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Abstract

In this paper we study random Apollonian networks (RANs) and evolving Apollonian
networks (EANs), in d dimensions for any d ≥ 2, i.e. dynamically evolving random d-
dimensional simplices, looked at as graphs inside an initial d-dimensional simplex. We
determine the limiting degree distribution in RANs and show that it follows a power-law
tail with exponent τ = (2d − 1)/(d − 1). We further show that the degree distribution
in EANs converges to the same degree distribution if the simplex-occupation parameter
in the nth step of the dynamics tends to 0 but is not summable in n. This result gives a
rigorous proof for the conjecture of Zhang et al. (2006) that EANs tend to exhibit similar
behaviour as RANs once the occupation parameter tends to 0. We also determine the
asymptotic behaviour of the shortest paths in RANs and EANs for any d ≥ 2. For RANs
we show that the shortest path between two vertices chosen u.a.r. (typical distance), the
flooding time of a vertex chosen uniformly at random, and the diameter of the graph after
n steps all scale as a constant multiplied by log n. We determine the constants for all
three cases and prove a central limit theorem for the typical distances. We prove a similar
central limit theorem for typical distances in EANs.

Keywords: Random graph; random network; typical distance; diameter; hopcount; degree
distribution
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1. Introduction

The construction of deterministic and random Apollonian networks originates from the
problem of Apollonian circle packing. Starting with three mutually tangent circles, we inscribe
in the interstice formed by the three initial circles the unique circle that is tangent to all of them:
this fourth circle is known as the inner Soddy circle. Iteratively, for each new interstice its inner
Soddy circle is drawn. After infinite steps the result is an Apollonian gasket [14], [25].
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An Apollonian network (AN) is the resulting graph if we place a vertex in the centre of each
circle and connect two vertices if and only if the corresponding circles are tangent. This model
was introduced independently by Andrade et al. [2] and Doye and Massen [21] as a model for
real-life networks such as the network of internet cables or links, collaboration networks or
protein interaction networks. Apollonian networks can serve as a model for these networks
since their main characteristic properties can be observed in the examples above: a power-law
degree distribution, a high clustering coefficient, and small distances, usually referred to as the
small-world property. Moreover, by construction, ANs also exhibit a hierarchical structure: a
property that is very commonly observed in, e.g. social networks.

It is straightforward to generalise Apollonian packings to arbitrary d ≥ 2 with mutually
tangent d-dimensional hyperspheres. Analogously, if each d-hypersphere corresponds to a
vertex and vertices are connected by an edge if the corresponding d-hyperspheres are tangent,
then we obtain a d-dimensional AN (see [31] and [34]).

The network arising by this construction is deterministic. Zhou et al. [35] proposed to
randomise the dynamics of the model such that in one step only one interstice is picked uniformly
at random (u.a.r.) and filled with a new circle. This construction yields a d-dimensional random
Apollonian network (RAN) [32]. Using heuristic and rigorous arguments the results in [1], [18],
[19], [22], [24], [32], and [35] show that RANs have the above mentioned main features of
real-life networks.

A different random version of the original AN was introduced by Zhang et al. [33], called
evolutionary Apollonian networks (EANs) where in every step every interstice is picked and
filled independently of each other with probability q. If an interstice is not filled in a given step,
it can be filled in the next step. We call q the occupation parameter. For q = 1 we get back the
deterministic AN model. It was conjectured in [33] that an EAN with parameter q, as q → 0,
should show a similar topological behaviour to RANs. To make this statement rigorous, instead
of looking at a sequence of evolving EANs with decreasing parameters, we slightly modify the
model and investigate the asymptotic behaviour of a single EAN when q might differ in each
step of the dynamics. That is, we consider a series {qn}∞n=1 of occupation parameters so that qn
applies for step n of the dynamics, and assume that qn tends to 0. In this setting, the interesting
question is how to determine the correct rate for qn that achieves the observation that an EAN
exhibits similar behaviour as a RAN when the parameter tends to 0.

Definition of RANs. A random Apollonian network in d dimensions (RANd(n)) can be
constructed as follows. The graph at step n = 0 consists of d + 2 vertices, embedded in R

d

in such a way that d + 1 of them form a d-dimensional simplex, and the (d + 2)th vertex is
located in the interior of this simplex, connected to all of the vertices of the simplex. This vertex
in the interior forms d + 1 d-simplices with the other vertices: initially we set the status of
these d-simplices as ‘active’, and call them active cliques. For n ≥ 1, pick an active clique Cn
of RANd(n − 1) u.a.r., insert a new vertex vn in the interior of Cn, and connect vn with all
the vertices of Cn. The newly added vertex vn forms new cliques with each possible choice
of d vertices of Cn. Set the status of the clique Cn as ‘inactive’, and the status of the newly
formed d-simplices as ‘active’. The resulting graph is RANd(n). At each step n a RANd(n)

has n+ d + 2 vertices and nd + d + 1 active cliques.
There is a natural representation of RANs as evolving triangulations in two dimensions:

take a planar embedding of the complete graph on four vertices as in Figure 1 and in each step
pick a face of the graph u.a.r., insert a vertex and connect it with the vertices of the chosen
triangle (face). The result is a maximal planar graph. Hence, a (RAN2(n))n∈N is equivalent
to an increasing family of triangulations by successive addition of faces in the plane, called
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Figure 1: A RAN2(n) after n = 0, 2, 8 steps.

stack-triangulations. Stack-triangulations were investigated in [1] where the authors also
considered typical properties under different weighted measures, e.g. ones picked u.a.r. havingn
faces. Under a certain measure stack-triangulations with n faces are an equivalent formulation
of RAN2(n); see [1] and the references therein.

Definition of EANs. Given a sequence of occupation parameters {qn}∞n=1, 0 ≤ qn ≤ 1,
an evolutionary Apollonian network in d dimensions (EANd(n, {qn}) = EANd(n)) can be
constructed iteratively as follows. The initial graph is the same as for a RANd(0) and there are
d + 1 active cliques. For n ≥ 1, choose each active clique of EANd(n − 1) independently of
each other with probability qn. The set of chosen cliques Cn becomes inactive (the nonpicked
active cliques stay active) and for every clique C ∈ Cn we place a new vertex vn(C) in the
interior of C that we connect to all vertices of C. This new vertex vn(C) together with all
possible choices of d vertices from C forms d + 1 new cliques: these cliques are added to
the set of active cliques for every C ∈ Cn. The resulting graph is an EANd(n). The qn ≡ q

case was studied in [33] where it was further suggested that for q → 0 the graph is similar
to a RANd(n). We prove their conjecture by showing that EANs obey the same power-law
exponent as RANs if qn → 0 and

∑∞
n=0 qn = ∞.

Remark 1. Note that both in the RAN and EAN models, there is a one-to-one correspondence
between cliques and vertices/future vertices: vertex v corresponds to the clique C that became
inactive when v was placed in the interior of the d-simplex corresponding to C. In this respect,
we call vertices that are already present in the graph inactive vertices, and we refer to active
cliques as active vertices: this notation means that these vertices are not yet present in the
graph, but might become present in the next step of the dynamics.

Structure of the paper. In Section 2 we state our main results and discuss their relation to
other results in the field. Section 3 contains the most important combinatorial observations
about the structure of RANs: we work out an approach of coding the vertices of the graph
that enables us to compare the structure of the RAN to a branching process and, further, the
distance between any two vertices in the graph is given entirely by the coding of these vertices.
We also provide a short sketch of proofs related to distances in this section. Then we prove
rigorously the distance-related theorems in Section 4. Finally, in Section 5, we prove the results
concerning the degree distributions.

2. Main results

We begin with the necessary notation used to state our results.
Fix n and consider two ‘active’ or ‘inactive’ vertices u and v from RANd(n) or EANd(n).

Denote by hopd(n, u, v) the hopcount between the vertices u and v, i.e. the number of edges
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on (one of) the shortest paths between u and v. The flooding time floodd(n, u) is the maximal
hopcount from u, while the diameter diamd(n) is the maximal flooding time, formally

floodd(n, u) = max
v

hopd(n, u, v) and diamd(n) = max
u,v

hopd(n, u, v).

Whenever possible d , u, and v are suppressed from the notation.
We defineDv(n) as the degree of vertex v after the nth step. Denote by Ñk(n) and p̃k(n) the

number and the empirical proportion of inactive vertices with degree k at time n, respectively,
in a RANd(n), i.e.

p̃k(n) := Ñk(n)

n+ d + 2
:= 1

n+ d + 2

n+d+2∑
i=1

1{Di(n)=k}, (1)

where 1 is the indicator function.
Analogously, for the graph EANd(n, {qn})we use the notationsNk(n) and pk(n) defined by

pk(n) := Nk(n)

N(n)
= 1

N(n)

∑
i∈V (n)

1{Di(n)=k}, (2)

where V (n) denotes the set of vertices after n steps and N(n) = |V (n)|.
Let (Xi)

d+1
i=1 be a collection of independent geometrically distributed random variables with

success probability i/(d + 1) for Xi . Define the sum

Yd :=
d+1∑
i=1

Xi, (3)

where Yd is commonly referred to as a full coupon collector block in a coupon collector problem
with d + 1 coupons. Denote the expectation and variance of Yd by

μd := E[Yd ] = (d + 1)H(d + 1), σ 2
d := D

2[Yd ], (4)

where H(d) = ∑d
i=1 1/i. The large deviation rate function of Yd is given by

Id(x) := sup
λ∈R

{λx − log(E[exp{λYd}])}. (5)

The rate function Id(x) has no explicit form. It can be computed numerically from

Id(x) = λ∗(x)x − log E[exp{λ∗(x)Yd}],
where λ∗(x) is the unique solution to the equation (∂/(∂λ)) log E[exp{λYd}] = x and

log E[exp{λYd}] = log d! − d log(d + 1)+ (d + 1)λ−
d∑
i=1

log

(
1 − i

d + 1
exp{λ}

)
.

The following is needed for the flooding time and diameter. Consider the function

fd(c) := c − d + 1

d
− c log

(
d

d + 1
c

)
. (6)
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Note that −fd(c) is the rate function of a Poi((d + 1)/d) random variable. Thus, for c >
(d + 1)/d the equation fd(c) = −1 has a unique solution which we denote by c̃d . Finally, we
introduce

g(α, β) := 1 + fd(αc̃d)− αβ
c̃d

μd
Id

(
μd

β

)
. (7)

We say that a sequence of events En happens with high probability (w.h.p.) if limn P(En) = 1.
Note that ‘with high probability’is the same as ‘asymptotically almost surely’. We further define
for an eventA and aσ -algebra F the conditional probability P(A | F ) = E[1A | F ], where 1A
is the indicator of the eventA, i.e. it takes value 1 ifA holds and 0 otherwise. We will sometimes
replace F by a list of random variables, in this case we drop the σ -algebra notation and list the
random variables in the conditioning, and this means conditional on the σ -algebra generated
by this list of random variables.

2.1. Distances in RANs and EANs

The first theorem describes the asymptotic behaviour of the typical distances in RANd(n).

Theorem 1. (Typical distances in RANs.) With high probability, the hopcount between two
active vertices chosen u.a.r. in a RANd(n) satisfies a central limit theorem (CLT) of the form(

hopd(n)− 2

μd

d + 1

d
log n

)(
2
σ 2
d + μd

μ3
d

d + 1

d
log n

)−1/2
d−→ Z, (8)

whereμd, σ 2
d as in (4), Z is a standard normal random variable, and ‘

d−→’denotes convergence
in distribution.

Further, the same CLT is satisfied for the distance between two inactive vertices that are
picked independently with the size-biased probabilities given by

P(v is chosen | Dv(n)) = (d − 1)Dv(n)− d2 + d + 2

dn+ d + 1
. (9)

The next theorem describes the asymptotic behaviour of the flooding time and the diameter.

Theorem 2. (Diameter and flooding time in RANs.) Letu denote either an active vertex chosen
u.a.r. or an inactive vertex chosen according to the size-biased distribution given in (9). Then
as n → ∞, w.h.p.

diamd(n)

log n
P−→ 2α̃β̃

c̃d

μd
,

floodd(n, u)

log n
P−→ 1

μd

(
d + 1

d
+ α̃β̃c̃d

)
,

where ‘
P−→’ denotes convergence in probability and (α̃, β̃) ∈ (0, 1] × [1, μd/(d + 1)] is the

optimal solution of the maximization problem with the following constraint:

max{αβ : g(α, β) = 0}. (10)

Remark 2. Observe that the set of (α, β) pairs that satisfy the constraint in (10) is nonempty
since, for α = β = 1, by definition f (c̃d) = −1 and Id(μd) = 0. The fact that the pair
(α̃, β̃) is unique is proved in Lemma 5. The maximization problem is also equivalent to first
defining the g(α(x), β(x)) := supα,β{g(α, β) : αβ = x} and then choosing the unique x with
g(α(x), β(x)) = 0, where the existence and uniqueness of such an x follows from the fact that
g(α(x), β(x)) is strictly monotone decreases in x and is continuous. This is shown in Claim 4.

