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Exploring the severely confined regime in
Rayleigh–Bénard convection

Kai Leong Chong1 and Ke-Qing Xia1,†

1Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China

(Received 11 July 2016; revised 19 August 2016; accepted 26 August 2016;
first published online 23 September 2016)

We study the effect of severe geometrical confinement in Rayleigh–Bénard convection
with a wide range of width-to-height aspect ratio Γ , 1/128 6 Γ 6 1, and Rayleigh
number Ra, 3 × 104 6 Ra 6 1 × 1011, at a fixed Prandtl number of Pr = 4.38 by
means of direct numerical simulations in Cartesian geometry with no-slip walls. For
convection under geometrical confinement (decreasing Γ from 1), three regimes
can be recognized (Chong et al., Phys. Rev. Lett., vol. 115, 2015, 264503) based
on the global and local properties in terms of heat transport, plume morphology
and flow structures. These are Regime I: classical boundary-layer-controlled regime;
Regime II: plume-controlled regime; and Regime III: severely confined regime. The
study reveals that the transition into Regime III leads to totally different heat and
momentum transport scalings and flow topology from the classical regime. The
convective heat transfer scaling, in terms of the Nusselt number Nu, exhibits the
scaling Nu − 1 ∼ Ra0.61 over three decades of Ra at Γ = 1/128, which contrasts
sharply with the classical scaling Nu− 1∼Ra0.31 found at Γ = 1. The flow in Regime
III is found to be dominated by finger-like, long-lived plume columns, again in sharp
contrast with the mushroom-like, fragmented thermal plumes typically observed in
the classical regime. Moreover, we identify a Rayleigh number for regime transition,
Ra∗ = (29.37/Γ )3.23, such that the scaling transition in Nu and Re can be clearly
demonstrated when plotted against Ra/Ra∗.

Key words: Bénard convection, Hele-Shaw flows, low-Reynolds-number flows

1. Introduction

Rayleigh–Bénard (RB) convection occurs in a fluid layer heated from below and
cooled from above when the temperature difference is sufficient to initiate instability.
This classical paradigm has far-reaching implications for industrial processes, and for
fundamental physics in astrophysical and geophysical convections, and its importance
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is testified to by the large number of studies over the past decade (Ahlers, Grossmann
& Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher 2012; Xia 2013). Convective
heat transfer, in terms of the Nusselt number Nu, is a fundamental issue in thermal
convection, and it has been widely accepted that the heat exchange in RB convection
is dictated by the thermal plumes. Typically, plumes organize themselves into the so-
called large-scale circulation (LSC) to efficiently transport heat across the convection
cell (Kadanoff 2001; Shang et al. 2003; Xi, Lam & Xia 2004), and this mechanism is
regarded as the standard mode of heat transfer in classical RB convection for a closed
convection cell of aspect ratio around one.

