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FIGURE 23. Initial condition (P1): hexagons with q = 0.45, ε = 0.1, r = 2.5, α = 10−4 and
Pr = 50. (a) Contours of the vertical velocity w = ∑3

i=1 Ai exp(ikc,i · x) + c.c. at t = 1000;
(b) phase of A1; (c) phase of A2 and (d) phase of A3.

pattern to a disordered roll state with several grain boundaries. The threshold value ε∗

at which the transition to rolls occurs can only be determined by numerical simulations
due to the lack of Lyapunov functional for (4.22). For the particular case considered here,
q = 0.55, r = 2.5, α = 10−4 and Pr = 50, we have found ε∗ ≈ 0.22.

Although at ε = 0.3 hexagons are linearly stable to homogeneous perturbations as
shown in figure 14(b), when defects first appear, the dynamics may change. According
to Sushchik & Tsimring (1994) and Ciliberto et al. (1990), the presence of defects in a
system plays an important role in the dynamics of transition between rolls and hexagons.
In our case, pieces of rolls appear in the beginning. Under certain conditions, they spread
and destroy the hexagonal pattern. Furthermore, it is observed that the time necessary to
reach the steady state is much lower for large ε.

8.2.3. Rolls–hexagons transition
Figure 25 shows the contours of the reconstructed vertical velocity w at different

times in the case where the initial data, point P3 in figure 20, correspond to perfect
rolls at ε = 0.1, q = 0.25 for a Carreau fluid with α = 10−4 and Pr = 50. According
to figure 14(b), these rolls are unstable. This is confirmed by the computation, in which
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FIGURE 24. Initial condition (P2): hexagons with q = 0.55, ε = 0.3, r = 2.5, α = 10−4 and
Pr = 50. The reconstructed vertical velocity w is shown at different times: (a) t = 0, (b) t = 2,
(c) t = 10 and (d) t = 100.

the final state consists of hexagons. We note that the transition from rolls to hexagons
undergoes pearling, which gradually leads to separation into hexagons similarly as in
Van-Den-Berg et al. (2015).

Remark. When there is no distortion of hexagons, i.e. when α1 = α2 = 0, in (4.22), the
competition between uniform rolls and uniform hexagons is governed by the free energy
density difference between them as indicated by Young & Riecke (2002), Sushchik &
Tsimring (1994) and Hoyle (2006). For a given wavenumber k = kc + q, hexagons have
lower energy than rolls, and, therefore, are more stable at ε lower than a threshold value
εf at which rolls and hexagons have the same free energy. Rolls are energetically favoured
above εf . To determine εf , we compare the free energy density for perfect rolls,

Fr = −ε − q2ξ 2
0

τ0
R2

0 + g1

2
R4

0, (8.1)
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FIGURE 25. Initial condition (P3): rolls with q = 0.25, ε = 0.1, r = 2.5, α = 10−4 and Pr =
50. The reconstructed vertical velocity w is shown at different times: (a) t = 0, (b) t = 11,
(c) t = 15 and (d) t = 2000.

and for perfect hexagons,

Fh = −3
ε − q2ξ 2

0

τ0
H2

0 − 2ζH3
0 + 3

2
(g1 + 2g2) H4

0 . (8.2)

It can be shown that Fr = Fh at

εf = τ0ζ
2
[
g2

1 + 3g1g2 + √
2g1 (g1 + g2)

3/2]
2 (g2 + 2g2) (g1 − g2)

2 + q2ξ 2
0 . (8.3)

Figure 26 shows the variation of εf with the shear-thinning degree α for q =
0.55, r = 2.5 and Pr = 50. The nonlinearity of the rheological law favours rolls rather
than hexagons. Values of εf are found higher (but in reasonable agreement) than the
real threshold for hexagon–roll transition obtained from our numerical simulations. As
explained by Sushchik & Tsimring (1994), the difference is due to the fact that the
simple energetic analysis used in the determination of εf does not take into account the
non-uniform structure of defects. Note that when α1 = α2 = 0, the final state consists of
perfect rolls or perfect hexagons.
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FIGURE 26. Threshold for hexagon–roll transition in the case where there is no distortion
of hexagons as a function of the shear-thinning degree, with q = 0.55, r = 2.5 and Pr = 50.
(1) Curve of equal energy for hexagons and rolls, (2) numerical simulations.