We conclude with the asymptotic behaviour of the typical distances in EANd(n).
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Theorem 3. (Typical distances in EANs.) Assume that the sequence of occupation parameters
{qn} satisfies

∑
n∈N

qn = ∞ and
∑
n∈N

qn(1 − qn) = ∞. Then w.h.p., the hopcount between
two active vertices chosen u.a.r. in an EANd(n) satisfies a CLT of the form(

hopd(n)− 2

μd

n∑
i=1

qi

)(
2
σ 2
d + μd

μ3
d

n∑
i=1

qi(1 − qi)

)−1/2
d−→ Z,

where μd, σ 2
d as in (4) and Z is a standard normal random variable.

Further, the same CLT is satisfied for the distance between two inactive vertices that are
chosen independently with the size-biased probabilities given by

P(v is chosen | Dv(n),N(n)) = (d − 1)Dv(n)− d2 + d + 2

d(N(n)− d − 2)+ d + 1
. (11)

Remark 3. Note that in this theorem qn might or might not tend to 0. The second criterion rules
out the case when qn → 1 so fast that the graph becomes essentially deterministic. Further,
the statements of Theorems 1 and 3 also hold if one of the vertices is an active vertex chosen
uniformly at random and the other vertex is inactive chosen according to the distribution given
in (9) and (11), respectively.

2.2. Degree distribution and clustering coefficient

Our first result states that for a RANd(n) the empirical distribution p̃k(n) tends to a proper
distribution in the �∞-metric.

Theorem 4. (Degree distribution for RANs.) For all d ≥ 2 there exist a probability distribution
{pk}∞k=d+1 and a constant c for which

lim
n→∞ P

(
max
k

|p̃k(n)− pk| ≥ c

√
log n

n

)
= 0.

Further, pk follows a power law with exponent (2d − 1)/(d − 1) ∈ (2, 3], more precisely

pk = d

2d + 1

	(k − d + 2/(d − 1))

	(1 + 2/(d − 1))

	(2 + (d + 2)/(d − 1))

	(k + 1 − d + (d + 2)/(d − 1))

= C(d)k−(2d−1)/(d−1)(1 + ok(1)), (12)

where ok(1) denotes a quantity that tends to 0 as k → ∞, C(d) is a constant that depends
on d, and 	(x) is the gamma function.

Remark 4. To obtain the asymptotic behaviour of pk above we use the property that

	(t + a)

	(t)
= ta(1 + o(1)).

For the theorem that describes the degree distribution of the graph EANd(n, {qn}), we need
the following additional analytic assumption on the sequence {qn}n∈N.

Assumption 1. Assume, as before, that qn → 0 and
∑∞
i=1 qn → ∞. We assume further that

there exist constants c1 and C1 (that depend only on the sequence {qn}∞n=1) such that

c1 ≤
∑n
i=1 q

2
i

∏i
j=1(1 + dqj )

qn
∏n
j=1(1 + dqj )

≤ C1, (13)
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and for every ε > 0,
∞∑
n=1

exp

{
−εqn exp

{
d

n∑
j=0

qj

}}
< ∞. (14)

Theorem 5. (Degree distribution for EANs.) Let d ≥ 2 and {qn}∞n=0 be probabilities such that
Assumption 1 is satisfied. Then the degree distribution tends to the same asymptotic degree
distribution {pk}∞k=d+1 as in the case of RANd(n) given in (12). More precisely, there exists a
constant C0 > 0 and a random variable η < ∞ such that for any k ∈ N

lim
n→∞ P

(
max
i<k

|pi(n)− pi | ≥ C0k! ηkqn
)

= 0.

In particular, the degree distribution converges pointwise for all i < k = k(n) for any k(n)
that satisfies C0k! ηkqn → 0 as n → ∞.

In the following lemma we present classes of sequences {qn}n∈N that satisfy Assumption 1.

Lemma 1. (Regularly varying sequences.) Let L(x) denote a slowly varying function at ∞,
i.e. for every c > 0, limx→∞ L(cx)/L(x) = 1. Then Assumption 1 is satisfied in the following
cases:

(i) qn = L(n)/nα for some α ∈ (0, 1);

(ii) qn = (b + o(n−δ))/n with b > 1/d for some arbitrary δ > 0.

Remark 5. Clearly, Lemma 1(ii) does not cover all possible regularly varying functions with
α = 1 for which Assumption 1 holds: one can check that the assumption holds for other cases
as well, e.g. qn = b + b′/log n with any b > 1/d and arbitrary b′ ∈ R works. On the other
hand, some cases where qn = L(n)/n and L(n) → ∞ fail, e.g. qn = b/(n log n) does not
satisfy (13).

The proof of these theorems and Lemma 1 are given in Sections 5.1 and 5.2. Next we
describe the clustering coefficient of RANs and EANs. The clustering coefficient of a vertex
is the proportion of the number of existing edges between its neighbours, compared to the
number of all possible edges between them. Here we investigate the clustering coefficient of
the whole graph, which is the average of clustering coefficients over the vertices. Since these
are direct consequences of the formula for the limiting degree distributions pk , we state them
as corollaries. This corollary is similar to the result in [32, Section 4.2.], but now that we have
established the degree distribution it has a rigorous proof. This is based on the observation that
the clustering coefficient of a vertex with degree k is deterministic both in RANs and EANs
and equals

d(2k − d − 1)

k(k − 1)
∼ 2d

k
.

The explanation for this formula is as follows. When the degree of vertex v increases by 1
by adding a new vertex w in one of the active cliques containing v, then the number of edges
between the neighbours of v increases exactly by d, since the newly added vertexw is connected
to the other d vertices in the clique. It was observed in simulations and heuristicly proved in [32],
that the average clustering coefficient of these networks converges to a strictly positive constant.
Our next corollary determines the exact value of these constants for the two models.
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Corollary 1. (Clustering coefficient.) The average clustering coefficient of the RANd(n)

converges to a strictly positive constant as n → ∞, given by

Cld =
∞∑

k=d+1

d(2k − d − 1)

k(k − 1)
pk

=
∞∑

k=d+1

d(2k − d − 1)

k(k − 1)

d

2d + 1

	(k − d + 2/(d − 1))

	(1 + 2/(d − 1))

	(1 + (2d + 1)/(d − 1))

	(k − d + (2d + 1)/(d − 1))
.

(15)

Further, the clustering coefficient of the EANd(n, {qn}) converges to the same value as in (15)
if qn → 0 and

∑
n∈N

qn = ∞.

2.3. Related literature

Several results related to the asymptotic degree distribution of ANs are known. It is not
difficult to see that if a vertex belongs to k active cliques, then the chance for that vertex to get a
new edge is proportional to k: this argument shows that these models belong to the wide class
of preferential attachment models [4], [10], [13]. As a result, some of the classical methods
can be adapted to this model.

Using heuristic arguments, Zhang et al. [32] obtained that the asymptotic degree exponent
should be (2d−1)/(d−1) ∈ (2, 3], which is in good agreement with their simulations. Parallel
to writing this paper, we noted that Frieze and Tsourakakis [24] very recently derived rigorously
the exact asymptotic degree distribution of the two-dimensional RAN. Even though our work
is independent of theirs, the methods are similar: this is coming from the fact that both of
the methods used there and in our work are an adaptation of standard methods given in [13]
and [30]. So, to avoid repetition we decided to only sketch some parts of the proof and include
the part that does not overlap with their work, i.e. the degree distribution of EANs.

What is entirely new in our paper is that we study the EAN model rigorously. For the degree
distribution of EANs only heuristic arguments were known before. Zhang et al. [33] studied the
graph series EANd(n)with (fixed) occupation parameter q. They derived the asymptotic degree
exponent using heuristic arguments, and the result is in good agreement with the simulations.
They also suggested that as q → 0 the model EANd(n) converges to a RANd(n) in some sense.
We confirm their claim by deriving the asymptotic degree distribution of the EANd(n, {qn})
with {qn} such that qn → 0 and

∑∞
n=0 qn = ∞, obtaining the same degree distribution. So the

idea of Zhang and his co-authors can be made precise in this way.
The statements of Theorem 1 are in agreement with previous results. In particular, in [32] the

authors estimated the average path length, i.e. the hopcount averaged over all pairs of vertices,
and they showed that it scales logarithmically with the size of the network.

A more refined claim was obtained by Albenque and Marckert [1] concerning the hopcount
in two dimensions. They proved that

hop(n)

(6/11) log n
P−→ 1.

The constant 6
11 is the same as 2(d + 1)/(dμd) for d = 2. They use the previously mentioned

notion of stack-triangulations to derive the result from a CLT similar to the one in Theorem 1.
We present an alternative approach using weaker results. The CLT for distances in EANs
is novel.
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Central limit theorems of the form (8) for the hopcount have been proven with the addition
of exponential or general edge weights for various other random graph models, known usually
under the name first passage percolation. Janson [26] analysed distances in the complete graphs
with independent and identically distributed (i.i.d.) exponential edge weights. In a series of
papers Bhamidi, van der Hofstad, and Hooghiemstra determined typical distances and proved
the CLT for the hopcount for the Erdős–Rényi random graph [7], the stochastic mean-field
model [5], the configuration model with finite variance degrees [6], and quite recently for
the configuration model [8] with arbitrary i.i.d. edge weights from a continuous distribution.
Inhomogeneous random graphs were handled by Bollobás et al. [11], and in [29]. Note that in
all these models the edges have random weights, while in RANs and EANs all edge weights
are 1. The reason for this similarity is hidden in the fact that all these models have an underlying
branching process approximation, and the CLT valid for the branching process implies a CLT
for the hopcount on the graph. The diameter and flooding time of EANs remains a future
project.

Further, in the literature some bounds are known about the diameter of RANs: Frieze and
Tsourakakis [24] established the upper bound 2c̃2 log n for RAN2(n). They used a result of
Broutin and Devroye [15] that, combined with the branching process approximation of the
structure of RANs we describe in this paper, actually implicitly gives the 2c̃d log n upper bound
for all d.

Just recently, and independently from our work, other methods were used to determine the
diameter. In [22] the authors applied the result of [15] in an elaborate way, while Cooper and
Frieze in [18] used a more analytical approach solving recurrence relations. We emphasise
that the methods in [18, 22], and in this present paper are all qualitatively different. Numerical
solution of the maximization problem (10) for d = 2 yields the optimal (α̃, β̃) pair to be
approximately (0.8639, 1.500). The corresponding constant for the diameter is 2̃c2/μ2 ×
0.8639×1.5 = 1.668, which perfectly coincides with the one obtained in [18] and [22]. To the
best of the authors’ knowledge no result has been proven for the flooding time.

3. Structure of RANs and EANs

3.1. Tree-like structure of RANs and EANs

The construction method of RANs and EANs enables us to describe a natural way to code
the vertices and active cliques of the graph parallel to each other. Let
d := {1, 2, . . . , d+1} be
the symbols of the alphabet. We give the initial vertices of a RANd(0) the ‘empty word’ except
for the vertex in the middle of the initial d-simplex which gets the symbol O (root). Then, we
code each initial active clique by a different symbol from 
d . In step n = 1 we assign the
newly added vertex u the code u = i if the clique with code i was chosen. Further, we code the
d+1 newly formed d-simplices by ij for all j ∈ 
d (here, ij means concatenation). Similarly
for n ≥ 2, we assign the newly added vertex v the code of the clique that becomes inactive,
denoted by v, and the newly formed active cliques are given the codes vj , j = 1, . . . , d + 1
(with concatenation again). It is crucial to keep the coding consistent in a geometrical sense.
We describe how to do this in Lemma 2 below.

Thus, each vertex in the graph has a code that is a concatenation of symbols from 
d . For
a vertex u we write u = u1u2 . . . u� for its code for some � ∈ N, and we call the length
of a code |u| = � the generation of the vertex u. For two vertices u and v with codes
u = u1u2 · · · un and v = v1v2 · · · vm, respectively, we say thatu is an ancestor of v ifn < m and
u1u2 · · · un = v1v2 · · · vn. We denote the latest common ancestor ofu and v byu∧v and its code
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by u∧v; thus, |u ∧ v| = min{k : uk+1 �= vk+1}. For codes u = u1 . . . un and v = v1 . . . vm, we
denote the concatenation u1 . . . unv1 . . . vm by uv and the corresponding vertex by uv. Further,
let u(i) denote the last occurrence of the symbol i ∈ 
d in u. We introduce the cut-operators
Tiu := u1 . . . u(i)−1 and Piu = u(i) . . . un for all i ∈ 
d .

Remark 6. Note that there is a one-to-one correspondence between the codes of length at
most n and vertices of a rooted (d + 1)-ary tree of depth n. As a result, we use the codes u

to denote vertices as well, i.e. we identify vertices in a RAN or EAN with their codes and
sometimes refer to u as a vertex. In this respect, the concept ‘u is an ancestor of v’ precisely
means the ‘usual’notion of being an ancestor: the unique path from v to the root in the (d+1)-ary
tree passes through u.

Apart from these ‘tree’ edges, RANs and EANs have other edges as well. However, we will
see below that these extra edges always go upwards (or downwards) on a branch of a tree, hence
the crucial tree-like properties of the structure are conserved. We collect the most important
combinatorial observations in the following lemma.

Lemma 2. (Tree-like properties of the coding.) There exists a way of choosing the coding of
the vertices of a RAN or EAN so that the following hold.