The geometric properties, such as the cell geometry and the lateral extent
(characterized by the aspect ratio Γ ), strongly influence the LSC and thus the motion
of plumes. An example for the influence of cell geometry is that in a cylindrical
cell of aspect ratio around one the LSC is manifested as a single-roll structure
meandering azimuthally (Cioni, Ciliberto & Sommeria 1997; Brown, Nikolaenko &
Ahlers 2005; Sun, Xi & Xia 2005b; Xi, Zhou & Xia 2006), but it becomes largely
confined along the cell diagonal when cubic cells are used instead. Besides the shape
of cell, varying Γ is the alternative method for changing the nature of LSC. As Γ is
increased from one, the original single-roll structure becomes multi-roll (Funfschilling
et al. 2005; Sun et al. 2005a). As Γ is decreased from one, LSC will be strongly
suppressed by the closer no-slip walls, as reflected by more frequent flow reversals
in quasi-2D convection (Ni, Huang & Xia 2015; Huang & Xia 2016). One question
is whether the distinct flow patterns brought about by changing geometric parameters
would also influence the convective heat transfer, through a possible modification
of plume properties. This leads to the study of geometrical effect on heat transport
in RB convection (Grossmann & Lohse 2003; Ching & Tam 2006; Bailon-Cuba,
Emran & Schumacher 2010; van der Poel et al. 2012; Zhou et al. 2012; Huang et al.
2013; Wagner & Shishkina 2013; Chong et al. 2015). A number of experimental
studies in fluids with Pr > 1 (e.g. water) have found that heat transport in RB
convection is actually insensitive to the nature of LSC (Wu & Libchaber 1992; Xia
& Lui 1997; Funfschilling et al. 2005; Nikolaenko et al. 2005; Zhou et al. 2012).
These observations can be understood as follows. The thermal boundary layer is
buffered by a thicker viscous boundary layer in the case of Pr > 1 (van der Poel,
Stevens & Lohse 2011). However, by reducing Γ to much less than one, Huang
et al. (2013) and Chong et al. (2015) have discovered something highly non-trivial –
heat flux increases significantly under geometrical confinement. Chong et al. (2015)
have furthermore found three regimes based on the various heat transport behaviours:
Regime I: classical boundary-layer-controlled regime in which heat flux is insensitive
to the change in Γ ; Regime II: plume-controlled regime in which heat flux increases
significantly with decreasing Γ owing to the increased plume coherency; and Regime
III: severely confined regime in which heat flux drops dramatically with decreasing
Γ . The present study further shows that Regime III should be restricted to cases
well above the onset of convection in which Nu–Ra possesses steep scaling. We
remark that the three regimes were previously recognized for Pr = 4.38, but the
regime transition may depend on Pr as well. For Pr = 0.786, the 3D simulations
with 105 6 Ra 6 109 by Wagner & Shishkina (2013) have shown that decreasing Γ

can lead to a significant drop in Nu, but Regime II has not been realized for their
explored parameter range.

Previous studies of highly confined RB convection (Γ � 1) have mainly considered
how Nu responds to a reducing Γ , while ignoring the question of whether heat
transport scaling of Nu versus Rayleigh number Ra would differ in the three regimes.
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Severely confined regime in Rayleigh–Bénard convection
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FIGURE 1. Phase diagram of different regimes of heat transport under geometrical
confinement. I represents the classical boundary-layer-controlled regime; II represents the
plume-controlled regime; and III represents the severely confined regime. The dashed line
separating I and II is Γ = 12.42Ra−0.21, which is determined by the spacing between
plumes, and that separating II and III is Γ = 29.37Ra−0.31, which is identified by the
optimal aspect ratio for achieving the maximum Nu (Chong et al. 2015). The solid line is
Ra=Rac, with Rac= 482.4Γ −2.0±0.1, which indicates the onset Ra for different Γ ; and the
dotted line is Ra=5Rac. Note that Rac 6Ra65Rac is the transition region before reaching
Regime III. Purple squares and green triangles denote the experimental and DNS data from
Huang et al. (2013) and Chong et al. (2015), respectively. Orange stars denote the DNS
data for cubic geometry from Kaczorowski & Xia (2013) as a baseline for comparing with
the confined cases. Red circles represent the new simulations performed in the present
study. All cases are for fluid with Pr= 4.38.

One of the few experimental studies on highly confined RB convection (Huang & Xia
2016) has provided a Nu–Ra relationship in Regime II, in which the classical scaling
with exponents between 1/4 and 1/3 is found. Those authors analysed the bulk and
boundary layer contributions to the scaling in terms of the model of Grossmann &
Lohse (2000, 2001) and found that the weight of the boundary layer contribution
relative to the bulk contribution increases with decreasing Γ . However, Regime III
has been barely touched in previous studies (see figure 1), so the Nu–Ra relation in
this regime remains unexplored.