9. Conclusion

We have investigated the influence of shear-thinning effects on Rayleigh–Bénard
convection for a Carreau fluid, taking into account the variation of the viscosity with
temperature. The dependence of the viscosity on temperature was assumed of exponential
type. A weakly nonlinear analysis using a multiple scale is adopted as a first approach to
investigate the nonlinear effects. Generalized Ginzburg–Landau equations are obtained
including spatial non-variational terms which account for the distortion of hexagons.
The coefficients of these equations have been explicitly calculated and correlations
are proposed. The steady solutions of these equations that correspond to rolls and
hexagons have been obtained and their relative stability has been determined. Past the
onset of convection, hexagonal cells with upward motion in the centre are selected in
agreement with the experimental results of Darbouli et al. (2016) and Bouteraa (2016).
The range of Rayleigh numbers associated with the subcritical convection is very narrow
(|εh| � 1) and difficult to detect experimentally. It is all the more reduced as
shear-thinning effects are strong. For higher supercritical values, coexistence between
hexagons and rolls is predicted in agreement with the experimental observations of
Darbouli et al. (2016) and Bouteraa (2016). The range of Ra for which hexagons are stable
increases with increasing viscosity ratio and decreases with increasing shear-thinning
effects. This behaviour is along the same lines as the conclusion of Bouteraa et al. (2015),
where it is shown that the nonlinearities introduced by the rheological law reinforce the
stability of rolls. The stability of hexagons with respect to long wavelength perturbations
is then addressed. Phase equations are derived and the band of stable wavenumbers is
determined. Two types of long wavelength instabilities are identified: longitudinal and
transverse phase instabilities. It is found that the stable hexagons domain is delimited
mainly by the transverse phase instability. Furthermore, it is shown that the additional
spatial nonlinear terms break the symmetry around kc: the band of stable wavenumbers
is open and decentred to the right, i.e. to wavenumbers larger than the critical one.
This result is likewise in agreement with the experimental observations of M. Bouteraa
(personal communication 2020), where the measured wavenumber increases with Ra. The
theoretical calculations predict also that the band of stable wavenumbers becomes more
decentred with increasing shear-thinning effects.

The numerical integration of the amplitude equations supports the theoretical results,
enables us to illustrate the nonlinear evolution of the transverse phase instability and
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highlights the role of the non-variational terms in the dynamics of pattern formation.
At low ε, the transition from perfect hexagons, with a wavenumber outside the stable
domain, to a new hexagonal pattern involves penta-hepta defects. Their number, large in
the beginning of the process, decreases with time. For larger ε > ε∗, the transverse phase
instability triggers the transition from regular hexagons to a disordered state of rolls with
grain boundaries. The impact of the non-variational terms in the amplitude equations on
the pattern dynamics is discussed. We have also performed a numerical simulation starting
from a given initial pattern of rolls at ε < εr. The rolls-hexagons transition occurs through
a progressive pearling leading to the creation of spots.

This study will be continued by considering larger values of the viscosity ratio r, for
which we have a competition between squares and hexagons. In addition it would be useful
to consider the temperature-dependence of other material properties such as the volumetric
thermal expansion coefficient. There are other possible areas of future work. For instance,
an investigation could be carried out to include side wall effects. Also, it would be
interesting to analyse the influence of defects (pentagon-heptagon pair), which emerge
in the hexagonal pattern, on the transition between different symmetries as well as on the
wavenumber selection. Finally, we hope that the present work suggests new experiments
to study the influence of shear-thinning effects on the selection of the convective pattern
and its stability for high supercritical values of Ra, using experimental apparatus of larger
aspect ratio comparatively to Darbouli et al. (2016) and Bouteraa (2016).