(i) Consistency. The d + 1 neighbours of a newly formed vertex with code u have codes
Tiu, i ∈ 
d . Further, for any edge with endpoints u and v either ‘u is an ancestor of v’
or vice versa.

(ii) Any shortest path between two vertices with codes u and v must intersect the path from
the root to the vertex with code u ∧ v.

(iii) For any two vertices with codes u and v, hop(u, v)=hop(u,u ∧ v)+ hop(v,u ∧ v).

Before stating the proof, let us interpret Lemma 2. Lemma 2(i) means that edges are only
present between vertices along the same ancestral line. In particular, the first d + 1 neighbours
of a newly added vertex with code u can be determined by removing the last pieces of the code
of u, up to the last occurrence of a given symbol i ∈ 
d .

The coding gives a natural grouping of the edges. Edges of the initial graph are not given
any name. An edge is called a forward edge if its endpoints have codes of the form u and uj for
j ∈ 
d . All other edges are called shortcut edges. So in a RAN at each step one new forward
edge and d shortcut edges are formed.

In Figure 2 we show an example in two dimensions. Suppose at step n = 0 the ‘left’, ‘right’,
and ‘bottom’ triangles are given the symbols 1, 2, and 3, respectively. Then later each new
vertex uwith code u in the middle of a triangle gives rise to the new ‘left’, ‘right’, and ‘bottom’
triangles: to these we have to assign the codes v1, v2, and v3, respectively.

In Figure 2(a) a planar embedding of the graph is shown, while in Figure 2(b) the tree-like
structure of the same graph becomes more apparent. Interpreting the initial graph as the root,
the forward edges are the edges of the tree: along them we can go deeper down in the hierarchy
of the graph. The shortcut edges only run along a tree branch: between vertices that are in the
same line of descent, so we can ‘climb up’ to the root faster along these edges.

Lemma 2(ii) is a consequence of Lemma 2(i). It says that if we have two vertices with
code u and v in the tree, then any shortest path between them must intersect a path from the
root to their latest common ancestor u∧v. Finally, Lemma 2(iii) says that the distance between
any two vertices can be obtained in essentially the same manner as one would do for a tree: it
ensures that a shortest path between a vertex with code u and one of its descendants uw cannot
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Figure 2: Tree-like structure of a realisation of RAN2(8). (a) Shows a planar embedding of the graph,
and (b) the tree-like structure of the same graph.

go below the vertex uw in the tree, and also that if two vertices u and v are not descendants of
each other, then a shortest path between them does not go below them in the tree.

Proof of Lemma 2. (i) We use proof by induction. We label the initial d + 1 active cliques
arbitrarily with i ∈ 
d . The hypotheses clearly holds in this case. In this proof, to identify a
clique, we list the code of its vertices, e.g.C = (v(1), . . . , v(d+1)) denotes a clique that is formed
by vertices with codes v(1), . . . , v(d+1). Recall that each clique also uniquely corresponds to
the vertex that is placed in the interior of the corresponding d-simplex when the clique becomes
inactive. We say that a clique C has code u if this vertex has code u. In this notation, we need
to find a consistent coding, i.e. one where the clique (v(1), . . . , v(d+1)) gets a code u such that
each v(j) can be obtained by removing the code u at the last occurrence of a symbol in 
d .

Now suppose that we already have an active clique with code u, and, by induction, we can
assume that u is associated with the clique formed by vertices (T1u, T2u, . . . , Td+1u). When
this clique becomes inactive, the vertex u is added to the graph and the d + 1 new active
cliques are

(T1u, . . . , Tk−1u, Tk+1u, . . . , Td+1u,u) for all k ∈ 
d. (16)

Let us denote this clique by uk (where uk means concatenating the symbol k to the end of the
code u). We claim that by this choice, (i) is maintained, i.e. if the vertex uk is ever to be added to
the graph, then its neighbours will be exactly Ti(uk), i ∈ 
d . By construction, the neighbours
of uk are exactly the ones in (16), and clearly we have Tk(uk) = u, and Ti(uk) = Ti(u) for
i �= k, so we can write

(T1u, . . . , Tk−1u, Tk+1u, . . . , Td+1u,u)

= (T1(uk), . . . , Tk−1(uk), Tk+1(uk), . . . , Td+1(uk), Tk(uk)).

This proves (i).

(ii) Note that by (i), every vertex is connected to d + 1 vertices with code length shorter than
|u|, and all these vertices are descendants of each other, i.e. they are in the path from u to the
root. The other vertices that u is connected to are its descendants, i.e. of the form uw for some
w. Hence, if we want to build a path from vertex u to v, we must go up in the tree to at least
u ∧ v.

(iii) First, we need to observe that the position of the last occurrence of a symbol in a code
cannot be earlier than that in some prefix of the same code, i.e. |Ti(uxy)| > |Ti(ux)| for all i.
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This implies that a shortest path between any two vertices u and v can be decomposed as
u → · · · → y → · · · → v, where y is either u∧v or one if its ancestors, Pu := u → · · · → y

is a directed path in the graph where each vertex is an ancestor of the previous one on the path,
and Pv = y → · · · → v is a directed path where each vertex is a descendant of the previous
one on the path.

Secondly, we need to observe that it is enough to go up to u∧ v both from u and v: suppose
that a shortest path is of the form u → · · · → (u ∧ v)x → y → (u ∧ v)z → · · · → v,
where y is an ancestor of u∧v, and x and z are such codes that there is a shortcut edge between
(u ∧ v)x and y and between (u ∧ v)z and y. Then, from (i) it is obvious that there is also an
edge between (u ∧ v)x,u ∧ v and between (u ∧ v)z,u ∧ v. This means that we can change y

to u ∧ v in this path to obtain a path of equal length. �

3.2. Distances in RANs and EANs: the main idea

With the help of the grouping of the edges as above, we can determine the distance between
two arbitrary vertices u and v with codes u and v as follows.

First, determine the generation of their latest common ancestor u ∧ v. Then determine the
length of their code below u ∧ v. Finally, determine how fast can we reach the latest common
ancestor along the shortcut edges in these two branches, i.e. what is the minimal number of
hops we need to go up from u and v to u ∧ v?

If we pick u and v u.a.r. then we have to determine the typical length of codes in the tree and
the typical number of shortcut edges needed to reach the typical common ancestor. If, on the
other hand, we want to analyse the diameter or the flooding time, we have to find a ‘long’branch
with ‘many’ shortcut edges. Clearly, one can look at the vertex of maximal depth in the tree:
but then—by an independence argument about the symbols in the code and the length of the
code—w.h.p. the code of the maximal depth vertex in the tree will show typical behaviour for
the number of shortcut edges. On the other hand, we can calculate how many slightly shorter
branches there are in the tree. Then, since there are many of them, it is more likely that one
of them has a code with more shortcut edges needed than typical. Hence, we study the typical
depth and also how many vertices are at greater, atypical depths of a branching process that
arises from the forward edges of the RANs. The effect of the shortcut edges on the distances
is determined using renewal theory (also carried out in [1]) and large deviation theory. Finally,
we optimise parameters such that we achieve the maximal distance by an entropy versus energy
argument.

3.3. Combinatorial analysis of shortcut edges

Now we investigate the effect of shortcut edges on this tree. Lemma 2(i) says that the shortcut
edges of a vertex u in the tree lead exactly to Tiu, the prefixes of u achieved by removing the
code after the last occurrence of symbol i in the code. Recall that Piu = u(i) . . . un denotes
the postfix of u that starts with the last occurrence of the symbol i ∈ 
d in the code of u, while
Tiu = u1 . . . u(i)−1.

Let us denote the operator that gives the prefix with length mini |Tiu| by Tmin and, further,
denote the length of the maximal cut by

YAN
d (u) := |u| − |Tminu| = max

i∈
d
{|Piu|}. (17)

This is the length of the maximal hop we can achieve from the vertex u towards the root in the
tree via a shortcut edge.
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Consecutively using the operator Tmin we can decompose u into independent blocks, where
each block, when reversed, ends at the first position when all the symbols in
d have appeared.
We call such a block a full coupon collector block. For example, for u = 113213323122221131
this gives 1|132|1332|31222|21131. Let us denote the total number of blocks needed in this
decomposition by

N(u) = max{k + 1 : (Tmin)
ku �= ∅}. (18)

Note that this is not the only way to decompose the code in such a way that we always cut only
postfixes of the form Piu. For example, 1|132|1332|31222211|31 gives an alternative cut with
the same number of blocks.

The following (deterministic) claim establishes that the decomposition along repetitive use
of Tmin (longest possible hops) is optimal.

Claim 1. Suppose that we have an arbitrary code u of length n with symbol from 
d that we
want to decompose into blocks in such a way that from right to left, each block ends at the first
appearance of some symbol in that block. Then the minimal number of blocks needed is given
by N(u).

Proof. Consider two different decompositions of u into blocks: in the first decomposition
use the operator Tmin consecutively, while in the second one we suppose that at least one block
is not a full coupon collector block. Without loss of generality, we may assume that this is the
first block from the end of the code u. The endpoint of the first hop in the first decomposition is
Tminu := Ti∗u, while in the second decomposition the endpoint is Tju for some j �= i∗, with
|Tju| > |Tminu|. Hence, there is a w such that Tju = (Tminu)w. Conclude from Lemma 2(iii)
that hop(Tminu,∅) ≤ hop(Tju,∅); thus, the number of blocks in the second decomposition
cannot be smaller than N(u). �

Note that YAN
d (·) and N(·) are deterministic operators when applied to a fixed code u. Next

we state the distributional properties of YAN
d (u) and N(u) when u is the code of a uniformly

chosen active clique. The reason for the need of this is that both in the evolution of the RAN
and the EAN, once a clique with code u becomes inactive and is replaced with the vertex with
code u, the d + 1 new cliques that become active are exactly the direct descendants (children)
of the vertex u in the d-ary tree. At each step in the evolution of the RAN, the clique to become
inactive is chosen u.a.r. among the active cliques, and in the EAN an independent coin flip with
success probability qn (not depending on the code itself) determines for each active clique if it
becomes inactive or stays active for the next step.

As a result of these dynamics, by symmetry it is not difficult to see that an active vertex
(active clique) chosen u.a.r. in both the RAN and the EAN has a code where, conditioned on the
length of the code, the symbol at each position is chosen u.a.r. in 
d . Further, for two vertices
chosen u.a.r. with codes u and v the symbols in these codes after the position |u ∧ v| + 1 are
independent and uniformly distributed in 
d .

For every k ≥ 1, define the random variable

Hk := max

{
� :

�∑
j=1

Y
(�)
d ≤ k

}
, (19)

where Y (�)d are i.i.d. copies of Yd in (3).
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Lemma 3. Suppose that u is a code of length k with symbols chosen u.a.r. from 
d at each
position. Then

YAN
d (u)

d= min{Yd, k}, N(u)
d= Hk + 1.

Proof. The last occurrence of any symbol i ∈ 
d in a uniform code is the first occurrence
from backwards of the same symbol. Hence, reverse the code of u, and then |Piu| is the
position of the first occurrence of symbol i in a uniform sequence of symbols of length k,
since |u| = k. Clearly, |Piu| = k if the symbol i does not occur in u. As a result, |Piu| has
a geometric distribution with parameter 1/(d + 1) truncated at k. Maximizing this over all
i ∈ 
d we obtain the well-known coupon collector problem that has distribution Yd , truncated
again at k. For the second expression, since N(u) cuts down full coupon collector blocks from
the end of the code of u consecutively, the maximal number of cuts possible is exactly the
number of consecutive full coupon collector blocks in the reversed code of u, an i.i.d. code of
length k. Since the length of each block has distribution min{Yd, k}, and they are independent,
the statement follows by observing that the last, nonfull block of the reversed code corresponds
to the +1 in the statement. �

Recallμd, σ 2
d from (4). From basic renewal theory [23] the following CLT holds as k → ∞:

Hk − k/μd√
kσ 2
d /μ

3
d

d−→ N (0, 1). (20)

4. Distances in RANs and EANs

In light of the main idea of the proof in Section 3.2, we begin with the analysis of the tree
created by the forward edges of the graph.

4.1. A continuous-time branching process

There is a natural embedding of the evolution of the RAN into the evolution of a continuous-
time branching process (CTBP) [3], or a Bellman–Harris process.

Namely, consider a CTBP where the offspring distribution is deterministic: each individual
(equivalently, a vertex) has d+1 children and the lifespan of each individual is i.i.d. exponential
with mean 1. Thus, after birth a vertex is active for the duration of its lifespan, then splits,
becomes inactive and at that instant gives birth to its d + 1 offspring that become active for
their i.i.d. Exp(1) lifespan. The process starts with a single individual that is called the root
and which dies immediately at t = 0 giving birth to its d + 1 children.

The bijection between the CTBP at the split times and a RANd is as follows. The individuals
that have already split in the CTBP are the vertices already present (inactive vertices) in the
RANd , while the active (alive) individuals in the CTBP correspond to the active vertices (active
cliques) in the RANd . This holds since at every step of a RANd , d + 1 new active cliques arise
in place of the one that becomes inactive. Further, in a RANd an active clique is chosen u.a.r.
in each step which is—by the memoryless property of exponential variables—equivalent to the
fact that the next individual to split in the CTBP is an active individual chosen u.a.r.