In the present study we have conducted highly resolved direct numerical simulations
(DNS) of confined Rayleigh–Bénard convection over a large region of the parameter
space, with the aspect ratio spanning over two decades and the Rayleigh number
spanning seven decades. The width-to-height aspect ratio Γ has been reduced to as
low as 1/128 to fully explore the severely confined regime (Regime III). With such
small Γ , Regime III could be explored for almost four decades of Ra, which enabled
us to investigate the scalings of Nu and the Reynolds number Re with Ra in Regime
III and the corresponding flow topologies.
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2. Numerical procedure and set-ups

The simulation determines the non-dimensional velocities u = (ux, uy, uz) with
the temperature field T for the incompressible flow by numerically integrating
the three-dimensional Navier–Stokes equations in Cartesian geometry within the
Oberbeck–Boussinesq approximation,

∂u/∂t+ u · ∇u+∇p= (Pr/Ra)1/2∇2u+ Tz, (2.1)
∂T/∂t+ u · ∇T = (PrRa)−1/2∇2T, (2.2)

∇ · u= 0, (2.3)

where Ra = αg1TH3/νκ and Pr = ν/κ are the Rayleigh number and the Prandtl
number with α, ν and κ denoting the thermal expansion coefficient, kinematic
viscosity and thermal diffusivity of fluid; g is the gravitational acceleration and 1T
the temperature difference across the system height H. The equations are solved in
non-dimensional form by using the system height H, free-fall velocity

√
βg1TH

and global temperature difference 1T as the respective normalization scales. In this
dimensionless form, the range of temperature should be −0.56 T 6 0.5. The velocity
boundary conditions of the simulations are that all walls are no-slip and impermeable.
And the temperature boundary conditions are that the sidewall is adiabatic while the
top and bottom surfaces are isothermal with top (bottom) surface fixed at T =−0.5
(T = 0.5).

The code solves the equations through the finite-volume method on a staggered
grid with fourth-order accuracy in space. The convective and diffusive terms in
the equations are temporally advanced by the leapfrog and Euler forward methods
respectively. A major concern for DNS in RB convection is to resolve the smallest
relevant scale in turbulent flows, which is either the Kolmogorov length ηk or the
Batchelor length ηb depending on whether Pr< 1 or Pr> 1. The global estimations of
both length scales in dimensionless form are expressed as ηk =

√
Pr/[Ra(Nu− 1)]1/4

and ηb= 1/[Ra(Nu− 1)]1/4, and this implies that the number of grid points necessary
along a dimension roughly doubles when Ra increases tenfold. Due to the non-uniform
distribution of the length scales over space, a stricter resolution requirement is needed
near the boundary layers (Shishkina et al. 2010). Those requirements were taken into
consideration to perform reliable simulations, and therefore Nz= 2304 grid points have
been adopted along the vertical direction for our largest explored Ra (= 1 × 1011).
The results were collected when the simulations had reached the statistical steady
state as judged by the convergence of global Nu over time. For details of the code
validation, details of the numerical scheme and an a priori check on the grid design,
we refer to the previous publications (Kaczorowski et al. 2008; Kaczorowski & Xia
2013; Kaczorowski, Chong & Xia 2014).

We present the result from 100 cases in total, 74 cases from the new simulations
combined with 26 cases from our previous numerical data sets (Kaczorowski & Xia
2013; Chong et al. 2015), with the width-to-height aspect ratio Γ spanning over two
decades (1/1286Γ 6 1) while the length-to-height aspect ratio is kept fixed at 1, Ra
spans almost seven decades (3× 104 6Ra6 1× 1011) and Pr is fixed at Pr= 4.38. To
focus on the severely confined regime, five small Γ values are studied in detail here
(Γ =1/8, 1/16, 1/32, 1/64 and 1/128), together with Γ =1 cases as the baseline. The
Ra–Γ combination of the new simulations and our previous data sets are summarized
in the phase diagram shown in figure 1.
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FIGURE 2. (a,b) Nu versus Ra, (c) Nu− 1 versus Ra and (d) Re versus Ra for Γ = 1, 1/8,
1/16, 1/32, 1/64 and 1/128. The dashed lines are power-law fittings under the scheme:
the data within 5Rac 6 Ra 6 Ra∗ are fitted for Γ 6 1/8 (represented as solid symbols)
where Rac is the onset Ra and Ra∗ is the Ra for transition between Regimes II and III,
while the full range of Ra is used for Γ = 1. Note that to focus on the scaling observed
well above the onset, data with Ra< 5Rac are not shown in (c,d).

