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Bihomogeneous symmetric functions
Yuly Billig

Abstract. We consider two natural gradings on the space of symmetric functions: by degree and by
length. We introduce a differential operator T that leaves the components of this double grading
invariant and exhibit a basis of bihomogeneous symmetric functions in which this operator is
triangular. This allows us to compute the eigenvalues of T, which turn out to be nonnegative integers.

Consider the following second-order differential operator:

T = 1
2 ∑

a+b=p+q
a ,b , p,q≥1

xa xb
∂

∂xp

∂
∂xq

acting on the Fock space F = R[x1 , x2 , x3 , . . .]. Similar higher-order operators occur
in the study of vertex operator algebras, soliton PDEs, and conformal field theory
[1–3, 8].

The Fock space F has two natural Z-gradings, by degree, with deg (xk) = k, and
by length, with len (xk) = 1. Note that the two gradings are given by the eigenspaces
of two operators, whose eigenvalues are degree and length, respectively:

∑
k≥1

kxk
∂

∂xk
and ∑

k≥1
xk

∂
∂xk

.

We can decompose F into a direct sum according to these gradings:

F = ⊕
d≥�≥0

F(d , �),

where F(d , �) is the span of all monomials of degree d and length �.
Because operator T preserves both gradings, the subspacesF(d , �) are T-invariant.

Rather surprisingly, the eigenvalues of T onF(d , �) appear to be nonnegative integers.
For example, the spectrum of T on F(12, 4) is

[1, 3, 3, 5, 6, 7, 7, 10, 10, 10, 13, 15, 17, 19, 30].
The goal of this note is to shed light on the pattern of the eigenvalues of T. Even though
this work began as a purely curiosity-driven research, we are going to see that it led to
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Bihomogeneous symmetric functions 401

new interesting results on bihomogeneous symmetric functions. We determine alge-
braic relations between elementary bihomogeneous symmetric functions (Lemma 4)
and construct bases in the spaces of such functions (Theorem 3).

The space F may be viewed as the space of symmetric functions in variables
t1 , t2 , t3 , . . .. Recall that power symmetric functions are

pk = ∑
i≥1

tk
i , k ≥ 1.

Then, the algebra of symmetric functions is freely generated by p1 , p2 , p3 , . . ., and
may be identified with F via xk = pk

k . We refer to [5] for the basic properties of
symmetric functions that we review here.

Recall also the definitions of the elementary symmetric functions ek and complete
symmetric functions hk :

ek = ∑
i1<i2<. . .<ik

t i1 t i2 . . . t ik , hk = ∑
i1≤i2≤. . .≤ik

t i1 t i2 . . . t ik .

Introducing the generating series

e(z) = 1 +
∞

∑
k=1

ek zk , h(z) = 1 +
∞

∑
k=1

hk zk ,

one can relate elementary and complete symmetric functions to power symmetric
functions via

h(z) = exp(
∞

∑
k=1

pk

k
zk) = exp(

∞

∑
k=1

xk zk) ,(1)

e(z) = exp(
∞

∑
k=1
(−1)k+1 pk

k
zk) = h(−z)−1 .(2)

With respect to the two gradings on the Fock space, the power symmetric function
pk has degree k and length 1. It follows from (1) and (2) that hk and ek have both
degree k, but these functions are not homogeneous with respect to the grading given
by length. Let us consider decompositions of elementary and complete symmetric
functions into bihomogeneous components. In order to do that, we introduce the
generating series

h(r, z) = exp
⎛
⎝

r
∞

∑
j=1

x jz j⎞
⎠
= 1 + ∑

d≥�≥1
g(d , �)r�zd .(3)

Then,

hk = ∑
�≤k

g(k, �), ek = ∑
�≤k

(−1)k+�g(k, �).

Note that g(d , �) ∈ F(d , �). We shall see below that g(d , �) is an eigenfunction for
T which corresponds to the dominant eigenvalue on F(d , �). Our plan is to calculate
the spectrum of T by constructing a bihomogeneous basis of the algebra of symmetric
functions which consists of the products of functions g(d , �).
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402 Y. Billig

Another eigenvalue problem for differential operators with origins in invariant
theory and representation theory was studied in [4, 6, 7].

We begin by showing that T is diagonalizable.

Proposition 1 Operator T is diagonalizable on F with real nonnegative eigenvalues.

Proof Introduce a positive-definite scalar product onR[x]with ⟨xn , xm⟩ = n!δn ,m .
It is easy to check that this scalar product satisfies

⟨ d
dx

f (x), g(x)⟩ = ⟨ f (x), x g(x)⟩.