We write GU(m) for the generation of a uniformly chosen active individual in the CTBP
afterm individuals have split, i.e. its graph distance from the root. In the next two propositions
we describe the growth of our CTBP in terms of the typical size ofGU(m) as well as the degree
of relationship of two active individuals chosen u.a.r. in Proposition 1 and the maximal size of
GU(m) together with its tail behaviour in Proposition 2.
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Proposition 1. Let Z denote a standard normal random variable. Then, as m → ∞,(
GU(m)− d + 1

d
logm

)(
d + 1

d
logm

)−1/2
d−→ Z. (21)

Further, letGU andGV denote the generations of two active vertices chosen u.a.r. in the CTBP
after the mth split, and write GU∧V for the generation of the latest common ancestor of U
and V . Then the marginal distribution GU

d= GU(m), and(
GU −GU∧V − ((d + 1)/d) logm√

((d + 1)/d) logm
,
GV −GU∧V − ((d + 1)/d) logm√

((d + 1)/d) logm

)
d−→ (Z,Z′), (22)

where Z,Z′ are independent standard normal distributions.

The proposition is an application of [16, Chapter 4.2, Theorem 2.5] to the CTBP studied
here with deterministic offspring distribution (d + 1 children). Before the proof, we need a
lemma, that originates from [16, Theorem 3.3], and the first part can also be found, e.g. in [7].
First some notation. Write Di, Si for the number of children of the ith splitting vertex and
the number of active individuals after the ith split in a CTBP, and for an event A and random
variable X write

Pm(A) := P(A | Di, Si, i = 1, . . . , m), Em[X] := E[X | Di, Si, i = 1, . . . , m].
Claim 2. (i) The generation GU(m) of an active individual U chosen u.a.r. after the mth split
in a CTBP satisfies the following indicator representation:

GU(m)
d=

m∑
i=1

1i , (23)

where Em[1i] = Di/Si , and the indicators are independent, conditioned on the sequence
Di, Si, i = 1, . . . , m.

(ii) Let us denote (U, V ) a pair of individuals chosen u.a.r. after the mth split. Let us further
assume that the latest common ancestorU∧V ofU andV reproduced at the τU∧V th split. Then,
conditioned on τU∧V , the following two variables are independent and their joint distribution
can be written as

(GU −GU∧V ,GV −GU∧V)
d=

( m∑
i=τU∧V

1i ,
m∑

i=τU∧V
1′
i

)
, (24)

where
Pm((1i , 1′

i ) = (1, 0) | τU∧V < i) = Di

Si

Si −Di

Si − 1
, (25a)

Pm((1i , 1′
i ) = (0, 1) | τU∧V < i) = Di

Si

Si −Di

Si − 1
, (25b)

Pm((1i , 1′
i ) = (1, 1), τU∧V = i | τU∧V ≤ i) = Di(Di − 1)

Si(Si − 1)
(25c)

and, conditioned on τU∧V , different indices are independent.
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Proof. (i) A proof using the ancestral line can be found in [16, Section 3.A] (see also
Section 2.A for clearer explanations), but a proof based on induction can also be worked out.
Here we give the core idea of the proof of Bühler. The ancestral line of an individual in a CTBP
is the unique path from the individual to the root. For the time interval between the ith and
(i + 1)th split we can allocate a unique individual on the ancestral line that was active in this
time interval. For the following observations, we condition on Di, Si, i = 1, . . . , m. Then
Gm = 11 + 12 + · · · + 1m, where the indicators 1i are conditionally independent and 1i = 1
if and only if the ancestor that was alive in the time interval between the ith and (i + 1)th
split was newborn (born at the ith split). Recall that the individual that splits at the ith step is
chosen u.a.r., as well as U is also chosen u.a.r. among the Sm many active individuals after the
mth split. Since in the interval between the ith and (i + 1)th split there were exactly Di many
individuals newborn, and Si many alive, and the ancestor of U is equally likely to be any of
them, this yields the probability P(1i = 1 | Di, Si) = Di/Si .

(ii) The proof follows from [16, Section 3.B] in a similar manner: after time τU∧V , we write
GU −GU∧V as sums of indicators, where 1i is 1 if and only if the individual alive between the
ith and (i + 1)th on the ancestral line of U is newborn (born at the ith split). We do the same
for GV − GU∧V using 1′

is. Conditional on Di, Si, i = 1, . . . , m, the pairs (1i , 1′
i ) become

independent and their joint distribution is the one given in (25a)–(25c), since, at each step, each
pair of active individuals is equally likely to be the ancestors of U and V , and the ancestral
lines merge precisely when the ancestors of U and V are two children of the vertex that splits
at step i, giving the last line of (25a)–(25c). �

Proof of Proposition 1. The proposition follows from Claim 2. More precisely, we note that
in our case Di = d + 1 and Si = di + 1 are deterministic; hence,

GU(m)
d=

m∑
i=1

1i , (26)

where P(1i = 1) = (d + 1)/(di + 1). From this identity the expectation and variance of GU
follows:

E[GU(m)] = d + 1

d
logm+O(1), D

2[GU(m)] = E[GU ] +O(m−1). (27)

The CLT (21) holds for the standardization ofGU(m) since the collection of Bernoulli random
variables {1i}mi=1, m = 1, 2, . . . satisfies Lindeberg’s condition.

For the second statement,GU
d= GU(m) is obvious by noting that the marginal of a uniformly

chosen pair of vertices is a uniformly chosen vertex. Next, note that the event (1i , 1′
i ) = (1, 1)

means that the ancestral lines ofU and V merge at the ith split. To see that τU∧V has a limiting
distribution, we use

P(τU∧V ≤ k) =
m∏

i=k+1

(1 − P(τU∧V = i | τU∧V ≤ i)), (28)

where the factors on the right-hand side are the probabilities that the two ancestral lines do not
merge at the ith split. This tends to a proper limiting distribution since by (25a)–(25c)

∞∑
i=1

P(τU∧V = i | τU∧V ≤ i) =
∞∑
i=1

d + 1

(di + 1)i
< ∞.
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Hence, τU∧V has a limiting distribution, and clearly (logm− log τU∧V )/logm → 1. Note that
this also means that GU∧V also has a limiting distribution, independent of m, since GU∧V is
the generation of the individual that splits at the τU∧V th split.

From here, one can show the joint convergence of (24) using the Lindeberg CLT for linear
combinations of

∑m
i=τU∧V+1(α 1i +β 1′

i ) and find that the two variables in (22) tend jointly to
a two-dimensional standard normal variable. �

Recall the definition of the function fd(c) from (6) and the constant c̃d that satisfies c̃d >
(d + 1)/d, fd(c̃d) = −1. We will need the next proposition in the proof of Theorem 2.

Proposition 2. The exact asymptotic tail behaviour of GU(m) is given by

lim
m→∞

log(P(GU(m) > c logm))

logm
= fd(c). (29)

Further, after m splits the deepest branch in the CTBP satisfies

maxi≤m GU(i)
logm

P−→ c̃d . (30)

Proof. Let �m(θ) := log E[exp{θGU(m)/logm}]. Using (26), elementary calculation
yields that

�m(θ logm) =
m∑
i=1

log

(
1 + d+1

di + 1
(exp{θ} − 1)

)
.

Hence, from the series expansion of log(1 + x), we see that

lim
m→∞

1

logm
�m(θ logm) = d + 1

d
(exp{θ} − 1),

which is the cumulant generating function of a ξ = Poi((d + 1)/d) random variable. The
rate function of such a random variable is −fd(c). Hence, the conditions of the Gärtner–Ellis
theorem [20, Section 2.3] are satisfied, which implies (29).

Our CTBP is a special case of so-called random lopsided trees [17], [27]. The maximal
depth of such trees was studied by Broutin and Devroye [15] in a more general framework.
Thus, (30) is just an application of [15, Theorem 5 and Remark afterwards] with our notation.
This completes the proof. �
Remark 7. To see that c̃d should be the correct constant in (30) we can argue that, from (29),
it follows that the sum

∑
m P(GU(m) > c logm) < ∞ for any c > c̃d . Thus, by the Borel–

Cantelli lemma, for any such c there are only finitely many m such that the event {GU(m) >
c logm} holds, giving the w.h.p. upper bound c̃d logm on the depth of the CTBP.

4.2. Proofs of Theorems 1 and 3

Proof of Theorem 1. Pick a pair of active vertices u, v u.a.r. from a RANd(n). We write
|u|, |v| for their generation. As before, write u ∧ v for their latest common ancestor, i.e. the
longest common prefix of their codes. Define the distinct postfixes ũ, ṽ after u ∧ v by

u =: (u ∧ v)ũ, v =: (u ∧ v)̃v.

By Lemma 2(iii) and Claim 1 the length of the shortest paths between u, v satisfies

dist(u, v) = N(ũ)+N(̃v),
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and Proposition 1 describes the typical distance between u and v along the tree (i.e. using
only forward edges and no shortcut edges). Since u and v were chosen uniformly at random
among the active vertices after n splits, we can write |u| d= GU(n), |v| d= GV (n), where U
and V denote two uniformly chosen alive individuals in the CTBP in Section 4.1. By the same
reasoning (and dropping the dependence of n for shorter notation),

|u ∧ v| d= GU∧V , |ũ| d= GU −GU∧V , |̃v| d= GV −GU∧V . (31)

Further, by symmetry of the process, the symbols in the codes ũ and ṽ are i.i.d. uniform on 
d
(after the first symbol in both of the codes, which has to be different by the definition of u∧ v).
Hence, by Lemma 3,

dist(u, v)
d= HGU−GU∧V +HGV−GU∧V . (32)

Using (27) and the fact from the proof of Claim 2 that GU∧V has a limiting distribution, we
calculate

E[HGU−GU∧V ] = E[E[HGU−GU∧V | GU −GU∧V ]] = 1

μd

d + 1

d
logm(1 + o(1)).

To obtain a CLT for HGU−GU∧V , observe that

HGU−GU∧V − (1/μd)((d + 1)/d) logm√
((d + 1)/d) logmσ 2

d /μ
3
d

= HGU−GU∧V − (1/μd)(GU −GU∧V )√
(GU −GU∧V )σ 2

d /μ
3
d

√
GU −GU∧V

((d + 1)/d) logm

+ (1/μd)(GU −GU∧V )− (1/μd)((d + 1)/d) logm√
((d + 1)/d) logmσ 2

d /μ
3
d

. (33)

The first factor on the right-hand side, conditionally onGU −GU∧V withGU −GU∧V → ∞,
tends to a standard normal random variable independent of GU by the renewal CLT in (20)
and the second factor tends to 1 in probability by (22). By (22) again, the second term tends
to a N (0, μd/σ 2

d ). Since the length of the codes ũ, ṽ are independent of the symbols in these
codes,HGU−GU∧V | GU −GU∧V is independent ofGU −GU∧V . As a result, the two limiting
normals arising from the two summands on the right-hand side of (33) are also independent;
thus,(

HGU−GU∧V − 1

μd

d + 1

d
logm

)(√
d + 1

d
logmσ 2

d /μ
3
d

)−1/2
d−→ N

(
0, 1 + μd

σ 2
d

)
. (34)

By conditioning first onGU∧V (as in the proof of Proposition 1) and using the fact that the sym-
bols in the code of ũ, ṽ are all i.i.d. uniform in
d , one can show that (HGU−GU∧V ,HGV−GU∧V )
tend jointly to two independent copies of N (0, 1 + μd/σ

2
d ) variables. By (32) it follows that

hop(n) = HGU−GU∧V + HGV−GU∧V , and the first statement of the Theorem 1 immediately
follows by normalising such that the total variance is 1.

The second statement follows by calculating how many active cliques a vertex with degree k
is contained in: a vertex with degree d + 1 is contained in d + 1 cliques, and when the degree
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of a vertex v increases by 1, then the number of cliques containing v increases by d − 1; thus,
a vertex with degree k ≥ d + 1 is contained in exactly

Qk = 2 + (k − d)(d − 1) (35)

active cliques. This means that the inactive vertex v is connected to exactly Qk many active
vertices with an edge. It is clear that the total number of active vertices after n steps is A(n) =
dn+ d + 1. This implies that choosing two inactive vertices x, y according to the size-biased
distribution given in (9) is equivalent to choosing two active cliques U,V chosen u.a.r. that are
neighbouring these vertices. The distance between x, y is then between N(ũ) + N(̃v) − 2,
N(ũ) + N(̃v) since, by Lemma 2, x = Tiu for some i ∈ 
i ; hence, we can gain at most one
hop by considering x instead of the clique U and the same holds for y and V . Hence, the CLT
for U,V implies a CLT for two vertices picked according to the probabilities in (9). �
Remark 8. Denote the generation of the mth splitting vertex by Ĝm. Since at each split
in the CTBP exactly one new inactive vertex is created; namely, a uniformly chosen active
vertex becomes inactive, we have Ĝm

d= GU(m− 1). Hence, if we choose an inactive vertex
of a RANd(n) uniformly at random then its distance from the root has distribution GU(X),
where X is a random variable uniform in the set {0, 1, . . . , n − 1}, with GU(0) = 1. With a
similar argument to the one in Claim 2, one can obtain that the latest common ancestor of two
inactive vertices chosen u.a.r. also has a limiting distribution, and if ĥop(n) denotes the distance
between them, one can obtain ĥop(n)/(2((d + 1)/d) log n)

P−→ 1. But it is also not difficult to
see that the CLT does not hold anymore (since it does not hold for GU(X) for X uniform in
{0, 1, . . . , n− 1}).