3. Results and discussion

The first important quantity to be examined is the global convective heat flux,
expressed as Nu − 1 where Nu − 1 = 0 represents the case of pure conduction. The
heat flux across a horizontal plane can be calculated through Nus = 〈(RaPr)1/2uzT −
∂T/∂z〉x,y,t, where 〈.〉x,y,t represents the averaging over the horizontal plane and
a sufficiently long period of time. Nu is estimated by averaging Nus over every
horizontal plane. Besides the direct measurement of heat flux, Nu can also be
estimated from the exact relations with the globally averaged viscous and thermal
dissipation rates, which are Nu = 〈εu〉(RaPr)1/2 + 1 and Nu = 〈εT〉(RaPr)1/2,
with 〈.〉 representing averaging over the entire domain and infinite time, εu =
(Ra/Pr)−1/2 ∑

i

∑
j(1/2)(∂ui/∂xj + ∂uj/∂xi)

2 and εT = (RaPr)−1/2 ∑
i(∂T/∂xi)

2. Here
the average of the three values is taken as the numerically measured Nu and their
standard deviation represents the error. Another important global transport quantity
is the Reynolds number Re, which characterizes the flow intensity and is defined as√〈u2〉(Ra/Pr)1/2 (note that the large-scale flow velocity is ill-defined for small Γ
because the LSC has been strongly suppressed for highly confined cases).

In order to capture the onset Rayleigh number Rac for convection, we first examine
Nu versus Ra in figure 2(a,b) instead of Nu− 1 versus Ra. The Rac for each case of
small Γ between 1/128 and 1/8 is identified based on the fact that Nu settles at one
when Ra is below Rac, and the values are listed in table 1. We find that Rac obeys a
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FIGURE 3. (a) Onset Rayleigh number Rac versus Γ . Exponents for the power laws Nu−
1∼RaβNu−1 and Re∼RaβRe in the severely confined regime versus Γ : (b) βNu−1 and (c) βRe,
with the lines drawn to guide the eye.

Γ Rac βNu−1 βRe

1/8 3× 104 0.52± 0.02 0.69± 0.01
1/16 1× 105 0.51± 0.01 0.72± 0.00
1/32 5× 105 0.53± 0.01 0.75± 0.01
1/64 1.5× 106 0.59± 0.02 0.79± 0.01
1/128 7× 106 0.61± 0.03 0.80± 0.01

TABLE 1. Onset Rayleigh number Rac and scaling exponents from the relations
Nu− 1∼ RaβNu−1 and Re∼ RaβRe fitted to data lying in the severely confined regime.

power-law relation with Γ , i.e. Rac= 482.4Γ −2.0±0.1 (figure 3a). This scaling exponent
agrees excellently with Rac∼Γ −2 (for Γ �1), which was derived from linear stability
analysis that was originally developed for Hele-Shaw convection (Bizon et al. 1997).
Figure 2(a,b) also reveals that, after Ra exceeds Rac, there exists a transition region
for Nu before it clearly exhibits a power-law behaviour. In this work, we mainly focus
on the scaling relation that occurs for Ra well above Rac. Thus, only the data points
with Ra > 5Rac are included for scaling analysis.

Figure 2(c) plots Nu− 1 versus Ra for different Γ on a log–log scale, which readily
shows the power-law relation. As a baseline we first examine the case for Γ = 1
(black squares). The power-law fitting represented by the black dashed line yields
Nu− 1= 0.106Ra0.308±0.001 over the full range of explored Ra, 1× 106 6Ra6 1× 1010,
indicating that the scaling in this range for the case of Γ = 1 can be described by
a single power law. For the confined cases (Γ 6 1/8) and over the range of Ra
explored, the convective state may straddle various regimes in the phase diagram
shown in figure 1, implying the possibility of having multiple scalings. Indeed, as
can be clearly seen from figure 2(c), data for the cases of small Γ exhibit different
scaling behaviours as Ra increases. The sharp change of scaling takes place at the
boundary separating Regime II and Regime III, i.e. Γ = 29.37Ra−0.31 (Chong et al.
2015), which leads us to identify a Rayleigh number for this regime transition,
Ra∗ = (29.37/Γ )3.23. We fit the data for individual Γ separately for data points
with Ra < Ra∗ (represented by the solid symbols), with the fitting indicated by
the dashed lines in corresponding colours in figure 2(c,d). For instance, the case
of Γ = 1/128 (red star) exhibits the scaling exponent of 0.61 over three decades
of Ra (5 × 107 6 Ra 6 1 × 1011), which is much larger than 0.31 for Γ = 1. We
also examine Re similarly (figure 2d), which yields the scaling Re ∼ Ra0.80±0.01 for
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FIGURE 4. Compensated plots of (a) (Nu− 1)Ra−0.61 and (b) Re Ra−0.80 versus Ra for
six values of Γ between 1/128 and 1. The power-law fitting is the same as in figure 2.