ViewingF as a tensor product of infinitely many copies ofR[x],F = R[x1] ⊗R[x2] ⊗
. . ., we obtain a positive-definite scalar product on F for which ∂

∂xk
is adjoint to

multiplication by xk . Then, for f , g ∈ F

⟨ ∑
a+b=p+q

xa xb
∂

∂xp

∂
∂xq

f , g⟩ = ⟨ f , ∑
a+b=p+q

xq xp
∂

∂xb

∂
∂xa

g⟩ ,

and hence, T is a self-adjoint operator. Thus, T is diagonalizable on each invariant
subspace F(d , �) with real eigenvalues.

Because

⟨T f , f ⟩ = 1
2

∞

∑
n=2

⟨ ∑
p+q=n

∂
∂xp

∂
∂xq

f , ∑
a+b=n

∂
∂xb

∂
∂xa

f ⟩ ≥ 0,

the eigenvalues of T are nonnegative. ∎

Corollary 2 There is an orthonormal basis of F (with respect to the scalar product
introduced in the proof of Proposition 1), consisting of the eigenfunctions of T.

The dimension of F(d , �) is equal to the number of partitions of d with exactly
� parts. Each such partition may be presented as a Young diagram Λ; for example,
the following diagram represents a partition 28 = 7 + 7 + 5 + 4 + 3 + 2 with d = 28 and
� = 6. Parameter � is the number of rows in Λ, whereas d is the total number of boxes
in Λ.

Let k be the number of the diagonal boxes in Λ (shaded boxes in Figure 1). For
each diagonal box, consider its hook, the boxes in its row to the right of the diagonal
box, the boxes in its column below the diagonal box, together with the diagonal box
itself. In addition, consider the leg of a diagonal box, the boxes in its column together
with the diagonal box itself.

In Figure 2, we show the hook and the leg corresponding to the second diagonal
box in the above Young diagram Λ.

The hook number d i and the leg number q i of a diagonal box are the numbers of
boxes in its hook and leg, respectively. For the Young diagram Λ above, the hook and
the leg numbers (d i , q i), i = 1, . . . , k, are (12, 6), (10, 5), (5, 3), (1, 1).

Note that our definition of the leg number is not quite standard, usually the
diagonal box is not included in its leg.
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Figure 1: Young diagram.

(a) Hook (b) Leg

Figure 2: Hook and leg.

If we denote by a i the number of boxes in the ith row of Λ to the right of the
diagonal box, and by b i the number of boxes in the ith column of Λ below the diagonal
box, we get the Frobenius presentation of a partition: (a1 . . . ak ∣b1 . . . bk).

The hook and leg numbers satisfy
k
∑
i=1

d i = d, q1 = �, d i − q i > d i+1 − q i+1, for i < k.

To each diagonal box, we also assign its leg increment �i = q i − q i+1, where qk+1
is taken to be 0. For the Young diagram in Figure 1, �1 = 1, �2 = 2, �3 = 2, �4 = 1. Leg
increments satisfy

k
∑
i=1

�i = �, d i > d i+1 + �i , for i < k, dk ≥ �k , �1 , . . . , �k ≥ 1.(4)

Note that there is a bijective correspondence between Young diagrams with � rows
and sequences (d1 , �1), . . . , (dk , �k) satisfying (4).

Theorem 3 The set S(d , �) of polynomials g(d1 , �1)g(d2 , �2) . . . g(dk , �k) satisfying
conditions

k
∑
i=1

d i = d ,
k
∑
i=1

�i = �, d i > d i+1 + �i , for i < k, dk ≥ �k , �1 , . . . , �k ≥ 1,

forms a basis of F(d , �), for d ≥ � ≥ 1.
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404 Y. Billig

Let �′ , �′′ ≥ 1. The products g(d′ , �′)g(d′′ , �′′)with d′′ + �′ ≥ d′ ≥ d′′ will be called
irregular, whereas the products with d′ > d′′ + �′ will be called regular. Here, we set
g(0, 0) = 1 and consider g(d , �)g(0, 0) with d ≥ � ≥ 1 to be a regular product.

The proof of Theorem 3 will be based on the following lemma.

Lemma 4 Every irregular product g(d′ , �′)g(d′′ , �′′)with d′′ + �′ ≥ d′ ≥ d′′, �′ , �′′ ≥
1, is a linear combination of regular products g(d1 , �1)g(d2 , �2), with d1 + d2 = d′ + d′′,
�1 + �2 = �′ + �′′, where either d1 > d′ or d1 = d′ and �1 < �′.