Proof of Theorem 3. The proof follows analogous lines to the proof of Theorem 1, hence,
we only give the sketch. The main idea here is that the tree can be viewed as a CTBP where
at step i, each active individual splits with probability qi or stays active for the next step with
probability 1 − qi . Hence, Proposition 1 can be modified as follows. The generation of an
active individual picked u.a.r. after the mth split satisfies

G̃U (m)
d=

m∑
i=1

1̃i ,

where 1̃i = 1 if and only if the individual on the ancestral line of U is newborn at the ith
step. Note that in this case, the indicators are independent even without conditioning, and
P(̃1i = 1) = qi , since at each step each individual splits with the same probability, indepen-
dently of each other. Since splitting happens with probability qi at step i, the CLT for G̃U (m)
holds by the Lindeberg CLT. Now, for two individualsU and V picked u.a.r., withGU∧V , τU∧V
as in Proposition 1, we have

(GU −GU∧V ,GV −GU∧V )
d=

( m∑
i=τU∧V

1̃i ,
m∑

i=τU∧V
1̃
′
i

)
,

where different indices are independent and conditioned on τU∧V , 1̃i , 1̃
′
i are independent indi-

cators with P(̃1i = 1) = P(̃1
′
i = 1) = qi . Since the variance

∑
i qi(1 − qi) → ∞, the joint

CLT follows in a similar manner as for Proposition 1 if we can show that τU∧V has a limiting
distribution. For this, note that, similarly as in (28),

P(τU∧V ≤ k) =
m∏

i=k+1

(1 − P(τU∧V = i | τU∧V ≤ i)), (36)
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and the factors on the right-hand side express that the two ancestral lines of U and V do not
merge yet at step i. Write Ai for the number of active vertices at step i. Then at step i
there are Zi := bin(Ai, qi) many vertices that split, each of them producing d + 1 new active
vertices, and, hence, the probability that the two ancestral lines merge at step i, conditioned on
Ai,Ai+1 is

P(τU∧V = i | τU∧V ≤ i, Ai, Ai+1) = Zi(d + 1)d

Ai+1(Ai+1 − 1)
, (37)

where Ai+1 = Ai + dZi , the new number of active vertices after the ith split. The right-hand
side of (37) is obtained by observing that if U and V are chosen uniformly at random, each
pair of individuals at step i, Ai+1(Ai+1 − 1)/2 in total, is equally likely to be the ancestors of
them, and there are Zi(d + 1)d/2 many pairs that make the ancestral lines merge. If the sum
in i ∈ N on the right-hand side of (37) is almost surely (a.s.) finite then (36) ensures that τU∧V
has a proper limiting distribution. Hence, we aim to show that this is the case whenever the
total number of inactive vertices N(n) → ∞, i.e.

∞∑
i=1

Zi(d + 1)d

Ai+1(Ai+1 − 1)
< ∞ a.s. on {N(n) → ∞}.

Since Ai+1 = N(i + 1)d + d + 1 and Zi = N(i + 1)−N(i), we can approximate the above
sum by

(d + 1)
∞∑
i=1

d(N(i + 1)−N(i))

(dN(i + 1))2
.

Now we can interpolate N(i) with a continuous function and then this sum is a.s. finite if and
only if the integral ∫ ∞

1

N ′(x)
N(x)2

dx

is a.s. finite. Note that this is the case if and only ifN(n) → ∞. Further, as long as
∑
n∈N

qn =
∞, N(n) → ∞ holds a.s. by the second Borel–Cantelli lemma: in each step we add at least
a new vertex with probability qn. Then the CLT for the distances follows in the exact same
manner as in the proof of Theorem 1. �
4.3. Proof of Theorem 2

We need some preliminary statements before the proof. Recall from (5) the definition of the
large deviation rate function Id(x) of Yd and alsoHk as the number of consecutive occurrences
of full coupon collector blocks in a code of length k from (19).

Lemma 4. For 1 ≤ β ≤ μd/(d + 1), Hk satisfies the large deviation

lim
k→∞

1

k
log

(
P

(
Hk >

β

μd
k

))
= − β

μd
Id

(
μd

β

)
. (38)

Proof. Let Y (i)d be i.i.d. distributed according to Yd . Since

P

(
Hk >

β

μd
k

)
= P

(kβ/μd∑
i=1

Y
(i)
d <

(
β

μd
k

)
· μd
β

)
,

we can apply Cramér’s theorem [20, Section 2.2] to obtain (38). �
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At the end of the proof of Theorem 1 we see that switching from inactive vertices to
neighbouring active vertices/cliques only changes the distances by at most 2; hence, it is
preferable to investigate the diameter of the graph by active vertices. Denote the set of active
vertices at step n by An. We index An by vertices u and denote one picked u.a.r. by U . We
have seen that |An| = dn+ d+ 1. Our aim is to estimate the expected number of u ∈ An with
distance at least xc̃d log n/μd from the root for some x ≥ 1.

Recall the definition of the function g(α, β) from (7), and define, for an x ≥ 1,

(α(x), β(x)) := arg sup
α,β

{g(α, β) : αβ = x}. (39)

Claim 3. For any x ≥ 1, define the indicator variables for each vertex u ∈ An as

Ju(x) := 1{N(u)>xc̃d log n/μd }.

Then, with (α(x), β(x)) as in (39),

lim
n→∞

1

log n
log E

[ ∑
u∈An

Ju(x)

]
= g(α(x), β(x)). (40)

Proof. Note that

|An|E
[

1

|An|
∑

u∈An

Ju(x)

]
= (dn+ d + 1)P

(
HGU(n) ≥ xc̃d log n

μd

)
, (41)

where we use Lemma 3 for the distributional identity N(u)
d= HGU(n) for a uniformly chosen

u ∈ An (see also the argument above (31)). Then

P

(
HGU(n) ≥ x

μd
c̃d log n

)
≥ P(GU(n) > α(x)c̃d log n)P

(
Hα(x)c̃d log n >

β(x)

μd
α(x)c̃d log n

)
,

where we use the fact that x = α(x)β(x) and the symbols in a uniformly chosen u are i.i.d.
uniform in 
d , and Hk is increasing in k. Finally, multiplying by dn + d + 1, taking the
logarithm, and dividing by log n, applying (29) and (38) (with k = α(x)cd log n and only
dividing by log n instead of α(x)cd log n), we arrive at

lim
n→∞

log E[∑u∈An
Ju(x)]

log n
≥ 1 + fd(α(x)c̃d)− α(x)c̃d

β(x)

μd
Id

(
μd

β(x)

)
= g(α(x), β(x)).

For the upper bound, fix a small ε > 0, and set

i�(ε) := max

{
i : (α(x)− (i + 1)ε)c̃d ≥ (d + 1)

d

}
,

i�(ε) := min{i : (α(x)− iε)c̃d ≥ xc̃d}.
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Then we can decompose the event {HGU(n) ≥ xc̃d log n/μd} according to which ε-length
interval GU(n)/(c̃d log n) falls into, and use the monotonicity of Hk in k to obtain

P

(
HGU(n) ≥ x

μd
c̃d log n

)
≤ P

(
H(d+1) log n/d ≥ xc̃d log n

μd

)
+ P(GU(n) > xc̃d log n)

+
i�(ε)∑
i=i�(ε)

P

(
H(α(x)−iε)c̃d log n ≥ xc̃d log n

μd

)
× P((α(x)− (i + 1)ε)c̃d log n < GU(n) < (α(x)− iε)c̃d log n). (42)

For the first term on the right-hand side of (42), using (38), we obtain

lim
n→∞

log(P(H(d+1) log n/d ≥ xc̃d log n/μd))

log n
= −xc̃d

μd
Id

(
(d + 1)μd
xc̃dd

)
. (43)

For the ith summand in the third term on the right-hand side of (42), we use an upper bound
by dropping the upper restriction on GU(n), and using (38) again and also (29), we obtain

log

(
P

(
H(α(x)−iε)c̃d log n ≥ xc̃d log n

μd

)
P((α(x)− (i + 1)ε)c̃d log n < GU(n))

)
≤ log n

(
−xc̃d
μd

Id

(
μd(α − iε)

x

)
+ fd((α(x)− (i + 1)ε)c̃d)

)
(1 + o(1)), (44)

where the (1 + o(1)) disappears when dividing by logm and taking the limit as n → ∞. The
second term on the right-hand side of (42) can be treated similarly, except that there is no part
coming from the large deviation principle of theH·. This is not surprising since this is the point
where the length of the code becomes so large that a typical number of shortcut edges already
exceeds xc̃d log n/μd .

To finish the upper bound, note that setting i = i�(ε)+ 1, the right-hand side of (44) exactly
yields the right-hand side of (43), while setting i = i�(ε) yields the second term, since in this
case the rate function Id(·) vanishes. Further, note that the terms in (42) are additive. This
implies that when taking the logarithm and dividing by log n, the largest term will dominate
and determine the leading exponent. As a result,

lim
n→∞

P(HGU (n) ≥ xc̃d log n/μd)

log n

≤ max
i∈[i�(ε), i�(ε)+1]

−xc̃d
μd

Id

(
μd(α(x)− iε)

x

)
+ fd((α(x)− (i + 1)ε)c̃d).

To finish, let ε → 0, and note that the ith term on the right-hand side is g(z, x/z)− 1 for some
z ∈ R. Since the maximum of this expression is taken at z = α(x), the proof is complete. �
Claim 4. (Monotonicity of g(α(x), β(x)) in x.) The function g(α(x), β(x)) is continuous and
strictly monotone decreasing for x > (d + 1)/(dc̃d).

Proof. Recall that

g(α, β) := 1 + fd(αc̃d)− αβ
c̃d

μd
Id

(
μd

β

)
.
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The continuity follows from the fact that g(α, β) is differentiable. For the monotonicity,
consider x1 > x2 > 1. We have to show that the maximum of the function g(α, β) on
the hyperbola β = x1/α is smaller than that on β = x2/α. Let g1 := g(α(x1), β(x1))

and g2 := g(α(x2), β(x2)). Note that fd(αc̃d) < 0 and monotone decreasing in α as long as
α > (d+1)/(dc̃d), while the second term −αβId(μd/β) < 0 and monotone decreasing in β as
long as β > 1. Since x1 > (d+1)/(dc̃d), at least one of the inequalities α(x1) > (d+1)/(dc̃d)
and β(x1) > 1 must hold.

First, suppose that α(x1) > (d + 1)/(dc̃d) holds. Then, if x2/β(x1) > (d + 1)/(dc̃d)
then clearly g2 = g(α(x1), x1/α(x1)) < g(x2/β(x1), β(x1)) ≤ g1 and we are done. If, on
the other hand, x2/β(x1) < (d + 1)/(dc̃d) then consider the point on the hyperbola (d +
1)/(dc̃d), x2/(d + 1)/(dc̃d). Since we decreased both coordinates,

g1 < g

(
d + 1

dc̃d
,
x2/(d + 1)

dc̃d

)
holds as long as x2/(d + 1)/(dc̃d) > 1. This must hold since otherwise the whole hyperbola
β = x2/α would be in the region {α < d + 1/(dc̃d)} ∪ {β < 1}, which would mean that
x2 < (d + 1)/(dc̃d) which contradicts our original assumption.

If β(x1) > 1 then the argument is similar by first decreasing β to x2/α(x1) or to 1 (whichever
is larger), and in case we have to decrease it to 1 then we further decrease α(x1) to x2 and again
using the fact that x2 > 1 implies that x2 > (d + 1)/dc̃d . �

Proof of Theorem 2. First, we choose the largest possible x in Ju(x) so that

lim
n→∞ P

( ∑
u∈An

Ju(x) > 0

)
> 0,

i.e. there is at least one active clique that has distance xc̃d log n/μd from the root. Note that
if x is such that g(α(x), β(x)) < 0, then by Claim 3 and Markov’s inequality, we have

P

( ∑
u∈Am

Ju(x) > 0

)
≤ E

[ ∑
u∈An

Ju(x)

]
= ng(α(x),β(x))(1+o(1)) → 0. (45)

Thus, necessarily x has to have g(α(x), β(x)) ≥ 0. Next we work out the lower bound. For this,
we need a upper bound on the second moment

E

[( ∑
u∈An

Ju(x)

)2]
= E

[ ∑
u∈An

Ju(x)

]
+

∑
u,v∈An, u�=v

E[Ju(x)Jv(x)].