Appendix A. Operators and matrix coefficients

The coefficients of the matrices in (4.7)–(4.8) are given below:

A.1. The operator M

M =

⎛
⎜⎝

M11 0 0 0
M21 M22 0 0
M31 0 M33 0
0 0 0 1

⎞
⎟⎠ , (A 1)

with

M11 = Pr−1�, M21 = ∂2

∂x∂z
, M22 = ∇2

Hx ,

M31 = ∂2

∂y∂z
, M33 = ∇2

Hx .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 2)

A.1.1. The sub-scale M(0)

The coefficients of M (0) in (4.7) are

M(0)

11 = Pr−1

(
�Hx + ∂2

∂z2

)
,

M(0)

21 = ∂2

∂x∂z
, M(0)

22 = �Hx ,

M(0)

31 = ∂2

∂y∂z
, M(0)

33 = �Hx ,

M(0)

44 = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 3)
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A.1.2. The sub-scale M(1)

The coefficients of M (1) in (4.7) are

M(1)

11 = 2 Pr−1 ∇Hx · ∇HX,

M(1)

21 = ∂2

∂X∂z
, M(1)

22 = 2 ∇Hx · ∇HX,

M(1)

31 = ∂2

∂Y∂z
, M(1)

33 = 2 ∇Hx · ∇HX,

M(1)

44 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 4)

A.2. The operator L
The coefficients of the 4 × 4 matrix L in (2.20) are given by

L =

⎛
⎜⎝

L11 0 0 L14
L21 L22 0 0
L31 0 L33 0
1 0 0 �

⎞
⎟⎠ , (A 5)

with

L11 = μb�
2 + 2

dμb

dz
�

∂

∂z
+ d2μb

dz2

(
∂2

∂z2
− �H

)
, L14 = Ra �H,

L21 = μb�
∂2

∂x∂z
+ dμb

dz
∂

∂z

(
∂2

∂x∂z

)
, L22 = μb��H + dμb

dz
∂

∂z
�H,

L31 = μb�
∂2

∂y∂z
+ dμb

dz
∂

∂z

(
∂2

∂y∂z

)
, L33 = μb��H + dμb

dz
∂

∂z
�H.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 6)

A.3. Sub-scale L(0)

The components of L(0) in (4.8) are

L(0)

11 = μb

(
∇2

Hx + ∂2

∂z2

)2

+ 2
dμb

dz

(
∇2

Hx + ∂2

∂z2

)
∂

∂z
+ d2μb

dz2

(
∂2

∂z2
− ∇2

Hx

)
,

L(0)

14 = Rac∇2
Hx ,

L(0)

21 = μb

(
∇2

Hx + ∂2

∂z2

)
∂2

∂x∂z
+ dμb

dz
∂

∂z

(
∂2

∂x∂z

)
,

L(0)

22 = μb

(
∇2

Hx + ∂2

∂z2

)
∇2

Hx + dμb

dz
∂

∂z
∇2

Hx ,

L(0)

31 = μb

(
∇2

Hx + ∂2

∂z2

)
∂2

∂y∂z
+ dμb

dz
∂

∂z

(
∂2

∂y∂z

)
,

L(0)

33 = L(0)

22 ,

L(0)

41 = 1, L(0)

44 =
(

∇2
Hx + ∂2

∂z2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 7)
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A.4. Sub-scale L(1)

The components of L(1) in (4.8) are

L(1)

11 =4μb

(
∇2

Hx +
∂2

∂z2

)
(∇Hx · ∇HX) + 4

dμb

dz
(∇Hx · ∇HX)

∂

∂z
− 2

d2μb

dz2
(∇Hx · ∇HX) ,

L(1)

14 = Ra(1)∇2
Hx + 2Rac (∇Hx · ∇HX) ,

L(1)

21 = μb

(
∇2

Hx + ∂2

∂z2

)
∂2

∂X∂z
+ 2μb (∇Hx · ∇HX)

∂2

∂x∂z
+ dμb

dz
∂2

∂z2

∂

∂X
,

L(1)

22 = 2μb

[
∂2

∂z2
+ 2

(
∂2

∂x2
+ ∂2

∂y2

)]
(∇Hx · ∇HX) + 2

dμb

dz
(∇Hx · ∇HX)

∂

∂z
,

L(1)

31 = μb

[
∇2

Hx

∂2

∂Y∂z
+ 2 ∇Hx · ∇HX + ∂2

∂z2

∂2

∂Y∂z

]
+ dμb

dz
∂2

∂z2

∂

∂Y
,

L(1)

41 = 0, L(1)

44 = 2∇Hx · ∇HX.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 8)

A.5. Sub-scale L(2)

The components of L(2) in (4.8) are

L(2)

11 = μb

[
2
(

∇2
Hx + ∂2

∂z2

)
∇2

HX + 4 (∇Hx · ∇HX)2
]