Proof We will consider the case when d = d′ + d′′ is odd and � = �′ + �′′ is even,
d = 2n + 1, � = 2m. The cases of other parities are analogous. We can write d′ = n + p,
d′′ = n − p + 1, 2p − 1 ≤ �′ ≤ 2m − 1, �′′ = 2m − �′, 1 ≤ p ≤ m.

We will use a decreasing induction in p. As a basis of induction, we may choose
p = m + 1, in which case all products are regular and there is nothing to prove. Let
us carry out the step of induction. We assume that the claim of the lemma holds for
irregular products g(d1 , �1)g(d2 , �2) with d1 > d′.

Consider the generating function
⎡⎢⎢⎢⎢⎢⎢⎢⎣

2p−1

∏
i=1

(z d
dz

+ p − n − i)
2m−1
∏

j=2p−1
j≠�′

(r d
dr

− j) h(r, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

h(−r, z).(5)

Because

r d
dr

h(r, z) = r
⎛
⎝
∞

∑
j=1

x jz j⎞
⎠

h(r, z), z d
dz

h(r, z) = r
⎛
⎝
∞

∑
j=1

jx jz j⎞
⎠

h(r, z)

and h(−r, z) = h(r, z)−1, we see that (5) is a polynomial in r. Because the total number
of derivatives is � − 1, it is in fact a polynomial in r of degree � − 1. Hence, the coefficient
at zd r� in (5) is equal to 0. Expanding h(r, z) and h(−r, z) as in (3), and extracting
the coefficient at zd r�, we get an identity

∑
d1+d2=d
�1+�2=�

(−1)�2
2p−1

∏
i=1

(d1 + p − n − i)
2m−1
∏

j=2p−1
j≠�′

(�1 − j) g(d1 , �1)g(d2 , �2) = 0.(6)

Note that the terms in (6) with n − p + 1 ≤ d1 ≤ n + p − 1 vanish. If d1 > n + p − 1, then
d1 ≥ d′, and in case when d1 < n − p + 1, we get d2 > d′. If we look at the terms in
(6) with d1 = d′, all such irregular terms will vanish due to factors (�1 − j), except
for g(d′ , �′)g(d′′ , �′′). Thus, we can use (6) to express g(d′ , �′)g(d′′ , �′′) as a linear
combination of regular products and those irregular products for which the claim of
the lemma holds by the induction assumption. All regular products in the expansion
of g(d′ , �′)g(d′′ , �′′) will have d1 > d′ or d1 = d′ and �1 < �′. This completes the proof
of the lemma. ∎

Let us order the set of pairs (d , �) as follows: (d1 , �1) ≻ (d2 , �2) if either
d1 > d2 or d1 = d2 and �1 < �2. Consider the set Ŝ(d , �) of ordered products
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g(d1 , �1)g(d2 , �2) . . . g(dk , �k) with (d1 , �1) ⪰ (d2 , �2) ⪰ ⋯ ⪰ (dk , �k),
k
∑
i=1

d i = d,
k
∑
i=1

�i = �, �i ≥ 1. Introduce a lexicographic order on Ŝ(d , �):

g(d′1 , �′1)g(d′2 , �′2) . . . g(d′k , �′k) ≻ g(d′′1 , �′′1 )g(d′′2 , �′′2 ) . . . g(d′′k , �′′k )

if for some m, (d′i , �′i) = (d′′i , �′′i ), for i = 1, . . . , m − 1, and (d′m , �′m) ≻ (d′′m , �′′m).
Now, we can prove Theorem 3. The set Ŝ(d , �) clearly spans the space F(d , �),

because g(p, 1) = xp and F(d , �) is spanned by monomials. It follows from Lemma 4
that every product from Ŝ(d , �), which is not in S(d , �) may be expressed as a linear
combination of the elements of Ŝ(d , �) which are greater in the lexicographic order.
By induction with respect to this ordering, we conclude that

F(d , �) = Span Ŝ(d , �) = Span S(d , �).

However, elements of S(d , �) are parameterized by Young diagrams with d boxes and �
rows. Hence, ∣S(d , �)∣ = dim F(d , �), and S(d , �) is a basis ofF(d , �). This completes
the proof of Theorem 3.

Let us compute the eigenvalues of the differential operator T.