Note that the second term equals

(dn+ d + 1)2P

(
HGU >

xc̃d log n

μd
,HGV >

xc̃d log n

μd

)
,

where HGU and HGV is the minimal number of hops needed to reach the root from two active
vertices chosen independently and u.a.r. As before, writeU ∧V for the latest common ancestor
of U and V . Then we can write

P

(
HGU >

xc̃d log n

μd
,HGV >

xc̃d log n

μd

)
= P

(
HGU∧V +HGU−GU∧V >

xc̃d log n

μd
,HGU∧V +HGV−GU∧V >

xc̃d log n

μd

)
.
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Pick any function ω(n) → ∞ that also satisfies ω(n) = o(log n) (e.g. ω(n) = log log n will
do), then we can bound the right-hand side from above as follows:

P(HGU∧V > ω(n))+ P

(
HGU−GU∧V >

x

μd
c̃d log n− ω(n),

HGV−GU∧V >
x

μd
c̃d log n− ω(n)

)
. (46)

Using the proof of Claim 2, we know that the joint distribution of two active individuals U,V
picked u.a.r. satisfies the fact that their common ancestor GU∧V has a limiting distribution.
Hence, for any ω(n) → ∞,

P(HGU∧V > ω(n)) → 0. (47)

Further, conditioned on the splitting time τu∧v of U ∧V , we can describe the joint distribution
of GU − GU∧V ,GV − GU∧V as the sum of indicators, see (24). Further, the two sums are
asymptotically independent, and also the symbols in the code u, v of U and V are independent
and uniform in
d after u∧ v, the code of U ∧V . Hence, choosing a large enough n, the ω(n)
term becomes negligible and we obtain

P

(
HGU−GU∧V >

xc̃d log n

μd
− ω(n),HGV−GU∧V >

xc̃d log n

μd
− ω(n)

)
= P

(
HGU−GU∧V >

xc̃d log n

μd

)
P

(
HGV−GU∧V >

xc̃d log n

μd

)
(1 + o(1))

= P

(
HGU >

xc̃d log n

μd

)2

(1 + o(1)), (48)

where the o(1) → 0 as n → ∞, and in the last equation we used again the fact thatGU∧V has
a limiting distribution. Combining (47) with (48) to bound (46), we arrive at

E

[( ∑
u∈An

Ju(x)

)2]

= E

[ ∑
u∈An

Ju(x)

]
+ (nd + d + 1)2

(
P

(
HGU >

xc̃ log n

μd

)2

(1 + o(1))+ o(1)

)

= E

[ ∑
u∈An

Ju(x)

]
+ E

[ ∑
u∈An

Ju(x)

]2

(1 + o(1)). (49)

From a Cauchy–Schwarz inequality followed by (49), we obtain

P

( ∑
u∈An

Ju(x) > 0

)
≥ E[∑u∈An

Ju(x)]2

E[(∑u∈An
Ju(x))2]

≥ E[∑u∈An
Ju(x)]2

E[∑u∈An
Ju(x)] + E[∑u∈An

Ju(x)]2(1 + o(1))
, (50)

and the right-hand side is strictly positive in the limit as n → ∞ if and only if g(α, β) ≥ 0
(using Claim 3 again for each term on the right-hand side). From this and the monotonicity
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of g(α(x), β(x)) in x (see Claim 4), it is immediate that the largest diameter can be achieved
when picking x := x̃ so that g(α(x̃), β(x̃)) = 0. Apply (45) with x = x̃(1 + ε) and (50) with
x := x̃(1 − ε) to finally conclude that

maxu∈An
HGU(n)

log n
P−→ c̃d

μd
x̃ as n → ∞. (51)

The statement of Theorem 2 for the flooding time now follows from the fact that if U is an
active clique picked u.a.r. after the nth step of the evolution of the RAN then

flood(n)
d= HGU−GU∧V + max

v∈A(n)
HGV−GU∧V .

Now, the proof of Theorem 1 (or Proposition 1) implies that the CLT holds for generation
GU − GU∧V , and since the symbols are uniform in the code of U , similarly as in (33), the
CLT holds for HGU(n) as well. Further, since in flood(u, v) we maximise the distance over the
choice of the other vertex V , clearly w.h.p. we can pick V such that the latest common ancestor
U ∧V is the root itself. This combined with the fact that the distance changes only by at most 2
if we consider active cliques instead of vertices in the graph implies, and the statement of the
theorem follows from, the distributional convergence of

HGU(n)

log n
d−→ (d + 1)d

μd

and (51). For the diameter, we have

diam(n)

log n
d= 2

maxu∈A(n) HGu

log n
,

since for any ε > 0, w.h.p. there are at least two vertices that are not closely related to each
other and both satisfy

HGu

log n
>

(
c̃d

μd

)
x̃(1 − ε),

but w.h.p. there are no vertices that satisfy HGv/log n > (̃cd/μd)x̃(1 + ε). �

We are left to analyse the maximization problem. First of all, it is elementary to see (e.g.
using Claim 4 or elementary two-dimensional calculus) that solving (39) and then choosing x̃
so that g(α(x̃), β(x̃)) = 0 is equivalent to the maximization problem in (10). However, two-
dimensional techniques provide a better understanding of the solution x̃ = α(x̃)β(x̃). In short
we write α(x̃) := α̃, β(x̃) := β̃.

Lemma 5. The maximization problem (10) has a unique solution

(α̃, β̃) ∈ (0, 1] ×
[

1,
μd

d + 1

]
,

and, further, this solution satisfies

α̃ = 1

c̃d

d + 1

d
exp

{
−I ′

d

(
μd

β̃

)}
,

β̃

μd
Id

(
μd

β̃

)
= 1 + fd(α̃c̃d )

α̃c̃d
.
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Proof. Define the Lagrange multiplier function L(α, β, λ) := αβ − λg(α, β). Necessar-
ily the optimal (α̃, β̃) satisfies ∇L(α̃, β̃, λ̃) = 0. The partial derivative L(α, β, λ)′λ = 0
simply gives the condition g(α, β) = 0. Further, the optimising λ̃ can be expressed from
L(α, β, λ)′α = 0 and L(α, β, λ)′β = 0 and satisfies

λ̃ = β

(∂/∂α)g(α, β)
= α

(∂/∂β)g(α, β)
.

After differentiation of

g(α, β) = 1 + fd(αc̃d)− αc̃d
β

μd
Id

(
μd

β

)
,

rearranging terms, and using the fact that f ′
d(x) = −log((d/(d + 1))x), we obtain the first

condition. To check the sufficiency we look at the bordered Hessian⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
∂g

∂α

∂g

∂β

∂g

∂α

∂2αβ

∂α2

∂2αβ

∂α∂β

∂g

∂β

∂2αβ

∂α∂β

∂2αβ

∂β2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
0

∂g

∂α

∂g

∂β

∂g

∂α
0 1

∂g

∂β
1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Its determinant is (∂2g(α, β)/∂α∂β)2 > 0; thus, the condition is also sufficient. We note that
the solution can be approximated by numerical methods. �

Remark 9. We mention here the difficulties in the analysis of the diameter and flooding time
of EANs: the main difficulty here is to understand the proper correlation structure of the codes
(and shortcut edges) on the vertices of the branching process.

(i) The corresponding branching process tree is fatter than the branching process for the
RAN as soon as n−1 = o(qn).

(ii) In each step each vertex splits independently of the past with probability qn.

Both (i) and (ii) together imply that even though we do understand that the marginal distribution
of the symbols of a clique U picked u.a.r. is uniform in 
d , still it is more likely that the
‘neighbouring codes’ are also present in the graph and, hence, codes for which N(u) is large
are more likely to appear.

Hence, we expect that the diameter will have a larger constant in front of
∑
qi than the

constant in front of log n for the RAN. (Compare it to the diameter of the deterministic AN:
with qn ≡ 1 it is not difficult to see that diam(ANd(n)) = 2n/(d + 1)).

5. Degree distribution of Apollonian networks

In this section we prove the results related to the degree distribution. We start with an
elementary claim.

Claim 5. The series pk given in (12) is a probability distribution.
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Proof. Clearly pk ≥ 0. Combining the formula for pk in (12) with an elementary rewrite
of the fraction of the gamma functions inside the sum yields

∞∑
k=d+1

pk = d

2d + 1

	(1 + (2d + 1)/(d − 1))

	(1 + 2/(d − 1))

∞∑
k=d+1

	(k − d + 2/(d − 1))

	(k − d + (2d + 1)/(d − 1))

= d

2d + 1

	(1 + (2d + 1)/(d − 1))

	(1 + 2/(d − 1))

×
∞∑

k=d+1

d − 1

d

(
	(k − d + 2/(d − 1))

	(k − 1 − d + (2d + 1)/(d − 1))

− 	(k + 1 − d + 2/(d − 1))

	(k − d + (2d + 1)/(d − 1))

)
= 1,

since the last sum is telescopic. �
We proceed by analysing RANs first.

5.1. Sketch of the proof of Theorem 4

The proof of Theorem 4 determining the degree distribution of RANs consists of two main
steps that are described in Lemmas 6 and 7. Recall the definition of Ñk(n) and Nk(n) from (1)
and (2). In Lemma 6 we see that Ñk(n) converges to its expectation uniformly in k as n → ∞.
The method we describe here is an adaptation of the standard martingale method and is similar
to that in [12], [13], and [30]. Parallel to our work, Frieze and Tsourakakis [24] applied this
method to show Lemmas 6 and 7 for two dimensions and their proof can be generalised to
higher dimensions without any difficulty; hence, we give only a sketch of proof here.

Lemma 6. (Frieze and Tsourakakis [24].) Fix d ≥ 2 and c1 >
√

8(d + 1). Then

lim
n→∞ P

(
max
k

|Ñk(n)− E[Ñk(n)]| ≥ c1
√
n log n

)
= 0.

This lemma tells us that Ñk(n) concentrates around its expected value. From this we
immediately obtain the concentration of p̃k(n) = Ñk(n)/(n + d + 2) around its expected
value. Lemma 7 approximates the difference between this expected value andpk , the stationary
distribution.

Lemma 7. (Frieze and Tsourakakis [24].) There exists a probability distribution {pk}∞k=d+1
for which for any n ≥ 0 and for any k ≥ d + 1,

|E[Ñk(n)] − pk(n+ d + 2)| ≤ c2
√
n log n

with some constant c2. The distribution {pk}k∈N is determined in (63) and it has a power-law
asymptotic decay with exponent (2d − 1)/(d − 1) ∈ (2, 3] for d ≥ 2.

As mentioned above, we do not provide the proof of these lemmas here. The methods,
however, are similar to the ones used in the proof of Lemmas 8 and 9 for the EANs below.
Given Lemmas 8 and 9, the proof of Theorem 4 is immediate.

Proof of Theorem 4. By the triangle inequality Theorem 4 follows from Lemmas 6 and 7
with c = c1 + c2. �
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5.2. Proof of Theorem 5

We prove Theorem 5 about the degree distribution of EANs again in two main steps, as in
the case of the RANs. Recall the definition pk(n) from (2). We denote the total minus the
initial number of inactive vertices after n steps by N∗(n), i.e. N∗(n) = N(n) − d − 2. Note
that N∗(n) is random (and does not necessarily concentrate); hence, any statement about the
degree distribution is more accurate when stated conditional on N∗(n) (rather than in terms of
its mean, say). Denote the σ -algebra generated by {N∗(1), . . . , N∗(n)} by Gn. In the following
lemma we see that the empirical proportion of degree k inactive vertices concentrates around
its Gn-conditional mean.

Lemma 8. Fix the dimension d ≥ 2, a constant c� >
√

24(d + 1), and a sequence of vertex
arrival probabilities {qn}∞n=1 such that N∗(n) → ∞ a.s. as n → ∞. Then there exists
ε = ε(c�) > 0 such that w.h.p.

P

(
max
k

∣∣∣∣pk(n)− E[Nk(n) | Gn]
N∗(n)

∣∣∣∣ ≥ c�

√
logN∗(n)
N∗(n)

∣∣∣∣ N∗(n)
)

= o(N∗(n)−ε(c�)).

In the next lemma we see that the Gn-conditional mean of the proportion of degree k inactive
vertices tends to pk (defined in (12)).

Lemma 9. Let d ≥ 2 and assume that {qn}∞n=1 is a sequence that satisfies Assumption 1. Then
for any k ≥ d + 1 there exists a random variable ηk < ∞ such that w.h.p.∣∣∣∣E[Nk(n) | Gn]

N∗(n)
− pk

∣∣∣∣ ≤ ηkqn(1 + on(1)),

where the distribution {pk}k∈N is the same as the asymptotic degree distribution of the RANd

given in (12). Further, the random sequence {ηk} can be chosen to be nondecreasing with
ηk ≤ C0k!ηk for a constant C0 and a random variable η < ∞.

The random variable ηwill be explicitly defined at the end of the proof of Lemma 9. We need
one additional statement to be able to prove Theorem 5.

Claim 6. (The order of magnitude of N∗(n).) There exists a random variable ξ ≥ d + 1 such
that

lim
n→∞N

∗(n)
n−1∏
i=0

(1 + dqi)
−1 → ξ a.s., (52)

where q0 := 1.