+ 2
dμb

dz
∇2

HX
∂

∂z
− d2μb

dz2
∇2

HX,

L(2)

14 = Rac∇2
HX + 2Ra(1) (∇Hx · ∇HX) + Ra(2)∇2

Hx ,

L(2)

21 = μb

[
2 (∇Hx · ∇HX)

∂2

∂X∂z
+ ∇2

HX
∂2

∂x∂z

]
,

L(2)

22 = μb

(
∂2

∂z2
+ ∇2

Hx

)
∇2

HX + 4μb (∇Hx · ∇HX)2 + μb∇2
HX∇2

Hx ,

L(2)

31 = μb

[
2 (∇Hx · ∇HX)

∂2

∂Y∂z
+ ∇2

HX
∂2

∂y∂z

]
,

L(2)

41 = 0, L(2)

44 = ∇2
HX.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 9)

Appendix B. Second-order solution (hexagons)

B.1. Solution proportional to |Ap|2 (zero mode)
The first component of the second-order solution, proportional to |Ap|2, provides a
correction of the basic state. Considering the w-equation, it is shown that the factor of
|A1|2, |A2|2 and |A3|2 in the nonlinear inertial NI(2)

w and viscous NV (2)
w terms vanishes;
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therefore,

w(2)

1 = 0. (B 1)

Here w(2)

1 means the first component of the second-order solution. Similarly, for the
horizontal velocity, we have

u(2)

1 = v
(2)

1 = 0. (B 2)

There is no velocity for the zero mode. The correction of the conductive temperature
profile can be written as θ

(2)

1 = T1(z)[|A1|2 + |A2|2 + |A3|2], where T1(z) satisfies

D2T1 = 2 [G11 (DF11) + F11 (DG11)) , (B 3)

with

T1 = 0 at z = 0 and z = 1. (B 4)

As for the linear problem, (B 3) with the boundary conditions (B 4) is solved numerically
using a spectral Chebyshev collocation method.

B.2. Solution proportional to A2
p exp(2ikp · r)

The second component of the second-order solution, proportional to A2
pE2

p, where Ep =
exp(ikp · r) represents the first harmonic of the fundamental. We have

(
w(2)

2 , θ
(2)

2

)
= (W2(z), T2(z)))

(
A2

1E2
1 + A2

2E2
2 + A2

3E2
3

) + c.c., (B 5)

with

[
μb

(
D2 − 4k2

c

)2 + 2
dμb

dz

(
D3 − 4k2

cD
) + d2μb

dz2

(
D2 + 4k2

c

)]
W2 − 4k2

cRacT2

= 2
Pr

(
F11D3F11 − DF11D2F11

) − [NVw](2)

A2
pE2

p
, (B 6)

W2 + (
D2 − 4k2

c

)
T2 = F11DG11 − G11DF11. (B 7)

The boundary conditions on W2 and T2 are identical to those on F11 and G11, (3.4).
Concerning the horizontal velocity, we have

∇2
Hx u(2)

H2 + ∇Hx
∂w(2)

2

∂z
= 0. (B 8)

We obtain

u(2)

H2 = DW2

4k2
c

∇Hx

[
A2

1E2
1 + A2

2E2
2 + A2

3E2
3

] + c.c. (B 9)
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B.3. Solution proportional to ApA∗
qEpE∗

q

The third component of the second-order solution, proportional to ApA∗
qEpE∗

q , reads as

(
w(2)

3 , θ
(2)

3

)
= (W3(z), T3(z))

(
A1A∗

2E1E∗
2 + A1A∗

3E1E∗
3 + A2A∗

3E2E∗
3

) + c.c., (B 10)

with [
μb

(
D2 − 3k2

c

)2 + 2
dμb

dz

(
D3 − 3k2

cD
) + d2μb

dz2

(
D2 + 3k2

c

)]
W3 − 3k2

cRacT3

= 3
Pr

(
F11D3F11 − k2

cF11DF11
) − [NVw](2)

EpEq∗ , (B 11)

W3 + (
D2 − 3k2

c

)
T3 = 2F11DG11 − G11DF11. (B 12)

Boundary conditions on (W3, T3) are the same as the ones on (F11, G11).
The horizontal velocity components satisfy

∇2
Hx u(2)

H3 + ∇Hx
∂w(2)