Theorem 5 Eigenvalues of the operator

T = 1
2 ∑

a+b=p+q
a ,b , p,q≥1

xa xb
∂

∂xp

∂
∂xq

on F(d , �), � ≥ 1, are parameterized by sequences (d1 , �1), (d2 , �2), . . . , (dk , �k) with

d i > d i+1 + �i , i = 1, . . . , k − 1, dk ≥ �k ,
k
∑
i=1

d i = d ,
k
∑
i=1

�i = �, �1 , . . . , �k ≥ 1.

The corresponding eigenvalue is

λ = 1
2

k
∑
i=1
(�i − 1)(2d i − �i).

Proof We are going to show that the matrix of the operator T is upper-triangular
in the basis S(d , �) ordered by ≻. Then, the spectrum of T is given by the diagonal of
this matrix.

Consider the generating functions

X i = r i
∞

∑
j=1

x jz j
i

and

E = exp(
∞

∑
i=1

X i) = exp
⎛
⎝
∞

∑
i=1

r i
∞

∑
j=1

x jz j
i
⎞
⎠

.
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The product g(d1 , �1) . . . g(dk , �k) is the coefficient at zd1
1 . . . zdk

k r�1
1 . . . r�k

k in E. Let us
apply operator T to the generating function E:

TE = 1
2

∞

∑
n=2

( ∑
a+b=n

xa xb) ∑
p+q=n

∂
∂xp

∂
∂xq

E

= 1
2

∞

∑
n=2

( ∑
a+b=n

xa xb) ∑
p+q=n

(
∞

∑
i=1

r i zp
i )

⎛
⎝
∞

∑
j=1

r jzq
j
⎞
⎠

E

= 1
2

∞

∑
i=1

r2
i

∞

∑
n=2

( ∑
a+b=n

xa xb) ∑
p+q=n

zp+q
i E

+∑
i< j

r i r j
∞

∑
n=2

( ∑
a+b=n

xa xb) ∑
p+q=n

zp
i zq

j E

= 1
2

∞

∑
i=1

r2
i

∞

∑
n=2

( ∑
a+b=n

xa xb)(n − 1)zn
i E

+∑
i< j

r i r j
∞

∑
n=2

( ∑
a+b=n

xa xb)(1 −
z j

z i
)
−1
(z jzn−1

i − zn
j )E

= 1
2

∞

∑
i=1

⎡⎢⎢⎢⎣
(z i

d
dz i

− 1) r2
i ∑

a ,b≥1
xa xbza+b

i

⎤⎥⎥⎥⎦
E

−∑
i< j

(1 −
z j

z i
)
−1 r i

r j
r2

j ∑
a ,b≥1

(xa xbza+b
j )E

+∑
i< j

z j

z i
(1 −

z j

z i
)
−1 r j

r i
r2

i ∑
a ,b≥1

(xa xbza+b
i )E

= 1
2

∞

∑
i=1

[(z i
d

dz i
− 1)X2

i ]E −∑
i< j

(1 −
z j

z i
)
−1 r i

r j
X2

j E +∑
i< j

z j

z i
(1 −

z j

z i
)
−1 r j

r i
X2

i E

=
∞

∑
i=1

[(z i
d

dz i
− 1

2
)X i]X i E −∑

i< j
(1 −

z j

z i
)
−1 r i

r j
X2

j E +∑
i< j

z j

z i
(1 −

z j

z i
)
−1 r j

r i
X2

i E

=
∞

∑
i=1

[(z i
d

dz i
− 1

2
)X i] r i

d
dr i

E

−∑
i< j

(1 −
z j

z i
)
−1 r i

r j
X jr j

d
dr j

E +∑
i< j

z j

z i
(1 −

z j

z i
)
−1 r j

r i
X i r i

d
dr i

E

=
∞

∑
i=1

(r i
d

dr i
− 1)[z i

d
dz i

X i −
1
2

X i]E

−∑
i< j

(1 −
z j

z i
)
−1

r j
d

dr j

r i

r j
X jE +∑

i< j

z j

z i
(1 −

z j

z i
)
−1

r i
d

dr i

r j

r i
X i E

=
∞

∑
i=1

(r i
d

dr i
− 1)(z i

d
dz i

− 1
2

r i
d

dr i
)E

−∑
i< j

(1 −
z j

z i
)
−1

r j
d

dr j

r i

r j
r j

d
dr j

E +∑
i< j

z j

z i
(1 −

z j

z i
)
−1

r i
d

dr i

r j

r i
r i

d
dr i

E .
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Table 1:
d , � Partition Eigenfunction Eigenvalue
4, 2 3, 1 2x1x3 + x2