Proof. When a new vertex is added to the graph, the number of active cliques increases by
d + 1 − 1 = d; thus, at time n there are

A(n) = dN∗(n)+ d + 1 (53)

active cliques given N∗(n). Since each clique that is active at step n turns into an inactive
clique (inactive vertex) with probability qn at step n, the number of new inactive vertices after
the (n + 1)th step satisfies N∗(n + 1) − N∗(n) = bin(dN∗(n) + d + 1, qn) with N∗(1) :=
bin(d+1, q1). As a result, E[N∗(n+1) | N∗(n)] = N∗(n)(1+dqn)+(d+1)qn with q0 := 1,
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and it is elementary to show that the process

M ′
n = N∗(n)

n−1∏
i=0

(1 + dqi)
−1 − (d + 1)

n−1∑
i=0

(
qi

i∏
j=0

(1 + dqj )
−1

)

is a square-integrable martingale if
∑
n∈N

qn = ∞ and so there exists a random variable
M ′∞ ≥ 0 such that M ′

n → M ′∞ a.s. Equation (52) follows with ξ := M ′∞ + d + 1 + K if
we can show that

∑∞
i=1(qi

∏i
j=0(1 + dqj )

−1) converges to a constant K ≥ 0. For this, since
1/(1 + dx) ≤ exp{−x} as long as x ≤ 1,

∞∑
i=1

(
qi

i∏
j=0

(1 + dqj )
−1

)
≤

∞∑
i=1

qi exp

{
−

i∑
j=1

qj

}
.

The right-hand side converges since
∑∞
n=1 qn → ∞. �

Proof of Theorem 5. Recall c� and ε(c�) from Lemma 8, and ηk from Lemma 9. Claim 6
implies that N∗(n) = �(

∏n−1
i=0 (1 + dqi)) a.s.; hence, for each fixed k there exists a random

integer n0(k) such that for all n > n0(k) we have c�
√

logN∗(n)/N∗(n) < ηkqn. Since the
sequence ηi is nondecreasing, by the triangle inequality and the union bound, for all n > n0(k),

P

(
max
i≤k

|pi(n)− pi | ≥ 3ηkqn
)

≤ P

(
max
i≤k

∣∣∣∣pi(n)− E[Ni(n) | Gn]
N∗(n)

∣∣∣∣ ≥ ηkqn

)
+ P

(
max
i≤k

∣∣∣∣E[Ni(n) | Gn]
N∗(n)

− pi

∣∣∣∣ ≥ 2ηkqn

)
.

By Lemmas 8 and 9 both terms on the right-hand side tend to 0; hence, the statement of
Theorem 5 follows. �

Now we prove Lemmas 8 and 9. To do this, the following observations will be useful. In a
similar way as we derived (53) one can show that an inactive vertex with degree k ≥ d + 1 is
contained in exactly

Qk = 2 + (k − d)(d − 1) (54)

active cliques. �

Proof of Lemma 8. We prove Lemma 8 using the Azuma–Hoeffding inequality in an elabo-
rate way. Use the notation K(n) := √

N∗(n) logN∗(n), and recall the σ -algebra Gn. We aim
to show that there exists a constant c > 0 such that

P

[
max
k

|Nk(n)− E[Nk(n) | Gn]| ≥ cK(n)

∣∣∣ Gn
]

= o(N∗(n)−ε). (55)

Taking conditional expectation with respect toN∗(n) of both sides immediately gives Lemma 8.
First note that at step n the maximal degree of any inactive vertex is N∗(n)+ d − 3. Thus, the
left-hand side of (55) is at most

N∗(n)+d−3∑
k=d+1

P(|Nk(n)− E[Nk(n) | Gn]| ≥ cK(n) | Gn).
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Since there are N∗(n) + d − 3 summables, it is enough to prove that uniformly in k with
d + 1 ≤ k ≤ N∗(n)+ d − 3,

P(|Nk(n)− E[Nk(n) | Gn]| ≥ c�K(n)) = o(N∗(n)−(1+ε)). (56)

For a fixed time step r , fix an ordering of the active cliques of the graph EANd(r, {qn}).
Clearly, the number of active cliques A(r) < (d + 1)r . To obtain EANd(r + 1) we draw an
independent Bernoulli(qr+1) random variable for every active clique in EANd(r, {qn}). Hence,
for 1 ≤ r ≤ n and 0 ≤ s ≤ A(r), it is reasonable to introduce Fr,s , the σ -algebra generated
by Gn and the graph at time r − 1 and the first s coin flips at step r . It is straightforward to see
that Gn = F1,0 ⊆ · · · ⊆ F1,d+1 ⊆ F2,0 ⊆ · · · ⊆ Fn,A(n). With this filtration, introduce the
following Doob martingale:

Mr,s = E[Nk(n) | Fr,s],
where k is fixed. Clearly M1,0 = E[Nk(n) | Gn] and Mn,A(n) = Nk(n). Now, we would like
to estimate the difference between Mr,s and Mr,s−1. We will see that

|Mr,s −Mr,s−1| ≤ 2(d + 1) for all r ∈ {1, . . . , n}, for all 1 ≤ s < A(r) ≤ (d + 1)r . (57)

From the definition ofMr,s , we see that the difference is caused by the extra information whether
the sth coin flip raises a new vertex or not. Let us consider the two different realizations, i.e.
in the EAN(r, s)a a new vertex vr,s is added to the graph at the sth coin flip but not in the
EAN(r, s)b. Note that the number N∗(r + 1)−N∗(r) of new vertices at time r is included in
the σ -algebra and therefore there must be an s′ with s < s′ <A(r) that at the s′th coin flip a
new vertex vr,s′ will be added in the EAN(r, s)b but not in the EAN(r, s)a . Hence, the graphs
EAN(r+1, 0)a and EAN(r+1, 0)b might be coupled in such a way that the number of inactive
vertices are the same and every vertex has the same degree except for the d + 1 neighbours of
vr,s in the EAN(r, s)a and the d + 1 neighbours of vr,s′ in the EAN(r, s)b. Since the degree of
vertices that were added later than r are not affected by what happens before time r , we can
extend this coupling up to time n such that there are at most 2(d + 1) inactive vertices with
different degrees. Thus, taking expectation with respect to Fr,s−1 conserves this difference,
which implies (57). (This argument is somewhat similar to [30, Lemma 8.5], except here a
somewhat different conditioning is needed.)

We have just proved that the martingale Mr,s has bounded increments. Observe that every
new vertex will create d + 1 new active cliques and induce d + 1 coin flips. Thus, there are at
most (d+1)N∗(n) coin flips until time n and so |Mr,s−Mr,s−1| �= 0 only at most (d+1)N∗(n)
times (and the number of nonzero coin flips is measurable with respect to Gn). Hence, using
the Azuma–Hoeffding inequality, we have, for any a > 0,

P(|Nk(n)− E[Nk(n) | Gn]| ≥ a | Gn) ≤ 2 exp

{
− a2

8N∗(n)(d + 1)3

}
.

(Note that both side are random variables and the statement holds a.s., also Gn containsN∗(n).)
Now set a = c�K(n), c� >

√
24(d + 1) (and, therefore, c� >

√
24(d + 1)(1 + ε)1/2 for some

ε > 0) to obtain

P(|Nk(n)− E[Nk(n) | Gn]| ≥ c�K(n) | Gn) ≤ 2N∗(n)−(c�)2/24(d+1)2 ≤ o(N∗(n)−(1+ε)).

Note that this bound is uniform in k; hence, (56) and (55) follow. �
For the proof of Lemma 9, we use the following proposition.
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Proposition 3. Let us introduce the nth empirical occupation parameter

q̂n := N∗(n+ 1)−N∗(n)
dN∗(n)+ d + 1

= 1

A(n)

A(n)∑
i=1

1{the ith active vertex at step n becomes inactive}.

Then, q̂n/qn → 1 a.s. as long as (14) of Assumption 1 is satisfied.

Proof. Indeed, q̂n is the empirical occupation parameter of a bin(A(n), qn) distribution, so
it is reasonable to assume that if n is large enough, q̂n will tend to the true parameter, qn.
Introduce the event En(ε) := {|q̂n/qn − 1| ≥ ε}. We can prove q̂n/qn → 1 a.s. if we can show
that for every ε > 0, En(ε) happens only for finitely many n. For this, we use a Chernoff bound
conditional on A(n) (see, e.g. [30, Theorem 2.21]):

P(En(ε) | A(n)) = P(|bin(A(n), qn)− A(n)qn| > εqnA(n) | A(n))

≤ exp

{
−A(n)qnε

2

2

}
. (58)

Note that by Claim 6, A(n) is of order exp{d∑n
i=1 qi} a.s.; hence, the right-hand side is

summable for any ε > 0 if and only if (14) of Assumption 1 is satisfied. Hence, by the
Borel–Cantelli lemma, in these cases we obtain q̂n/qn → 1 a.s. �

Proof of Lemma 9. We aim to write a recursion for E[Nk(n) | Gn]. Note that A(n + 1),
the number of active vertices (by (53)) and the number of new inactive vertices at step n,
N∗(n+ 1)−N∗(n) are both measurable with respect to Gn+1.

Given that there are N∗(n + 1) − N∗(n) successes in A(n) Bernoulli trials, the places
of these successful trials are distributed u.a.r. To compute E[Nk(n + 1) | Gn+1] in terms of
E[Nk(n) | Gn] we have to take into account the following three events that result in a vertex of
degree k at n+ 1.

(i) A degree of an inactive vertex can increase to k. An inactive vertex with degree k − �,
� = 1, . . . , ((d − 1)/d)k is contained in Qk−� many active cliques, hence, conditioned
on N∗(n+ 1)−N∗(n), A(n) ∈ Gn, the indicators which are 1 form a uniform subset of
all A(n) active cliques. Then, the probability that out of Qk−� many cliques exactly �
become inactive and the rest do not, is given by the hypergeometric distribution(

Qk−�
�

) �−1∏
i=0

N∗(n+ 1)−N∗(n)− i

A(n)− i

Qk−�−�−1∏
j=0

A(n)− (N∗(n+ 1)−N∗(n))− j

A(n)− �− j

≤
(
Qk−�
�

)
q̂�n(1 − q̂n)

Qk−�−�(1 + on(1)), (59)

as long as A(n) → ∞, which holds again by Claim 6 and
∑∞
n=1 qn → ∞. Further, the

inequality can be replaced by an equality for � = 1, since in these cases N∗(n + 1) −
N∗(n) − i cannot become 0 for any i in the first product of (59) and A(n) → ∞. For
� ≥ 2, 0 serves as a lower bound on the left-hand side.

(ii) An inactive vertex with degree k at n can conserve its degree. Since an inactive vertex
with degree k is contained in Qk active cliques (see (54)) the degree stays k from step n
to n+ 1 with Gn-conditional probability that is given by setting � = 0 in (59), which is
(1 − q̂n)

Qk (1 + on(1)).
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(iii) When k = d + 1, Nd+1(n) grows by the number of new vertices N∗(n+ 1)−N∗(n).

Note that the factor (1 + on(1)) in (59) also depends on k and �. However, one can show
that for all k ≥ d + 1 and all � = 1, . . . , ((d − 1)/d)k this term is bounded from above by

ψ+
k (n) :=

(
1 + 2Qk

A(n)

)Qk
,

and for � = 0 it is bounded above by 1. Hence, we can write the following conditional recursion
as an upper bound:

E[Nk(n+ 1) | Gn+1]
≤ E[Nk(n) | Gn](1 − q̂n)

Qk

+ ψ+
k (n)

(
E[Nk−1(n) | Gn]Qk−1q̂n(1 − q̂n)

Qk−1−1

+
(d−1)k/d∑
�=2

E[Nk−�(n) | Gn]
(
Qk−�
�

)
q̂�n(1 − q̂n)

Qk−�−�
)

+ 1{k=d+1}(N∗(n+ 1)−N∗(n)). (60)

A similar lower bound can also be given as

E[Nk(n+ 1) | Gn+1] ≥ ψ−
k (n)E[Nk(n) | Gn](1 − q̂n)

Qk

+ E[Nk−1(n) | Gn]Qk−1q̂n(1 − q̂n)
Qk−1−1

+ 1{k=d+1}(N∗(n+ 1)−N∗(n)), (61)

whereψ−
k (n) = (1−Qk/(A(n)− (N∗(n+1)−N∗(n))))Qk . Now, we first find the ‘stationary

solution’ of this recursion in the form E[Nk(n) | Gn] = pkN
∗(n). Recall that q̂n → 0, so a

series expansion in the first term on the right-hand side yields that the limiting distribution pk
should satisfy

pk(N
∗(n+ 1)−N∗(n))
≤ −pkN∗(n)Qkq̂n + pk−1N

∗(n)q̂nQk−1 +O(N∗(n)q̂2
n(Q

2
k +Qk−1))

+
(d−1)k/d∑
�=2

pk−�N∗(n)q̂n
(
Qk−�
�

)
q̂�−1
n + 1{k=d+1}(N∗(n+ 1)−N∗(n)).

Multiplying both sides by (N∗(n)q̂n)−1, and using the fact thatN∗(n+ 1)−N∗(n) = q̂nA(n),
we have

pk
A(n)

N∗(n)
= −pkQk + pk−1Qk−1 + 1{k=d+1}

A(n)

N∗(n)
+O(Ckq̂n),

where Ck < k2d2 by (54), and it estimates the smaller-order terms. Note that the inequality
became an equality since similar analysis on the lower bound in (61) yields the same right-hand
side. By Proposition 3, we can write q̂n = qn(1 + o(1)) → 0 as n → 0. Combining this with
limn→∞A(n)/N∗(n) = d (by (53)), we find that the limiting distribution pk should satisfy

pk(d +Qk) = pk−1Qk−1 + d 1{k=d+1}. (62)
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Using the formula for Qk in (35), we equivalently have

pk = pk−1
(k − 1)(d − 1)− d2 + d + 2

k(d − 1)− d2 + 2d + 2
+ 1{k=d+1}

d

2d + 1
.