3

∂z
= 0. (B 13)

We obtain

u(2)

H3 = DW3

3k2
c

∇Hx

(
A1A∗

2E1E∗
2 + A1A∗

3E1E∗
3 + A2A∗

3E2E∗
3

) + c.c. (B 14)

B.4. Solution proportional to exp(ikp · r)

The fourth component of the second-order solution is proportional to exp(ikp · r) (resonant
term). The solution is achieved using the solvability condition. It is shown that it can be
written as(

w(2)

4 , θ
(2)

4

)
= (W41, T41) E1 + (W42, T42) E2 + (W43, T43) E3 + c.c., (B 15)

with[
μb

(
∂2

∂z2
− k2

c

)2

+ 2
dμb

dz

(
∂2

∂z2
− k2

c

)
∂

∂z
+ d2μb

dz2

(
∂2

∂z2
+ k2

c

)]
W41 − Rack2

cT41

=
[
−4iμb

(
D2 − k2

c

)
F11 − 4i

dμb

dz
DF11 + 2i

d2μb

dz2
F11

]
(k1 · ∇HX) A1

+ k2
c Ra1 G11A1 − 2iRacG11 (k2 · ∇HX) A1

+ 1
Pr

(
F11D3F11 + 2DF11D2F11 − 3k2

cF11DF11
)

A∗
2A∗

3 − [
NV (2)

w

]
E1

A∗
2A∗

3, (B 16)

W41 + (
D2 − k2

c

)
T41 = −2iG11 (k1 · ∇HX) A1 + (2F11DG11 + G11DF11) A∗

2A∗
3. (B 17)

Two others similar systems of equations are obtained for (W42, T42) and (W43, T43) by
the circular permutation of indices. Note that according to (4.18), Ra(1)A1 can be written in
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terms of A∗
2A∗

3. The system of differential equations (B 16), (B 17) can be written formally
as [A](W41, T41)

t = [X ]A∗
2A∗

3 + Z(2i)(k1 · ∇HX)A1.
Hence, (W41, T41)

t = (Ws, Ts)
tA∗

2A∗
3 + (W̃s, T̃s)

t2i(k1 · ∇HX)A1, where (Ws, Ts)
t

= [A]−1[X ] and (W̃s, T̃s)
t = [A]−1[Z ]. The boundary conditions on Ws and Ts are the same

as the ones on (F11, G11).
For the horizontal velocity, we have

u(2)

H4 = UH41E1 + UH42E2 + UH43E3 + c.c., (B 18)

with

μb

(
∂2

∂z2
− k2

c

)(
−k2

cUH41 + ik1
∂W41

∂z

)

+ dμb

dz

(
−k2

c
∂

∂z
UH41 + ik1

∂2W41

∂z2

)
= 2

dμb

dz
D2F11∇HXA1

+
[
μb

(
D3F11 − k2

cDF11
) + dμb

dz
D2F11

] [
2

k1

k2
c

(k1 · ∇HX) A1 − ∇HXA1

]
. (B 19)

Two other similar equations are obtained for UH42 and UH43.

Appendix C. Adjoint eigenvalue problem: adjoint mode

In the analysis developed in § 4, it is necessary to eliminate secular terms in
non-homogeneous differential equations, i.e. the solvability condition must be applied.
It is therefore necessary to determine the linear adjoint of the direct problem at the critical
conditions. For vector fields f and g, one defines an inner product between two vector
functions f (z) and g(z) by

〈 f , g〉 =
∫ 1

0
f ∗ · g dz, (C 1)

where f ∗ is the complex conjugate of f . To the direct eigenvalue problem (3.5)
corresponds the adjoint problem

sM̃
+ · Xad = L̃

+ · Xad with X ad = (Fad, Gad), (C 2)

where the adjoint operators M̃
+

and L̃
+

are defined by

〈X ad, M̃ · X 11〉 = 〈M̃+ · X ad, X 11〉, 〈X ad, L̃ · X 11〉 = 〈L̃+ · X ad, X 11〉, (C 3a,b)

where X 11 fulfils the ‘linear’ boundary conditions (3.4). By integrating by parts we get the
linear adjoint problem and the corresponding boundary conditions

sPr−1 (D2 − k2)Fad = μb
(
D2 − k2)2

Fad + 2Dμb
(
D2 − k2))DFad

+ D2μb
(
D2 + k2)Fad + Gad, (C 4)

sGad = −k2 Ra Fad + (
D2 − k2)Gad, (C 5)
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with

Fad = 0, DFad = 0, Gad = 0 at z = 0, (C 6a)

Fad = 0, DFad = 0, Gad = 0 at z = 1. (C 6b)

The solution of these equations is obtained using the same method as for the direct
eigenvalue problem. Similarly, the normalization adopted for the adjoint mode is

Gad (z = 1/2) = 1. (C 7)

At Ra = Rac, the so-called adjoint critical mode does not depend on the Prandtl number.