2 3
2, 2 x1x3 − x2

2 0
5, 2 4, 1 x1x4 + x2x3 4

3, 2 x1x4 − x2x3 0
5, 3 3, 1, 1 x2

1 x3 + x1x2
2 7

2, 2, 1 x2
1 x3 − x1x2

2 3
6, 2 5, 1 2x1x5 + 2x2x4 + x2

3 5
4, 2 3x1x5 − 2x2x4 − x2

3 0
3, 3 x2x4 − x2

3 0
6, 3 4, 1, 1 3x2

1 x4 + 6x1x2x3 + x3
2 9

3, 2, 1 2x2
1 x4 − x1x2x3 − x3

2 4
2, 2, 2 x2

1 x4 − 2x1x2x3 + x3
2 1

6, 4 3, 1, 1, 1 2x3
1 x3 + 3x2

1 x2
2 12

2, 2, 1, 1 x3
1 x3 − x2

1 x2
2 7

7, 2 6, 1 x1x6 + x2x5 + x3x4 6
5, 2 2x1x6 − x2x5 − x3x4 0
4, 3 x2x5 − x3x4 0

7, 3 5, 1, 1 x2
1 x5 + 2x1x2x4 + x1x2

3 + x2
2 x3 11

4, 2, 1 x2
1 x5 − x2

2 x3 5
3, 2, 2 3x2

1 x5 − 4x1x2x4 − 2x1x2
3 + 3x2

2 x3 1
3, 3, 1 x1x2x4 − x1x2

3 4
7, 4 4, 1, 1, 1 x3

1 x4 + 3x2
1 x2x3 + x1x3

2 15
3, 2, 1, 1 x3

1 x4 − x1x3
2 9

2, 2, 2, 1 x3
1 x4 − 2x2

1 x2x3 + x1x3
2 5

7, 5 3, 1, 1, 1, 1 x4
1 x3 + 2x3

1 x2
2 18

2, 2, 1, 1, 1 x4
1 x3 − x3

1 x2
2 12

To get the formula for the action of T on the elements of S(d , �), we extract the
coefficient at zd1

1 . . . zdk
k r�1

1 . . . r�k
k in TE:

T g(d1 , �1)g(d2 , �2) . . . g(dk , �k)

=
k
∑
i=1
(�i − 1) (d i −

�i

2
) g(d1 , �1)g(d2 , �2) . . . g(dk , �k)

−∑
i< j

∞

∑
p=0

� j(� j + 1)g(d1 , �1) . . . g(d i + p, �i − 1) . . . g(d j − p, � j + 1) . . . g(dk , �k)

+∑
i< j

∞

∑
p=1

�i(�i + 1)g(d1 , �1) . . . g(d i + p, �i + 1) . . . g(d j − p, � j − 1) . . . g(dk , �k).

The first part in the above expression yields the diagonal part of T with the

eigenvalue λ = 1
2

k
∑
i=1
(�i − 1)(2d i − �i), while the last two sums, when expanded in

the basis S(d , �) applying Lemma 4 whenever necessary, only contain terms that are
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408 Y. Billig

strictly greater than g(d1 , �1)g(d2 , �2) . . . g(dk , �k) with respect to the lexicographic
order ≻. This completes the proof of the theorem. ∎

It follows from the proof of Theorem 5 that g(d , �) is the eigenfunction for
the operator T with the eigenvalue λ = 1

2 (� − 1)(2d − �), which is the dominant
eigenvalue on F(d , �).

We observe that 0 is an eigenvalue of T on F(d , �) if and only if d ≥ �2.
We can obtain an orthogonal basis of eigenfunctions for T in F(d , �) from the

ordered basis S(d , �) using the Gram–Schmidt procedure.
It was pointed out by the referee of this paper that the eigenvalue of T corre-

sponding to a given partition may be written using its Frobenius presentation in the
following form:

λ = �(� − 1)
2

+
k
∑
i=1

a i b i −
k−1
∑
i=1
(a i + 1)(b i+1 + 1).

In conclusion, we list in Table 1 eigenfunctions of T corresponding to partitions
with d ≤ 7. We only present these for spaces F(d , �) of dimension greater than 1. We
normalize the eigenfunctions in a way to make the coefficients to be relatively prime
integers. As a result, listed symmetric functions are orthogonal to each other but do
not have norm 1. For each pair (d , �), partitions are listed in a decreasing order with
respect to linear order ≻.

We recall that, in our notations, xk = pk/k, where pk is the power symmetric
function.
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