Γ = 1/128, contrasting sharply with the scaling Re∼ Ra0.522±0.003 for Γ = 1. Details
of the fitting exponents in the severely confined regime (Regime III) for each Γ are
shown in table 1 and plotted in figure 3(b,c). It is seen that the scaling exponents
for both Nu and Re increase with decreasing Γ in Regime III. The exponents also
seem to approach some asymptotic values, and for the sake of discussion we take
the exponents for Γ = 1/128 (smallest value explored) as the proxy for those values.
To verify this, it will be highly desirable to have 3D simulations for Γ much smaller
than 1/128 in the future. However, it will be a difficult task for DNS because of the
infinitesimally small time step needed for small grid spacing along the confinement
direction for Γ � 1.

The above scaling behaviour can be shown more clearly by the compensated plots.
Figure 4(a) displays (Nu − 1)Ra−0.61 versus Ra, which also demonstrates that the
scaling in the severely confined regime is not strictly universal (before entering the
asymptotic state). Figure 4(a) also clearly demonstrates that, on increasing Ra, the
steep scaling observed in Regime III returns to the classical scaling (black dashed
line) upon entering the plume-controlled regime (Regime II), which is more evident
for the cases Γ = 1/8 and Γ = 1/16. The return to the classical scaling in Regime II
is actually in agreement with the previous experimental finding (Huang & Xia 2016).
Similarly, the compensated plot of Re Ra−0.80 versus Ra (figure 4b) also reveals how
the scaling tends from 0.69 to 0.80 as Γ decreases from 1/8 to 1/128, and how the
steep scaling in the severely confined regime transits to the classical scaling (black
dashed line).

The scaling transition observed for the global quantities may be associated with
changes in flow topology. Figure 5 shows slices of the instantaneous dimensionless
temperature field taken at the vertical mid-plane, where the reddish and bluish colours
represent hot and cold plumes respectively. Figure 5(a,b,c) shows the temperature
fields for Γ = 1 at Ra = 1 × 108, 1 × 109 and 1 × 1010 respectively, which are
examples of the flow topology in the classical ‘less confined’ situation. The figures
clearly demonstrate that thermal plumes of mushroom-like morphology detach from
the top and bottom thermal boundary layers. These plumes cluster mainly on either
side of the wall as they are driven by the LSC (note that the main circulating
plane of LSC is along the diagonal). With Ra increasing from 1 × 108 to 1 × 1010,
figure 5(c) demonstrates that plumes become more fragmented (Zhou & Xia 2010),
suggesting smaller scales being excited by stronger thermal forcing. For Γ = 1/32, as
shown in figure 5(d–f ), plumes extending the entire cell height have been observed
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

0

0.2

 –0.2

FIGURE 5. Colour-graded instantaneous field of the dimensionless temperature T taken at
vertical mid-plane (midway along the confinement direction) for three different Ra, 1×108

(a,d,g), 1× 109 (b,e,h) and 1× 1010 (c, f,i), and for three different Γ , Γ = 1 (a–c), Γ =
1/32 (d–f ) and Γ = 1/128 (g–i). Here the reddish colour indicates the hot fluid while the
bluish colour indicates the cold fluid.