Appendix D. Cubic-order solution

At order δ3, we have

L(0)

11 w(3) + L(0)

14 θ(3) = M(0)

11
∂

∂T
w(1) − L(1)

11 w(2) − L(1)

14 θ(2)

− L(2)

11 w(1) − L(2)

14 θ(1) − NI(3)
w − NV (3)

w , (D 1)

w(3) + L(0)

44 θ(3) = ∂

∂T
θ(1) − L(1)

44 θ(2) − L(2)

44 θ(1) − NI(3)
θ . (D 2)

D.1. Solution proportional to exp(ikp · r)

One component of the cubic-order solution (w(3)

1 , θ
(3)

1 ) is proportional to exp(ikp · r):

(
w(3)

1 , θ
(3)

1

)
=

(
W(3)

11 , T (3)

11

)
E1 +

(
W(3)

12 , T (3)

12

)
E2 +

(
W(3)

13 , T (3)

13

)
E3 + c.c. (D 3)

Projecting (D 1) and (D 2) onto the mode E1, for instance, gives formally

L(0)

11 W(3)

11 + L0
14T (3)

11 = M(0)

11 F11
∂A1

∂T
− L(1)

11 W(2)

41 − L(1)

14 T (2)

41

− L(2)

11 F11A1 − L(2)

14 G11A1 − [
NI(3)

w

]
E1

− [
NV (3)

w

]
E1

, (D 4)

W(3)

11 + L(0)

44 T (3)

11 = G11
∂A1

∂T
− L(1)

44 T (2)

41 − L(2)

44 G11A1 −
[
NI(3)

θ

]
E1

. (D 5)

Note that Ra(2) appears in the operator L(2)

14 :

L(2)

14 = Rac∇2
HX + 2iRa(1) (k1 · ∇HX) − k2

cRa(2). (D 6)

D.2. Determination of Ra(2)

The system of (D 4)–(D 5) have a solution if and only if the right-hand side of (D 4)–(D 5)
is orthogonal to the kernel of the adjoint operator (Fredholm alternative theorem).
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Applying this theorem leads to an equation for Ra(2), which can be written formally as

Ra(2)A1 = I1
∂A1

∂T
+ I2 (k1 · ∇HX)2 A1

+ I3|A1|2A1 + I4|A2|2A1 + I5|A3|2A1

+ I6A∗
2
∂A∗

3

∂X
+ I6A∗

3
∂A∗

2

∂X
+ I7A∗

2
∂A∗

3

∂Y
+ I8A∗

3
∂A∗

2

∂Y
, (D 7)

where

I1 =
∫ 1

0

[
1

Pr
(D2 − k2

c)F11Fad + G11Gad

]
dz (D 8)

is the coefficient proportional to ∂A1/∂T , and similarly for I2, I3, . . ..

Appendix E. Correlations proposed by Busse for a Newtonian fluid

Assuming a linear variation of the viscosity with temperature, the following correlations
for εa, εr and εh are proposed by Busse (1967). The revised version of these correlations
given by Bodenschatz et al. (2000) is used here. They are represented by dashed lines in
figure 16.

εa = −P2/(4RhRac), (E 1)

εr = 3P2Rr/(L2Rac), (E 2)

εh = (9Rh − 3L)P2/(L2Rac), (E 3)

with

P = γ2P2; γ2 = 2(1 − r)/(1 + r); P2 = 2.755, (E 4)

Rh = 0.89360 + 0.04959/Pr + 0.06787/Pr2, (E 5)

Rr = 0.69942 − 0.00472/Pr + 0.00832/Pr2, (E 6)

L = 0.29127 + 0.08147/Pr + 0.08933/Pr2. (E 7)
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