The solution of this recursion is

pk = pd+1

k∏
�=d+2

�− 1 − d + 2/(d − 1)

�− d + (d + 2)/(d − 1)

= d

2d + 1

	(k − d + 2/(d − 1))

	(1 + 2/(d − 1))

	(2 + (d + 2)/(d − 1))

	(k + 1 − d + (d + 2)/(d − 1))
, (63)

and, hence, by the properties of the gamma function, we obtain

pk ∼ constant k−(2d−1)/(d−1),

i.e. the ‘stationary solution’ has a power-law decay with exponent in (2, 3] for d ≥ 2.
Next we analyse the convergence of E[Nk(n) | Gn]/N∗(n) to pk . For this, we need to show

that
εk(n) := E[Nk(n) | Gn] − pkN

∗(n) (64)

is of the order claimed in Lemma 9 (as n → ∞), conditionally on Gn. Using (60) and (62) it
is elementary to check that the following recursion holds for the error terms defined in (64):

εk(n+ 1) ≤ εk(n)(1 − q̂n)
Qk + εk−1(n)Qk−1q̂n(1 − q̂n)

Qk−1−1ψ+
k (n)

− pk(N
∗(n+ 1)−N∗(n)(1 − q̂n)

Qk − (d +Qk)q̂nN
∗(n))

− pk−1N
∗(n)Qk−1q̂n(1 − (1 − q̂n)

Qk−1−1ψ+
k (n))

+ 1{k=d+1}(A(n)− dN∗(n))q̂n

+ ψ+
k (n)

((d−1)/d)k∑
�=2

E[Nk−�(n) | Gn]
(
Qk−�
�

)
q̂�n(1 − q̂n)

Qk−�−�. (65)

Denote by �+
k (n) the absolute value of the sum of all terms but the first one on the right-hand

side of (65). Analogously, we denote by �−
k (n) the absolute value of the sum of all terms but

the first and last one. To estimate εk(n) we use induction in k. Suppose that for all �, n such
that � ≤ k − 1, we have

|ε�(n)| ≤ η�N
∗(n)q̂n (66)

with random variables η� < ∞ that will be defined at the end of the proof. The induction
clearly starts for � = d since εd(n) = 0 for all n. To advance the induction, observe that

εk(n+ 1) ≤ |εk(n)| +�+
k (n).

This inequality holds since when εk(n) ≤ 0, by (65) we have εk(n+ 1) ≤ �+
k (n). Otherwise,

when εk(n+1) ≤ εk(n), the inequality is immediate. There remains the εk(n+1) > εk(n) ≥ 0
case. In this case the inequality follows from (1 − q̂n)

Qkψ+
k (n) ≤ 1 for a large enough n, since

q̂n � 2Qk/A(n). Similarly, it is easy to see that the lower bound εk(n+1) ≥ −|εk(n)|−�−
k (n)

holds. Therefore,

|εk(n+ 1)| ≤ |εk(0)| +
n∑
i=1

�k(i), (67)

where �k(i) = max{�+
k (i),�

−
k (i)}.

https://doi.org/10.1017/apr.2016.32 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.32


898 I. KOLOSSVÁRY ET AL.

With a series expansion in the second, third, and fourth terms in (65), and using the fact that
N∗(n+1)−N∗(n) = q̂nA(n) and the identityA(n)−dN∗(n) = d+1 yields the upper bound
for

�+
k (n) ≤

∣∣∣∣q̂n(εk−1(n)Qk−1ψ
+
k (n)+ (d + 1)(1{k=d+1} −pk)+ pk−1Qk−12Q2

k

d

)
+ q̂2

nN
∗(n)

(
pkQ

2
k + pk−1Q

2
k−1 +O(q̂n)

+
((d−1)/d)k∑

�=2

p̄k−�(n)
(
Qk−�
�

)
q̂�−2
n (1 + on(1))

)∣∣∣∣, (68)

where we used E[Nk(n) | Gn]/N∗(n) = p̄k−�(n)(1 + on(1)), with the definition p̄k(n) :=
E[Nk(n) | Gn]/(N∗(n)+ d + 2), that sums up to 1 in k.

A similar inequality holds for �−
k (n) (without the last sum on the right-hand side of (68)),

so we arrive at

�k(n) ≤ ψ+
k (n)(ck,1q̂n|εk−1(n)| + ck,2q̂n + ck,3q̂

2
nN

∗(n)), (69)

with ck,1 := Qk−1, ck,2 := (pk + 1{k=d+1})(d + 1)+ pk−1Qk−12Q2
k/d, and ck,3 := pkQ

2
k +

pk−1Q
2
k−1 + 2Qk .

The next inequality is an easy corollary of Assumption 1 and Claim 6. There exist strictly
positive random variables ξ1 and ξ2 such that

ξ1 ≤
∑n−1
i=1 N

∗(i)q̂2
i

q̂nN∗(n)
≤ ξ2 ≤ 17ξ2. (70)

holds a.s. Indeed, from Claim 6 it follows that there exists a random constant K such that
for all i > K , N∗(i)/

∏i
j=0(1 + dqj ) ∈ (ξ/2, 2ξ) and q̂i/qi ∈ ( 1

2 , 2) (the latter holds a.s. by
Assumption 1 and the argument below (58)). As a result∑n−1

i=K N∗(i)q̂2
i∑n−1

i=K q2
i

∏i
j=1(1 + dqj )

∈
[
ξ

4
, 4ξ

]
,

N∗(n)q̂n
qn

∏n
j=1(1 + dqj )

∈
[
ξ

4
, 4ξ

]
(71)

hold for all n ≥ K . The statement of (70) then follows by noting that the sum of the terms
indexed by j between 1 andK is a constant (we obtained the 17ξ2 as an upper bound on ξ2 by
possibly taking n even larger.)

The estimate in (70) is strong enough to complete the induction step of the proof of Lemma 9.
The induction hypothesis in (66) together with (67) and (69) yields

εk(n) ≤ |εk(0)| +
n−1∑
i=1

ψ+
k (i)(ck,1ηk−1q̂

2
i N

∗(i)+ ck,2q̂i + ck,3q̂
2
i N

∗(i))

≤ |εk(0)| + C +
n−1∑
i=1

2(ck,1ηk−1q̂
2
i N

∗(i)+ ck,2q̂i + ck,3q̂
2
i N

∗(i)),

where we used the fact that ψ+
k (i) ≤ 2 if n is sufficiently large. Next, we can apply the upper

bound in (70) on the sum of the first and third terms to obtain, for n large enough,

εk(n) ≤ (2ck,1ηk−1 + ck,3)ξ2q̂nN
∗(n)+ 2ck,2

n−1∑
i=1

q̂i + |εk(0)|.
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We can advance the induction by noting that |εk(0)| ≤ d + 2, while
∑n−1
i=1 q̂i = o(N∗(n)qn)

follows from the second statement in (71). Further, by (70) and the definitions of ck,i , we see
that ηk can be chosen to satisfy the recursion ηk = ξ2(2Qk−1ηk−1 + 2k(d−1)+1 + 2). Using
Qk < k(d − 1) and pk ∼ constant k(2d−1)/(d−1) (and also using the fact that we can chose
ηd = 0), we obtain ηk ≤ k! ηk for η := 2(d − 1)ξ2 and k > k0, where k0 is deterministic.
Therefore, ηk ≤ C0k! ηk holds for all k for some C0 large enough. �

In the proof of Lemma 1, we will repeatedly use the following theorem, see [28] and [9,
Proposition 1.5.8].

Theorem 6. (Karamata’s theorem, direct half.) Let L(x) be a slowly varying function at ∞
and let β > 0. Then for any fixed x0 > 0,

lim
x→∞

1

xβL(x)

∫ x

x0

L(t)

t1−β dt = lim
x→∞

1

x−βL(x)

∫ ∞

x

L(t)

tβ+1 dt = 1

β
.

Further, the function L̃(x) := ∫ x
x0
(L(t)/t) dt is slowly varying at ∞ and

lim
x→∞

1

L(x)

∫ x

x0

L(t)

t
dt = ∞.

Proof of Lemma 1. (i) We start with the α �= 1 case by showing that (13) holds. In this
proof, C denotes a generic constant with a value that might change even along lines, but
only depends on the sequence {qn}n∈N and nothing else. Further, the Landau symbol � has
its usual meaning, i.e. for two sequences an and bn, we say that an = �(bn) if there exist
constants 0 < c and C < ∞ such that for all n, cbn < an < Cbn. Using the inequalities
x − x2/2 ≤ log(1 + x) ≤ x + x2/2, we obtain

i∏
j=1

(1 + dqj ) = exp

{ i∑
j=1

log(1 + dqj )

}
= exp

{
d

i∑
j=1

qj (1 + oi(1))

}
, (72)

where we use the fact that Theorem 6 gives
∑i
j=1 qj = �(i1−αL(i)), while

∑i
j=1 q

2
j =

�(i1−2αL2(i)) if α ∈ (0, 1
2 ), slowly varying if α = 1

2 and summable if α ∈ ( 1
2 , 1), and, hence,

the sum of the second-order error terms can be substituted into the oi(1) term in (72). This
estimate implies that

q2
i

i∏
j=1

(1 + dqj ) = L(i)2

i2α
exp{�(i1−αL(i))} → ∞,

and, hence, the sum of the first �n/2� terms add only at most a constant factor to the total sum

n−1∑
i=1

q2
i

i∏
j=1

(1 + dqj ) ≤ C

n−1∑
i=�n/2�

q2
i

i∏
j=1

(1 + dqj ) ≤ Cqn

n−1∑
i=�n/2�

qi

i∏
j=1

(1 + dqj ),

where, to obtain the second inequality we use the fact that for all j ∈ {�n/2�, . . . n}, we have
qj = L(j)/jα ≤ cL(n)/nα = Cqn for some C > 0, since L(·) is slowly varying (this
statement follows from a usual Potter’s bound; see [9, Theorem 1.5.6]). It remains to study the
following sum:

n−1∑
i=�n/2�

qi

i∏
j=1

(1 + dqj ) =
n−1∑
i=n/2

qi exp

{
d

i∑
j=1

qj (1 + oi(1))

}
.
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Let q(x) be a continuous function so that q(n) = qn, and approximate the sum with the integral,
we see that the right-hand side is at most

C

∫ n

n/2
exp

{
d

∫ x

1
q(y) dy(1 + ox(1))

}
q(x) dx. (73)

From Theorem 6 and the argument below (72) it follows that the term hidden in ox(1) is
�(x−αL(x)) when α �= 1

2 and L̃(x)/x1/2 for some other slowly varying function L̃(x) when
α = 1

2 . Hence, it is not difficult to see (by, e.g. estimating with two different constant factors in
the exponent) that the (1+ox(1)) factor can be neglected and it follows that the integral in (73)
can be bounded from above by

C exp

{
d

∫ n

1
q(y) dy

}
≤ C

n∏
i=1

(1 + dqi),

where in the last step we moved back from the integral to the sum again, similarly as before.
(Note that we used the fact that

∑n−1
i=1 qi → ∞ as well, which follows trivially whenα ∈ (0, 1)).

The lower bound can be determined in a similar manner. For the second statement, (14), a simple
application of Theorem 6 is sufficient,

∞∑
n=1

exp

{
−εqn exp

{
d

n∑
j=0

qj

}}
=

∞∑
n=1

exp

{
−εL(n)

nα
exp{dL(n)n1−α}

}
,

which is summable for every ε > 0 since 1 − α > 0.

(ii) We show the upper bound in (13). The lower bound can be determined in a similar manner.
The same argument to that used around (72) can be repeated and since

∑∞
j=1 b

2/j2 < C, we
have

q2
i

i∏
j=1

(1 + dqj ) ≤ (b + o(i−δ))2

i2
exp{db log i + C} ≤ Cidb−2, (74)

where we also use the fact that the error term
∑i
j=1 o(n

−1−δ) < C for some constant C > 0
depends on the sequence {qn}n∈N only. Finally, summing (74) in i, the first i0 terms contribute
as a constant, and the rest can be expressed as

n−1∑
i=1

q2
i

i∏
j=1

(1 + dqj ) ≤ C

n−1∑
i=i0

idb−2 ≤ Cndb−1, (75)

since db > 1. On the other hand, the denominator in (13) can be estimated from below as

qn

n∏
j=1

(1 + dqj ) ≥ b − o(n−δ)
n

exp

{
d

n∑
j=1

b − o(j−ε)
j

− C

}
≥ Cndb−1. (76)

Combining the estimates in (75) and (76) yields the upper bound in (13). The lower bound can
be shown analogously and is left to the reader. As for (14), we can use the lower bound (76) to
obtain the following upper bound:

exp

{
−εqn exp

{
d

n∑
j=1

qj

}}
≤ exp{−εCndb−1},

which is summable since db − 1 > 0. �
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