for Ra = 1 × 108 and 1 × 109, which are cases in the severely confined regime;
whereas highly coherent plumes have been observed for Ra = 1 × 1010, in which
convective flow has entered the plume-controlled Regime II. The flow topology in
severely confined Regime III has also been demonstrated by the smallest explored
Γ (= 1/128) as shown in figure 5(g–i). It can be seen that the main feature of flow
topology becomes the finger-like columns of hot and cold thermal plumes, in contrast
to the typical picture of mushroom-like fragmented thermal plumes in the classical
regime. Thus, the transition into Regime III leads to the formation of the long-lived
columns of thermal plumes that extend the entire cell height. With increasing Ra,
not only does the scale of the heat columns become smaller, the columns also
become less straight, which is the signature of vanishing vertical coherency as the
flow becomes more unstable under stronger thermal driving. Furthermore, figure 5(i)
demonstrates a state where mushroom-like plumes grow into column-like plumes; this
coalescence of plumes has also been found in a porous medium (Hewitt, Neufeld &
Lister 2012). At even larger Ra, the plume-controlled regime should be reached and
the dominating feature becomes the highly coherent giant plumes (Huang et al. 2013;
Chong et al. 2015), and eventually the fragmented plumes.
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Severely confined regime in Rayleigh–Bénard convection

Our study has revealed a new state of thermal convection in which the scaling
of the global quantities and the flow topology are strikingly different from their
classical counterparts. With sufficiently small Γ and a sufficiently wide range in
Ra, thus giving rise to a sufficiently wide Regime III, the transition from Regime
III to Regime II and Regime I can be clearly observed from the scalings of the
global heat and momentum transport. Also, Regime III possesses a new type of
flow topology in the form of column-like plumes. The emergence of finger-like,
long-lived heat columns observed here and the multiple transitions in highly confined
RB convection observed by Chong et al. (2015) are a result of the interplay between
stabilizing and destabilizing forces, i.e. the viscous drag from walls as a result
of severe confinement and the thermal driving force. It is interesting to note that
similarities exist between the present system and other types of convective flows
under different forms of stabilizing and destabilizing forces, such as rotating RB
convection (Stevens et al. 2009; King, Stellmach & Aurnou 2012; Wei, Weiss &
Ahlers 2015) and double diffusive convection (Yang, Verzicco & Lohse 2016), in
which the forces that suppress the convective flow are the rotation and the stabilizing
scalar gradient respectively. For rotating RB convection under vigorous rotation, there
exists a regime with convective Taylor columns (Grooms et al. 2010), and such
columnar flow topology is associated with a very steep Nu–Ra scaling, having an
exponent as large as 3.6 when the Ekman number Ek reaches 10−7 (Cheng et al.
2015). Such a scaling transition in rotating RB convection is related to the crossing
of Ekman and thermal boundary layers, and a rescaled Rayleigh number Ra Ek3/2

has been introduced (King et al. 2012) to understand the observed Nu behaviour.
Here, for severely confined RB convection, the new scaling is found in Regime III,
which is entered when Ra is smaller than a Γ -dependent value Ra∗ = (29.37/Γ )3.23.
Therefore, a rescaled Rayleigh number Ra/Ra∗= 1.84× 10−5RaΓ 3.23 may be suitable
for revealing the regime transition.

With the rescaled Ra, the compensated plot (Nu − 1)Ra−0.31 collapsed onto more
or less a single curve whereas the plot (Nu − 1)Ra−0.61 can also be collapsed by
multiplying by a Γ -dependent shift factor C1, where its Γ -dependence is shown in
figure 6(a). Similar to Nu, the plots of Re Ra−0.52 and Re Ra−0.80 use the shift factors
C2 and C3 for collapsing the data, and the Γ -dependence of these factors is shown
in figure 6(b,c). Interestingly, C1, C2 and C3 all have a power-law dependence on Γ ,
with the coefficients all close to one, i.e. C1 = 1.06Γ −0.88±0.02, C2 = 0.88Γ −0.31±0.03

and C3 = 0.86Γ −1.23±0.04. After determining the power-law dependence on Γ , the
compensated (Nu − 1)Ra−0.31 and (Nu − 1)Ra−0.61Γ −0.88, using exponents for the
classical and severely confined regimes, are plotted versus the rescaled Rayleigh
number Ra/Ra∗ in figure 6(d,e). The results clearly demonstrate the crossover of
the Nu scaling. For Ra > Ra∗ over the explored range of Ra, the curves follow
the classical scaling. And for Ra < Ra∗, the scaling becomes much steeper than
the classical one. Figure 6(e) shows the compensated plot by using the exponent
0.61 corresponding to the smallest explored Γ (Γ = 1/128), and thus the curve
for Γ = 1/128 is flat for Ra < Ra∗, whereas curves for Γ > 1/128 are not totally
flat for Ra < Ra∗ but sufficient to indicate the steep scaling in severely confined
regimes in contrast to the classical scaling. Similar behaviours are observed for the
global momentum transport Re. Figure 6( f,g) shows the compensated Re Ra−0.52Γ −0.31

and Re Ra−0.80Γ −1.23, again using exponents for the classical and severely confined
regimes respectively, versus the rescaled Ra, which demonstrates the clear transition
at Ra = Ra∗. We note that the collapsing of the data for Re is less good than that
for Nu; this may be related to the fact that the definition of the Reynolds number is
scale-dependent and confinement may have changed the characteristic scale for the
Reynolds number.
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FIGURE 6. The shift factors C1, C2 and C3 versus Γ in (a), (b) and (c), respectively.
Here C1, C2 and C3 are arbitrarily chosen factors such that C1(Γ )(Nu − 1)Ra−0.61,
C2(Γ )Re Ra−0.52 and C3(Γ )Re Ra−0.80 collapse onto more or less single curves.
Compensated plots of (d) (Nu− 1)Ra−0.31, (e) (Nu− 1)Ra−0.61Γ −0.88, ( f ) Re Ra−0.52Γ −0.31

and (g) Re Ra−0.80Γ −1.23 versus the rescaled Rayleigh number Ra/Ra∗=1.84×10−5RaΓ 3.23

for six different values of Γ . Here the grey dotted line indicates the boundary separating
Regimes III and II as found by Chong et al. (2015).

4. Concluding remarks

In summary, we have made a preliminary exploration of severely confined turbulent
Rayleigh–Bénard convection over a wide range of width-to-height aspect ratio Γ , with
1/128 6 Γ 6 1 and 3 × 104 6 Ra 6 1 × 1011. We first determined the Γ -dependence
of the critical Ra for convection, Rac = 482.4Γ −2.0±0.1, which is found to agree
excellently with a previous theoretical result. The study then reveals how severe
geometrical confinement induces transitions in global heat and momentum transport
and in flow topology from the classical regime to a new regime characterized by steep
scaling exponents and column-like plumes. For example, the scalings for Γ = 1/128
lying in the severely confined regime (Regime III) are Nu− 1∼Ra0.61 and Re∼Ra0.80,
which contrast sharply with Nu − 1 ∼ Ra0.31 and Re ∼ Ra0.52 observed at Γ = 1 in
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Regime I. Based on the boundary separating the plume-controlled and severely
confined regimes, a Rayleigh number for regime transition, Ra∗ = (29.37/Γ )3.23, has
been identified. It is found that, for both Nu and Re, a rather sharp crossover in
their scaling behaviours occurs at Ra/Ra∗= 1.84× 10−5RaΓ 3.23= 1. This relationship
implies that the new scalings for Nu and Re can be observed over a wider range of
Ra for smaller values of Γ .

Finally, we remark that the transition in severely confined RB convection is
somewhat similar to that in rotating RB convection with the emergence of steep heat
transfer scaling and columnar flow topology under extremely stabilizing conditions
(severe confinement and vigorous rotation respectively). Though the analogy between
confined RB and rotating RB convection needs to be made more quantitatively, the
more well-studied rotating RB convection may provide insight into the steep scaling
identified here and the formation of column-like plumes. As heat transport in severely
confined environments exists widely in the modern electronics industry, our study
should be of some relevance to certain engineering applications.
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